1 /* 2 * Ram backed block device driver. 3 * 4 * Copyright (C) 2007 Nick Piggin 5 * Copyright (C) 2007 Novell Inc. 6 * 7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 8 * of their respective owners. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/major.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/highmem.h> 18 #include <linux/mutex.h> 19 #include <linux/radix-tree.h> 20 #include <linux/fs.h> 21 #include <linux/slab.h> 22 23 #include <asm/uaccess.h> 24 25 #define SECTOR_SHIFT 9 26 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 27 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 28 29 /* 30 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 31 * the pages containing the block device's contents. A brd page's ->index is 32 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 33 * with, the kernel's pagecache or buffer cache (which sit above our block 34 * device). 35 */ 36 struct brd_device { 37 int brd_number; 38 39 struct request_queue *brd_queue; 40 struct gendisk *brd_disk; 41 struct list_head brd_list; 42 43 /* 44 * Backing store of pages and lock to protect it. This is the contents 45 * of the block device. 46 */ 47 spinlock_t brd_lock; 48 struct radix_tree_root brd_pages; 49 }; 50 51 /* 52 * Look up and return a brd's page for a given sector. 53 */ 54 static DEFINE_MUTEX(brd_mutex); 55 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 56 { 57 pgoff_t idx; 58 struct page *page; 59 60 /* 61 * The page lifetime is protected by the fact that we have opened the 62 * device node -- brd pages will never be deleted under us, so we 63 * don't need any further locking or refcounting. 64 * 65 * This is strictly true for the radix-tree nodes as well (ie. we 66 * don't actually need the rcu_read_lock()), however that is not a 67 * documented feature of the radix-tree API so it is better to be 68 * safe here (we don't have total exclusion from radix tree updates 69 * here, only deletes). 70 */ 71 rcu_read_lock(); 72 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 73 page = radix_tree_lookup(&brd->brd_pages, idx); 74 rcu_read_unlock(); 75 76 BUG_ON(page && page->index != idx); 77 78 return page; 79 } 80 81 /* 82 * Look up and return a brd's page for a given sector. 83 * If one does not exist, allocate an empty page, and insert that. Then 84 * return it. 85 */ 86 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 87 { 88 pgoff_t idx; 89 struct page *page; 90 gfp_t gfp_flags; 91 92 page = brd_lookup_page(brd, sector); 93 if (page) 94 return page; 95 96 /* 97 * Must use NOIO because we don't want to recurse back into the 98 * block or filesystem layers from page reclaim. 99 * 100 * Cannot support XIP and highmem, because our ->direct_access 101 * routine for XIP must return memory that is always addressable. 102 * If XIP was reworked to use pfns and kmap throughout, this 103 * restriction might be able to be lifted. 104 */ 105 gfp_flags = GFP_NOIO | __GFP_ZERO; 106 #ifndef CONFIG_BLK_DEV_XIP 107 gfp_flags |= __GFP_HIGHMEM; 108 #endif 109 page = alloc_page(gfp_flags); 110 if (!page) 111 return NULL; 112 113 if (radix_tree_preload(GFP_NOIO)) { 114 __free_page(page); 115 return NULL; 116 } 117 118 spin_lock(&brd->brd_lock); 119 idx = sector >> PAGE_SECTORS_SHIFT; 120 page->index = idx; 121 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 122 __free_page(page); 123 page = radix_tree_lookup(&brd->brd_pages, idx); 124 BUG_ON(!page); 125 BUG_ON(page->index != idx); 126 } 127 spin_unlock(&brd->brd_lock); 128 129 radix_tree_preload_end(); 130 131 return page; 132 } 133 134 static void brd_free_page(struct brd_device *brd, sector_t sector) 135 { 136 struct page *page; 137 pgoff_t idx; 138 139 spin_lock(&brd->brd_lock); 140 idx = sector >> PAGE_SECTORS_SHIFT; 141 page = radix_tree_delete(&brd->brd_pages, idx); 142 spin_unlock(&brd->brd_lock); 143 if (page) 144 __free_page(page); 145 } 146 147 static void brd_zero_page(struct brd_device *brd, sector_t sector) 148 { 149 struct page *page; 150 151 page = brd_lookup_page(brd, sector); 152 if (page) 153 clear_highpage(page); 154 } 155 156 /* 157 * Free all backing store pages and radix tree. This must only be called when 158 * there are no other users of the device. 159 */ 160 #define FREE_BATCH 16 161 static void brd_free_pages(struct brd_device *brd) 162 { 163 unsigned long pos = 0; 164 struct page *pages[FREE_BATCH]; 165 int nr_pages; 166 167 do { 168 int i; 169 170 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 171 (void **)pages, pos, FREE_BATCH); 172 173 for (i = 0; i < nr_pages; i++) { 174 void *ret; 175 176 BUG_ON(pages[i]->index < pos); 177 pos = pages[i]->index; 178 ret = radix_tree_delete(&brd->brd_pages, pos); 179 BUG_ON(!ret || ret != pages[i]); 180 __free_page(pages[i]); 181 } 182 183 pos++; 184 185 /* 186 * This assumes radix_tree_gang_lookup always returns as 187 * many pages as possible. If the radix-tree code changes, 188 * so will this have to. 189 */ 190 } while (nr_pages == FREE_BATCH); 191 } 192 193 /* 194 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 195 */ 196 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 197 { 198 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 199 size_t copy; 200 201 copy = min_t(size_t, n, PAGE_SIZE - offset); 202 if (!brd_insert_page(brd, sector)) 203 return -ENOMEM; 204 if (copy < n) { 205 sector += copy >> SECTOR_SHIFT; 206 if (!brd_insert_page(brd, sector)) 207 return -ENOMEM; 208 } 209 return 0; 210 } 211 212 static void discard_from_brd(struct brd_device *brd, 213 sector_t sector, size_t n) 214 { 215 while (n >= PAGE_SIZE) { 216 /* 217 * Don't want to actually discard pages here because 218 * re-allocating the pages can result in writeback 219 * deadlocks under heavy load. 220 */ 221 if (0) 222 brd_free_page(brd, sector); 223 else 224 brd_zero_page(brd, sector); 225 sector += PAGE_SIZE >> SECTOR_SHIFT; 226 n -= PAGE_SIZE; 227 } 228 } 229 230 /* 231 * Copy n bytes from src to the brd starting at sector. Does not sleep. 232 */ 233 static void copy_to_brd(struct brd_device *brd, const void *src, 234 sector_t sector, size_t n) 235 { 236 struct page *page; 237 void *dst; 238 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 239 size_t copy; 240 241 copy = min_t(size_t, n, PAGE_SIZE - offset); 242 page = brd_lookup_page(brd, sector); 243 BUG_ON(!page); 244 245 dst = kmap_atomic(page); 246 memcpy(dst + offset, src, copy); 247 kunmap_atomic(dst); 248 249 if (copy < n) { 250 src += copy; 251 sector += copy >> SECTOR_SHIFT; 252 copy = n - copy; 253 page = brd_lookup_page(brd, sector); 254 BUG_ON(!page); 255 256 dst = kmap_atomic(page); 257 memcpy(dst, src, copy); 258 kunmap_atomic(dst); 259 } 260 } 261 262 /* 263 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 264 */ 265 static void copy_from_brd(void *dst, struct brd_device *brd, 266 sector_t sector, size_t n) 267 { 268 struct page *page; 269 void *src; 270 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 271 size_t copy; 272 273 copy = min_t(size_t, n, PAGE_SIZE - offset); 274 page = brd_lookup_page(brd, sector); 275 if (page) { 276 src = kmap_atomic(page); 277 memcpy(dst, src + offset, copy); 278 kunmap_atomic(src); 279 } else 280 memset(dst, 0, copy); 281 282 if (copy < n) { 283 dst += copy; 284 sector += copy >> SECTOR_SHIFT; 285 copy = n - copy; 286 page = brd_lookup_page(brd, sector); 287 if (page) { 288 src = kmap_atomic(page); 289 memcpy(dst, src, copy); 290 kunmap_atomic(src); 291 } else 292 memset(dst, 0, copy); 293 } 294 } 295 296 /* 297 * Process a single bvec of a bio. 298 */ 299 static int brd_do_bvec(struct brd_device *brd, struct page *page, 300 unsigned int len, unsigned int off, int rw, 301 sector_t sector) 302 { 303 void *mem; 304 int err = 0; 305 306 if (rw != READ) { 307 err = copy_to_brd_setup(brd, sector, len); 308 if (err) 309 goto out; 310 } 311 312 mem = kmap_atomic(page); 313 if (rw == READ) { 314 copy_from_brd(mem + off, brd, sector, len); 315 flush_dcache_page(page); 316 } else { 317 flush_dcache_page(page); 318 copy_to_brd(brd, mem + off, sector, len); 319 } 320 kunmap_atomic(mem); 321 322 out: 323 return err; 324 } 325 326 static void brd_make_request(struct request_queue *q, struct bio *bio) 327 { 328 struct block_device *bdev = bio->bi_bdev; 329 struct brd_device *brd = bdev->bd_disk->private_data; 330 int rw; 331 struct bio_vec *bvec; 332 sector_t sector; 333 int i; 334 int err = -EIO; 335 336 sector = bio->bi_sector; 337 if (bio_end_sector(bio) > get_capacity(bdev->bd_disk)) 338 goto out; 339 340 if (unlikely(bio->bi_rw & REQ_DISCARD)) { 341 err = 0; 342 discard_from_brd(brd, sector, bio->bi_size); 343 goto out; 344 } 345 346 rw = bio_rw(bio); 347 if (rw == READA) 348 rw = READ; 349 350 bio_for_each_segment(bvec, bio, i) { 351 unsigned int len = bvec->bv_len; 352 err = brd_do_bvec(brd, bvec->bv_page, len, 353 bvec->bv_offset, rw, sector); 354 if (err) 355 break; 356 sector += len >> SECTOR_SHIFT; 357 } 358 359 out: 360 bio_endio(bio, err); 361 } 362 363 #ifdef CONFIG_BLK_DEV_XIP 364 static int brd_direct_access(struct block_device *bdev, sector_t sector, 365 void **kaddr, unsigned long *pfn) 366 { 367 struct brd_device *brd = bdev->bd_disk->private_data; 368 struct page *page; 369 370 if (!brd) 371 return -ENODEV; 372 if (sector & (PAGE_SECTORS-1)) 373 return -EINVAL; 374 if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk)) 375 return -ERANGE; 376 page = brd_insert_page(brd, sector); 377 if (!page) 378 return -ENOMEM; 379 *kaddr = page_address(page); 380 *pfn = page_to_pfn(page); 381 382 return 0; 383 } 384 #endif 385 386 static int brd_ioctl(struct block_device *bdev, fmode_t mode, 387 unsigned int cmd, unsigned long arg) 388 { 389 int error; 390 struct brd_device *brd = bdev->bd_disk->private_data; 391 392 if (cmd != BLKFLSBUF) 393 return -ENOTTY; 394 395 /* 396 * ram device BLKFLSBUF has special semantics, we want to actually 397 * release and destroy the ramdisk data. 398 */ 399 mutex_lock(&brd_mutex); 400 mutex_lock(&bdev->bd_mutex); 401 error = -EBUSY; 402 if (bdev->bd_openers <= 1) { 403 /* 404 * Kill the cache first, so it isn't written back to the 405 * device. 406 * 407 * Another thread might instantiate more buffercache here, 408 * but there is not much we can do to close that race. 409 */ 410 kill_bdev(bdev); 411 brd_free_pages(brd); 412 error = 0; 413 } 414 mutex_unlock(&bdev->bd_mutex); 415 mutex_unlock(&brd_mutex); 416 417 return error; 418 } 419 420 static const struct block_device_operations brd_fops = { 421 .owner = THIS_MODULE, 422 .ioctl = brd_ioctl, 423 #ifdef CONFIG_BLK_DEV_XIP 424 .direct_access = brd_direct_access, 425 #endif 426 }; 427 428 /* 429 * And now the modules code and kernel interface. 430 */ 431 static int rd_nr; 432 int rd_size = CONFIG_BLK_DEV_RAM_SIZE; 433 static int max_part; 434 static int part_shift; 435 module_param(rd_nr, int, S_IRUGO); 436 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 437 module_param(rd_size, int, S_IRUGO); 438 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 439 module_param(max_part, int, S_IRUGO); 440 MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk"); 441 MODULE_LICENSE("GPL"); 442 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 443 MODULE_ALIAS("rd"); 444 445 #ifndef MODULE 446 /* Legacy boot options - nonmodular */ 447 static int __init ramdisk_size(char *str) 448 { 449 rd_size = simple_strtol(str, NULL, 0); 450 return 1; 451 } 452 __setup("ramdisk_size=", ramdisk_size); 453 #endif 454 455 /* 456 * The device scheme is derived from loop.c. Keep them in synch where possible 457 * (should share code eventually). 458 */ 459 static LIST_HEAD(brd_devices); 460 static DEFINE_MUTEX(brd_devices_mutex); 461 462 static struct brd_device *brd_alloc(int i) 463 { 464 struct brd_device *brd; 465 struct gendisk *disk; 466 467 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 468 if (!brd) 469 goto out; 470 brd->brd_number = i; 471 spin_lock_init(&brd->brd_lock); 472 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 473 474 brd->brd_queue = blk_alloc_queue(GFP_KERNEL); 475 if (!brd->brd_queue) 476 goto out_free_dev; 477 blk_queue_make_request(brd->brd_queue, brd_make_request); 478 blk_queue_max_hw_sectors(brd->brd_queue, 1024); 479 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY); 480 481 brd->brd_queue->limits.discard_granularity = PAGE_SIZE; 482 brd->brd_queue->limits.max_discard_sectors = UINT_MAX; 483 brd->brd_queue->limits.discard_zeroes_data = 1; 484 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue); 485 486 disk = brd->brd_disk = alloc_disk(1 << part_shift); 487 if (!disk) 488 goto out_free_queue; 489 disk->major = RAMDISK_MAJOR; 490 disk->first_minor = i << part_shift; 491 disk->fops = &brd_fops; 492 disk->private_data = brd; 493 disk->queue = brd->brd_queue; 494 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; 495 sprintf(disk->disk_name, "ram%d", i); 496 set_capacity(disk, rd_size * 2); 497 498 return brd; 499 500 out_free_queue: 501 blk_cleanup_queue(brd->brd_queue); 502 out_free_dev: 503 kfree(brd); 504 out: 505 return NULL; 506 } 507 508 static void brd_free(struct brd_device *brd) 509 { 510 put_disk(brd->brd_disk); 511 blk_cleanup_queue(brd->brd_queue); 512 brd_free_pages(brd); 513 kfree(brd); 514 } 515 516 static struct brd_device *brd_init_one(int i) 517 { 518 struct brd_device *brd; 519 520 list_for_each_entry(brd, &brd_devices, brd_list) { 521 if (brd->brd_number == i) 522 goto out; 523 } 524 525 brd = brd_alloc(i); 526 if (brd) { 527 add_disk(brd->brd_disk); 528 list_add_tail(&brd->brd_list, &brd_devices); 529 } 530 out: 531 return brd; 532 } 533 534 static void brd_del_one(struct brd_device *brd) 535 { 536 list_del(&brd->brd_list); 537 del_gendisk(brd->brd_disk); 538 brd_free(brd); 539 } 540 541 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 542 { 543 struct brd_device *brd; 544 struct kobject *kobj; 545 546 mutex_lock(&brd_devices_mutex); 547 brd = brd_init_one(MINOR(dev) >> part_shift); 548 kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM); 549 mutex_unlock(&brd_devices_mutex); 550 551 *part = 0; 552 return kobj; 553 } 554 555 static int __init brd_init(void) 556 { 557 int i, nr; 558 unsigned long range; 559 struct brd_device *brd, *next; 560 561 /* 562 * brd module now has a feature to instantiate underlying device 563 * structure on-demand, provided that there is an access dev node. 564 * However, this will not work well with user space tool that doesn't 565 * know about such "feature". In order to not break any existing 566 * tool, we do the following: 567 * 568 * (1) if rd_nr is specified, create that many upfront, and this 569 * also becomes a hard limit. 570 * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT 571 * (default 16) rd device on module load, user can further 572 * extend brd device by create dev node themselves and have 573 * kernel automatically instantiate actual device on-demand. 574 */ 575 576 part_shift = 0; 577 if (max_part > 0) { 578 part_shift = fls(max_part); 579 580 /* 581 * Adjust max_part according to part_shift as it is exported 582 * to user space so that user can decide correct minor number 583 * if [s]he want to create more devices. 584 * 585 * Note that -1 is required because partition 0 is reserved 586 * for the whole disk. 587 */ 588 max_part = (1UL << part_shift) - 1; 589 } 590 591 if ((1UL << part_shift) > DISK_MAX_PARTS) 592 return -EINVAL; 593 594 if (rd_nr > 1UL << (MINORBITS - part_shift)) 595 return -EINVAL; 596 597 if (rd_nr) { 598 nr = rd_nr; 599 range = rd_nr << part_shift; 600 } else { 601 nr = CONFIG_BLK_DEV_RAM_COUNT; 602 range = 1UL << MINORBITS; 603 } 604 605 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 606 return -EIO; 607 608 for (i = 0; i < nr; i++) { 609 brd = brd_alloc(i); 610 if (!brd) 611 goto out_free; 612 list_add_tail(&brd->brd_list, &brd_devices); 613 } 614 615 /* point of no return */ 616 617 list_for_each_entry(brd, &brd_devices, brd_list) 618 add_disk(brd->brd_disk); 619 620 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range, 621 THIS_MODULE, brd_probe, NULL, NULL); 622 623 printk(KERN_INFO "brd: module loaded\n"); 624 return 0; 625 626 out_free: 627 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 628 list_del(&brd->brd_list); 629 brd_free(brd); 630 } 631 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 632 633 return -ENOMEM; 634 } 635 636 static void __exit brd_exit(void) 637 { 638 unsigned long range; 639 struct brd_device *brd, *next; 640 641 range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS; 642 643 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 644 brd_del_one(brd); 645 646 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range); 647 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 648 } 649 650 module_init(brd_init); 651 module_exit(brd_exit); 652 653