1 /* 2 * Ram backed block device driver. 3 * 4 * Copyright (C) 2007 Nick Piggin 5 * Copyright (C) 2007 Novell Inc. 6 * 7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 8 * of their respective owners. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/module.h> 14 #include <linux/moduleparam.h> 15 #include <linux/major.h> 16 #include <linux/blkdev.h> 17 #include <linux/bio.h> 18 #include <linux/highmem.h> 19 #include <linux/mutex.h> 20 #include <linux/radix-tree.h> 21 #include <linux/fs.h> 22 #include <linux/slab.h> 23 #include <linux/backing-dev.h> 24 25 #include <linux/uaccess.h> 26 27 #define SECTOR_SHIFT 9 28 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 29 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 30 31 /* 32 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 33 * the pages containing the block device's contents. A brd page's ->index is 34 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 35 * with, the kernel's pagecache or buffer cache (which sit above our block 36 * device). 37 */ 38 struct brd_device { 39 int brd_number; 40 41 struct request_queue *brd_queue; 42 struct gendisk *brd_disk; 43 struct list_head brd_list; 44 45 /* 46 * Backing store of pages and lock to protect it. This is the contents 47 * of the block device. 48 */ 49 spinlock_t brd_lock; 50 struct radix_tree_root brd_pages; 51 }; 52 53 /* 54 * Look up and return a brd's page for a given sector. 55 */ 56 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 57 { 58 pgoff_t idx; 59 struct page *page; 60 61 /* 62 * The page lifetime is protected by the fact that we have opened the 63 * device node -- brd pages will never be deleted under us, so we 64 * don't need any further locking or refcounting. 65 * 66 * This is strictly true for the radix-tree nodes as well (ie. we 67 * don't actually need the rcu_read_lock()), however that is not a 68 * documented feature of the radix-tree API so it is better to be 69 * safe here (we don't have total exclusion from radix tree updates 70 * here, only deletes). 71 */ 72 rcu_read_lock(); 73 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 74 page = radix_tree_lookup(&brd->brd_pages, idx); 75 rcu_read_unlock(); 76 77 BUG_ON(page && page->index != idx); 78 79 return page; 80 } 81 82 /* 83 * Look up and return a brd's page for a given sector. 84 * If one does not exist, allocate an empty page, and insert that. Then 85 * return it. 86 */ 87 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 88 { 89 pgoff_t idx; 90 struct page *page; 91 gfp_t gfp_flags; 92 93 page = brd_lookup_page(brd, sector); 94 if (page) 95 return page; 96 97 /* 98 * Must use NOIO because we don't want to recurse back into the 99 * block or filesystem layers from page reclaim. 100 * 101 * Cannot support DAX and highmem, because our ->direct_access 102 * routine for DAX must return memory that is always addressable. 103 * If DAX was reworked to use pfns and kmap throughout, this 104 * restriction might be able to be lifted. 105 */ 106 gfp_flags = GFP_NOIO | __GFP_ZERO; 107 page = alloc_page(gfp_flags); 108 if (!page) 109 return NULL; 110 111 if (radix_tree_preload(GFP_NOIO)) { 112 __free_page(page); 113 return NULL; 114 } 115 116 spin_lock(&brd->brd_lock); 117 idx = sector >> PAGE_SECTORS_SHIFT; 118 page->index = idx; 119 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 120 __free_page(page); 121 page = radix_tree_lookup(&brd->brd_pages, idx); 122 BUG_ON(!page); 123 BUG_ON(page->index != idx); 124 } 125 spin_unlock(&brd->brd_lock); 126 127 radix_tree_preload_end(); 128 129 return page; 130 } 131 132 /* 133 * Free all backing store pages and radix tree. This must only be called when 134 * there are no other users of the device. 135 */ 136 #define FREE_BATCH 16 137 static void brd_free_pages(struct brd_device *brd) 138 { 139 unsigned long pos = 0; 140 struct page *pages[FREE_BATCH]; 141 int nr_pages; 142 143 do { 144 int i; 145 146 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 147 (void **)pages, pos, FREE_BATCH); 148 149 for (i = 0; i < nr_pages; i++) { 150 void *ret; 151 152 BUG_ON(pages[i]->index < pos); 153 pos = pages[i]->index; 154 ret = radix_tree_delete(&brd->brd_pages, pos); 155 BUG_ON(!ret || ret != pages[i]); 156 __free_page(pages[i]); 157 } 158 159 pos++; 160 161 /* 162 * This assumes radix_tree_gang_lookup always returns as 163 * many pages as possible. If the radix-tree code changes, 164 * so will this have to. 165 */ 166 } while (nr_pages == FREE_BATCH); 167 } 168 169 /* 170 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 171 */ 172 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 173 { 174 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 175 size_t copy; 176 177 copy = min_t(size_t, n, PAGE_SIZE - offset); 178 if (!brd_insert_page(brd, sector)) 179 return -ENOSPC; 180 if (copy < n) { 181 sector += copy >> SECTOR_SHIFT; 182 if (!brd_insert_page(brd, sector)) 183 return -ENOSPC; 184 } 185 return 0; 186 } 187 188 /* 189 * Copy n bytes from src to the brd starting at sector. Does not sleep. 190 */ 191 static void copy_to_brd(struct brd_device *brd, const void *src, 192 sector_t sector, size_t n) 193 { 194 struct page *page; 195 void *dst; 196 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 197 size_t copy; 198 199 copy = min_t(size_t, n, PAGE_SIZE - offset); 200 page = brd_lookup_page(brd, sector); 201 BUG_ON(!page); 202 203 dst = kmap_atomic(page); 204 memcpy(dst + offset, src, copy); 205 kunmap_atomic(dst); 206 207 if (copy < n) { 208 src += copy; 209 sector += copy >> SECTOR_SHIFT; 210 copy = n - copy; 211 page = brd_lookup_page(brd, sector); 212 BUG_ON(!page); 213 214 dst = kmap_atomic(page); 215 memcpy(dst, src, copy); 216 kunmap_atomic(dst); 217 } 218 } 219 220 /* 221 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 222 */ 223 static void copy_from_brd(void *dst, struct brd_device *brd, 224 sector_t sector, size_t n) 225 { 226 struct page *page; 227 void *src; 228 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 229 size_t copy; 230 231 copy = min_t(size_t, n, PAGE_SIZE - offset); 232 page = brd_lookup_page(brd, sector); 233 if (page) { 234 src = kmap_atomic(page); 235 memcpy(dst, src + offset, copy); 236 kunmap_atomic(src); 237 } else 238 memset(dst, 0, copy); 239 240 if (copy < n) { 241 dst += copy; 242 sector += copy >> SECTOR_SHIFT; 243 copy = n - copy; 244 page = brd_lookup_page(brd, sector); 245 if (page) { 246 src = kmap_atomic(page); 247 memcpy(dst, src, copy); 248 kunmap_atomic(src); 249 } else 250 memset(dst, 0, copy); 251 } 252 } 253 254 /* 255 * Process a single bvec of a bio. 256 */ 257 static int brd_do_bvec(struct brd_device *brd, struct page *page, 258 unsigned int len, unsigned int off, bool is_write, 259 sector_t sector) 260 { 261 void *mem; 262 int err = 0; 263 264 if (is_write) { 265 err = copy_to_brd_setup(brd, sector, len); 266 if (err) 267 goto out; 268 } 269 270 mem = kmap_atomic(page); 271 if (!is_write) { 272 copy_from_brd(mem + off, brd, sector, len); 273 flush_dcache_page(page); 274 } else { 275 flush_dcache_page(page); 276 copy_to_brd(brd, mem + off, sector, len); 277 } 278 kunmap_atomic(mem); 279 280 out: 281 return err; 282 } 283 284 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio) 285 { 286 struct brd_device *brd = bio->bi_disk->private_data; 287 struct bio_vec bvec; 288 sector_t sector; 289 struct bvec_iter iter; 290 291 sector = bio->bi_iter.bi_sector; 292 if (bio_end_sector(bio) > get_capacity(bio->bi_disk)) 293 goto io_error; 294 295 bio_for_each_segment(bvec, bio, iter) { 296 unsigned int len = bvec.bv_len; 297 int err; 298 299 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 300 op_is_write(bio_op(bio)), sector); 301 if (err) 302 goto io_error; 303 sector += len >> SECTOR_SHIFT; 304 } 305 306 bio_endio(bio); 307 return BLK_QC_T_NONE; 308 io_error: 309 bio_io_error(bio); 310 return BLK_QC_T_NONE; 311 } 312 313 static int brd_rw_page(struct block_device *bdev, sector_t sector, 314 struct page *page, bool is_write) 315 { 316 struct brd_device *brd = bdev->bd_disk->private_data; 317 int err; 318 319 if (PageTransHuge(page)) 320 return -ENOTSUPP; 321 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector); 322 page_endio(page, is_write, err); 323 return err; 324 } 325 326 static const struct block_device_operations brd_fops = { 327 .owner = THIS_MODULE, 328 .rw_page = brd_rw_page, 329 }; 330 331 /* 332 * And now the modules code and kernel interface. 333 */ 334 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 335 module_param(rd_nr, int, S_IRUGO); 336 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 337 338 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 339 module_param(rd_size, ulong, S_IRUGO); 340 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 341 342 static int max_part = 1; 343 module_param(max_part, int, S_IRUGO); 344 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 345 346 MODULE_LICENSE("GPL"); 347 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 348 MODULE_ALIAS("rd"); 349 350 #ifndef MODULE 351 /* Legacy boot options - nonmodular */ 352 static int __init ramdisk_size(char *str) 353 { 354 rd_size = simple_strtol(str, NULL, 0); 355 return 1; 356 } 357 __setup("ramdisk_size=", ramdisk_size); 358 #endif 359 360 /* 361 * The device scheme is derived from loop.c. Keep them in synch where possible 362 * (should share code eventually). 363 */ 364 static LIST_HEAD(brd_devices); 365 static DEFINE_MUTEX(brd_devices_mutex); 366 367 static struct brd_device *brd_alloc(int i) 368 { 369 struct brd_device *brd; 370 struct gendisk *disk; 371 372 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 373 if (!brd) 374 goto out; 375 brd->brd_number = i; 376 spin_lock_init(&brd->brd_lock); 377 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 378 379 brd->brd_queue = blk_alloc_queue(GFP_KERNEL); 380 if (!brd->brd_queue) 381 goto out_free_dev; 382 383 blk_queue_make_request(brd->brd_queue, brd_make_request); 384 blk_queue_max_hw_sectors(brd->brd_queue, 1024); 385 386 /* This is so fdisk will align partitions on 4k, because of 387 * direct_access API needing 4k alignment, returning a PFN 388 * (This is only a problem on very small devices <= 4M, 389 * otherwise fdisk will align on 1M. Regardless this call 390 * is harmless) 391 */ 392 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); 393 disk = brd->brd_disk = alloc_disk(max_part); 394 if (!disk) 395 goto out_free_queue; 396 disk->major = RAMDISK_MAJOR; 397 disk->first_minor = i * max_part; 398 disk->fops = &brd_fops; 399 disk->private_data = brd; 400 disk->queue = brd->brd_queue; 401 disk->flags = GENHD_FL_EXT_DEVT; 402 sprintf(disk->disk_name, "ram%d", i); 403 set_capacity(disk, rd_size * 2); 404 disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO; 405 406 return brd; 407 408 out_free_queue: 409 blk_cleanup_queue(brd->brd_queue); 410 out_free_dev: 411 kfree(brd); 412 out: 413 return NULL; 414 } 415 416 static void brd_free(struct brd_device *brd) 417 { 418 put_disk(brd->brd_disk); 419 blk_cleanup_queue(brd->brd_queue); 420 brd_free_pages(brd); 421 kfree(brd); 422 } 423 424 static struct brd_device *brd_init_one(int i, bool *new) 425 { 426 struct brd_device *brd; 427 428 *new = false; 429 list_for_each_entry(brd, &brd_devices, brd_list) { 430 if (brd->brd_number == i) 431 goto out; 432 } 433 434 brd = brd_alloc(i); 435 if (brd) { 436 add_disk(brd->brd_disk); 437 list_add_tail(&brd->brd_list, &brd_devices); 438 } 439 *new = true; 440 out: 441 return brd; 442 } 443 444 static void brd_del_one(struct brd_device *brd) 445 { 446 list_del(&brd->brd_list); 447 del_gendisk(brd->brd_disk); 448 brd_free(brd); 449 } 450 451 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 452 { 453 struct brd_device *brd; 454 struct kobject *kobj; 455 bool new; 456 457 mutex_lock(&brd_devices_mutex); 458 brd = brd_init_one(MINOR(dev) / max_part, &new); 459 kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL; 460 mutex_unlock(&brd_devices_mutex); 461 462 if (new) 463 *part = 0; 464 465 return kobj; 466 } 467 468 static int __init brd_init(void) 469 { 470 struct brd_device *brd, *next; 471 int i; 472 473 /* 474 * brd module now has a feature to instantiate underlying device 475 * structure on-demand, provided that there is an access dev node. 476 * 477 * (1) if rd_nr is specified, create that many upfront. else 478 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 479 * (2) User can further extend brd devices by create dev node themselves 480 * and have kernel automatically instantiate actual device 481 * on-demand. Example: 482 * mknod /path/devnod_name b 1 X # 1 is the rd major 483 * fdisk -l /path/devnod_name 484 * If (X / max_part) was not already created it will be created 485 * dynamically. 486 */ 487 488 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 489 return -EIO; 490 491 if (unlikely(!max_part)) 492 max_part = 1; 493 494 for (i = 0; i < rd_nr; i++) { 495 brd = brd_alloc(i); 496 if (!brd) 497 goto out_free; 498 list_add_tail(&brd->brd_list, &brd_devices); 499 } 500 501 /* point of no return */ 502 503 list_for_each_entry(brd, &brd_devices, brd_list) 504 add_disk(brd->brd_disk); 505 506 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS, 507 THIS_MODULE, brd_probe, NULL, NULL); 508 509 pr_info("brd: module loaded\n"); 510 return 0; 511 512 out_free: 513 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 514 list_del(&brd->brd_list); 515 brd_free(brd); 516 } 517 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 518 519 pr_info("brd: module NOT loaded !!!\n"); 520 return -ENOMEM; 521 } 522 523 static void __exit brd_exit(void) 524 { 525 struct brd_device *brd, *next; 526 527 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 528 brd_del_one(brd); 529 530 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS); 531 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 532 533 pr_info("brd: module unloaded\n"); 534 } 535 536 module_init(brd_init); 537 module_exit(brd_exit); 538 539