1 /* 2 * Ram backed block device driver. 3 * 4 * Copyright (C) 2007 Nick Piggin 5 * Copyright (C) 2007 Novell Inc. 6 * 7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 8 * of their respective owners. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/module.h> 14 #include <linux/moduleparam.h> 15 #include <linux/major.h> 16 #include <linux/blkdev.h> 17 #include <linux/bio.h> 18 #include <linux/highmem.h> 19 #include <linux/mutex.h> 20 #include <linux/radix-tree.h> 21 #include <linux/fs.h> 22 #include <linux/slab.h> 23 #include <linux/backing-dev.h> 24 25 #include <linux/uaccess.h> 26 27 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 28 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 29 30 /* 31 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 32 * the pages containing the block device's contents. A brd page's ->index is 33 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 34 * with, the kernel's pagecache or buffer cache (which sit above our block 35 * device). 36 */ 37 struct brd_device { 38 int brd_number; 39 40 struct request_queue *brd_queue; 41 struct gendisk *brd_disk; 42 struct list_head brd_list; 43 44 /* 45 * Backing store of pages and lock to protect it. This is the contents 46 * of the block device. 47 */ 48 spinlock_t brd_lock; 49 struct radix_tree_root brd_pages; 50 }; 51 52 /* 53 * Look up and return a brd's page for a given sector. 54 */ 55 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 56 { 57 pgoff_t idx; 58 struct page *page; 59 60 /* 61 * The page lifetime is protected by the fact that we have opened the 62 * device node -- brd pages will never be deleted under us, so we 63 * don't need any further locking or refcounting. 64 * 65 * This is strictly true for the radix-tree nodes as well (ie. we 66 * don't actually need the rcu_read_lock()), however that is not a 67 * documented feature of the radix-tree API so it is better to be 68 * safe here (we don't have total exclusion from radix tree updates 69 * here, only deletes). 70 */ 71 rcu_read_lock(); 72 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 73 page = radix_tree_lookup(&brd->brd_pages, idx); 74 rcu_read_unlock(); 75 76 BUG_ON(page && page->index != idx); 77 78 return page; 79 } 80 81 /* 82 * Look up and return a brd's page for a given sector. 83 * If one does not exist, allocate an empty page, and insert that. Then 84 * return it. 85 */ 86 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 87 { 88 pgoff_t idx; 89 struct page *page; 90 gfp_t gfp_flags; 91 92 page = brd_lookup_page(brd, sector); 93 if (page) 94 return page; 95 96 /* 97 * Must use NOIO because we don't want to recurse back into the 98 * block or filesystem layers from page reclaim. 99 * 100 * Cannot support DAX and highmem, because our ->direct_access 101 * routine for DAX must return memory that is always addressable. 102 * If DAX was reworked to use pfns and kmap throughout, this 103 * restriction might be able to be lifted. 104 */ 105 gfp_flags = GFP_NOIO | __GFP_ZERO; 106 page = alloc_page(gfp_flags); 107 if (!page) 108 return NULL; 109 110 if (radix_tree_preload(GFP_NOIO)) { 111 __free_page(page); 112 return NULL; 113 } 114 115 spin_lock(&brd->brd_lock); 116 idx = sector >> PAGE_SECTORS_SHIFT; 117 page->index = idx; 118 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 119 __free_page(page); 120 page = radix_tree_lookup(&brd->brd_pages, idx); 121 BUG_ON(!page); 122 BUG_ON(page->index != idx); 123 } 124 spin_unlock(&brd->brd_lock); 125 126 radix_tree_preload_end(); 127 128 return page; 129 } 130 131 /* 132 * Free all backing store pages and radix tree. This must only be called when 133 * there are no other users of the device. 134 */ 135 #define FREE_BATCH 16 136 static void brd_free_pages(struct brd_device *brd) 137 { 138 unsigned long pos = 0; 139 struct page *pages[FREE_BATCH]; 140 int nr_pages; 141 142 do { 143 int i; 144 145 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 146 (void **)pages, pos, FREE_BATCH); 147 148 for (i = 0; i < nr_pages; i++) { 149 void *ret; 150 151 BUG_ON(pages[i]->index < pos); 152 pos = pages[i]->index; 153 ret = radix_tree_delete(&brd->brd_pages, pos); 154 BUG_ON(!ret || ret != pages[i]); 155 __free_page(pages[i]); 156 } 157 158 pos++; 159 160 /* 161 * This assumes radix_tree_gang_lookup always returns as 162 * many pages as possible. If the radix-tree code changes, 163 * so will this have to. 164 */ 165 } while (nr_pages == FREE_BATCH); 166 } 167 168 /* 169 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 170 */ 171 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 172 { 173 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 174 size_t copy; 175 176 copy = min_t(size_t, n, PAGE_SIZE - offset); 177 if (!brd_insert_page(brd, sector)) 178 return -ENOSPC; 179 if (copy < n) { 180 sector += copy >> SECTOR_SHIFT; 181 if (!brd_insert_page(brd, sector)) 182 return -ENOSPC; 183 } 184 return 0; 185 } 186 187 /* 188 * Copy n bytes from src to the brd starting at sector. Does not sleep. 189 */ 190 static void copy_to_brd(struct brd_device *brd, const void *src, 191 sector_t sector, size_t n) 192 { 193 struct page *page; 194 void *dst; 195 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 196 size_t copy; 197 198 copy = min_t(size_t, n, PAGE_SIZE - offset); 199 page = brd_lookup_page(brd, sector); 200 BUG_ON(!page); 201 202 dst = kmap_atomic(page); 203 memcpy(dst + offset, src, copy); 204 kunmap_atomic(dst); 205 206 if (copy < n) { 207 src += copy; 208 sector += copy >> SECTOR_SHIFT; 209 copy = n - copy; 210 page = brd_lookup_page(brd, sector); 211 BUG_ON(!page); 212 213 dst = kmap_atomic(page); 214 memcpy(dst, src, copy); 215 kunmap_atomic(dst); 216 } 217 } 218 219 /* 220 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 221 */ 222 static void copy_from_brd(void *dst, struct brd_device *brd, 223 sector_t sector, size_t n) 224 { 225 struct page *page; 226 void *src; 227 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 228 size_t copy; 229 230 copy = min_t(size_t, n, PAGE_SIZE - offset); 231 page = brd_lookup_page(brd, sector); 232 if (page) { 233 src = kmap_atomic(page); 234 memcpy(dst, src + offset, copy); 235 kunmap_atomic(src); 236 } else 237 memset(dst, 0, copy); 238 239 if (copy < n) { 240 dst += copy; 241 sector += copy >> SECTOR_SHIFT; 242 copy = n - copy; 243 page = brd_lookup_page(brd, sector); 244 if (page) { 245 src = kmap_atomic(page); 246 memcpy(dst, src, copy); 247 kunmap_atomic(src); 248 } else 249 memset(dst, 0, copy); 250 } 251 } 252 253 /* 254 * Process a single bvec of a bio. 255 */ 256 static int brd_do_bvec(struct brd_device *brd, struct page *page, 257 unsigned int len, unsigned int off, bool is_write, 258 sector_t sector) 259 { 260 void *mem; 261 int err = 0; 262 263 if (is_write) { 264 err = copy_to_brd_setup(brd, sector, len); 265 if (err) 266 goto out; 267 } 268 269 mem = kmap_atomic(page); 270 if (!is_write) { 271 copy_from_brd(mem + off, brd, sector, len); 272 flush_dcache_page(page); 273 } else { 274 flush_dcache_page(page); 275 copy_to_brd(brd, mem + off, sector, len); 276 } 277 kunmap_atomic(mem); 278 279 out: 280 return err; 281 } 282 283 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio) 284 { 285 struct brd_device *brd = bio->bi_disk->private_data; 286 struct bio_vec bvec; 287 sector_t sector; 288 struct bvec_iter iter; 289 290 sector = bio->bi_iter.bi_sector; 291 if (bio_end_sector(bio) > get_capacity(bio->bi_disk)) 292 goto io_error; 293 294 bio_for_each_segment(bvec, bio, iter) { 295 unsigned int len = bvec.bv_len; 296 int err; 297 298 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 299 op_is_write(bio_op(bio)), sector); 300 if (err) 301 goto io_error; 302 sector += len >> SECTOR_SHIFT; 303 } 304 305 bio_endio(bio); 306 return BLK_QC_T_NONE; 307 io_error: 308 bio_io_error(bio); 309 return BLK_QC_T_NONE; 310 } 311 312 static int brd_rw_page(struct block_device *bdev, sector_t sector, 313 struct page *page, bool is_write) 314 { 315 struct brd_device *brd = bdev->bd_disk->private_data; 316 int err; 317 318 if (PageTransHuge(page)) 319 return -ENOTSUPP; 320 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector); 321 page_endio(page, is_write, err); 322 return err; 323 } 324 325 static const struct block_device_operations brd_fops = { 326 .owner = THIS_MODULE, 327 .rw_page = brd_rw_page, 328 }; 329 330 /* 331 * And now the modules code and kernel interface. 332 */ 333 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 334 module_param(rd_nr, int, 0444); 335 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 336 337 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 338 module_param(rd_size, ulong, 0444); 339 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 340 341 static int max_part = 1; 342 module_param(max_part, int, 0444); 343 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 344 345 MODULE_LICENSE("GPL"); 346 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 347 MODULE_ALIAS("rd"); 348 349 #ifndef MODULE 350 /* Legacy boot options - nonmodular */ 351 static int __init ramdisk_size(char *str) 352 { 353 rd_size = simple_strtol(str, NULL, 0); 354 return 1; 355 } 356 __setup("ramdisk_size=", ramdisk_size); 357 #endif 358 359 /* 360 * The device scheme is derived from loop.c. Keep them in synch where possible 361 * (should share code eventually). 362 */ 363 static LIST_HEAD(brd_devices); 364 static DEFINE_MUTEX(brd_devices_mutex); 365 366 static struct brd_device *brd_alloc(int i) 367 { 368 struct brd_device *brd; 369 struct gendisk *disk; 370 371 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 372 if (!brd) 373 goto out; 374 brd->brd_number = i; 375 spin_lock_init(&brd->brd_lock); 376 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 377 378 brd->brd_queue = blk_alloc_queue(GFP_KERNEL); 379 if (!brd->brd_queue) 380 goto out_free_dev; 381 382 blk_queue_make_request(brd->brd_queue, brd_make_request); 383 blk_queue_max_hw_sectors(brd->brd_queue, 1024); 384 385 /* This is so fdisk will align partitions on 4k, because of 386 * direct_access API needing 4k alignment, returning a PFN 387 * (This is only a problem on very small devices <= 4M, 388 * otherwise fdisk will align on 1M. Regardless this call 389 * is harmless) 390 */ 391 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); 392 disk = brd->brd_disk = alloc_disk(max_part); 393 if (!disk) 394 goto out_free_queue; 395 disk->major = RAMDISK_MAJOR; 396 disk->first_minor = i * max_part; 397 disk->fops = &brd_fops; 398 disk->private_data = brd; 399 disk->queue = brd->brd_queue; 400 disk->flags = GENHD_FL_EXT_DEVT; 401 sprintf(disk->disk_name, "ram%d", i); 402 set_capacity(disk, rd_size * 2); 403 disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO; 404 405 /* Tell the block layer that this is not a rotational device */ 406 blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue); 407 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue); 408 409 return brd; 410 411 out_free_queue: 412 blk_cleanup_queue(brd->brd_queue); 413 out_free_dev: 414 kfree(brd); 415 out: 416 return NULL; 417 } 418 419 static void brd_free(struct brd_device *brd) 420 { 421 put_disk(brd->brd_disk); 422 blk_cleanup_queue(brd->brd_queue); 423 brd_free_pages(brd); 424 kfree(brd); 425 } 426 427 static struct brd_device *brd_init_one(int i, bool *new) 428 { 429 struct brd_device *brd; 430 431 *new = false; 432 list_for_each_entry(brd, &brd_devices, brd_list) { 433 if (brd->brd_number == i) 434 goto out; 435 } 436 437 brd = brd_alloc(i); 438 if (brd) { 439 add_disk(brd->brd_disk); 440 list_add_tail(&brd->brd_list, &brd_devices); 441 } 442 *new = true; 443 out: 444 return brd; 445 } 446 447 static void brd_del_one(struct brd_device *brd) 448 { 449 list_del(&brd->brd_list); 450 del_gendisk(brd->brd_disk); 451 brd_free(brd); 452 } 453 454 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 455 { 456 struct brd_device *brd; 457 struct kobject *kobj; 458 bool new; 459 460 mutex_lock(&brd_devices_mutex); 461 brd = brd_init_one(MINOR(dev) / max_part, &new); 462 kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL; 463 mutex_unlock(&brd_devices_mutex); 464 465 if (new) 466 *part = 0; 467 468 return kobj; 469 } 470 471 static int __init brd_init(void) 472 { 473 struct brd_device *brd, *next; 474 int i; 475 476 /* 477 * brd module now has a feature to instantiate underlying device 478 * structure on-demand, provided that there is an access dev node. 479 * 480 * (1) if rd_nr is specified, create that many upfront. else 481 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 482 * (2) User can further extend brd devices by create dev node themselves 483 * and have kernel automatically instantiate actual device 484 * on-demand. Example: 485 * mknod /path/devnod_name b 1 X # 1 is the rd major 486 * fdisk -l /path/devnod_name 487 * If (X / max_part) was not already created it will be created 488 * dynamically. 489 */ 490 491 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 492 return -EIO; 493 494 if (unlikely(!max_part)) 495 max_part = 1; 496 497 for (i = 0; i < rd_nr; i++) { 498 brd = brd_alloc(i); 499 if (!brd) 500 goto out_free; 501 list_add_tail(&brd->brd_list, &brd_devices); 502 } 503 504 /* point of no return */ 505 506 list_for_each_entry(brd, &brd_devices, brd_list) 507 add_disk(brd->brd_disk); 508 509 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS, 510 THIS_MODULE, brd_probe, NULL, NULL); 511 512 pr_info("brd: module loaded\n"); 513 return 0; 514 515 out_free: 516 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 517 list_del(&brd->brd_list); 518 brd_free(brd); 519 } 520 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 521 522 pr_info("brd: module NOT loaded !!!\n"); 523 return -ENOMEM; 524 } 525 526 static void __exit brd_exit(void) 527 { 528 struct brd_device *brd, *next; 529 530 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 531 brd_del_one(brd); 532 533 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS); 534 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 535 536 pr_info("brd: module unloaded\n"); 537 } 538 539 module_init(brd_init); 540 module_exit(brd_exit); 541 542