1 /* 2 * Ram backed block device driver. 3 * 4 * Copyright (C) 2007 Nick Piggin 5 * Copyright (C) 2007 Novell Inc. 6 * 7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 8 * of their respective owners. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/module.h> 14 #include <linux/moduleparam.h> 15 #include <linux/major.h> 16 #include <linux/blkdev.h> 17 #include <linux/bio.h> 18 #include <linux/highmem.h> 19 #include <linux/mutex.h> 20 #include <linux/radix-tree.h> 21 #include <linux/fs.h> 22 #include <linux/slab.h> 23 #include <linux/backing-dev.h> 24 25 #include <linux/uaccess.h> 26 27 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 28 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 29 30 /* 31 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 32 * the pages containing the block device's contents. A brd page's ->index is 33 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 34 * with, the kernel's pagecache or buffer cache (which sit above our block 35 * device). 36 */ 37 struct brd_device { 38 int brd_number; 39 40 struct request_queue *brd_queue; 41 struct gendisk *brd_disk; 42 struct list_head brd_list; 43 44 /* 45 * Backing store of pages and lock to protect it. This is the contents 46 * of the block device. 47 */ 48 spinlock_t brd_lock; 49 struct radix_tree_root brd_pages; 50 }; 51 52 /* 53 * Look up and return a brd's page for a given sector. 54 */ 55 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 56 { 57 pgoff_t idx; 58 struct page *page; 59 60 /* 61 * The page lifetime is protected by the fact that we have opened the 62 * device node -- brd pages will never be deleted under us, so we 63 * don't need any further locking or refcounting. 64 * 65 * This is strictly true for the radix-tree nodes as well (ie. we 66 * don't actually need the rcu_read_lock()), however that is not a 67 * documented feature of the radix-tree API so it is better to be 68 * safe here (we don't have total exclusion from radix tree updates 69 * here, only deletes). 70 */ 71 rcu_read_lock(); 72 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 73 page = radix_tree_lookup(&brd->brd_pages, idx); 74 rcu_read_unlock(); 75 76 BUG_ON(page && page->index != idx); 77 78 return page; 79 } 80 81 /* 82 * Look up and return a brd's page for a given sector. 83 * If one does not exist, allocate an empty page, and insert that. Then 84 * return it. 85 */ 86 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 87 { 88 pgoff_t idx; 89 struct page *page; 90 gfp_t gfp_flags; 91 92 page = brd_lookup_page(brd, sector); 93 if (page) 94 return page; 95 96 /* 97 * Must use NOIO because we don't want to recurse back into the 98 * block or filesystem layers from page reclaim. 99 */ 100 gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; 101 page = alloc_page(gfp_flags); 102 if (!page) 103 return NULL; 104 105 if (radix_tree_preload(GFP_NOIO)) { 106 __free_page(page); 107 return NULL; 108 } 109 110 spin_lock(&brd->brd_lock); 111 idx = sector >> PAGE_SECTORS_SHIFT; 112 page->index = idx; 113 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 114 __free_page(page); 115 page = radix_tree_lookup(&brd->brd_pages, idx); 116 BUG_ON(!page); 117 BUG_ON(page->index != idx); 118 } 119 spin_unlock(&brd->brd_lock); 120 121 radix_tree_preload_end(); 122 123 return page; 124 } 125 126 /* 127 * Free all backing store pages and radix tree. This must only be called when 128 * there are no other users of the device. 129 */ 130 #define FREE_BATCH 16 131 static void brd_free_pages(struct brd_device *brd) 132 { 133 unsigned long pos = 0; 134 struct page *pages[FREE_BATCH]; 135 int nr_pages; 136 137 do { 138 int i; 139 140 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 141 (void **)pages, pos, FREE_BATCH); 142 143 for (i = 0; i < nr_pages; i++) { 144 void *ret; 145 146 BUG_ON(pages[i]->index < pos); 147 pos = pages[i]->index; 148 ret = radix_tree_delete(&brd->brd_pages, pos); 149 BUG_ON(!ret || ret != pages[i]); 150 __free_page(pages[i]); 151 } 152 153 pos++; 154 155 /* 156 * This assumes radix_tree_gang_lookup always returns as 157 * many pages as possible. If the radix-tree code changes, 158 * so will this have to. 159 */ 160 } while (nr_pages == FREE_BATCH); 161 } 162 163 /* 164 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 165 */ 166 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 167 { 168 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 169 size_t copy; 170 171 copy = min_t(size_t, n, PAGE_SIZE - offset); 172 if (!brd_insert_page(brd, sector)) 173 return -ENOSPC; 174 if (copy < n) { 175 sector += copy >> SECTOR_SHIFT; 176 if (!brd_insert_page(brd, sector)) 177 return -ENOSPC; 178 } 179 return 0; 180 } 181 182 /* 183 * Copy n bytes from src to the brd starting at sector. Does not sleep. 184 */ 185 static void copy_to_brd(struct brd_device *brd, const void *src, 186 sector_t sector, size_t n) 187 { 188 struct page *page; 189 void *dst; 190 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 191 size_t copy; 192 193 copy = min_t(size_t, n, PAGE_SIZE - offset); 194 page = brd_lookup_page(brd, sector); 195 BUG_ON(!page); 196 197 dst = kmap_atomic(page); 198 memcpy(dst + offset, src, copy); 199 kunmap_atomic(dst); 200 201 if (copy < n) { 202 src += copy; 203 sector += copy >> SECTOR_SHIFT; 204 copy = n - copy; 205 page = brd_lookup_page(brd, sector); 206 BUG_ON(!page); 207 208 dst = kmap_atomic(page); 209 memcpy(dst, src, copy); 210 kunmap_atomic(dst); 211 } 212 } 213 214 /* 215 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 216 */ 217 static void copy_from_brd(void *dst, struct brd_device *brd, 218 sector_t sector, size_t n) 219 { 220 struct page *page; 221 void *src; 222 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 223 size_t copy; 224 225 copy = min_t(size_t, n, PAGE_SIZE - offset); 226 page = brd_lookup_page(brd, sector); 227 if (page) { 228 src = kmap_atomic(page); 229 memcpy(dst, src + offset, copy); 230 kunmap_atomic(src); 231 } else 232 memset(dst, 0, copy); 233 234 if (copy < n) { 235 dst += copy; 236 sector += copy >> SECTOR_SHIFT; 237 copy = n - copy; 238 page = brd_lookup_page(brd, sector); 239 if (page) { 240 src = kmap_atomic(page); 241 memcpy(dst, src, copy); 242 kunmap_atomic(src); 243 } else 244 memset(dst, 0, copy); 245 } 246 } 247 248 /* 249 * Process a single bvec of a bio. 250 */ 251 static int brd_do_bvec(struct brd_device *brd, struct page *page, 252 unsigned int len, unsigned int off, unsigned int op, 253 sector_t sector) 254 { 255 void *mem; 256 int err = 0; 257 258 if (op_is_write(op)) { 259 err = copy_to_brd_setup(brd, sector, len); 260 if (err) 261 goto out; 262 } 263 264 mem = kmap_atomic(page); 265 if (!op_is_write(op)) { 266 copy_from_brd(mem + off, brd, sector, len); 267 flush_dcache_page(page); 268 } else { 269 flush_dcache_page(page); 270 copy_to_brd(brd, mem + off, sector, len); 271 } 272 kunmap_atomic(mem); 273 274 out: 275 return err; 276 } 277 278 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio) 279 { 280 struct brd_device *brd = bio->bi_disk->private_data; 281 struct bio_vec bvec; 282 sector_t sector; 283 struct bvec_iter iter; 284 285 sector = bio->bi_iter.bi_sector; 286 if (bio_end_sector(bio) > get_capacity(bio->bi_disk)) 287 goto io_error; 288 289 bio_for_each_segment(bvec, bio, iter) { 290 unsigned int len = bvec.bv_len; 291 int err; 292 293 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 294 bio_op(bio), sector); 295 if (err) 296 goto io_error; 297 sector += len >> SECTOR_SHIFT; 298 } 299 300 bio_endio(bio); 301 return BLK_QC_T_NONE; 302 io_error: 303 bio_io_error(bio); 304 return BLK_QC_T_NONE; 305 } 306 307 static int brd_rw_page(struct block_device *bdev, sector_t sector, 308 struct page *page, unsigned int op) 309 { 310 struct brd_device *brd = bdev->bd_disk->private_data; 311 int err; 312 313 if (PageTransHuge(page)) 314 return -ENOTSUPP; 315 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector); 316 page_endio(page, op_is_write(op), err); 317 return err; 318 } 319 320 static const struct block_device_operations brd_fops = { 321 .owner = THIS_MODULE, 322 .rw_page = brd_rw_page, 323 }; 324 325 /* 326 * And now the modules code and kernel interface. 327 */ 328 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 329 module_param(rd_nr, int, 0444); 330 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 331 332 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 333 module_param(rd_size, ulong, 0444); 334 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 335 336 static int max_part = 1; 337 module_param(max_part, int, 0444); 338 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 339 340 MODULE_LICENSE("GPL"); 341 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 342 MODULE_ALIAS("rd"); 343 344 #ifndef MODULE 345 /* Legacy boot options - nonmodular */ 346 static int __init ramdisk_size(char *str) 347 { 348 rd_size = simple_strtol(str, NULL, 0); 349 return 1; 350 } 351 __setup("ramdisk_size=", ramdisk_size); 352 #endif 353 354 /* 355 * The device scheme is derived from loop.c. Keep them in synch where possible 356 * (should share code eventually). 357 */ 358 static LIST_HEAD(brd_devices); 359 static DEFINE_MUTEX(brd_devices_mutex); 360 361 static struct brd_device *brd_alloc(int i) 362 { 363 struct brd_device *brd; 364 struct gendisk *disk; 365 366 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 367 if (!brd) 368 goto out; 369 brd->brd_number = i; 370 spin_lock_init(&brd->brd_lock); 371 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 372 373 brd->brd_queue = blk_alloc_queue(GFP_KERNEL); 374 if (!brd->brd_queue) 375 goto out_free_dev; 376 377 blk_queue_make_request(brd->brd_queue, brd_make_request); 378 blk_queue_max_hw_sectors(brd->brd_queue, 1024); 379 380 /* This is so fdisk will align partitions on 4k, because of 381 * direct_access API needing 4k alignment, returning a PFN 382 * (This is only a problem on very small devices <= 4M, 383 * otherwise fdisk will align on 1M. Regardless this call 384 * is harmless) 385 */ 386 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); 387 disk = brd->brd_disk = alloc_disk(max_part); 388 if (!disk) 389 goto out_free_queue; 390 disk->major = RAMDISK_MAJOR; 391 disk->first_minor = i * max_part; 392 disk->fops = &brd_fops; 393 disk->private_data = brd; 394 disk->flags = GENHD_FL_EXT_DEVT; 395 sprintf(disk->disk_name, "ram%d", i); 396 set_capacity(disk, rd_size * 2); 397 brd->brd_queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO; 398 399 /* Tell the block layer that this is not a rotational device */ 400 blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue); 401 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue); 402 403 return brd; 404 405 out_free_queue: 406 blk_cleanup_queue(brd->brd_queue); 407 out_free_dev: 408 kfree(brd); 409 out: 410 return NULL; 411 } 412 413 static void brd_free(struct brd_device *brd) 414 { 415 put_disk(brd->brd_disk); 416 blk_cleanup_queue(brd->brd_queue); 417 brd_free_pages(brd); 418 kfree(brd); 419 } 420 421 static struct brd_device *brd_init_one(int i, bool *new) 422 { 423 struct brd_device *brd; 424 425 *new = false; 426 list_for_each_entry(brd, &brd_devices, brd_list) { 427 if (brd->brd_number == i) 428 goto out; 429 } 430 431 brd = brd_alloc(i); 432 if (brd) { 433 brd->brd_disk->queue = brd->brd_queue; 434 add_disk(brd->brd_disk); 435 list_add_tail(&brd->brd_list, &brd_devices); 436 } 437 *new = true; 438 out: 439 return brd; 440 } 441 442 static void brd_del_one(struct brd_device *brd) 443 { 444 list_del(&brd->brd_list); 445 del_gendisk(brd->brd_disk); 446 brd_free(brd); 447 } 448 449 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 450 { 451 struct brd_device *brd; 452 struct kobject *kobj; 453 bool new; 454 455 mutex_lock(&brd_devices_mutex); 456 brd = brd_init_one(MINOR(dev) / max_part, &new); 457 kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL; 458 mutex_unlock(&brd_devices_mutex); 459 460 if (new) 461 *part = 0; 462 463 return kobj; 464 } 465 466 static int __init brd_init(void) 467 { 468 struct brd_device *brd, *next; 469 int i; 470 471 /* 472 * brd module now has a feature to instantiate underlying device 473 * structure on-demand, provided that there is an access dev node. 474 * 475 * (1) if rd_nr is specified, create that many upfront. else 476 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 477 * (2) User can further extend brd devices by create dev node themselves 478 * and have kernel automatically instantiate actual device 479 * on-demand. Example: 480 * mknod /path/devnod_name b 1 X # 1 is the rd major 481 * fdisk -l /path/devnod_name 482 * If (X / max_part) was not already created it will be created 483 * dynamically. 484 */ 485 486 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 487 return -EIO; 488 489 if (unlikely(!max_part)) 490 max_part = 1; 491 492 for (i = 0; i < rd_nr; i++) { 493 brd = brd_alloc(i); 494 if (!brd) 495 goto out_free; 496 list_add_tail(&brd->brd_list, &brd_devices); 497 } 498 499 /* point of no return */ 500 501 list_for_each_entry(brd, &brd_devices, brd_list) { 502 /* 503 * associate with queue just before adding disk for 504 * avoiding to mess up failure path 505 */ 506 brd->brd_disk->queue = brd->brd_queue; 507 add_disk(brd->brd_disk); 508 } 509 510 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS, 511 THIS_MODULE, brd_probe, NULL, NULL); 512 513 pr_info("brd: module loaded\n"); 514 return 0; 515 516 out_free: 517 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 518 list_del(&brd->brd_list); 519 brd_free(brd); 520 } 521 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 522 523 pr_info("brd: module NOT loaded !!!\n"); 524 return -ENOMEM; 525 } 526 527 static void __exit brd_exit(void) 528 { 529 struct brd_device *brd, *next; 530 531 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 532 brd_del_one(brd); 533 534 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS); 535 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 536 537 pr_info("brd: module unloaded\n"); 538 } 539 540 module_init(brd_init); 541 module_exit(brd_exit); 542 543