xref: /openbmc/linux/drivers/block/brd.c (revision 457c8996)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/major.h>
16 #include <linux/blkdev.h>
17 #include <linux/bio.h>
18 #include <linux/highmem.h>
19 #include <linux/mutex.h>
20 #include <linux/radix-tree.h>
21 #include <linux/fs.h>
22 #include <linux/slab.h>
23 #include <linux/backing-dev.h>
24 
25 #include <linux/uaccess.h>
26 
27 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
28 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
29 
30 /*
31  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
32  * the pages containing the block device's contents. A brd page's ->index is
33  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
34  * with, the kernel's pagecache or buffer cache (which sit above our block
35  * device).
36  */
37 struct brd_device {
38 	int		brd_number;
39 
40 	struct request_queue	*brd_queue;
41 	struct gendisk		*brd_disk;
42 	struct list_head	brd_list;
43 
44 	/*
45 	 * Backing store of pages and lock to protect it. This is the contents
46 	 * of the block device.
47 	 */
48 	spinlock_t		brd_lock;
49 	struct radix_tree_root	brd_pages;
50 };
51 
52 /*
53  * Look up and return a brd's page for a given sector.
54  */
55 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
56 {
57 	pgoff_t idx;
58 	struct page *page;
59 
60 	/*
61 	 * The page lifetime is protected by the fact that we have opened the
62 	 * device node -- brd pages will never be deleted under us, so we
63 	 * don't need any further locking or refcounting.
64 	 *
65 	 * This is strictly true for the radix-tree nodes as well (ie. we
66 	 * don't actually need the rcu_read_lock()), however that is not a
67 	 * documented feature of the radix-tree API so it is better to be
68 	 * safe here (we don't have total exclusion from radix tree updates
69 	 * here, only deletes).
70 	 */
71 	rcu_read_lock();
72 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
73 	page = radix_tree_lookup(&brd->brd_pages, idx);
74 	rcu_read_unlock();
75 
76 	BUG_ON(page && page->index != idx);
77 
78 	return page;
79 }
80 
81 /*
82  * Look up and return a brd's page for a given sector.
83  * If one does not exist, allocate an empty page, and insert that. Then
84  * return it.
85  */
86 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
87 {
88 	pgoff_t idx;
89 	struct page *page;
90 	gfp_t gfp_flags;
91 
92 	page = brd_lookup_page(brd, sector);
93 	if (page)
94 		return page;
95 
96 	/*
97 	 * Must use NOIO because we don't want to recurse back into the
98 	 * block or filesystem layers from page reclaim.
99 	 */
100 	gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
101 	page = alloc_page(gfp_flags);
102 	if (!page)
103 		return NULL;
104 
105 	if (radix_tree_preload(GFP_NOIO)) {
106 		__free_page(page);
107 		return NULL;
108 	}
109 
110 	spin_lock(&brd->brd_lock);
111 	idx = sector >> PAGE_SECTORS_SHIFT;
112 	page->index = idx;
113 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
114 		__free_page(page);
115 		page = radix_tree_lookup(&brd->brd_pages, idx);
116 		BUG_ON(!page);
117 		BUG_ON(page->index != idx);
118 	}
119 	spin_unlock(&brd->brd_lock);
120 
121 	radix_tree_preload_end();
122 
123 	return page;
124 }
125 
126 /*
127  * Free all backing store pages and radix tree. This must only be called when
128  * there are no other users of the device.
129  */
130 #define FREE_BATCH 16
131 static void brd_free_pages(struct brd_device *brd)
132 {
133 	unsigned long pos = 0;
134 	struct page *pages[FREE_BATCH];
135 	int nr_pages;
136 
137 	do {
138 		int i;
139 
140 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
141 				(void **)pages, pos, FREE_BATCH);
142 
143 		for (i = 0; i < nr_pages; i++) {
144 			void *ret;
145 
146 			BUG_ON(pages[i]->index < pos);
147 			pos = pages[i]->index;
148 			ret = radix_tree_delete(&brd->brd_pages, pos);
149 			BUG_ON(!ret || ret != pages[i]);
150 			__free_page(pages[i]);
151 		}
152 
153 		pos++;
154 
155 		/*
156 		 * It takes 3.4 seconds to remove 80GiB ramdisk.
157 		 * So, we need cond_resched to avoid stalling the CPU.
158 		 */
159 		cond_resched();
160 
161 		/*
162 		 * This assumes radix_tree_gang_lookup always returns as
163 		 * many pages as possible. If the radix-tree code changes,
164 		 * so will this have to.
165 		 */
166 	} while (nr_pages == FREE_BATCH);
167 }
168 
169 /*
170  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
171  */
172 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
173 {
174 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
175 	size_t copy;
176 
177 	copy = min_t(size_t, n, PAGE_SIZE - offset);
178 	if (!brd_insert_page(brd, sector))
179 		return -ENOSPC;
180 	if (copy < n) {
181 		sector += copy >> SECTOR_SHIFT;
182 		if (!brd_insert_page(brd, sector))
183 			return -ENOSPC;
184 	}
185 	return 0;
186 }
187 
188 /*
189  * Copy n bytes from src to the brd starting at sector. Does not sleep.
190  */
191 static void copy_to_brd(struct brd_device *brd, const void *src,
192 			sector_t sector, size_t n)
193 {
194 	struct page *page;
195 	void *dst;
196 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
197 	size_t copy;
198 
199 	copy = min_t(size_t, n, PAGE_SIZE - offset);
200 	page = brd_lookup_page(brd, sector);
201 	BUG_ON(!page);
202 
203 	dst = kmap_atomic(page);
204 	memcpy(dst + offset, src, copy);
205 	kunmap_atomic(dst);
206 
207 	if (copy < n) {
208 		src += copy;
209 		sector += copy >> SECTOR_SHIFT;
210 		copy = n - copy;
211 		page = brd_lookup_page(brd, sector);
212 		BUG_ON(!page);
213 
214 		dst = kmap_atomic(page);
215 		memcpy(dst, src, copy);
216 		kunmap_atomic(dst);
217 	}
218 }
219 
220 /*
221  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
222  */
223 static void copy_from_brd(void *dst, struct brd_device *brd,
224 			sector_t sector, size_t n)
225 {
226 	struct page *page;
227 	void *src;
228 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
229 	size_t copy;
230 
231 	copy = min_t(size_t, n, PAGE_SIZE - offset);
232 	page = brd_lookup_page(brd, sector);
233 	if (page) {
234 		src = kmap_atomic(page);
235 		memcpy(dst, src + offset, copy);
236 		kunmap_atomic(src);
237 	} else
238 		memset(dst, 0, copy);
239 
240 	if (copy < n) {
241 		dst += copy;
242 		sector += copy >> SECTOR_SHIFT;
243 		copy = n - copy;
244 		page = brd_lookup_page(brd, sector);
245 		if (page) {
246 			src = kmap_atomic(page);
247 			memcpy(dst, src, copy);
248 			kunmap_atomic(src);
249 		} else
250 			memset(dst, 0, copy);
251 	}
252 }
253 
254 /*
255  * Process a single bvec of a bio.
256  */
257 static int brd_do_bvec(struct brd_device *brd, struct page *page,
258 			unsigned int len, unsigned int off, unsigned int op,
259 			sector_t sector)
260 {
261 	void *mem;
262 	int err = 0;
263 
264 	if (op_is_write(op)) {
265 		err = copy_to_brd_setup(brd, sector, len);
266 		if (err)
267 			goto out;
268 	}
269 
270 	mem = kmap_atomic(page);
271 	if (!op_is_write(op)) {
272 		copy_from_brd(mem + off, brd, sector, len);
273 		flush_dcache_page(page);
274 	} else {
275 		flush_dcache_page(page);
276 		copy_to_brd(brd, mem + off, sector, len);
277 	}
278 	kunmap_atomic(mem);
279 
280 out:
281 	return err;
282 }
283 
284 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
285 {
286 	struct brd_device *brd = bio->bi_disk->private_data;
287 	struct bio_vec bvec;
288 	sector_t sector;
289 	struct bvec_iter iter;
290 
291 	sector = bio->bi_iter.bi_sector;
292 	if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
293 		goto io_error;
294 
295 	bio_for_each_segment(bvec, bio, iter) {
296 		unsigned int len = bvec.bv_len;
297 		int err;
298 
299 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
300 				  bio_op(bio), sector);
301 		if (err)
302 			goto io_error;
303 		sector += len >> SECTOR_SHIFT;
304 	}
305 
306 	bio_endio(bio);
307 	return BLK_QC_T_NONE;
308 io_error:
309 	bio_io_error(bio);
310 	return BLK_QC_T_NONE;
311 }
312 
313 static int brd_rw_page(struct block_device *bdev, sector_t sector,
314 		       struct page *page, unsigned int op)
315 {
316 	struct brd_device *brd = bdev->bd_disk->private_data;
317 	int err;
318 
319 	if (PageTransHuge(page))
320 		return -ENOTSUPP;
321 	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
322 	page_endio(page, op_is_write(op), err);
323 	return err;
324 }
325 
326 static const struct block_device_operations brd_fops = {
327 	.owner =		THIS_MODULE,
328 	.rw_page =		brd_rw_page,
329 };
330 
331 /*
332  * And now the modules code and kernel interface.
333  */
334 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
335 module_param(rd_nr, int, 0444);
336 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
337 
338 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
339 module_param(rd_size, ulong, 0444);
340 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
341 
342 static int max_part = 1;
343 module_param(max_part, int, 0444);
344 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
345 
346 MODULE_LICENSE("GPL");
347 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
348 MODULE_ALIAS("rd");
349 
350 #ifndef MODULE
351 /* Legacy boot options - nonmodular */
352 static int __init ramdisk_size(char *str)
353 {
354 	rd_size = simple_strtol(str, NULL, 0);
355 	return 1;
356 }
357 __setup("ramdisk_size=", ramdisk_size);
358 #endif
359 
360 /*
361  * The device scheme is derived from loop.c. Keep them in synch where possible
362  * (should share code eventually).
363  */
364 static LIST_HEAD(brd_devices);
365 static DEFINE_MUTEX(brd_devices_mutex);
366 
367 static struct brd_device *brd_alloc(int i)
368 {
369 	struct brd_device *brd;
370 	struct gendisk *disk;
371 
372 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
373 	if (!brd)
374 		goto out;
375 	brd->brd_number		= i;
376 	spin_lock_init(&brd->brd_lock);
377 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
378 
379 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
380 	if (!brd->brd_queue)
381 		goto out_free_dev;
382 
383 	blk_queue_make_request(brd->brd_queue, brd_make_request);
384 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
385 
386 	/* This is so fdisk will align partitions on 4k, because of
387 	 * direct_access API needing 4k alignment, returning a PFN
388 	 * (This is only a problem on very small devices <= 4M,
389 	 *  otherwise fdisk will align on 1M. Regardless this call
390 	 *  is harmless)
391 	 */
392 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
393 	disk = brd->brd_disk = alloc_disk(max_part);
394 	if (!disk)
395 		goto out_free_queue;
396 	disk->major		= RAMDISK_MAJOR;
397 	disk->first_minor	= i * max_part;
398 	disk->fops		= &brd_fops;
399 	disk->private_data	= brd;
400 	disk->flags		= GENHD_FL_EXT_DEVT;
401 	sprintf(disk->disk_name, "ram%d", i);
402 	set_capacity(disk, rd_size * 2);
403 	brd->brd_queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
404 
405 	/* Tell the block layer that this is not a rotational device */
406 	blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue);
407 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue);
408 
409 	return brd;
410 
411 out_free_queue:
412 	blk_cleanup_queue(brd->brd_queue);
413 out_free_dev:
414 	kfree(brd);
415 out:
416 	return NULL;
417 }
418 
419 static void brd_free(struct brd_device *brd)
420 {
421 	put_disk(brd->brd_disk);
422 	blk_cleanup_queue(brd->brd_queue);
423 	brd_free_pages(brd);
424 	kfree(brd);
425 }
426 
427 static struct brd_device *brd_init_one(int i, bool *new)
428 {
429 	struct brd_device *brd;
430 
431 	*new = false;
432 	list_for_each_entry(brd, &brd_devices, brd_list) {
433 		if (brd->brd_number == i)
434 			goto out;
435 	}
436 
437 	brd = brd_alloc(i);
438 	if (brd) {
439 		brd->brd_disk->queue = brd->brd_queue;
440 		add_disk(brd->brd_disk);
441 		list_add_tail(&brd->brd_list, &brd_devices);
442 	}
443 	*new = true;
444 out:
445 	return brd;
446 }
447 
448 static void brd_del_one(struct brd_device *brd)
449 {
450 	list_del(&brd->brd_list);
451 	del_gendisk(brd->brd_disk);
452 	brd_free(brd);
453 }
454 
455 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
456 {
457 	struct brd_device *brd;
458 	struct kobject *kobj;
459 	bool new;
460 
461 	mutex_lock(&brd_devices_mutex);
462 	brd = brd_init_one(MINOR(dev) / max_part, &new);
463 	kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL;
464 	mutex_unlock(&brd_devices_mutex);
465 
466 	if (new)
467 		*part = 0;
468 
469 	return kobj;
470 }
471 
472 static int __init brd_init(void)
473 {
474 	struct brd_device *brd, *next;
475 	int i;
476 
477 	/*
478 	 * brd module now has a feature to instantiate underlying device
479 	 * structure on-demand, provided that there is an access dev node.
480 	 *
481 	 * (1) if rd_nr is specified, create that many upfront. else
482 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
483 	 * (2) User can further extend brd devices by create dev node themselves
484 	 *     and have kernel automatically instantiate actual device
485 	 *     on-demand. Example:
486 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
487 	 *		fdisk -l /path/devnod_name
488 	 *	If (X / max_part) was not already created it will be created
489 	 *	dynamically.
490 	 */
491 
492 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
493 		return -EIO;
494 
495 	if (unlikely(!max_part))
496 		max_part = 1;
497 
498 	for (i = 0; i < rd_nr; i++) {
499 		brd = brd_alloc(i);
500 		if (!brd)
501 			goto out_free;
502 		list_add_tail(&brd->brd_list, &brd_devices);
503 	}
504 
505 	/* point of no return */
506 
507 	list_for_each_entry(brd, &brd_devices, brd_list) {
508 		/*
509 		 * associate with queue just before adding disk for
510 		 * avoiding to mess up failure path
511 		 */
512 		brd->brd_disk->queue = brd->brd_queue;
513 		add_disk(brd->brd_disk);
514 	}
515 
516 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
517 				  THIS_MODULE, brd_probe, NULL, NULL);
518 
519 	pr_info("brd: module loaded\n");
520 	return 0;
521 
522 out_free:
523 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
524 		list_del(&brd->brd_list);
525 		brd_free(brd);
526 	}
527 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
528 
529 	pr_info("brd: module NOT loaded !!!\n");
530 	return -ENOMEM;
531 }
532 
533 static void __exit brd_exit(void)
534 {
535 	struct brd_device *brd, *next;
536 
537 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
538 		brd_del_one(brd);
539 
540 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
541 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
542 
543 	pr_info("brd: module unloaded\n");
544 }
545 
546 module_init(brd_init);
547 module_exit(brd_exit);
548 
549