xref: /openbmc/linux/drivers/block/brd.c (revision 82e6fdd6)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/major.h>
16 #include <linux/blkdev.h>
17 #include <linux/bio.h>
18 #include <linux/highmem.h>
19 #include <linux/mutex.h>
20 #include <linux/radix-tree.h>
21 #include <linux/fs.h>
22 #include <linux/slab.h>
23 #include <linux/backing-dev.h>
24 
25 #include <linux/uaccess.h>
26 
27 #define SECTOR_SHIFT		9
28 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
29 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
30 
31 /*
32  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
33  * the pages containing the block device's contents. A brd page's ->index is
34  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
35  * with, the kernel's pagecache or buffer cache (which sit above our block
36  * device).
37  */
38 struct brd_device {
39 	int		brd_number;
40 
41 	struct request_queue	*brd_queue;
42 	struct gendisk		*brd_disk;
43 	struct list_head	brd_list;
44 
45 	/*
46 	 * Backing store of pages and lock to protect it. This is the contents
47 	 * of the block device.
48 	 */
49 	spinlock_t		brd_lock;
50 	struct radix_tree_root	brd_pages;
51 };
52 
53 /*
54  * Look up and return a brd's page for a given sector.
55  */
56 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
57 {
58 	pgoff_t idx;
59 	struct page *page;
60 
61 	/*
62 	 * The page lifetime is protected by the fact that we have opened the
63 	 * device node -- brd pages will never be deleted under us, so we
64 	 * don't need any further locking or refcounting.
65 	 *
66 	 * This is strictly true for the radix-tree nodes as well (ie. we
67 	 * don't actually need the rcu_read_lock()), however that is not a
68 	 * documented feature of the radix-tree API so it is better to be
69 	 * safe here (we don't have total exclusion from radix tree updates
70 	 * here, only deletes).
71 	 */
72 	rcu_read_lock();
73 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
74 	page = radix_tree_lookup(&brd->brd_pages, idx);
75 	rcu_read_unlock();
76 
77 	BUG_ON(page && page->index != idx);
78 
79 	return page;
80 }
81 
82 /*
83  * Look up and return a brd's page for a given sector.
84  * If one does not exist, allocate an empty page, and insert that. Then
85  * return it.
86  */
87 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
88 {
89 	pgoff_t idx;
90 	struct page *page;
91 	gfp_t gfp_flags;
92 
93 	page = brd_lookup_page(brd, sector);
94 	if (page)
95 		return page;
96 
97 	/*
98 	 * Must use NOIO because we don't want to recurse back into the
99 	 * block or filesystem layers from page reclaim.
100 	 *
101 	 * Cannot support DAX and highmem, because our ->direct_access
102 	 * routine for DAX must return memory that is always addressable.
103 	 * If DAX was reworked to use pfns and kmap throughout, this
104 	 * restriction might be able to be lifted.
105 	 */
106 	gfp_flags = GFP_NOIO | __GFP_ZERO;
107 	page = alloc_page(gfp_flags);
108 	if (!page)
109 		return NULL;
110 
111 	if (radix_tree_preload(GFP_NOIO)) {
112 		__free_page(page);
113 		return NULL;
114 	}
115 
116 	spin_lock(&brd->brd_lock);
117 	idx = sector >> PAGE_SECTORS_SHIFT;
118 	page->index = idx;
119 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
120 		__free_page(page);
121 		page = radix_tree_lookup(&brd->brd_pages, idx);
122 		BUG_ON(!page);
123 		BUG_ON(page->index != idx);
124 	}
125 	spin_unlock(&brd->brd_lock);
126 
127 	radix_tree_preload_end();
128 
129 	return page;
130 }
131 
132 /*
133  * Free all backing store pages and radix tree. This must only be called when
134  * there are no other users of the device.
135  */
136 #define FREE_BATCH 16
137 static void brd_free_pages(struct brd_device *brd)
138 {
139 	unsigned long pos = 0;
140 	struct page *pages[FREE_BATCH];
141 	int nr_pages;
142 
143 	do {
144 		int i;
145 
146 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
147 				(void **)pages, pos, FREE_BATCH);
148 
149 		for (i = 0; i < nr_pages; i++) {
150 			void *ret;
151 
152 			BUG_ON(pages[i]->index < pos);
153 			pos = pages[i]->index;
154 			ret = radix_tree_delete(&brd->brd_pages, pos);
155 			BUG_ON(!ret || ret != pages[i]);
156 			__free_page(pages[i]);
157 		}
158 
159 		pos++;
160 
161 		/*
162 		 * This assumes radix_tree_gang_lookup always returns as
163 		 * many pages as possible. If the radix-tree code changes,
164 		 * so will this have to.
165 		 */
166 	} while (nr_pages == FREE_BATCH);
167 }
168 
169 /*
170  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
171  */
172 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
173 {
174 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
175 	size_t copy;
176 
177 	copy = min_t(size_t, n, PAGE_SIZE - offset);
178 	if (!brd_insert_page(brd, sector))
179 		return -ENOSPC;
180 	if (copy < n) {
181 		sector += copy >> SECTOR_SHIFT;
182 		if (!brd_insert_page(brd, sector))
183 			return -ENOSPC;
184 	}
185 	return 0;
186 }
187 
188 /*
189  * Copy n bytes from src to the brd starting at sector. Does not sleep.
190  */
191 static void copy_to_brd(struct brd_device *brd, const void *src,
192 			sector_t sector, size_t n)
193 {
194 	struct page *page;
195 	void *dst;
196 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
197 	size_t copy;
198 
199 	copy = min_t(size_t, n, PAGE_SIZE - offset);
200 	page = brd_lookup_page(brd, sector);
201 	BUG_ON(!page);
202 
203 	dst = kmap_atomic(page);
204 	memcpy(dst + offset, src, copy);
205 	kunmap_atomic(dst);
206 
207 	if (copy < n) {
208 		src += copy;
209 		sector += copy >> SECTOR_SHIFT;
210 		copy = n - copy;
211 		page = brd_lookup_page(brd, sector);
212 		BUG_ON(!page);
213 
214 		dst = kmap_atomic(page);
215 		memcpy(dst, src, copy);
216 		kunmap_atomic(dst);
217 	}
218 }
219 
220 /*
221  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
222  */
223 static void copy_from_brd(void *dst, struct brd_device *brd,
224 			sector_t sector, size_t n)
225 {
226 	struct page *page;
227 	void *src;
228 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
229 	size_t copy;
230 
231 	copy = min_t(size_t, n, PAGE_SIZE - offset);
232 	page = brd_lookup_page(brd, sector);
233 	if (page) {
234 		src = kmap_atomic(page);
235 		memcpy(dst, src + offset, copy);
236 		kunmap_atomic(src);
237 	} else
238 		memset(dst, 0, copy);
239 
240 	if (copy < n) {
241 		dst += copy;
242 		sector += copy >> SECTOR_SHIFT;
243 		copy = n - copy;
244 		page = brd_lookup_page(brd, sector);
245 		if (page) {
246 			src = kmap_atomic(page);
247 			memcpy(dst, src, copy);
248 			kunmap_atomic(src);
249 		} else
250 			memset(dst, 0, copy);
251 	}
252 }
253 
254 /*
255  * Process a single bvec of a bio.
256  */
257 static int brd_do_bvec(struct brd_device *brd, struct page *page,
258 			unsigned int len, unsigned int off, bool is_write,
259 			sector_t sector)
260 {
261 	void *mem;
262 	int err = 0;
263 
264 	if (is_write) {
265 		err = copy_to_brd_setup(brd, sector, len);
266 		if (err)
267 			goto out;
268 	}
269 
270 	mem = kmap_atomic(page);
271 	if (!is_write) {
272 		copy_from_brd(mem + off, brd, sector, len);
273 		flush_dcache_page(page);
274 	} else {
275 		flush_dcache_page(page);
276 		copy_to_brd(brd, mem + off, sector, len);
277 	}
278 	kunmap_atomic(mem);
279 
280 out:
281 	return err;
282 }
283 
284 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
285 {
286 	struct brd_device *brd = bio->bi_disk->private_data;
287 	struct bio_vec bvec;
288 	sector_t sector;
289 	struct bvec_iter iter;
290 
291 	sector = bio->bi_iter.bi_sector;
292 	if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
293 		goto io_error;
294 
295 	bio_for_each_segment(bvec, bio, iter) {
296 		unsigned int len = bvec.bv_len;
297 		int err;
298 
299 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
300 					op_is_write(bio_op(bio)), sector);
301 		if (err)
302 			goto io_error;
303 		sector += len >> SECTOR_SHIFT;
304 	}
305 
306 	bio_endio(bio);
307 	return BLK_QC_T_NONE;
308 io_error:
309 	bio_io_error(bio);
310 	return BLK_QC_T_NONE;
311 }
312 
313 static int brd_rw_page(struct block_device *bdev, sector_t sector,
314 		       struct page *page, bool is_write)
315 {
316 	struct brd_device *brd = bdev->bd_disk->private_data;
317 	int err;
318 
319 	if (PageTransHuge(page))
320 		return -ENOTSUPP;
321 	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
322 	page_endio(page, is_write, err);
323 	return err;
324 }
325 
326 static const struct block_device_operations brd_fops = {
327 	.owner =		THIS_MODULE,
328 	.rw_page =		brd_rw_page,
329 };
330 
331 /*
332  * And now the modules code and kernel interface.
333  */
334 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
335 module_param(rd_nr, int, S_IRUGO);
336 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
337 
338 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
339 module_param(rd_size, ulong, S_IRUGO);
340 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
341 
342 static int max_part = 1;
343 module_param(max_part, int, S_IRUGO);
344 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
345 
346 MODULE_LICENSE("GPL");
347 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
348 MODULE_ALIAS("rd");
349 
350 #ifndef MODULE
351 /* Legacy boot options - nonmodular */
352 static int __init ramdisk_size(char *str)
353 {
354 	rd_size = simple_strtol(str, NULL, 0);
355 	return 1;
356 }
357 __setup("ramdisk_size=", ramdisk_size);
358 #endif
359 
360 /*
361  * The device scheme is derived from loop.c. Keep them in synch where possible
362  * (should share code eventually).
363  */
364 static LIST_HEAD(brd_devices);
365 static DEFINE_MUTEX(brd_devices_mutex);
366 
367 static struct brd_device *brd_alloc(int i)
368 {
369 	struct brd_device *brd;
370 	struct gendisk *disk;
371 
372 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
373 	if (!brd)
374 		goto out;
375 	brd->brd_number		= i;
376 	spin_lock_init(&brd->brd_lock);
377 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
378 
379 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
380 	if (!brd->brd_queue)
381 		goto out_free_dev;
382 
383 	blk_queue_make_request(brd->brd_queue, brd_make_request);
384 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
385 
386 	/* This is so fdisk will align partitions on 4k, because of
387 	 * direct_access API needing 4k alignment, returning a PFN
388 	 * (This is only a problem on very small devices <= 4M,
389 	 *  otherwise fdisk will align on 1M. Regardless this call
390 	 *  is harmless)
391 	 */
392 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
393 	disk = brd->brd_disk = alloc_disk(max_part);
394 	if (!disk)
395 		goto out_free_queue;
396 	disk->major		= RAMDISK_MAJOR;
397 	disk->first_minor	= i * max_part;
398 	disk->fops		= &brd_fops;
399 	disk->private_data	= brd;
400 	disk->queue		= brd->brd_queue;
401 	disk->flags		= GENHD_FL_EXT_DEVT;
402 	sprintf(disk->disk_name, "ram%d", i);
403 	set_capacity(disk, rd_size * 2);
404 	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
405 
406 	return brd;
407 
408 out_free_queue:
409 	blk_cleanup_queue(brd->brd_queue);
410 out_free_dev:
411 	kfree(brd);
412 out:
413 	return NULL;
414 }
415 
416 static void brd_free(struct brd_device *brd)
417 {
418 	put_disk(brd->brd_disk);
419 	blk_cleanup_queue(brd->brd_queue);
420 	brd_free_pages(brd);
421 	kfree(brd);
422 }
423 
424 static struct brd_device *brd_init_one(int i, bool *new)
425 {
426 	struct brd_device *brd;
427 
428 	*new = false;
429 	list_for_each_entry(brd, &brd_devices, brd_list) {
430 		if (brd->brd_number == i)
431 			goto out;
432 	}
433 
434 	brd = brd_alloc(i);
435 	if (brd) {
436 		add_disk(brd->brd_disk);
437 		list_add_tail(&brd->brd_list, &brd_devices);
438 	}
439 	*new = true;
440 out:
441 	return brd;
442 }
443 
444 static void brd_del_one(struct brd_device *brd)
445 {
446 	list_del(&brd->brd_list);
447 	del_gendisk(brd->brd_disk);
448 	brd_free(brd);
449 }
450 
451 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
452 {
453 	struct brd_device *brd;
454 	struct kobject *kobj;
455 	bool new;
456 
457 	mutex_lock(&brd_devices_mutex);
458 	brd = brd_init_one(MINOR(dev) / max_part, &new);
459 	kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL;
460 	mutex_unlock(&brd_devices_mutex);
461 
462 	if (new)
463 		*part = 0;
464 
465 	return kobj;
466 }
467 
468 static int __init brd_init(void)
469 {
470 	struct brd_device *brd, *next;
471 	int i;
472 
473 	/*
474 	 * brd module now has a feature to instantiate underlying device
475 	 * structure on-demand, provided that there is an access dev node.
476 	 *
477 	 * (1) if rd_nr is specified, create that many upfront. else
478 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
479 	 * (2) User can further extend brd devices by create dev node themselves
480 	 *     and have kernel automatically instantiate actual device
481 	 *     on-demand. Example:
482 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
483 	 *		fdisk -l /path/devnod_name
484 	 *	If (X / max_part) was not already created it will be created
485 	 *	dynamically.
486 	 */
487 
488 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
489 		return -EIO;
490 
491 	if (unlikely(!max_part))
492 		max_part = 1;
493 
494 	for (i = 0; i < rd_nr; i++) {
495 		brd = brd_alloc(i);
496 		if (!brd)
497 			goto out_free;
498 		list_add_tail(&brd->brd_list, &brd_devices);
499 	}
500 
501 	/* point of no return */
502 
503 	list_for_each_entry(brd, &brd_devices, brd_list)
504 		add_disk(brd->brd_disk);
505 
506 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
507 				  THIS_MODULE, brd_probe, NULL, NULL);
508 
509 	pr_info("brd: module loaded\n");
510 	return 0;
511 
512 out_free:
513 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
514 		list_del(&brd->brd_list);
515 		brd_free(brd);
516 	}
517 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
518 
519 	pr_info("brd: module NOT loaded !!!\n");
520 	return -ENOMEM;
521 }
522 
523 static void __exit brd_exit(void)
524 {
525 	struct brd_device *brd, *next;
526 
527 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
528 		brd_del_one(brd);
529 
530 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
531 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
532 
533 	pr_info("brd: module unloaded\n");
534 }
535 
536 module_init(brd_init);
537 module_exit(brd_exit);
538 
539