xref: /openbmc/linux/drivers/block/brd.c (revision 33460f86)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/major.h>
16 #include <linux/blkdev.h>
17 #include <linux/bio.h>
18 #include <linux/highmem.h>
19 #include <linux/mutex.h>
20 #include <linux/radix-tree.h>
21 #include <linux/fs.h>
22 #include <linux/slab.h>
23 #ifdef CONFIG_BLK_DEV_RAM_DAX
24 #include <linux/pfn_t.h>
25 #include <linux/dax.h>
26 #include <linux/uio.h>
27 #endif
28 
29 #include <linux/uaccess.h>
30 
31 #define SECTOR_SHIFT		9
32 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
33 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
34 
35 /*
36  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
37  * the pages containing the block device's contents. A brd page's ->index is
38  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
39  * with, the kernel's pagecache or buffer cache (which sit above our block
40  * device).
41  */
42 struct brd_device {
43 	int		brd_number;
44 
45 	struct request_queue	*brd_queue;
46 	struct gendisk		*brd_disk;
47 #ifdef CONFIG_BLK_DEV_RAM_DAX
48 	struct dax_device	*dax_dev;
49 #endif
50 	struct list_head	brd_list;
51 
52 	/*
53 	 * Backing store of pages and lock to protect it. This is the contents
54 	 * of the block device.
55 	 */
56 	spinlock_t		brd_lock;
57 	struct radix_tree_root	brd_pages;
58 };
59 
60 /*
61  * Look up and return a brd's page for a given sector.
62  */
63 static DEFINE_MUTEX(brd_mutex);
64 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
65 {
66 	pgoff_t idx;
67 	struct page *page;
68 
69 	/*
70 	 * The page lifetime is protected by the fact that we have opened the
71 	 * device node -- brd pages will never be deleted under us, so we
72 	 * don't need any further locking or refcounting.
73 	 *
74 	 * This is strictly true for the radix-tree nodes as well (ie. we
75 	 * don't actually need the rcu_read_lock()), however that is not a
76 	 * documented feature of the radix-tree API so it is better to be
77 	 * safe here (we don't have total exclusion from radix tree updates
78 	 * here, only deletes).
79 	 */
80 	rcu_read_lock();
81 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
82 	page = radix_tree_lookup(&brd->brd_pages, idx);
83 	rcu_read_unlock();
84 
85 	BUG_ON(page && page->index != idx);
86 
87 	return page;
88 }
89 
90 /*
91  * Look up and return a brd's page for a given sector.
92  * If one does not exist, allocate an empty page, and insert that. Then
93  * return it.
94  */
95 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
96 {
97 	pgoff_t idx;
98 	struct page *page;
99 	gfp_t gfp_flags;
100 
101 	page = brd_lookup_page(brd, sector);
102 	if (page)
103 		return page;
104 
105 	/*
106 	 * Must use NOIO because we don't want to recurse back into the
107 	 * block or filesystem layers from page reclaim.
108 	 *
109 	 * Cannot support DAX and highmem, because our ->direct_access
110 	 * routine for DAX must return memory that is always addressable.
111 	 * If DAX was reworked to use pfns and kmap throughout, this
112 	 * restriction might be able to be lifted.
113 	 */
114 	gfp_flags = GFP_NOIO | __GFP_ZERO;
115 #ifndef CONFIG_BLK_DEV_RAM_DAX
116 	gfp_flags |= __GFP_HIGHMEM;
117 #endif
118 	page = alloc_page(gfp_flags);
119 	if (!page)
120 		return NULL;
121 
122 	if (radix_tree_preload(GFP_NOIO)) {
123 		__free_page(page);
124 		return NULL;
125 	}
126 
127 	spin_lock(&brd->brd_lock);
128 	idx = sector >> PAGE_SECTORS_SHIFT;
129 	page->index = idx;
130 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
131 		__free_page(page);
132 		page = radix_tree_lookup(&brd->brd_pages, idx);
133 		BUG_ON(!page);
134 		BUG_ON(page->index != idx);
135 	}
136 	spin_unlock(&brd->brd_lock);
137 
138 	radix_tree_preload_end();
139 
140 	return page;
141 }
142 
143 /*
144  * Free all backing store pages and radix tree. This must only be called when
145  * there are no other users of the device.
146  */
147 #define FREE_BATCH 16
148 static void brd_free_pages(struct brd_device *brd)
149 {
150 	unsigned long pos = 0;
151 	struct page *pages[FREE_BATCH];
152 	int nr_pages;
153 
154 	do {
155 		int i;
156 
157 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
158 				(void **)pages, pos, FREE_BATCH);
159 
160 		for (i = 0; i < nr_pages; i++) {
161 			void *ret;
162 
163 			BUG_ON(pages[i]->index < pos);
164 			pos = pages[i]->index;
165 			ret = radix_tree_delete(&brd->brd_pages, pos);
166 			BUG_ON(!ret || ret != pages[i]);
167 			__free_page(pages[i]);
168 		}
169 
170 		pos++;
171 
172 		/*
173 		 * This assumes radix_tree_gang_lookup always returns as
174 		 * many pages as possible. If the radix-tree code changes,
175 		 * so will this have to.
176 		 */
177 	} while (nr_pages == FREE_BATCH);
178 }
179 
180 /*
181  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
182  */
183 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
184 {
185 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
186 	size_t copy;
187 
188 	copy = min_t(size_t, n, PAGE_SIZE - offset);
189 	if (!brd_insert_page(brd, sector))
190 		return -ENOSPC;
191 	if (copy < n) {
192 		sector += copy >> SECTOR_SHIFT;
193 		if (!brd_insert_page(brd, sector))
194 			return -ENOSPC;
195 	}
196 	return 0;
197 }
198 
199 /*
200  * Copy n bytes from src to the brd starting at sector. Does not sleep.
201  */
202 static void copy_to_brd(struct brd_device *brd, const void *src,
203 			sector_t sector, size_t n)
204 {
205 	struct page *page;
206 	void *dst;
207 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
208 	size_t copy;
209 
210 	copy = min_t(size_t, n, PAGE_SIZE - offset);
211 	page = brd_lookup_page(brd, sector);
212 	BUG_ON(!page);
213 
214 	dst = kmap_atomic(page);
215 	memcpy(dst + offset, src, copy);
216 	kunmap_atomic(dst);
217 
218 	if (copy < n) {
219 		src += copy;
220 		sector += copy >> SECTOR_SHIFT;
221 		copy = n - copy;
222 		page = brd_lookup_page(brd, sector);
223 		BUG_ON(!page);
224 
225 		dst = kmap_atomic(page);
226 		memcpy(dst, src, copy);
227 		kunmap_atomic(dst);
228 	}
229 }
230 
231 /*
232  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
233  */
234 static void copy_from_brd(void *dst, struct brd_device *brd,
235 			sector_t sector, size_t n)
236 {
237 	struct page *page;
238 	void *src;
239 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
240 	size_t copy;
241 
242 	copy = min_t(size_t, n, PAGE_SIZE - offset);
243 	page = brd_lookup_page(brd, sector);
244 	if (page) {
245 		src = kmap_atomic(page);
246 		memcpy(dst, src + offset, copy);
247 		kunmap_atomic(src);
248 	} else
249 		memset(dst, 0, copy);
250 
251 	if (copy < n) {
252 		dst += copy;
253 		sector += copy >> SECTOR_SHIFT;
254 		copy = n - copy;
255 		page = brd_lookup_page(brd, sector);
256 		if (page) {
257 			src = kmap_atomic(page);
258 			memcpy(dst, src, copy);
259 			kunmap_atomic(src);
260 		} else
261 			memset(dst, 0, copy);
262 	}
263 }
264 
265 /*
266  * Process a single bvec of a bio.
267  */
268 static int brd_do_bvec(struct brd_device *brd, struct page *page,
269 			unsigned int len, unsigned int off, bool is_write,
270 			sector_t sector)
271 {
272 	void *mem;
273 	int err = 0;
274 
275 	if (is_write) {
276 		err = copy_to_brd_setup(brd, sector, len);
277 		if (err)
278 			goto out;
279 	}
280 
281 	mem = kmap_atomic(page);
282 	if (!is_write) {
283 		copy_from_brd(mem + off, brd, sector, len);
284 		flush_dcache_page(page);
285 	} else {
286 		flush_dcache_page(page);
287 		copy_to_brd(brd, mem + off, sector, len);
288 	}
289 	kunmap_atomic(mem);
290 
291 out:
292 	return err;
293 }
294 
295 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
296 {
297 	struct block_device *bdev = bio->bi_bdev;
298 	struct brd_device *brd = bdev->bd_disk->private_data;
299 	struct bio_vec bvec;
300 	sector_t sector;
301 	struct bvec_iter iter;
302 
303 	sector = bio->bi_iter.bi_sector;
304 	if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
305 		goto io_error;
306 
307 	bio_for_each_segment(bvec, bio, iter) {
308 		unsigned int len = bvec.bv_len;
309 		int err;
310 
311 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
312 					op_is_write(bio_op(bio)), sector);
313 		if (err)
314 			goto io_error;
315 		sector += len >> SECTOR_SHIFT;
316 	}
317 
318 	bio_endio(bio);
319 	return BLK_QC_T_NONE;
320 io_error:
321 	bio_io_error(bio);
322 	return BLK_QC_T_NONE;
323 }
324 
325 static int brd_rw_page(struct block_device *bdev, sector_t sector,
326 		       struct page *page, bool is_write)
327 {
328 	struct brd_device *brd = bdev->bd_disk->private_data;
329 	int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
330 	page_endio(page, is_write, err);
331 	return err;
332 }
333 
334 #ifdef CONFIG_BLK_DEV_RAM_DAX
335 static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff,
336 		long nr_pages, void **kaddr, pfn_t *pfn)
337 {
338 	struct page *page;
339 
340 	if (!brd)
341 		return -ENODEV;
342 	page = brd_insert_page(brd, PFN_PHYS(pgoff) / 512);
343 	if (!page)
344 		return -ENOSPC;
345 	*kaddr = page_address(page);
346 	*pfn = page_to_pfn_t(page);
347 
348 	return 1;
349 }
350 
351 static long brd_dax_direct_access(struct dax_device *dax_dev,
352 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
353 {
354 	struct brd_device *brd = dax_get_private(dax_dev);
355 
356 	return __brd_direct_access(brd, pgoff, nr_pages, kaddr, pfn);
357 }
358 
359 static size_t brd_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
360 		void *addr, size_t bytes, struct iov_iter *i)
361 {
362 	return copy_from_iter(addr, bytes, i);
363 }
364 
365 static const struct dax_operations brd_dax_ops = {
366 	.direct_access = brd_dax_direct_access,
367 	.copy_from_iter = brd_dax_copy_from_iter,
368 };
369 #endif
370 
371 static const struct block_device_operations brd_fops = {
372 	.owner =		THIS_MODULE,
373 	.rw_page =		brd_rw_page,
374 };
375 
376 /*
377  * And now the modules code and kernel interface.
378  */
379 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
380 module_param(rd_nr, int, S_IRUGO);
381 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
382 
383 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
384 module_param(rd_size, ulong, S_IRUGO);
385 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
386 
387 static int max_part = 1;
388 module_param(max_part, int, S_IRUGO);
389 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
390 
391 MODULE_LICENSE("GPL");
392 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
393 MODULE_ALIAS("rd");
394 
395 #ifndef MODULE
396 /* Legacy boot options - nonmodular */
397 static int __init ramdisk_size(char *str)
398 {
399 	rd_size = simple_strtol(str, NULL, 0);
400 	return 1;
401 }
402 __setup("ramdisk_size=", ramdisk_size);
403 #endif
404 
405 /*
406  * The device scheme is derived from loop.c. Keep them in synch where possible
407  * (should share code eventually).
408  */
409 static LIST_HEAD(brd_devices);
410 static DEFINE_MUTEX(brd_devices_mutex);
411 
412 static struct brd_device *brd_alloc(int i)
413 {
414 	struct brd_device *brd;
415 	struct gendisk *disk;
416 
417 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
418 	if (!brd)
419 		goto out;
420 	brd->brd_number		= i;
421 	spin_lock_init(&brd->brd_lock);
422 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
423 
424 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
425 	if (!brd->brd_queue)
426 		goto out_free_dev;
427 
428 	blk_queue_make_request(brd->brd_queue, brd_make_request);
429 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
430 
431 	/* This is so fdisk will align partitions on 4k, because of
432 	 * direct_access API needing 4k alignment, returning a PFN
433 	 * (This is only a problem on very small devices <= 4M,
434 	 *  otherwise fdisk will align on 1M. Regardless this call
435 	 *  is harmless)
436 	 */
437 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
438 	disk = brd->brd_disk = alloc_disk(max_part);
439 	if (!disk)
440 		goto out_free_queue;
441 	disk->major		= RAMDISK_MAJOR;
442 	disk->first_minor	= i * max_part;
443 	disk->fops		= &brd_fops;
444 	disk->private_data	= brd;
445 	disk->queue		= brd->brd_queue;
446 	disk->flags		= GENHD_FL_EXT_DEVT;
447 	sprintf(disk->disk_name, "ram%d", i);
448 	set_capacity(disk, rd_size * 2);
449 
450 #ifdef CONFIG_BLK_DEV_RAM_DAX
451 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
452 	brd->dax_dev = alloc_dax(brd, disk->disk_name, &brd_dax_ops);
453 	if (!brd->dax_dev)
454 		goto out_free_inode;
455 #endif
456 
457 
458 	return brd;
459 
460 #ifdef CONFIG_BLK_DEV_RAM_DAX
461 out_free_inode:
462 	kill_dax(brd->dax_dev);
463 	put_dax(brd->dax_dev);
464 #endif
465 out_free_queue:
466 	blk_cleanup_queue(brd->brd_queue);
467 out_free_dev:
468 	kfree(brd);
469 out:
470 	return NULL;
471 }
472 
473 static void brd_free(struct brd_device *brd)
474 {
475 	put_disk(brd->brd_disk);
476 	blk_cleanup_queue(brd->brd_queue);
477 	brd_free_pages(brd);
478 	kfree(brd);
479 }
480 
481 static struct brd_device *brd_init_one(int i, bool *new)
482 {
483 	struct brd_device *brd;
484 
485 	*new = false;
486 	list_for_each_entry(brd, &brd_devices, brd_list) {
487 		if (brd->brd_number == i)
488 			goto out;
489 	}
490 
491 	brd = brd_alloc(i);
492 	if (brd) {
493 		add_disk(brd->brd_disk);
494 		list_add_tail(&brd->brd_list, &brd_devices);
495 	}
496 	*new = true;
497 out:
498 	return brd;
499 }
500 
501 static void brd_del_one(struct brd_device *brd)
502 {
503 	list_del(&brd->brd_list);
504 #ifdef CONFIG_BLK_DEV_RAM_DAX
505 	kill_dax(brd->dax_dev);
506 	put_dax(brd->dax_dev);
507 #endif
508 	del_gendisk(brd->brd_disk);
509 	brd_free(brd);
510 }
511 
512 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
513 {
514 	struct brd_device *brd;
515 	struct kobject *kobj;
516 	bool new;
517 
518 	mutex_lock(&brd_devices_mutex);
519 	brd = brd_init_one(MINOR(dev) / max_part, &new);
520 	kobj = brd ? get_disk(brd->brd_disk) : NULL;
521 	mutex_unlock(&brd_devices_mutex);
522 
523 	if (new)
524 		*part = 0;
525 
526 	return kobj;
527 }
528 
529 static int __init brd_init(void)
530 {
531 	struct brd_device *brd, *next;
532 	int i;
533 
534 	/*
535 	 * brd module now has a feature to instantiate underlying device
536 	 * structure on-demand, provided that there is an access dev node.
537 	 *
538 	 * (1) if rd_nr is specified, create that many upfront. else
539 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
540 	 * (2) User can further extend brd devices by create dev node themselves
541 	 *     and have kernel automatically instantiate actual device
542 	 *     on-demand. Example:
543 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
544 	 *		fdisk -l /path/devnod_name
545 	 *	If (X / max_part) was not already created it will be created
546 	 *	dynamically.
547 	 */
548 
549 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
550 		return -EIO;
551 
552 	if (unlikely(!max_part))
553 		max_part = 1;
554 
555 	for (i = 0; i < rd_nr; i++) {
556 		brd = brd_alloc(i);
557 		if (!brd)
558 			goto out_free;
559 		list_add_tail(&brd->brd_list, &brd_devices);
560 	}
561 
562 	/* point of no return */
563 
564 	list_for_each_entry(brd, &brd_devices, brd_list)
565 		add_disk(brd->brd_disk);
566 
567 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
568 				  THIS_MODULE, brd_probe, NULL, NULL);
569 
570 	pr_info("brd: module loaded\n");
571 	return 0;
572 
573 out_free:
574 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
575 		list_del(&brd->brd_list);
576 		brd_free(brd);
577 	}
578 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
579 
580 	pr_info("brd: module NOT loaded !!!\n");
581 	return -ENOMEM;
582 }
583 
584 static void __exit brd_exit(void)
585 {
586 	struct brd_device *brd, *next;
587 
588 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
589 		brd_del_one(brd);
590 
591 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
592 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
593 
594 	pr_info("brd: module unloaded\n");
595 }
596 
597 module_init(brd_init);
598 module_exit(brd_exit);
599 
600