1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Ram backed block device driver. 4 * 5 * Copyright (C) 2007 Nick Piggin 6 * Copyright (C) 2007 Novell Inc. 7 * 8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 9 * of their respective owners. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/initrd.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/major.h> 17 #include <linux/blkdev.h> 18 #include <linux/bio.h> 19 #include <linux/highmem.h> 20 #include <linux/mutex.h> 21 #include <linux/pagemap.h> 22 #include <linux/radix-tree.h> 23 #include <linux/fs.h> 24 #include <linux/slab.h> 25 #include <linux/backing-dev.h> 26 #include <linux/debugfs.h> 27 28 #include <linux/uaccess.h> 29 30 /* 31 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 32 * the pages containing the block device's contents. A brd page's ->index is 33 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 34 * with, the kernel's pagecache or buffer cache (which sit above our block 35 * device). 36 */ 37 struct brd_device { 38 int brd_number; 39 struct gendisk *brd_disk; 40 struct list_head brd_list; 41 42 /* 43 * Backing store of pages and lock to protect it. This is the contents 44 * of the block device. 45 */ 46 spinlock_t brd_lock; 47 struct radix_tree_root brd_pages; 48 u64 brd_nr_pages; 49 }; 50 51 /* 52 * Look up and return a brd's page for a given sector. 53 */ 54 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 55 { 56 pgoff_t idx; 57 struct page *page; 58 59 /* 60 * The page lifetime is protected by the fact that we have opened the 61 * device node -- brd pages will never be deleted under us, so we 62 * don't need any further locking or refcounting. 63 * 64 * This is strictly true for the radix-tree nodes as well (ie. we 65 * don't actually need the rcu_read_lock()), however that is not a 66 * documented feature of the radix-tree API so it is better to be 67 * safe here (we don't have total exclusion from radix tree updates 68 * here, only deletes). 69 */ 70 rcu_read_lock(); 71 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 72 page = radix_tree_lookup(&brd->brd_pages, idx); 73 rcu_read_unlock(); 74 75 BUG_ON(page && page->index != idx); 76 77 return page; 78 } 79 80 /* 81 * Insert a new page for a given sector, if one does not already exist. 82 */ 83 static int brd_insert_page(struct brd_device *brd, sector_t sector, gfp_t gfp) 84 { 85 pgoff_t idx; 86 struct page *page; 87 int ret = 0; 88 89 page = brd_lookup_page(brd, sector); 90 if (page) 91 return 0; 92 93 page = alloc_page(gfp | __GFP_ZERO | __GFP_HIGHMEM); 94 if (!page) 95 return -ENOMEM; 96 97 if (radix_tree_maybe_preload(gfp)) { 98 __free_page(page); 99 return -ENOMEM; 100 } 101 102 spin_lock(&brd->brd_lock); 103 idx = sector >> PAGE_SECTORS_SHIFT; 104 page->index = idx; 105 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 106 __free_page(page); 107 page = radix_tree_lookup(&brd->brd_pages, idx); 108 if (!page) 109 ret = -ENOMEM; 110 else if (page->index != idx) 111 ret = -EIO; 112 } else { 113 brd->brd_nr_pages++; 114 } 115 spin_unlock(&brd->brd_lock); 116 117 radix_tree_preload_end(); 118 return ret; 119 } 120 121 /* 122 * Free all backing store pages and radix tree. This must only be called when 123 * there are no other users of the device. 124 */ 125 #define FREE_BATCH 16 126 static void brd_free_pages(struct brd_device *brd) 127 { 128 unsigned long pos = 0; 129 struct page *pages[FREE_BATCH]; 130 int nr_pages; 131 132 do { 133 int i; 134 135 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 136 (void **)pages, pos, FREE_BATCH); 137 138 for (i = 0; i < nr_pages; i++) { 139 void *ret; 140 141 BUG_ON(pages[i]->index < pos); 142 pos = pages[i]->index; 143 ret = radix_tree_delete(&brd->brd_pages, pos); 144 BUG_ON(!ret || ret != pages[i]); 145 __free_page(pages[i]); 146 } 147 148 pos++; 149 150 /* 151 * It takes 3.4 seconds to remove 80GiB ramdisk. 152 * So, we need cond_resched to avoid stalling the CPU. 153 */ 154 cond_resched(); 155 156 /* 157 * This assumes radix_tree_gang_lookup always returns as 158 * many pages as possible. If the radix-tree code changes, 159 * so will this have to. 160 */ 161 } while (nr_pages == FREE_BATCH); 162 } 163 164 /* 165 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 166 */ 167 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n, 168 gfp_t gfp) 169 { 170 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 171 size_t copy; 172 int ret; 173 174 copy = min_t(size_t, n, PAGE_SIZE - offset); 175 ret = brd_insert_page(brd, sector, gfp); 176 if (ret) 177 return ret; 178 if (copy < n) { 179 sector += copy >> SECTOR_SHIFT; 180 ret = brd_insert_page(brd, sector, gfp); 181 } 182 return ret; 183 } 184 185 /* 186 * Copy n bytes from src to the brd starting at sector. Does not sleep. 187 */ 188 static void copy_to_brd(struct brd_device *brd, const void *src, 189 sector_t sector, size_t n) 190 { 191 struct page *page; 192 void *dst; 193 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 194 size_t copy; 195 196 copy = min_t(size_t, n, PAGE_SIZE - offset); 197 page = brd_lookup_page(brd, sector); 198 BUG_ON(!page); 199 200 dst = kmap_atomic(page); 201 memcpy(dst + offset, src, copy); 202 kunmap_atomic(dst); 203 204 if (copy < n) { 205 src += copy; 206 sector += copy >> SECTOR_SHIFT; 207 copy = n - copy; 208 page = brd_lookup_page(brd, sector); 209 BUG_ON(!page); 210 211 dst = kmap_atomic(page); 212 memcpy(dst, src, copy); 213 kunmap_atomic(dst); 214 } 215 } 216 217 /* 218 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 219 */ 220 static void copy_from_brd(void *dst, struct brd_device *brd, 221 sector_t sector, size_t n) 222 { 223 struct page *page; 224 void *src; 225 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 226 size_t copy; 227 228 copy = min_t(size_t, n, PAGE_SIZE - offset); 229 page = brd_lookup_page(brd, sector); 230 if (page) { 231 src = kmap_atomic(page); 232 memcpy(dst, src + offset, copy); 233 kunmap_atomic(src); 234 } else 235 memset(dst, 0, copy); 236 237 if (copy < n) { 238 dst += copy; 239 sector += copy >> SECTOR_SHIFT; 240 copy = n - copy; 241 page = brd_lookup_page(brd, sector); 242 if (page) { 243 src = kmap_atomic(page); 244 memcpy(dst, src, copy); 245 kunmap_atomic(src); 246 } else 247 memset(dst, 0, copy); 248 } 249 } 250 251 /* 252 * Process a single bvec of a bio. 253 */ 254 static int brd_do_bvec(struct brd_device *brd, struct page *page, 255 unsigned int len, unsigned int off, blk_opf_t opf, 256 sector_t sector) 257 { 258 void *mem; 259 int err = 0; 260 261 if (op_is_write(opf)) { 262 /* 263 * Must use NOIO because we don't want to recurse back into the 264 * block or filesystem layers from page reclaim. 265 */ 266 gfp_t gfp = opf & REQ_NOWAIT ? GFP_NOWAIT : GFP_NOIO; 267 268 err = copy_to_brd_setup(brd, sector, len, gfp); 269 if (err) 270 goto out; 271 } 272 273 mem = kmap_atomic(page); 274 if (!op_is_write(opf)) { 275 copy_from_brd(mem + off, brd, sector, len); 276 flush_dcache_page(page); 277 } else { 278 flush_dcache_page(page); 279 copy_to_brd(brd, mem + off, sector, len); 280 } 281 kunmap_atomic(mem); 282 283 out: 284 return err; 285 } 286 287 static void brd_submit_bio(struct bio *bio) 288 { 289 struct brd_device *brd = bio->bi_bdev->bd_disk->private_data; 290 sector_t sector = bio->bi_iter.bi_sector; 291 struct bio_vec bvec; 292 struct bvec_iter iter; 293 294 bio_for_each_segment(bvec, bio, iter) { 295 unsigned int len = bvec.bv_len; 296 int err; 297 298 /* Don't support un-aligned buffer */ 299 WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) || 300 (len & (SECTOR_SIZE - 1))); 301 302 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 303 bio->bi_opf, sector); 304 if (err) { 305 if (err == -ENOMEM && bio->bi_opf & REQ_NOWAIT) { 306 bio_wouldblock_error(bio); 307 return; 308 } 309 bio_io_error(bio); 310 return; 311 } 312 sector += len >> SECTOR_SHIFT; 313 } 314 315 bio_endio(bio); 316 } 317 318 static const struct block_device_operations brd_fops = { 319 .owner = THIS_MODULE, 320 .submit_bio = brd_submit_bio, 321 }; 322 323 /* 324 * And now the modules code and kernel interface. 325 */ 326 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 327 module_param(rd_nr, int, 0444); 328 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 329 330 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 331 module_param(rd_size, ulong, 0444); 332 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 333 334 static int max_part = 1; 335 module_param(max_part, int, 0444); 336 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 337 338 MODULE_LICENSE("GPL"); 339 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 340 MODULE_ALIAS("rd"); 341 342 #ifndef MODULE 343 /* Legacy boot options - nonmodular */ 344 static int __init ramdisk_size(char *str) 345 { 346 rd_size = simple_strtol(str, NULL, 0); 347 return 1; 348 } 349 __setup("ramdisk_size=", ramdisk_size); 350 #endif 351 352 /* 353 * The device scheme is derived from loop.c. Keep them in synch where possible 354 * (should share code eventually). 355 */ 356 static LIST_HEAD(brd_devices); 357 static struct dentry *brd_debugfs_dir; 358 359 static int brd_alloc(int i) 360 { 361 struct brd_device *brd; 362 struct gendisk *disk; 363 char buf[DISK_NAME_LEN]; 364 int err = -ENOMEM; 365 366 list_for_each_entry(brd, &brd_devices, brd_list) 367 if (brd->brd_number == i) 368 return -EEXIST; 369 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 370 if (!brd) 371 return -ENOMEM; 372 brd->brd_number = i; 373 list_add_tail(&brd->brd_list, &brd_devices); 374 375 spin_lock_init(&brd->brd_lock); 376 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 377 378 snprintf(buf, DISK_NAME_LEN, "ram%d", i); 379 if (!IS_ERR_OR_NULL(brd_debugfs_dir)) 380 debugfs_create_u64(buf, 0444, brd_debugfs_dir, 381 &brd->brd_nr_pages); 382 383 disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE); 384 if (!disk) 385 goto out_free_dev; 386 387 disk->major = RAMDISK_MAJOR; 388 disk->first_minor = i * max_part; 389 disk->minors = max_part; 390 disk->fops = &brd_fops; 391 disk->private_data = brd; 392 strscpy(disk->disk_name, buf, DISK_NAME_LEN); 393 set_capacity(disk, rd_size * 2); 394 395 /* 396 * This is so fdisk will align partitions on 4k, because of 397 * direct_access API needing 4k alignment, returning a PFN 398 * (This is only a problem on very small devices <= 4M, 399 * otherwise fdisk will align on 1M. Regardless this call 400 * is harmless) 401 */ 402 blk_queue_physical_block_size(disk->queue, PAGE_SIZE); 403 404 /* Tell the block layer that this is not a rotational device */ 405 blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue); 406 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, disk->queue); 407 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, disk->queue); 408 err = add_disk(disk); 409 if (err) 410 goto out_cleanup_disk; 411 412 return 0; 413 414 out_cleanup_disk: 415 put_disk(disk); 416 out_free_dev: 417 list_del(&brd->brd_list); 418 kfree(brd); 419 return err; 420 } 421 422 static void brd_probe(dev_t dev) 423 { 424 brd_alloc(MINOR(dev) / max_part); 425 } 426 427 static void brd_cleanup(void) 428 { 429 struct brd_device *brd, *next; 430 431 debugfs_remove_recursive(brd_debugfs_dir); 432 433 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 434 del_gendisk(brd->brd_disk); 435 put_disk(brd->brd_disk); 436 brd_free_pages(brd); 437 list_del(&brd->brd_list); 438 kfree(brd); 439 } 440 } 441 442 static inline void brd_check_and_reset_par(void) 443 { 444 if (unlikely(!max_part)) 445 max_part = 1; 446 447 /* 448 * make sure 'max_part' can be divided exactly by (1U << MINORBITS), 449 * otherwise, it is possiable to get same dev_t when adding partitions. 450 */ 451 if ((1U << MINORBITS) % max_part != 0) 452 max_part = 1UL << fls(max_part); 453 454 if (max_part > DISK_MAX_PARTS) { 455 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n", 456 DISK_MAX_PARTS, DISK_MAX_PARTS); 457 max_part = DISK_MAX_PARTS; 458 } 459 } 460 461 static int __init brd_init(void) 462 { 463 int err, i; 464 465 brd_check_and_reset_par(); 466 467 brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL); 468 469 for (i = 0; i < rd_nr; i++) { 470 err = brd_alloc(i); 471 if (err) 472 goto out_free; 473 } 474 475 /* 476 * brd module now has a feature to instantiate underlying device 477 * structure on-demand, provided that there is an access dev node. 478 * 479 * (1) if rd_nr is specified, create that many upfront. else 480 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 481 * (2) User can further extend brd devices by create dev node themselves 482 * and have kernel automatically instantiate actual device 483 * on-demand. Example: 484 * mknod /path/devnod_name b 1 X # 1 is the rd major 485 * fdisk -l /path/devnod_name 486 * If (X / max_part) was not already created it will be created 487 * dynamically. 488 */ 489 490 if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) { 491 err = -EIO; 492 goto out_free; 493 } 494 495 pr_info("brd: module loaded\n"); 496 return 0; 497 498 out_free: 499 brd_cleanup(); 500 501 pr_info("brd: module NOT loaded !!!\n"); 502 return err; 503 } 504 505 static void __exit brd_exit(void) 506 { 507 508 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 509 brd_cleanup(); 510 511 pr_info("brd: module unloaded\n"); 512 } 513 514 module_init(brd_init); 515 module_exit(brd_exit); 516 517