xref: /openbmc/linux/drivers/block/brd.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Ram backed block device driver.
4  *
5  * Copyright (C) 2007 Nick Piggin
6  * Copyright (C) 2007 Novell Inc.
7  *
8  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9  * of their respective owners.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/radix-tree.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
25 
26 #include <linux/uaccess.h>
27 
28 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
29 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
30 
31 /*
32  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
33  * the pages containing the block device's contents. A brd page's ->index is
34  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
35  * with, the kernel's pagecache or buffer cache (which sit above our block
36  * device).
37  */
38 struct brd_device {
39 	int		brd_number;
40 
41 	struct request_queue	*brd_queue;
42 	struct gendisk		*brd_disk;
43 	struct list_head	brd_list;
44 
45 	/*
46 	 * Backing store of pages and lock to protect it. This is the contents
47 	 * of the block device.
48 	 */
49 	spinlock_t		brd_lock;
50 	struct radix_tree_root	brd_pages;
51 };
52 
53 /*
54  * Look up and return a brd's page for a given sector.
55  */
56 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
57 {
58 	pgoff_t idx;
59 	struct page *page;
60 
61 	/*
62 	 * The page lifetime is protected by the fact that we have opened the
63 	 * device node -- brd pages will never be deleted under us, so we
64 	 * don't need any further locking or refcounting.
65 	 *
66 	 * This is strictly true for the radix-tree nodes as well (ie. we
67 	 * don't actually need the rcu_read_lock()), however that is not a
68 	 * documented feature of the radix-tree API so it is better to be
69 	 * safe here (we don't have total exclusion from radix tree updates
70 	 * here, only deletes).
71 	 */
72 	rcu_read_lock();
73 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
74 	page = radix_tree_lookup(&brd->brd_pages, idx);
75 	rcu_read_unlock();
76 
77 	BUG_ON(page && page->index != idx);
78 
79 	return page;
80 }
81 
82 /*
83  * Look up and return a brd's page for a given sector.
84  * If one does not exist, allocate an empty page, and insert that. Then
85  * return it.
86  */
87 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
88 {
89 	pgoff_t idx;
90 	struct page *page;
91 	gfp_t gfp_flags;
92 
93 	page = brd_lookup_page(brd, sector);
94 	if (page)
95 		return page;
96 
97 	/*
98 	 * Must use NOIO because we don't want to recurse back into the
99 	 * block or filesystem layers from page reclaim.
100 	 */
101 	gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
102 	page = alloc_page(gfp_flags);
103 	if (!page)
104 		return NULL;
105 
106 	if (radix_tree_preload(GFP_NOIO)) {
107 		__free_page(page);
108 		return NULL;
109 	}
110 
111 	spin_lock(&brd->brd_lock);
112 	idx = sector >> PAGE_SECTORS_SHIFT;
113 	page->index = idx;
114 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
115 		__free_page(page);
116 		page = radix_tree_lookup(&brd->brd_pages, idx);
117 		BUG_ON(!page);
118 		BUG_ON(page->index != idx);
119 	}
120 	spin_unlock(&brd->brd_lock);
121 
122 	radix_tree_preload_end();
123 
124 	return page;
125 }
126 
127 /*
128  * Free all backing store pages and radix tree. This must only be called when
129  * there are no other users of the device.
130  */
131 #define FREE_BATCH 16
132 static void brd_free_pages(struct brd_device *brd)
133 {
134 	unsigned long pos = 0;
135 	struct page *pages[FREE_BATCH];
136 	int nr_pages;
137 
138 	do {
139 		int i;
140 
141 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
142 				(void **)pages, pos, FREE_BATCH);
143 
144 		for (i = 0; i < nr_pages; i++) {
145 			void *ret;
146 
147 			BUG_ON(pages[i]->index < pos);
148 			pos = pages[i]->index;
149 			ret = radix_tree_delete(&brd->brd_pages, pos);
150 			BUG_ON(!ret || ret != pages[i]);
151 			__free_page(pages[i]);
152 		}
153 
154 		pos++;
155 
156 		/*
157 		 * It takes 3.4 seconds to remove 80GiB ramdisk.
158 		 * So, we need cond_resched to avoid stalling the CPU.
159 		 */
160 		cond_resched();
161 
162 		/*
163 		 * This assumes radix_tree_gang_lookup always returns as
164 		 * many pages as possible. If the radix-tree code changes,
165 		 * so will this have to.
166 		 */
167 	} while (nr_pages == FREE_BATCH);
168 }
169 
170 /*
171  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
172  */
173 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
174 {
175 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
176 	size_t copy;
177 
178 	copy = min_t(size_t, n, PAGE_SIZE - offset);
179 	if (!brd_insert_page(brd, sector))
180 		return -ENOSPC;
181 	if (copy < n) {
182 		sector += copy >> SECTOR_SHIFT;
183 		if (!brd_insert_page(brd, sector))
184 			return -ENOSPC;
185 	}
186 	return 0;
187 }
188 
189 /*
190  * Copy n bytes from src to the brd starting at sector. Does not sleep.
191  */
192 static void copy_to_brd(struct brd_device *brd, const void *src,
193 			sector_t sector, size_t n)
194 {
195 	struct page *page;
196 	void *dst;
197 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
198 	size_t copy;
199 
200 	copy = min_t(size_t, n, PAGE_SIZE - offset);
201 	page = brd_lookup_page(brd, sector);
202 	BUG_ON(!page);
203 
204 	dst = kmap_atomic(page);
205 	memcpy(dst + offset, src, copy);
206 	kunmap_atomic(dst);
207 
208 	if (copy < n) {
209 		src += copy;
210 		sector += copy >> SECTOR_SHIFT;
211 		copy = n - copy;
212 		page = brd_lookup_page(brd, sector);
213 		BUG_ON(!page);
214 
215 		dst = kmap_atomic(page);
216 		memcpy(dst, src, copy);
217 		kunmap_atomic(dst);
218 	}
219 }
220 
221 /*
222  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
223  */
224 static void copy_from_brd(void *dst, struct brd_device *brd,
225 			sector_t sector, size_t n)
226 {
227 	struct page *page;
228 	void *src;
229 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
230 	size_t copy;
231 
232 	copy = min_t(size_t, n, PAGE_SIZE - offset);
233 	page = brd_lookup_page(brd, sector);
234 	if (page) {
235 		src = kmap_atomic(page);
236 		memcpy(dst, src + offset, copy);
237 		kunmap_atomic(src);
238 	} else
239 		memset(dst, 0, copy);
240 
241 	if (copy < n) {
242 		dst += copy;
243 		sector += copy >> SECTOR_SHIFT;
244 		copy = n - copy;
245 		page = brd_lookup_page(brd, sector);
246 		if (page) {
247 			src = kmap_atomic(page);
248 			memcpy(dst, src, copy);
249 			kunmap_atomic(src);
250 		} else
251 			memset(dst, 0, copy);
252 	}
253 }
254 
255 /*
256  * Process a single bvec of a bio.
257  */
258 static int brd_do_bvec(struct brd_device *brd, struct page *page,
259 			unsigned int len, unsigned int off, unsigned int op,
260 			sector_t sector)
261 {
262 	void *mem;
263 	int err = 0;
264 
265 	if (op_is_write(op)) {
266 		err = copy_to_brd_setup(brd, sector, len);
267 		if (err)
268 			goto out;
269 	}
270 
271 	mem = kmap_atomic(page);
272 	if (!op_is_write(op)) {
273 		copy_from_brd(mem + off, brd, sector, len);
274 		flush_dcache_page(page);
275 	} else {
276 		flush_dcache_page(page);
277 		copy_to_brd(brd, mem + off, sector, len);
278 	}
279 	kunmap_atomic(mem);
280 
281 out:
282 	return err;
283 }
284 
285 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
286 {
287 	struct brd_device *brd = bio->bi_disk->private_data;
288 	struct bio_vec bvec;
289 	sector_t sector;
290 	struct bvec_iter iter;
291 
292 	sector = bio->bi_iter.bi_sector;
293 	if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
294 		goto io_error;
295 
296 	bio_for_each_segment(bvec, bio, iter) {
297 		unsigned int len = bvec.bv_len;
298 		int err;
299 
300 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
301 				  bio_op(bio), sector);
302 		if (err)
303 			goto io_error;
304 		sector += len >> SECTOR_SHIFT;
305 	}
306 
307 	bio_endio(bio);
308 	return BLK_QC_T_NONE;
309 io_error:
310 	bio_io_error(bio);
311 	return BLK_QC_T_NONE;
312 }
313 
314 static int brd_rw_page(struct block_device *bdev, sector_t sector,
315 		       struct page *page, unsigned int op)
316 {
317 	struct brd_device *brd = bdev->bd_disk->private_data;
318 	int err;
319 
320 	if (PageTransHuge(page))
321 		return -ENOTSUPP;
322 	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
323 	page_endio(page, op_is_write(op), err);
324 	return err;
325 }
326 
327 static const struct block_device_operations brd_fops = {
328 	.owner =		THIS_MODULE,
329 	.rw_page =		brd_rw_page,
330 };
331 
332 /*
333  * And now the modules code and kernel interface.
334  */
335 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
336 module_param(rd_nr, int, 0444);
337 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
338 
339 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
340 module_param(rd_size, ulong, 0444);
341 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
342 
343 static int max_part = 1;
344 module_param(max_part, int, 0444);
345 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
346 
347 MODULE_LICENSE("GPL");
348 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
349 MODULE_ALIAS("rd");
350 
351 #ifndef MODULE
352 /* Legacy boot options - nonmodular */
353 static int __init ramdisk_size(char *str)
354 {
355 	rd_size = simple_strtol(str, NULL, 0);
356 	return 1;
357 }
358 __setup("ramdisk_size=", ramdisk_size);
359 #endif
360 
361 /*
362  * The device scheme is derived from loop.c. Keep them in synch where possible
363  * (should share code eventually).
364  */
365 static LIST_HEAD(brd_devices);
366 static DEFINE_MUTEX(brd_devices_mutex);
367 
368 static struct brd_device *brd_alloc(int i)
369 {
370 	struct brd_device *brd;
371 	struct gendisk *disk;
372 
373 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
374 	if (!brd)
375 		goto out;
376 	brd->brd_number		= i;
377 	spin_lock_init(&brd->brd_lock);
378 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
379 
380 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
381 	if (!brd->brd_queue)
382 		goto out_free_dev;
383 
384 	blk_queue_make_request(brd->brd_queue, brd_make_request);
385 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
386 
387 	/* This is so fdisk will align partitions on 4k, because of
388 	 * direct_access API needing 4k alignment, returning a PFN
389 	 * (This is only a problem on very small devices <= 4M,
390 	 *  otherwise fdisk will align on 1M. Regardless this call
391 	 *  is harmless)
392 	 */
393 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
394 	disk = brd->brd_disk = alloc_disk(max_part);
395 	if (!disk)
396 		goto out_free_queue;
397 	disk->major		= RAMDISK_MAJOR;
398 	disk->first_minor	= i * max_part;
399 	disk->fops		= &brd_fops;
400 	disk->private_data	= brd;
401 	disk->flags		= GENHD_FL_EXT_DEVT;
402 	sprintf(disk->disk_name, "ram%d", i);
403 	set_capacity(disk, rd_size * 2);
404 	brd->brd_queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
405 
406 	/* Tell the block layer that this is not a rotational device */
407 	blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue);
408 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue);
409 
410 	return brd;
411 
412 out_free_queue:
413 	blk_cleanup_queue(brd->brd_queue);
414 out_free_dev:
415 	kfree(brd);
416 out:
417 	return NULL;
418 }
419 
420 static void brd_free(struct brd_device *brd)
421 {
422 	put_disk(brd->brd_disk);
423 	blk_cleanup_queue(brd->brd_queue);
424 	brd_free_pages(brd);
425 	kfree(brd);
426 }
427 
428 static struct brd_device *brd_init_one(int i, bool *new)
429 {
430 	struct brd_device *brd;
431 
432 	*new = false;
433 	list_for_each_entry(brd, &brd_devices, brd_list) {
434 		if (brd->brd_number == i)
435 			goto out;
436 	}
437 
438 	brd = brd_alloc(i);
439 	if (brd) {
440 		brd->brd_disk->queue = brd->brd_queue;
441 		add_disk(brd->brd_disk);
442 		list_add_tail(&brd->brd_list, &brd_devices);
443 	}
444 	*new = true;
445 out:
446 	return brd;
447 }
448 
449 static void brd_del_one(struct brd_device *brd)
450 {
451 	list_del(&brd->brd_list);
452 	del_gendisk(brd->brd_disk);
453 	brd_free(brd);
454 }
455 
456 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
457 {
458 	struct brd_device *brd;
459 	struct kobject *kobj;
460 	bool new;
461 
462 	mutex_lock(&brd_devices_mutex);
463 	brd = brd_init_one(MINOR(dev) / max_part, &new);
464 	kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL;
465 	mutex_unlock(&brd_devices_mutex);
466 
467 	if (new)
468 		*part = 0;
469 
470 	return kobj;
471 }
472 
473 static int __init brd_init(void)
474 {
475 	struct brd_device *brd, *next;
476 	int i;
477 
478 	/*
479 	 * brd module now has a feature to instantiate underlying device
480 	 * structure on-demand, provided that there is an access dev node.
481 	 *
482 	 * (1) if rd_nr is specified, create that many upfront. else
483 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
484 	 * (2) User can further extend brd devices by create dev node themselves
485 	 *     and have kernel automatically instantiate actual device
486 	 *     on-demand. Example:
487 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
488 	 *		fdisk -l /path/devnod_name
489 	 *	If (X / max_part) was not already created it will be created
490 	 *	dynamically.
491 	 */
492 
493 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
494 		return -EIO;
495 
496 	if (unlikely(!max_part))
497 		max_part = 1;
498 
499 	for (i = 0; i < rd_nr; i++) {
500 		brd = brd_alloc(i);
501 		if (!brd)
502 			goto out_free;
503 		list_add_tail(&brd->brd_list, &brd_devices);
504 	}
505 
506 	/* point of no return */
507 
508 	list_for_each_entry(brd, &brd_devices, brd_list) {
509 		/*
510 		 * associate with queue just before adding disk for
511 		 * avoiding to mess up failure path
512 		 */
513 		brd->brd_disk->queue = brd->brd_queue;
514 		add_disk(brd->brd_disk);
515 	}
516 
517 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
518 				  THIS_MODULE, brd_probe, NULL, NULL);
519 
520 	pr_info("brd: module loaded\n");
521 	return 0;
522 
523 out_free:
524 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
525 		list_del(&brd->brd_list);
526 		brd_free(brd);
527 	}
528 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
529 
530 	pr_info("brd: module NOT loaded !!!\n");
531 	return -ENOMEM;
532 }
533 
534 static void __exit brd_exit(void)
535 {
536 	struct brd_device *brd, *next;
537 
538 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
539 		brd_del_one(brd);
540 
541 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
542 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
543 
544 	pr_info("brd: module unloaded\n");
545 }
546 
547 module_init(brd_init);
548 module_exit(brd_exit);
549 
550