xref: /openbmc/linux/drivers/block/brd.c (revision 63c43812ee99efe7903955bae8cd928e9582477a)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 
23 #include <asm/uaccess.h>
24 
25 #define SECTOR_SHIFT		9
26 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
27 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
28 
29 /*
30  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31  * the pages containing the block device's contents. A brd page's ->index is
32  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33  * with, the kernel's pagecache or buffer cache (which sit above our block
34  * device).
35  */
36 struct brd_device {
37 	int		brd_number;
38 
39 	struct request_queue	*brd_queue;
40 	struct gendisk		*brd_disk;
41 	struct list_head	brd_list;
42 
43 	/*
44 	 * Backing store of pages and lock to protect it. This is the contents
45 	 * of the block device.
46 	 */
47 	spinlock_t		brd_lock;
48 	struct radix_tree_root	brd_pages;
49 };
50 
51 /*
52  * Look up and return a brd's page for a given sector.
53  */
54 static DEFINE_MUTEX(brd_mutex);
55 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
56 {
57 	pgoff_t idx;
58 	struct page *page;
59 
60 	/*
61 	 * The page lifetime is protected by the fact that we have opened the
62 	 * device node -- brd pages will never be deleted under us, so we
63 	 * don't need any further locking or refcounting.
64 	 *
65 	 * This is strictly true for the radix-tree nodes as well (ie. we
66 	 * don't actually need the rcu_read_lock()), however that is not a
67 	 * documented feature of the radix-tree API so it is better to be
68 	 * safe here (we don't have total exclusion from radix tree updates
69 	 * here, only deletes).
70 	 */
71 	rcu_read_lock();
72 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
73 	page = radix_tree_lookup(&brd->brd_pages, idx);
74 	rcu_read_unlock();
75 
76 	BUG_ON(page && page->index != idx);
77 
78 	return page;
79 }
80 
81 /*
82  * Look up and return a brd's page for a given sector.
83  * If one does not exist, allocate an empty page, and insert that. Then
84  * return it.
85  */
86 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
87 {
88 	pgoff_t idx;
89 	struct page *page;
90 	gfp_t gfp_flags;
91 
92 	page = brd_lookup_page(brd, sector);
93 	if (page)
94 		return page;
95 
96 	/*
97 	 * Must use NOIO because we don't want to recurse back into the
98 	 * block or filesystem layers from page reclaim.
99 	 *
100 	 * Cannot support DAX and highmem, because our ->direct_access
101 	 * routine for DAX must return memory that is always addressable.
102 	 * If DAX was reworked to use pfns and kmap throughout, this
103 	 * restriction might be able to be lifted.
104 	 */
105 	gfp_flags = GFP_NOIO | __GFP_ZERO;
106 #ifndef CONFIG_BLK_DEV_RAM_DAX
107 	gfp_flags |= __GFP_HIGHMEM;
108 #endif
109 	page = alloc_page(gfp_flags);
110 	if (!page)
111 		return NULL;
112 
113 	if (radix_tree_preload(GFP_NOIO)) {
114 		__free_page(page);
115 		return NULL;
116 	}
117 
118 	spin_lock(&brd->brd_lock);
119 	idx = sector >> PAGE_SECTORS_SHIFT;
120 	page->index = idx;
121 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
122 		__free_page(page);
123 		page = radix_tree_lookup(&brd->brd_pages, idx);
124 		BUG_ON(!page);
125 		BUG_ON(page->index != idx);
126 	}
127 	spin_unlock(&brd->brd_lock);
128 
129 	radix_tree_preload_end();
130 
131 	return page;
132 }
133 
134 static void brd_free_page(struct brd_device *brd, sector_t sector)
135 {
136 	struct page *page;
137 	pgoff_t idx;
138 
139 	spin_lock(&brd->brd_lock);
140 	idx = sector >> PAGE_SECTORS_SHIFT;
141 	page = radix_tree_delete(&brd->brd_pages, idx);
142 	spin_unlock(&brd->brd_lock);
143 	if (page)
144 		__free_page(page);
145 }
146 
147 static void brd_zero_page(struct brd_device *brd, sector_t sector)
148 {
149 	struct page *page;
150 
151 	page = brd_lookup_page(brd, sector);
152 	if (page)
153 		clear_highpage(page);
154 }
155 
156 /*
157  * Free all backing store pages and radix tree. This must only be called when
158  * there are no other users of the device.
159  */
160 #define FREE_BATCH 16
161 static void brd_free_pages(struct brd_device *brd)
162 {
163 	unsigned long pos = 0;
164 	struct page *pages[FREE_BATCH];
165 	int nr_pages;
166 
167 	do {
168 		int i;
169 
170 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
171 				(void **)pages, pos, FREE_BATCH);
172 
173 		for (i = 0; i < nr_pages; i++) {
174 			void *ret;
175 
176 			BUG_ON(pages[i]->index < pos);
177 			pos = pages[i]->index;
178 			ret = radix_tree_delete(&brd->brd_pages, pos);
179 			BUG_ON(!ret || ret != pages[i]);
180 			__free_page(pages[i]);
181 		}
182 
183 		pos++;
184 
185 		/*
186 		 * This assumes radix_tree_gang_lookup always returns as
187 		 * many pages as possible. If the radix-tree code changes,
188 		 * so will this have to.
189 		 */
190 	} while (nr_pages == FREE_BATCH);
191 }
192 
193 /*
194  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
195  */
196 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
197 {
198 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
199 	size_t copy;
200 
201 	copy = min_t(size_t, n, PAGE_SIZE - offset);
202 	if (!brd_insert_page(brd, sector))
203 		return -ENOSPC;
204 	if (copy < n) {
205 		sector += copy >> SECTOR_SHIFT;
206 		if (!brd_insert_page(brd, sector))
207 			return -ENOSPC;
208 	}
209 	return 0;
210 }
211 
212 static void discard_from_brd(struct brd_device *brd,
213 			sector_t sector, size_t n)
214 {
215 	while (n >= PAGE_SIZE) {
216 		/*
217 		 * Don't want to actually discard pages here because
218 		 * re-allocating the pages can result in writeback
219 		 * deadlocks under heavy load.
220 		 */
221 		if (0)
222 			brd_free_page(brd, sector);
223 		else
224 			brd_zero_page(brd, sector);
225 		sector += PAGE_SIZE >> SECTOR_SHIFT;
226 		n -= PAGE_SIZE;
227 	}
228 }
229 
230 /*
231  * Copy n bytes from src to the brd starting at sector. Does not sleep.
232  */
233 static void copy_to_brd(struct brd_device *brd, const void *src,
234 			sector_t sector, size_t n)
235 {
236 	struct page *page;
237 	void *dst;
238 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
239 	size_t copy;
240 
241 	copy = min_t(size_t, n, PAGE_SIZE - offset);
242 	page = brd_lookup_page(brd, sector);
243 	BUG_ON(!page);
244 
245 	dst = kmap_atomic(page);
246 	memcpy(dst + offset, src, copy);
247 	kunmap_atomic(dst);
248 
249 	if (copy < n) {
250 		src += copy;
251 		sector += copy >> SECTOR_SHIFT;
252 		copy = n - copy;
253 		page = brd_lookup_page(brd, sector);
254 		BUG_ON(!page);
255 
256 		dst = kmap_atomic(page);
257 		memcpy(dst, src, copy);
258 		kunmap_atomic(dst);
259 	}
260 }
261 
262 /*
263  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
264  */
265 static void copy_from_brd(void *dst, struct brd_device *brd,
266 			sector_t sector, size_t n)
267 {
268 	struct page *page;
269 	void *src;
270 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
271 	size_t copy;
272 
273 	copy = min_t(size_t, n, PAGE_SIZE - offset);
274 	page = brd_lookup_page(brd, sector);
275 	if (page) {
276 		src = kmap_atomic(page);
277 		memcpy(dst, src + offset, copy);
278 		kunmap_atomic(src);
279 	} else
280 		memset(dst, 0, copy);
281 
282 	if (copy < n) {
283 		dst += copy;
284 		sector += copy >> SECTOR_SHIFT;
285 		copy = n - copy;
286 		page = brd_lookup_page(brd, sector);
287 		if (page) {
288 			src = kmap_atomic(page);
289 			memcpy(dst, src, copy);
290 			kunmap_atomic(src);
291 		} else
292 			memset(dst, 0, copy);
293 	}
294 }
295 
296 /*
297  * Process a single bvec of a bio.
298  */
299 static int brd_do_bvec(struct brd_device *brd, struct page *page,
300 			unsigned int len, unsigned int off, int rw,
301 			sector_t sector)
302 {
303 	void *mem;
304 	int err = 0;
305 
306 	if (rw != READ) {
307 		err = copy_to_brd_setup(brd, sector, len);
308 		if (err)
309 			goto out;
310 	}
311 
312 	mem = kmap_atomic(page);
313 	if (rw == READ) {
314 		copy_from_brd(mem + off, brd, sector, len);
315 		flush_dcache_page(page);
316 	} else {
317 		flush_dcache_page(page);
318 		copy_to_brd(brd, mem + off, sector, len);
319 	}
320 	kunmap_atomic(mem);
321 
322 out:
323 	return err;
324 }
325 
326 static void brd_make_request(struct request_queue *q, struct bio *bio)
327 {
328 	struct block_device *bdev = bio->bi_bdev;
329 	struct brd_device *brd = bdev->bd_disk->private_data;
330 	int rw;
331 	struct bio_vec bvec;
332 	sector_t sector;
333 	struct bvec_iter iter;
334 	int err = -EIO;
335 
336 	sector = bio->bi_iter.bi_sector;
337 	if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
338 		goto out;
339 
340 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
341 		err = 0;
342 		discard_from_brd(brd, sector, bio->bi_iter.bi_size);
343 		goto out;
344 	}
345 
346 	rw = bio_rw(bio);
347 	if (rw == READA)
348 		rw = READ;
349 
350 	bio_for_each_segment(bvec, bio, iter) {
351 		unsigned int len = bvec.bv_len;
352 		err = brd_do_bvec(brd, bvec.bv_page, len,
353 					bvec.bv_offset, rw, sector);
354 		if (err)
355 			break;
356 		sector += len >> SECTOR_SHIFT;
357 	}
358 
359 out:
360 	bio_endio(bio, err);
361 }
362 
363 static int brd_rw_page(struct block_device *bdev, sector_t sector,
364 		       struct page *page, int rw)
365 {
366 	struct brd_device *brd = bdev->bd_disk->private_data;
367 	int err = brd_do_bvec(brd, page, PAGE_CACHE_SIZE, 0, rw, sector);
368 	page_endio(page, rw & WRITE, err);
369 	return err;
370 }
371 
372 #ifdef CONFIG_BLK_DEV_RAM_DAX
373 static long brd_direct_access(struct block_device *bdev, sector_t sector,
374 			void **kaddr, unsigned long *pfn, long size)
375 {
376 	struct brd_device *brd = bdev->bd_disk->private_data;
377 	struct page *page;
378 
379 	if (!brd)
380 		return -ENODEV;
381 	page = brd_insert_page(brd, sector);
382 	if (!page)
383 		return -ENOSPC;
384 	*kaddr = page_address(page);
385 	*pfn = page_to_pfn(page);
386 
387 	/*
388 	 * TODO: If size > PAGE_SIZE, we could look to see if the next page in
389 	 * the file happens to be mapped to the next page of physical RAM.
390 	 */
391 	return PAGE_SIZE;
392 }
393 #else
394 #define brd_direct_access NULL
395 #endif
396 
397 static int brd_ioctl(struct block_device *bdev, fmode_t mode,
398 			unsigned int cmd, unsigned long arg)
399 {
400 	int error;
401 	struct brd_device *brd = bdev->bd_disk->private_data;
402 
403 	if (cmd != BLKFLSBUF)
404 		return -ENOTTY;
405 
406 	/*
407 	 * ram device BLKFLSBUF has special semantics, we want to actually
408 	 * release and destroy the ramdisk data.
409 	 */
410 	mutex_lock(&brd_mutex);
411 	mutex_lock(&bdev->bd_mutex);
412 	error = -EBUSY;
413 	if (bdev->bd_openers <= 1) {
414 		/*
415 		 * Kill the cache first, so it isn't written back to the
416 		 * device.
417 		 *
418 		 * Another thread might instantiate more buffercache here,
419 		 * but there is not much we can do to close that race.
420 		 */
421 		kill_bdev(bdev);
422 		brd_free_pages(brd);
423 		error = 0;
424 	}
425 	mutex_unlock(&bdev->bd_mutex);
426 	mutex_unlock(&brd_mutex);
427 
428 	return error;
429 }
430 
431 static const struct block_device_operations brd_fops = {
432 	.owner =		THIS_MODULE,
433 	.rw_page =		brd_rw_page,
434 	.ioctl =		brd_ioctl,
435 	.direct_access =	brd_direct_access,
436 };
437 
438 /*
439  * And now the modules code and kernel interface.
440  */
441 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
442 module_param(rd_nr, int, S_IRUGO);
443 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
444 
445 int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
446 module_param(rd_size, int, S_IRUGO);
447 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
448 
449 static int max_part = 1;
450 module_param(max_part, int, S_IRUGO);
451 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
452 
453 MODULE_LICENSE("GPL");
454 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
455 MODULE_ALIAS("rd");
456 
457 #ifndef MODULE
458 /* Legacy boot options - nonmodular */
459 static int __init ramdisk_size(char *str)
460 {
461 	rd_size = simple_strtol(str, NULL, 0);
462 	return 1;
463 }
464 __setup("ramdisk_size=", ramdisk_size);
465 #endif
466 
467 /*
468  * The device scheme is derived from loop.c. Keep them in synch where possible
469  * (should share code eventually).
470  */
471 static LIST_HEAD(brd_devices);
472 static DEFINE_MUTEX(brd_devices_mutex);
473 
474 static struct brd_device *brd_alloc(int i)
475 {
476 	struct brd_device *brd;
477 	struct gendisk *disk;
478 
479 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
480 	if (!brd)
481 		goto out;
482 	brd->brd_number		= i;
483 	spin_lock_init(&brd->brd_lock);
484 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
485 
486 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
487 	if (!brd->brd_queue)
488 		goto out_free_dev;
489 
490 	blk_queue_make_request(brd->brd_queue, brd_make_request);
491 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
492 	blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
493 
494 	/* This is so fdisk will align partitions on 4k, because of
495 	 * direct_access API needing 4k alignment, returning a PFN
496 	 * (This is only a problem on very small devices <= 4M,
497 	 *  otherwise fdisk will align on 1M. Regardless this call
498 	 *  is harmless)
499 	 */
500 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
501 
502 	brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
503 	brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
504 	brd->brd_queue->limits.discard_zeroes_data = 1;
505 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
506 
507 	disk = brd->brd_disk = alloc_disk(max_part);
508 	if (!disk)
509 		goto out_free_queue;
510 	disk->major		= RAMDISK_MAJOR;
511 	disk->first_minor	= i * max_part;
512 	disk->fops		= &brd_fops;
513 	disk->private_data	= brd;
514 	disk->queue		= brd->brd_queue;
515 	disk->flags		= GENHD_FL_EXT_DEVT;
516 	sprintf(disk->disk_name, "ram%d", i);
517 	set_capacity(disk, rd_size * 2);
518 
519 	return brd;
520 
521 out_free_queue:
522 	blk_cleanup_queue(brd->brd_queue);
523 out_free_dev:
524 	kfree(brd);
525 out:
526 	return NULL;
527 }
528 
529 static void brd_free(struct brd_device *brd)
530 {
531 	put_disk(brd->brd_disk);
532 	blk_cleanup_queue(brd->brd_queue);
533 	brd_free_pages(brd);
534 	kfree(brd);
535 }
536 
537 static struct brd_device *brd_init_one(int i, bool *new)
538 {
539 	struct brd_device *brd;
540 
541 	*new = false;
542 	list_for_each_entry(brd, &brd_devices, brd_list) {
543 		if (brd->brd_number == i)
544 			goto out;
545 	}
546 
547 	brd = brd_alloc(i);
548 	if (brd) {
549 		add_disk(brd->brd_disk);
550 		list_add_tail(&brd->brd_list, &brd_devices);
551 	}
552 	*new = true;
553 out:
554 	return brd;
555 }
556 
557 static void brd_del_one(struct brd_device *brd)
558 {
559 	list_del(&brd->brd_list);
560 	del_gendisk(brd->brd_disk);
561 	brd_free(brd);
562 }
563 
564 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
565 {
566 	struct brd_device *brd;
567 	struct kobject *kobj;
568 	bool new;
569 
570 	mutex_lock(&brd_devices_mutex);
571 	brd = brd_init_one(MINOR(dev) / max_part, &new);
572 	kobj = brd ? get_disk(brd->brd_disk) : NULL;
573 	mutex_unlock(&brd_devices_mutex);
574 
575 	if (new)
576 		*part = 0;
577 
578 	return kobj;
579 }
580 
581 static int __init brd_init(void)
582 {
583 	struct brd_device *brd, *next;
584 	int i;
585 
586 	/*
587 	 * brd module now has a feature to instantiate underlying device
588 	 * structure on-demand, provided that there is an access dev node.
589 	 *
590 	 * (1) if rd_nr is specified, create that many upfront. else
591 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
592 	 * (2) User can further extend brd devices by create dev node themselves
593 	 *     and have kernel automatically instantiate actual device
594 	 *     on-demand. Example:
595 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
596 	 *		fdisk -l /path/devnod_name
597 	 *	If (X / max_part) was not already created it will be created
598 	 *	dynamically.
599 	 */
600 
601 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
602 		return -EIO;
603 
604 	if (unlikely(!max_part))
605 		max_part = 1;
606 
607 	for (i = 0; i < rd_nr; i++) {
608 		brd = brd_alloc(i);
609 		if (!brd)
610 			goto out_free;
611 		list_add_tail(&brd->brd_list, &brd_devices);
612 	}
613 
614 	/* point of no return */
615 
616 	list_for_each_entry(brd, &brd_devices, brd_list)
617 		add_disk(brd->brd_disk);
618 
619 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
620 				  THIS_MODULE, brd_probe, NULL, NULL);
621 
622 	pr_info("brd: module loaded\n");
623 	return 0;
624 
625 out_free:
626 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
627 		list_del(&brd->brd_list);
628 		brd_free(brd);
629 	}
630 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
631 
632 	pr_info("brd: module NOT loaded !!!\n");
633 	return -ENOMEM;
634 }
635 
636 static void __exit brd_exit(void)
637 {
638 	struct brd_device *brd, *next;
639 
640 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
641 		brd_del_one(brd);
642 
643 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
644 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
645 
646 	pr_info("brd: module unloaded\n");
647 }
648 
649 module_init(brd_init);
650 module_exit(brd_exit);
651 
652