1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Ram backed block device driver. 4 * 5 * Copyright (C) 2007 Nick Piggin 6 * Copyright (C) 2007 Novell Inc. 7 * 8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 9 * of their respective owners. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/initrd.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/major.h> 17 #include <linux/blkdev.h> 18 #include <linux/bio.h> 19 #include <linux/highmem.h> 20 #include <linux/mutex.h> 21 #include <linux/pagemap.h> 22 #include <linux/radix-tree.h> 23 #include <linux/fs.h> 24 #include <linux/slab.h> 25 #include <linux/backing-dev.h> 26 #include <linux/debugfs.h> 27 28 #include <linux/uaccess.h> 29 30 /* 31 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 32 * the pages containing the block device's contents. A brd page's ->index is 33 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 34 * with, the kernel's pagecache or buffer cache (which sit above our block 35 * device). 36 */ 37 struct brd_device { 38 int brd_number; 39 struct gendisk *brd_disk; 40 struct list_head brd_list; 41 42 /* 43 * Backing store of pages and lock to protect it. This is the contents 44 * of the block device. 45 */ 46 spinlock_t brd_lock; 47 struct radix_tree_root brd_pages; 48 u64 brd_nr_pages; 49 }; 50 51 /* 52 * Look up and return a brd's page for a given sector. 53 */ 54 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 55 { 56 pgoff_t idx; 57 struct page *page; 58 59 /* 60 * The page lifetime is protected by the fact that we have opened the 61 * device node -- brd pages will never be deleted under us, so we 62 * don't need any further locking or refcounting. 63 * 64 * This is strictly true for the radix-tree nodes as well (ie. we 65 * don't actually need the rcu_read_lock()), however that is not a 66 * documented feature of the radix-tree API so it is better to be 67 * safe here (we don't have total exclusion from radix tree updates 68 * here, only deletes). 69 */ 70 rcu_read_lock(); 71 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 72 page = radix_tree_lookup(&brd->brd_pages, idx); 73 rcu_read_unlock(); 74 75 BUG_ON(page && page->index != idx); 76 77 return page; 78 } 79 80 /* 81 * Look up and return a brd's page for a given sector. 82 * If one does not exist, allocate an empty page, and insert that. Then 83 * return it. 84 */ 85 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 86 { 87 pgoff_t idx; 88 struct page *page; 89 gfp_t gfp_flags; 90 91 page = brd_lookup_page(brd, sector); 92 if (page) 93 return page; 94 95 /* 96 * Must use NOIO because we don't want to recurse back into the 97 * block or filesystem layers from page reclaim. 98 */ 99 gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; 100 page = alloc_page(gfp_flags); 101 if (!page) 102 return NULL; 103 104 if (radix_tree_preload(GFP_NOIO)) { 105 __free_page(page); 106 return NULL; 107 } 108 109 spin_lock(&brd->brd_lock); 110 idx = sector >> PAGE_SECTORS_SHIFT; 111 page->index = idx; 112 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 113 __free_page(page); 114 page = radix_tree_lookup(&brd->brd_pages, idx); 115 BUG_ON(!page); 116 BUG_ON(page->index != idx); 117 } else { 118 brd->brd_nr_pages++; 119 } 120 spin_unlock(&brd->brd_lock); 121 122 radix_tree_preload_end(); 123 124 return page; 125 } 126 127 /* 128 * Free all backing store pages and radix tree. This must only be called when 129 * there are no other users of the device. 130 */ 131 #define FREE_BATCH 16 132 static void brd_free_pages(struct brd_device *brd) 133 { 134 unsigned long pos = 0; 135 struct page *pages[FREE_BATCH]; 136 int nr_pages; 137 138 do { 139 int i; 140 141 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 142 (void **)pages, pos, FREE_BATCH); 143 144 for (i = 0; i < nr_pages; i++) { 145 void *ret; 146 147 BUG_ON(pages[i]->index < pos); 148 pos = pages[i]->index; 149 ret = radix_tree_delete(&brd->brd_pages, pos); 150 BUG_ON(!ret || ret != pages[i]); 151 __free_page(pages[i]); 152 } 153 154 pos++; 155 156 /* 157 * It takes 3.4 seconds to remove 80GiB ramdisk. 158 * So, we need cond_resched to avoid stalling the CPU. 159 */ 160 cond_resched(); 161 162 /* 163 * This assumes radix_tree_gang_lookup always returns as 164 * many pages as possible. If the radix-tree code changes, 165 * so will this have to. 166 */ 167 } while (nr_pages == FREE_BATCH); 168 } 169 170 /* 171 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 172 */ 173 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 174 { 175 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 176 size_t copy; 177 178 copy = min_t(size_t, n, PAGE_SIZE - offset); 179 if (!brd_insert_page(brd, sector)) 180 return -ENOSPC; 181 if (copy < n) { 182 sector += copy >> SECTOR_SHIFT; 183 if (!brd_insert_page(brd, sector)) 184 return -ENOSPC; 185 } 186 return 0; 187 } 188 189 /* 190 * Copy n bytes from src to the brd starting at sector. Does not sleep. 191 */ 192 static void copy_to_brd(struct brd_device *brd, const void *src, 193 sector_t sector, size_t n) 194 { 195 struct page *page; 196 void *dst; 197 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 198 size_t copy; 199 200 copy = min_t(size_t, n, PAGE_SIZE - offset); 201 page = brd_lookup_page(brd, sector); 202 BUG_ON(!page); 203 204 dst = kmap_atomic(page); 205 memcpy(dst + offset, src, copy); 206 kunmap_atomic(dst); 207 208 if (copy < n) { 209 src += copy; 210 sector += copy >> SECTOR_SHIFT; 211 copy = n - copy; 212 page = brd_lookup_page(brd, sector); 213 BUG_ON(!page); 214 215 dst = kmap_atomic(page); 216 memcpy(dst, src, copy); 217 kunmap_atomic(dst); 218 } 219 } 220 221 /* 222 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 223 */ 224 static void copy_from_brd(void *dst, struct brd_device *brd, 225 sector_t sector, size_t n) 226 { 227 struct page *page; 228 void *src; 229 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 230 size_t copy; 231 232 copy = min_t(size_t, n, PAGE_SIZE - offset); 233 page = brd_lookup_page(brd, sector); 234 if (page) { 235 src = kmap_atomic(page); 236 memcpy(dst, src + offset, copy); 237 kunmap_atomic(src); 238 } else 239 memset(dst, 0, copy); 240 241 if (copy < n) { 242 dst += copy; 243 sector += copy >> SECTOR_SHIFT; 244 copy = n - copy; 245 page = brd_lookup_page(brd, sector); 246 if (page) { 247 src = kmap_atomic(page); 248 memcpy(dst, src, copy); 249 kunmap_atomic(src); 250 } else 251 memset(dst, 0, copy); 252 } 253 } 254 255 /* 256 * Process a single bvec of a bio. 257 */ 258 static int brd_do_bvec(struct brd_device *brd, struct page *page, 259 unsigned int len, unsigned int off, enum req_op op, 260 sector_t sector) 261 { 262 void *mem; 263 int err = 0; 264 265 if (op_is_write(op)) { 266 err = copy_to_brd_setup(brd, sector, len); 267 if (err) 268 goto out; 269 } 270 271 mem = kmap_atomic(page); 272 if (!op_is_write(op)) { 273 copy_from_brd(mem + off, brd, sector, len); 274 flush_dcache_page(page); 275 } else { 276 flush_dcache_page(page); 277 copy_to_brd(brd, mem + off, sector, len); 278 } 279 kunmap_atomic(mem); 280 281 out: 282 return err; 283 } 284 285 static void brd_submit_bio(struct bio *bio) 286 { 287 struct brd_device *brd = bio->bi_bdev->bd_disk->private_data; 288 sector_t sector = bio->bi_iter.bi_sector; 289 struct bio_vec bvec; 290 struct bvec_iter iter; 291 292 bio_for_each_segment(bvec, bio, iter) { 293 unsigned int len = bvec.bv_len; 294 int err; 295 296 /* Don't support un-aligned buffer */ 297 WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) || 298 (len & (SECTOR_SIZE - 1))); 299 300 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 301 bio_op(bio), sector); 302 if (err) { 303 bio_io_error(bio); 304 return; 305 } 306 sector += len >> SECTOR_SHIFT; 307 } 308 309 bio_endio(bio); 310 } 311 312 static int brd_rw_page(struct block_device *bdev, sector_t sector, 313 struct page *page, enum req_op op) 314 { 315 struct brd_device *brd = bdev->bd_disk->private_data; 316 int err; 317 318 if (PageTransHuge(page)) 319 return -ENOTSUPP; 320 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector); 321 page_endio(page, op_is_write(op), err); 322 return err; 323 } 324 325 static const struct block_device_operations brd_fops = { 326 .owner = THIS_MODULE, 327 .submit_bio = brd_submit_bio, 328 .rw_page = brd_rw_page, 329 }; 330 331 /* 332 * And now the modules code and kernel interface. 333 */ 334 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 335 module_param(rd_nr, int, 0444); 336 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 337 338 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 339 module_param(rd_size, ulong, 0444); 340 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 341 342 static int max_part = 1; 343 module_param(max_part, int, 0444); 344 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 345 346 MODULE_LICENSE("GPL"); 347 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 348 MODULE_ALIAS("rd"); 349 350 #ifndef MODULE 351 /* Legacy boot options - nonmodular */ 352 static int __init ramdisk_size(char *str) 353 { 354 rd_size = simple_strtol(str, NULL, 0); 355 return 1; 356 } 357 __setup("ramdisk_size=", ramdisk_size); 358 #endif 359 360 /* 361 * The device scheme is derived from loop.c. Keep them in synch where possible 362 * (should share code eventually). 363 */ 364 static LIST_HEAD(brd_devices); 365 static struct dentry *brd_debugfs_dir; 366 367 static int brd_alloc(int i) 368 { 369 struct brd_device *brd; 370 struct gendisk *disk; 371 char buf[DISK_NAME_LEN]; 372 int err = -ENOMEM; 373 374 list_for_each_entry(brd, &brd_devices, brd_list) 375 if (brd->brd_number == i) 376 return -EEXIST; 377 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 378 if (!brd) 379 return -ENOMEM; 380 brd->brd_number = i; 381 list_add_tail(&brd->brd_list, &brd_devices); 382 383 spin_lock_init(&brd->brd_lock); 384 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 385 386 snprintf(buf, DISK_NAME_LEN, "ram%d", i); 387 if (!IS_ERR_OR_NULL(brd_debugfs_dir)) 388 debugfs_create_u64(buf, 0444, brd_debugfs_dir, 389 &brd->brd_nr_pages); 390 391 disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE); 392 if (!disk) 393 goto out_free_dev; 394 395 disk->major = RAMDISK_MAJOR; 396 disk->first_minor = i * max_part; 397 disk->minors = max_part; 398 disk->fops = &brd_fops; 399 disk->private_data = brd; 400 strlcpy(disk->disk_name, buf, DISK_NAME_LEN); 401 set_capacity(disk, rd_size * 2); 402 403 /* 404 * This is so fdisk will align partitions on 4k, because of 405 * direct_access API needing 4k alignment, returning a PFN 406 * (This is only a problem on very small devices <= 4M, 407 * otherwise fdisk will align on 1M. Regardless this call 408 * is harmless) 409 */ 410 blk_queue_physical_block_size(disk->queue, PAGE_SIZE); 411 412 /* Tell the block layer that this is not a rotational device */ 413 blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue); 414 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue); 415 err = add_disk(disk); 416 if (err) 417 goto out_cleanup_disk; 418 419 return 0; 420 421 out_cleanup_disk: 422 put_disk(disk); 423 out_free_dev: 424 list_del(&brd->brd_list); 425 kfree(brd); 426 return err; 427 } 428 429 static void brd_probe(dev_t dev) 430 { 431 brd_alloc(MINOR(dev) / max_part); 432 } 433 434 static void brd_cleanup(void) 435 { 436 struct brd_device *brd, *next; 437 438 debugfs_remove_recursive(brd_debugfs_dir); 439 440 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 441 del_gendisk(brd->brd_disk); 442 put_disk(brd->brd_disk); 443 brd_free_pages(brd); 444 list_del(&brd->brd_list); 445 kfree(brd); 446 } 447 } 448 449 static inline void brd_check_and_reset_par(void) 450 { 451 if (unlikely(!max_part)) 452 max_part = 1; 453 454 /* 455 * make sure 'max_part' can be divided exactly by (1U << MINORBITS), 456 * otherwise, it is possiable to get same dev_t when adding partitions. 457 */ 458 if ((1U << MINORBITS) % max_part != 0) 459 max_part = 1UL << fls(max_part); 460 461 if (max_part > DISK_MAX_PARTS) { 462 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n", 463 DISK_MAX_PARTS, DISK_MAX_PARTS); 464 max_part = DISK_MAX_PARTS; 465 } 466 } 467 468 static int __init brd_init(void) 469 { 470 int err, i; 471 472 brd_check_and_reset_par(); 473 474 brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL); 475 476 for (i = 0; i < rd_nr; i++) { 477 err = brd_alloc(i); 478 if (err) 479 goto out_free; 480 } 481 482 /* 483 * brd module now has a feature to instantiate underlying device 484 * structure on-demand, provided that there is an access dev node. 485 * 486 * (1) if rd_nr is specified, create that many upfront. else 487 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 488 * (2) User can further extend brd devices by create dev node themselves 489 * and have kernel automatically instantiate actual device 490 * on-demand. Example: 491 * mknod /path/devnod_name b 1 X # 1 is the rd major 492 * fdisk -l /path/devnod_name 493 * If (X / max_part) was not already created it will be created 494 * dynamically. 495 */ 496 497 if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) { 498 err = -EIO; 499 goto out_free; 500 } 501 502 pr_info("brd: module loaded\n"); 503 return 0; 504 505 out_free: 506 brd_cleanup(); 507 508 pr_info("brd: module NOT loaded !!!\n"); 509 return err; 510 } 511 512 static void __exit brd_exit(void) 513 { 514 515 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 516 brd_cleanup(); 517 518 pr_info("brd: module unloaded\n"); 519 } 520 521 module_init(brd_init); 522 module_exit(brd_exit); 523 524