xref: /openbmc/linux/drivers/block/brd.c (revision 3e09b155)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/major.h>
16 #include <linux/blkdev.h>
17 #include <linux/bio.h>
18 #include <linux/highmem.h>
19 #include <linux/mutex.h>
20 #include <linux/radix-tree.h>
21 #include <linux/fs.h>
22 #include <linux/slab.h>
23 #ifdef CONFIG_BLK_DEV_RAM_DAX
24 #include <linux/pfn_t.h>
25 #include <linux/dax.h>
26 #include <linux/uio.h>
27 #endif
28 
29 #include <linux/uaccess.h>
30 
31 #define SECTOR_SHIFT		9
32 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
33 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
34 
35 /*
36  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
37  * the pages containing the block device's contents. A brd page's ->index is
38  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
39  * with, the kernel's pagecache or buffer cache (which sit above our block
40  * device).
41  */
42 struct brd_device {
43 	int		brd_number;
44 
45 	struct request_queue	*brd_queue;
46 	struct gendisk		*brd_disk;
47 #ifdef CONFIG_BLK_DEV_RAM_DAX
48 	struct dax_device	*dax_dev;
49 #endif
50 	struct list_head	brd_list;
51 
52 	/*
53 	 * Backing store of pages and lock to protect it. This is the contents
54 	 * of the block device.
55 	 */
56 	spinlock_t		brd_lock;
57 	struct radix_tree_root	brd_pages;
58 };
59 
60 /*
61  * Look up and return a brd's page for a given sector.
62  */
63 static DEFINE_MUTEX(brd_mutex);
64 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
65 {
66 	pgoff_t idx;
67 	struct page *page;
68 
69 	/*
70 	 * The page lifetime is protected by the fact that we have opened the
71 	 * device node -- brd pages will never be deleted under us, so we
72 	 * don't need any further locking or refcounting.
73 	 *
74 	 * This is strictly true for the radix-tree nodes as well (ie. we
75 	 * don't actually need the rcu_read_lock()), however that is not a
76 	 * documented feature of the radix-tree API so it is better to be
77 	 * safe here (we don't have total exclusion from radix tree updates
78 	 * here, only deletes).
79 	 */
80 	rcu_read_lock();
81 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
82 	page = radix_tree_lookup(&brd->brd_pages, idx);
83 	rcu_read_unlock();
84 
85 	BUG_ON(page && page->index != idx);
86 
87 	return page;
88 }
89 
90 /*
91  * Look up and return a brd's page for a given sector.
92  * If one does not exist, allocate an empty page, and insert that. Then
93  * return it.
94  */
95 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
96 {
97 	pgoff_t idx;
98 	struct page *page;
99 	gfp_t gfp_flags;
100 
101 	page = brd_lookup_page(brd, sector);
102 	if (page)
103 		return page;
104 
105 	/*
106 	 * Must use NOIO because we don't want to recurse back into the
107 	 * block or filesystem layers from page reclaim.
108 	 *
109 	 * Cannot support DAX and highmem, because our ->direct_access
110 	 * routine for DAX must return memory that is always addressable.
111 	 * If DAX was reworked to use pfns and kmap throughout, this
112 	 * restriction might be able to be lifted.
113 	 */
114 	gfp_flags = GFP_NOIO | __GFP_ZERO;
115 #ifndef CONFIG_BLK_DEV_RAM_DAX
116 	gfp_flags |= __GFP_HIGHMEM;
117 #endif
118 	page = alloc_page(gfp_flags);
119 	if (!page)
120 		return NULL;
121 
122 	if (radix_tree_preload(GFP_NOIO)) {
123 		__free_page(page);
124 		return NULL;
125 	}
126 
127 	spin_lock(&brd->brd_lock);
128 	idx = sector >> PAGE_SECTORS_SHIFT;
129 	page->index = idx;
130 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
131 		__free_page(page);
132 		page = radix_tree_lookup(&brd->brd_pages, idx);
133 		BUG_ON(!page);
134 		BUG_ON(page->index != idx);
135 	}
136 	spin_unlock(&brd->brd_lock);
137 
138 	radix_tree_preload_end();
139 
140 	return page;
141 }
142 
143 /*
144  * Free all backing store pages and radix tree. This must only be called when
145  * there are no other users of the device.
146  */
147 #define FREE_BATCH 16
148 static void brd_free_pages(struct brd_device *brd)
149 {
150 	unsigned long pos = 0;
151 	struct page *pages[FREE_BATCH];
152 	int nr_pages;
153 
154 	do {
155 		int i;
156 
157 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
158 				(void **)pages, pos, FREE_BATCH);
159 
160 		for (i = 0; i < nr_pages; i++) {
161 			void *ret;
162 
163 			BUG_ON(pages[i]->index < pos);
164 			pos = pages[i]->index;
165 			ret = radix_tree_delete(&brd->brd_pages, pos);
166 			BUG_ON(!ret || ret != pages[i]);
167 			__free_page(pages[i]);
168 		}
169 
170 		pos++;
171 
172 		/*
173 		 * This assumes radix_tree_gang_lookup always returns as
174 		 * many pages as possible. If the radix-tree code changes,
175 		 * so will this have to.
176 		 */
177 	} while (nr_pages == FREE_BATCH);
178 }
179 
180 /*
181  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
182  */
183 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
184 {
185 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
186 	size_t copy;
187 
188 	copy = min_t(size_t, n, PAGE_SIZE - offset);
189 	if (!brd_insert_page(brd, sector))
190 		return -ENOSPC;
191 	if (copy < n) {
192 		sector += copy >> SECTOR_SHIFT;
193 		if (!brd_insert_page(brd, sector))
194 			return -ENOSPC;
195 	}
196 	return 0;
197 }
198 
199 /*
200  * Copy n bytes from src to the brd starting at sector. Does not sleep.
201  */
202 static void copy_to_brd(struct brd_device *brd, const void *src,
203 			sector_t sector, size_t n)
204 {
205 	struct page *page;
206 	void *dst;
207 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
208 	size_t copy;
209 
210 	copy = min_t(size_t, n, PAGE_SIZE - offset);
211 	page = brd_lookup_page(brd, sector);
212 	BUG_ON(!page);
213 
214 	dst = kmap_atomic(page);
215 	memcpy(dst + offset, src, copy);
216 	kunmap_atomic(dst);
217 
218 	if (copy < n) {
219 		src += copy;
220 		sector += copy >> SECTOR_SHIFT;
221 		copy = n - copy;
222 		page = brd_lookup_page(brd, sector);
223 		BUG_ON(!page);
224 
225 		dst = kmap_atomic(page);
226 		memcpy(dst, src, copy);
227 		kunmap_atomic(dst);
228 	}
229 }
230 
231 /*
232  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
233  */
234 static void copy_from_brd(void *dst, struct brd_device *brd,
235 			sector_t sector, size_t n)
236 {
237 	struct page *page;
238 	void *src;
239 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
240 	size_t copy;
241 
242 	copy = min_t(size_t, n, PAGE_SIZE - offset);
243 	page = brd_lookup_page(brd, sector);
244 	if (page) {
245 		src = kmap_atomic(page);
246 		memcpy(dst, src + offset, copy);
247 		kunmap_atomic(src);
248 	} else
249 		memset(dst, 0, copy);
250 
251 	if (copy < n) {
252 		dst += copy;
253 		sector += copy >> SECTOR_SHIFT;
254 		copy = n - copy;
255 		page = brd_lookup_page(brd, sector);
256 		if (page) {
257 			src = kmap_atomic(page);
258 			memcpy(dst, src, copy);
259 			kunmap_atomic(src);
260 		} else
261 			memset(dst, 0, copy);
262 	}
263 }
264 
265 /*
266  * Process a single bvec of a bio.
267  */
268 static int brd_do_bvec(struct brd_device *brd, struct page *page,
269 			unsigned int len, unsigned int off, bool is_write,
270 			sector_t sector)
271 {
272 	void *mem;
273 	int err = 0;
274 
275 	if (is_write) {
276 		err = copy_to_brd_setup(brd, sector, len);
277 		if (err)
278 			goto out;
279 	}
280 
281 	mem = kmap_atomic(page);
282 	if (!is_write) {
283 		copy_from_brd(mem + off, brd, sector, len);
284 		flush_dcache_page(page);
285 	} else {
286 		flush_dcache_page(page);
287 		copy_to_brd(brd, mem + off, sector, len);
288 	}
289 	kunmap_atomic(mem);
290 
291 out:
292 	return err;
293 }
294 
295 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
296 {
297 	struct brd_device *brd = bio->bi_disk->private_data;
298 	struct bio_vec bvec;
299 	sector_t sector;
300 	struct bvec_iter iter;
301 
302 	sector = bio->bi_iter.bi_sector;
303 	if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
304 		goto io_error;
305 
306 	bio_for_each_segment(bvec, bio, iter) {
307 		unsigned int len = bvec.bv_len;
308 		int err;
309 
310 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
311 					op_is_write(bio_op(bio)), sector);
312 		if (err)
313 			goto io_error;
314 		sector += len >> SECTOR_SHIFT;
315 	}
316 
317 	bio_endio(bio);
318 	return BLK_QC_T_NONE;
319 io_error:
320 	bio_io_error(bio);
321 	return BLK_QC_T_NONE;
322 }
323 
324 static int brd_rw_page(struct block_device *bdev, sector_t sector,
325 		       struct page *page, bool is_write)
326 {
327 	struct brd_device *brd = bdev->bd_disk->private_data;
328 	int err;
329 
330 	if (PageTransHuge(page))
331 		return -ENOTSUPP;
332 	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
333 	page_endio(page, is_write, err);
334 	return err;
335 }
336 
337 #ifdef CONFIG_BLK_DEV_RAM_DAX
338 static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff,
339 		long nr_pages, void **kaddr, pfn_t *pfn)
340 {
341 	struct page *page;
342 
343 	if (!brd)
344 		return -ENODEV;
345 	page = brd_insert_page(brd, PFN_PHYS(pgoff) / 512);
346 	if (!page)
347 		return -ENOSPC;
348 	*kaddr = page_address(page);
349 	*pfn = page_to_pfn_t(page);
350 
351 	return 1;
352 }
353 
354 static long brd_dax_direct_access(struct dax_device *dax_dev,
355 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
356 {
357 	struct brd_device *brd = dax_get_private(dax_dev);
358 
359 	return __brd_direct_access(brd, pgoff, nr_pages, kaddr, pfn);
360 }
361 
362 static size_t brd_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
363 		void *addr, size_t bytes, struct iov_iter *i)
364 {
365 	return copy_from_iter(addr, bytes, i);
366 }
367 
368 static const struct dax_operations brd_dax_ops = {
369 	.direct_access = brd_dax_direct_access,
370 	.copy_from_iter = brd_dax_copy_from_iter,
371 };
372 #endif
373 
374 static const struct block_device_operations brd_fops = {
375 	.owner =		THIS_MODULE,
376 	.rw_page =		brd_rw_page,
377 };
378 
379 /*
380  * And now the modules code and kernel interface.
381  */
382 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
383 module_param(rd_nr, int, S_IRUGO);
384 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
385 
386 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
387 module_param(rd_size, ulong, S_IRUGO);
388 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
389 
390 static int max_part = 1;
391 module_param(max_part, int, S_IRUGO);
392 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
393 
394 MODULE_LICENSE("GPL");
395 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
396 MODULE_ALIAS("rd");
397 
398 #ifndef MODULE
399 /* Legacy boot options - nonmodular */
400 static int __init ramdisk_size(char *str)
401 {
402 	rd_size = simple_strtol(str, NULL, 0);
403 	return 1;
404 }
405 __setup("ramdisk_size=", ramdisk_size);
406 #endif
407 
408 /*
409  * The device scheme is derived from loop.c. Keep them in synch where possible
410  * (should share code eventually).
411  */
412 static LIST_HEAD(brd_devices);
413 static DEFINE_MUTEX(brd_devices_mutex);
414 
415 static struct brd_device *brd_alloc(int i)
416 {
417 	struct brd_device *brd;
418 	struct gendisk *disk;
419 
420 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
421 	if (!brd)
422 		goto out;
423 	brd->brd_number		= i;
424 	spin_lock_init(&brd->brd_lock);
425 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
426 
427 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
428 	if (!brd->brd_queue)
429 		goto out_free_dev;
430 
431 	blk_queue_make_request(brd->brd_queue, brd_make_request);
432 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
433 
434 	/* This is so fdisk will align partitions on 4k, because of
435 	 * direct_access API needing 4k alignment, returning a PFN
436 	 * (This is only a problem on very small devices <= 4M,
437 	 *  otherwise fdisk will align on 1M. Regardless this call
438 	 *  is harmless)
439 	 */
440 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
441 	disk = brd->brd_disk = alloc_disk(max_part);
442 	if (!disk)
443 		goto out_free_queue;
444 	disk->major		= RAMDISK_MAJOR;
445 	disk->first_minor	= i * max_part;
446 	disk->fops		= &brd_fops;
447 	disk->private_data	= brd;
448 	disk->queue		= brd->brd_queue;
449 	disk->flags		= GENHD_FL_EXT_DEVT;
450 	sprintf(disk->disk_name, "ram%d", i);
451 	set_capacity(disk, rd_size * 2);
452 
453 #ifdef CONFIG_BLK_DEV_RAM_DAX
454 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
455 	brd->dax_dev = alloc_dax(brd, disk->disk_name, &brd_dax_ops);
456 	if (!brd->dax_dev)
457 		goto out_free_inode;
458 #endif
459 
460 
461 	return brd;
462 
463 #ifdef CONFIG_BLK_DEV_RAM_DAX
464 out_free_inode:
465 	kill_dax(brd->dax_dev);
466 	put_dax(brd->dax_dev);
467 #endif
468 out_free_queue:
469 	blk_cleanup_queue(brd->brd_queue);
470 out_free_dev:
471 	kfree(brd);
472 out:
473 	return NULL;
474 }
475 
476 static void brd_free(struct brd_device *brd)
477 {
478 	put_disk(brd->brd_disk);
479 	blk_cleanup_queue(brd->brd_queue);
480 	brd_free_pages(brd);
481 	kfree(brd);
482 }
483 
484 static struct brd_device *brd_init_one(int i, bool *new)
485 {
486 	struct brd_device *brd;
487 
488 	*new = false;
489 	list_for_each_entry(brd, &brd_devices, brd_list) {
490 		if (brd->brd_number == i)
491 			goto out;
492 	}
493 
494 	brd = brd_alloc(i);
495 	if (brd) {
496 		add_disk(brd->brd_disk);
497 		list_add_tail(&brd->brd_list, &brd_devices);
498 	}
499 	*new = true;
500 out:
501 	return brd;
502 }
503 
504 static void brd_del_one(struct brd_device *brd)
505 {
506 	list_del(&brd->brd_list);
507 #ifdef CONFIG_BLK_DEV_RAM_DAX
508 	kill_dax(brd->dax_dev);
509 	put_dax(brd->dax_dev);
510 #endif
511 	del_gendisk(brd->brd_disk);
512 	brd_free(brd);
513 }
514 
515 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
516 {
517 	struct brd_device *brd;
518 	struct kobject *kobj;
519 	bool new;
520 
521 	mutex_lock(&brd_devices_mutex);
522 	brd = brd_init_one(MINOR(dev) / max_part, &new);
523 	kobj = brd ? get_disk(brd->brd_disk) : NULL;
524 	mutex_unlock(&brd_devices_mutex);
525 
526 	if (new)
527 		*part = 0;
528 
529 	return kobj;
530 }
531 
532 static int __init brd_init(void)
533 {
534 	struct brd_device *brd, *next;
535 	int i;
536 
537 	/*
538 	 * brd module now has a feature to instantiate underlying device
539 	 * structure on-demand, provided that there is an access dev node.
540 	 *
541 	 * (1) if rd_nr is specified, create that many upfront. else
542 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
543 	 * (2) User can further extend brd devices by create dev node themselves
544 	 *     and have kernel automatically instantiate actual device
545 	 *     on-demand. Example:
546 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
547 	 *		fdisk -l /path/devnod_name
548 	 *	If (X / max_part) was not already created it will be created
549 	 *	dynamically.
550 	 */
551 
552 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
553 		return -EIO;
554 
555 	if (unlikely(!max_part))
556 		max_part = 1;
557 
558 	for (i = 0; i < rd_nr; i++) {
559 		brd = brd_alloc(i);
560 		if (!brd)
561 			goto out_free;
562 		list_add_tail(&brd->brd_list, &brd_devices);
563 	}
564 
565 	/* point of no return */
566 
567 	list_for_each_entry(brd, &brd_devices, brd_list)
568 		add_disk(brd->brd_disk);
569 
570 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
571 				  THIS_MODULE, brd_probe, NULL, NULL);
572 
573 	pr_info("brd: module loaded\n");
574 	return 0;
575 
576 out_free:
577 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
578 		list_del(&brd->brd_list);
579 		brd_free(brd);
580 	}
581 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
582 
583 	pr_info("brd: module NOT loaded !!!\n");
584 	return -ENOMEM;
585 }
586 
587 static void __exit brd_exit(void)
588 {
589 	struct brd_device *brd, *next;
590 
591 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
592 		brd_del_one(brd);
593 
594 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
595 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
596 
597 	pr_info("brd: module unloaded\n");
598 }
599 
600 module_init(brd_init);
601 module_exit(brd_exit);
602 
603