1 /* 2 * Ram backed block device driver. 3 * 4 * Copyright (C) 2007 Nick Piggin 5 * Copyright (C) 2007 Novell Inc. 6 * 7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 8 * of their respective owners. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/major.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/highmem.h> 18 #include <linux/gfp.h> 19 #include <linux/radix-tree.h> 20 #include <linux/buffer_head.h> /* invalidate_bh_lrus() */ 21 22 #include <asm/uaccess.h> 23 24 #define SECTOR_SHIFT 9 25 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 26 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 27 28 /* 29 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 30 * the pages containing the block device's contents. A brd page's ->index is 31 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 32 * with, the kernel's pagecache or buffer cache (which sit above our block 33 * device). 34 */ 35 struct brd_device { 36 int brd_number; 37 int brd_refcnt; 38 loff_t brd_offset; 39 loff_t brd_sizelimit; 40 unsigned brd_blocksize; 41 42 struct request_queue *brd_queue; 43 struct gendisk *brd_disk; 44 struct list_head brd_list; 45 46 /* 47 * Backing store of pages and lock to protect it. This is the contents 48 * of the block device. 49 */ 50 spinlock_t brd_lock; 51 struct radix_tree_root brd_pages; 52 }; 53 54 /* 55 * Look up and return a brd's page for a given sector. 56 */ 57 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 58 { 59 pgoff_t idx; 60 struct page *page; 61 62 /* 63 * The page lifetime is protected by the fact that we have opened the 64 * device node -- brd pages will never be deleted under us, so we 65 * don't need any further locking or refcounting. 66 * 67 * This is strictly true for the radix-tree nodes as well (ie. we 68 * don't actually need the rcu_read_lock()), however that is not a 69 * documented feature of the radix-tree API so it is better to be 70 * safe here (we don't have total exclusion from radix tree updates 71 * here, only deletes). 72 */ 73 rcu_read_lock(); 74 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 75 page = radix_tree_lookup(&brd->brd_pages, idx); 76 rcu_read_unlock(); 77 78 BUG_ON(page && page->index != idx); 79 80 return page; 81 } 82 83 /* 84 * Look up and return a brd's page for a given sector. 85 * If one does not exist, allocate an empty page, and insert that. Then 86 * return it. 87 */ 88 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 89 { 90 pgoff_t idx; 91 struct page *page; 92 gfp_t gfp_flags; 93 94 page = brd_lookup_page(brd, sector); 95 if (page) 96 return page; 97 98 /* 99 * Must use NOIO because we don't want to recurse back into the 100 * block or filesystem layers from page reclaim. 101 * 102 * Cannot support XIP and highmem, because our ->direct_access 103 * routine for XIP must return memory that is always addressable. 104 * If XIP was reworked to use pfns and kmap throughout, this 105 * restriction might be able to be lifted. 106 */ 107 gfp_flags = GFP_NOIO | __GFP_ZERO; 108 #ifndef CONFIG_BLK_DEV_XIP 109 gfp_flags |= __GFP_HIGHMEM; 110 #endif 111 page = alloc_page(gfp_flags); 112 if (!page) 113 return NULL; 114 115 if (radix_tree_preload(GFP_NOIO)) { 116 __free_page(page); 117 return NULL; 118 } 119 120 spin_lock(&brd->brd_lock); 121 idx = sector >> PAGE_SECTORS_SHIFT; 122 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 123 __free_page(page); 124 page = radix_tree_lookup(&brd->brd_pages, idx); 125 BUG_ON(!page); 126 BUG_ON(page->index != idx); 127 } else 128 page->index = idx; 129 spin_unlock(&brd->brd_lock); 130 131 radix_tree_preload_end(); 132 133 return page; 134 } 135 136 /* 137 * Free all backing store pages and radix tree. This must only be called when 138 * there are no other users of the device. 139 */ 140 #define FREE_BATCH 16 141 static void brd_free_pages(struct brd_device *brd) 142 { 143 unsigned long pos = 0; 144 struct page *pages[FREE_BATCH]; 145 int nr_pages; 146 147 do { 148 int i; 149 150 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 151 (void **)pages, pos, FREE_BATCH); 152 153 for (i = 0; i < nr_pages; i++) { 154 void *ret; 155 156 BUG_ON(pages[i]->index < pos); 157 pos = pages[i]->index; 158 ret = radix_tree_delete(&brd->brd_pages, pos); 159 BUG_ON(!ret || ret != pages[i]); 160 __free_page(pages[i]); 161 } 162 163 pos++; 164 165 /* 166 * This assumes radix_tree_gang_lookup always returns as 167 * many pages as possible. If the radix-tree code changes, 168 * so will this have to. 169 */ 170 } while (nr_pages == FREE_BATCH); 171 } 172 173 /* 174 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 175 */ 176 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 177 { 178 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 179 size_t copy; 180 181 copy = min_t(size_t, n, PAGE_SIZE - offset); 182 if (!brd_insert_page(brd, sector)) 183 return -ENOMEM; 184 if (copy < n) { 185 sector += copy >> SECTOR_SHIFT; 186 if (!brd_insert_page(brd, sector)) 187 return -ENOMEM; 188 } 189 return 0; 190 } 191 192 /* 193 * Copy n bytes from src to the brd starting at sector. Does not sleep. 194 */ 195 static void copy_to_brd(struct brd_device *brd, const void *src, 196 sector_t sector, size_t n) 197 { 198 struct page *page; 199 void *dst; 200 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 201 size_t copy; 202 203 copy = min_t(size_t, n, PAGE_SIZE - offset); 204 page = brd_lookup_page(brd, sector); 205 BUG_ON(!page); 206 207 dst = kmap_atomic(page, KM_USER1); 208 memcpy(dst + offset, src, copy); 209 kunmap_atomic(dst, KM_USER1); 210 211 if (copy < n) { 212 src += copy; 213 sector += copy >> SECTOR_SHIFT; 214 copy = n - copy; 215 page = brd_lookup_page(brd, sector); 216 BUG_ON(!page); 217 218 dst = kmap_atomic(page, KM_USER1); 219 memcpy(dst, src, copy); 220 kunmap_atomic(dst, KM_USER1); 221 } 222 } 223 224 /* 225 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 226 */ 227 static void copy_from_brd(void *dst, struct brd_device *brd, 228 sector_t sector, size_t n) 229 { 230 struct page *page; 231 void *src; 232 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 233 size_t copy; 234 235 copy = min_t(size_t, n, PAGE_SIZE - offset); 236 page = brd_lookup_page(brd, sector); 237 if (page) { 238 src = kmap_atomic(page, KM_USER1); 239 memcpy(dst, src + offset, copy); 240 kunmap_atomic(src, KM_USER1); 241 } else 242 memset(dst, 0, copy); 243 244 if (copy < n) { 245 dst += copy; 246 sector += copy >> SECTOR_SHIFT; 247 copy = n - copy; 248 page = brd_lookup_page(brd, sector); 249 if (page) { 250 src = kmap_atomic(page, KM_USER1); 251 memcpy(dst, src, copy); 252 kunmap_atomic(src, KM_USER1); 253 } else 254 memset(dst, 0, copy); 255 } 256 } 257 258 /* 259 * Process a single bvec of a bio. 260 */ 261 static int brd_do_bvec(struct brd_device *brd, struct page *page, 262 unsigned int len, unsigned int off, int rw, 263 sector_t sector) 264 { 265 void *mem; 266 int err = 0; 267 268 if (rw != READ) { 269 err = copy_to_brd_setup(brd, sector, len); 270 if (err) 271 goto out; 272 } 273 274 mem = kmap_atomic(page, KM_USER0); 275 if (rw == READ) { 276 copy_from_brd(mem + off, brd, sector, len); 277 flush_dcache_page(page); 278 } else 279 copy_to_brd(brd, mem + off, sector, len); 280 kunmap_atomic(mem, KM_USER0); 281 282 out: 283 return err; 284 } 285 286 static int brd_make_request(struct request_queue *q, struct bio *bio) 287 { 288 struct block_device *bdev = bio->bi_bdev; 289 struct brd_device *brd = bdev->bd_disk->private_data; 290 int rw; 291 struct bio_vec *bvec; 292 sector_t sector; 293 int i; 294 int err = -EIO; 295 296 sector = bio->bi_sector; 297 if (sector + (bio->bi_size >> SECTOR_SHIFT) > 298 get_capacity(bdev->bd_disk)) 299 goto out; 300 301 rw = bio_rw(bio); 302 if (rw == READA) 303 rw = READ; 304 305 bio_for_each_segment(bvec, bio, i) { 306 unsigned int len = bvec->bv_len; 307 err = brd_do_bvec(brd, bvec->bv_page, len, 308 bvec->bv_offset, rw, sector); 309 if (err) 310 break; 311 sector += len >> SECTOR_SHIFT; 312 } 313 314 out: 315 bio_endio(bio, err); 316 317 return 0; 318 } 319 320 #ifdef CONFIG_BLK_DEV_XIP 321 static int brd_direct_access (struct block_device *bdev, sector_t sector, 322 void **kaddr, unsigned long *pfn) 323 { 324 struct brd_device *brd = bdev->bd_disk->private_data; 325 struct page *page; 326 327 if (!brd) 328 return -ENODEV; 329 if (sector & (PAGE_SECTORS-1)) 330 return -EINVAL; 331 if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk)) 332 return -ERANGE; 333 page = brd_insert_page(brd, sector); 334 if (!page) 335 return -ENOMEM; 336 *kaddr = page_address(page); 337 *pfn = page_to_pfn(page); 338 339 return 0; 340 } 341 #endif 342 343 static int brd_ioctl(struct block_device *bdev, fmode_t mode, 344 unsigned int cmd, unsigned long arg) 345 { 346 int error; 347 struct brd_device *brd = bdev->bd_disk->private_data; 348 349 if (cmd != BLKFLSBUF) 350 return -ENOTTY; 351 352 /* 353 * ram device BLKFLSBUF has special semantics, we want to actually 354 * release and destroy the ramdisk data. 355 */ 356 mutex_lock(&bdev->bd_mutex); 357 error = -EBUSY; 358 if (bdev->bd_openers <= 1) { 359 /* 360 * Invalidate the cache first, so it isn't written 361 * back to the device. 362 * 363 * Another thread might instantiate more buffercache here, 364 * but there is not much we can do to close that race. 365 */ 366 invalidate_bh_lrus(); 367 truncate_inode_pages(bdev->bd_inode->i_mapping, 0); 368 brd_free_pages(brd); 369 error = 0; 370 } 371 mutex_unlock(&bdev->bd_mutex); 372 373 return error; 374 } 375 376 static struct block_device_operations brd_fops = { 377 .owner = THIS_MODULE, 378 .locked_ioctl = brd_ioctl, 379 #ifdef CONFIG_BLK_DEV_XIP 380 .direct_access = brd_direct_access, 381 #endif 382 }; 383 384 /* 385 * And now the modules code and kernel interface. 386 */ 387 static int rd_nr; 388 int rd_size = CONFIG_BLK_DEV_RAM_SIZE; 389 static int max_part; 390 static int part_shift; 391 module_param(rd_nr, int, 0); 392 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 393 module_param(rd_size, int, 0); 394 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 395 module_param(max_part, int, 0); 396 MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk"); 397 MODULE_LICENSE("GPL"); 398 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 399 MODULE_ALIAS("rd"); 400 401 #ifndef MODULE 402 /* Legacy boot options - nonmodular */ 403 static int __init ramdisk_size(char *str) 404 { 405 rd_size = simple_strtol(str, NULL, 0); 406 return 1; 407 } 408 static int __init ramdisk_size2(char *str) 409 { 410 return ramdisk_size(str); 411 } 412 __setup("ramdisk=", ramdisk_size); 413 __setup("ramdisk_size=", ramdisk_size2); 414 #endif 415 416 /* 417 * The device scheme is derived from loop.c. Keep them in synch where possible 418 * (should share code eventually). 419 */ 420 static LIST_HEAD(brd_devices); 421 static DEFINE_MUTEX(brd_devices_mutex); 422 423 static struct brd_device *brd_alloc(int i) 424 { 425 struct brd_device *brd; 426 struct gendisk *disk; 427 428 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 429 if (!brd) 430 goto out; 431 brd->brd_number = i; 432 spin_lock_init(&brd->brd_lock); 433 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 434 435 brd->brd_queue = blk_alloc_queue(GFP_KERNEL); 436 if (!brd->brd_queue) 437 goto out_free_dev; 438 blk_queue_make_request(brd->brd_queue, brd_make_request); 439 blk_queue_max_sectors(brd->brd_queue, 1024); 440 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY); 441 442 disk = brd->brd_disk = alloc_disk(1 << part_shift); 443 if (!disk) 444 goto out_free_queue; 445 disk->major = RAMDISK_MAJOR; 446 disk->first_minor = i << part_shift; 447 disk->fops = &brd_fops; 448 disk->private_data = brd; 449 disk->queue = brd->brd_queue; 450 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; 451 sprintf(disk->disk_name, "ram%d", i); 452 set_capacity(disk, rd_size * 2); 453 454 return brd; 455 456 out_free_queue: 457 blk_cleanup_queue(brd->brd_queue); 458 out_free_dev: 459 kfree(brd); 460 out: 461 return NULL; 462 } 463 464 static void brd_free(struct brd_device *brd) 465 { 466 put_disk(brd->brd_disk); 467 blk_cleanup_queue(brd->brd_queue); 468 brd_free_pages(brd); 469 kfree(brd); 470 } 471 472 static struct brd_device *brd_init_one(int i) 473 { 474 struct brd_device *brd; 475 476 list_for_each_entry(brd, &brd_devices, brd_list) { 477 if (brd->brd_number == i) 478 goto out; 479 } 480 481 brd = brd_alloc(i); 482 if (brd) { 483 add_disk(brd->brd_disk); 484 list_add_tail(&brd->brd_list, &brd_devices); 485 } 486 out: 487 return brd; 488 } 489 490 static void brd_del_one(struct brd_device *brd) 491 { 492 list_del(&brd->brd_list); 493 del_gendisk(brd->brd_disk); 494 brd_free(brd); 495 } 496 497 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 498 { 499 struct brd_device *brd; 500 struct kobject *kobj; 501 502 mutex_lock(&brd_devices_mutex); 503 brd = brd_init_one(dev & MINORMASK); 504 kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM); 505 mutex_unlock(&brd_devices_mutex); 506 507 *part = 0; 508 return kobj; 509 } 510 511 static int __init brd_init(void) 512 { 513 int i, nr; 514 unsigned long range; 515 struct brd_device *brd, *next; 516 517 /* 518 * brd module now has a feature to instantiate underlying device 519 * structure on-demand, provided that there is an access dev node. 520 * However, this will not work well with user space tool that doesn't 521 * know about such "feature". In order to not break any existing 522 * tool, we do the following: 523 * 524 * (1) if rd_nr is specified, create that many upfront, and this 525 * also becomes a hard limit. 526 * (2) if rd_nr is not specified, create 1 rd device on module 527 * load, user can further extend brd device by create dev node 528 * themselves and have kernel automatically instantiate actual 529 * device on-demand. 530 */ 531 532 part_shift = 0; 533 if (max_part > 0) 534 part_shift = fls(max_part); 535 536 if (rd_nr > 1UL << (MINORBITS - part_shift)) 537 return -EINVAL; 538 539 if (rd_nr) { 540 nr = rd_nr; 541 range = rd_nr; 542 } else { 543 nr = CONFIG_BLK_DEV_RAM_COUNT; 544 range = 1UL << (MINORBITS - part_shift); 545 } 546 547 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 548 return -EIO; 549 550 for (i = 0; i < nr; i++) { 551 brd = brd_alloc(i); 552 if (!brd) 553 goto out_free; 554 list_add_tail(&brd->brd_list, &brd_devices); 555 } 556 557 /* point of no return */ 558 559 list_for_each_entry(brd, &brd_devices, brd_list) 560 add_disk(brd->brd_disk); 561 562 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range, 563 THIS_MODULE, brd_probe, NULL, NULL); 564 565 printk(KERN_INFO "brd: module loaded\n"); 566 return 0; 567 568 out_free: 569 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 570 list_del(&brd->brd_list); 571 brd_free(brd); 572 } 573 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 574 575 return -ENOMEM; 576 } 577 578 static void __exit brd_exit(void) 579 { 580 unsigned long range; 581 struct brd_device *brd, *next; 582 583 range = rd_nr ? rd_nr : 1UL << (MINORBITS - part_shift); 584 585 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 586 brd_del_one(brd); 587 588 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range); 589 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 590 } 591 592 module_init(brd_init); 593 module_exit(brd_exit); 594 595