xref: /openbmc/linux/drivers/block/brd.c (revision 1c2dd16a)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #ifdef CONFIG_BLK_DEV_RAM_DAX
23 #include <linux/pfn_t.h>
24 #endif
25 
26 #include <linux/uaccess.h>
27 
28 #define SECTOR_SHIFT		9
29 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
30 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
31 
32 /*
33  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
34  * the pages containing the block device's contents. A brd page's ->index is
35  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
36  * with, the kernel's pagecache or buffer cache (which sit above our block
37  * device).
38  */
39 struct brd_device {
40 	int		brd_number;
41 
42 	struct request_queue	*brd_queue;
43 	struct gendisk		*brd_disk;
44 	struct list_head	brd_list;
45 
46 	/*
47 	 * Backing store of pages and lock to protect it. This is the contents
48 	 * of the block device.
49 	 */
50 	spinlock_t		brd_lock;
51 	struct radix_tree_root	brd_pages;
52 };
53 
54 /*
55  * Look up and return a brd's page for a given sector.
56  */
57 static DEFINE_MUTEX(brd_mutex);
58 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
59 {
60 	pgoff_t idx;
61 	struct page *page;
62 
63 	/*
64 	 * The page lifetime is protected by the fact that we have opened the
65 	 * device node -- brd pages will never be deleted under us, so we
66 	 * don't need any further locking or refcounting.
67 	 *
68 	 * This is strictly true for the radix-tree nodes as well (ie. we
69 	 * don't actually need the rcu_read_lock()), however that is not a
70 	 * documented feature of the radix-tree API so it is better to be
71 	 * safe here (we don't have total exclusion from radix tree updates
72 	 * here, only deletes).
73 	 */
74 	rcu_read_lock();
75 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
76 	page = radix_tree_lookup(&brd->brd_pages, idx);
77 	rcu_read_unlock();
78 
79 	BUG_ON(page && page->index != idx);
80 
81 	return page;
82 }
83 
84 /*
85  * Look up and return a brd's page for a given sector.
86  * If one does not exist, allocate an empty page, and insert that. Then
87  * return it.
88  */
89 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
90 {
91 	pgoff_t idx;
92 	struct page *page;
93 	gfp_t gfp_flags;
94 
95 	page = brd_lookup_page(brd, sector);
96 	if (page)
97 		return page;
98 
99 	/*
100 	 * Must use NOIO because we don't want to recurse back into the
101 	 * block or filesystem layers from page reclaim.
102 	 *
103 	 * Cannot support DAX and highmem, because our ->direct_access
104 	 * routine for DAX must return memory that is always addressable.
105 	 * If DAX was reworked to use pfns and kmap throughout, this
106 	 * restriction might be able to be lifted.
107 	 */
108 	gfp_flags = GFP_NOIO | __GFP_ZERO;
109 #ifndef CONFIG_BLK_DEV_RAM_DAX
110 	gfp_flags |= __GFP_HIGHMEM;
111 #endif
112 	page = alloc_page(gfp_flags);
113 	if (!page)
114 		return NULL;
115 
116 	if (radix_tree_preload(GFP_NOIO)) {
117 		__free_page(page);
118 		return NULL;
119 	}
120 
121 	spin_lock(&brd->brd_lock);
122 	idx = sector >> PAGE_SECTORS_SHIFT;
123 	page->index = idx;
124 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
125 		__free_page(page);
126 		page = radix_tree_lookup(&brd->brd_pages, idx);
127 		BUG_ON(!page);
128 		BUG_ON(page->index != idx);
129 	}
130 	spin_unlock(&brd->brd_lock);
131 
132 	radix_tree_preload_end();
133 
134 	return page;
135 }
136 
137 /*
138  * Free all backing store pages and radix tree. This must only be called when
139  * there are no other users of the device.
140  */
141 #define FREE_BATCH 16
142 static void brd_free_pages(struct brd_device *brd)
143 {
144 	unsigned long pos = 0;
145 	struct page *pages[FREE_BATCH];
146 	int nr_pages;
147 
148 	do {
149 		int i;
150 
151 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
152 				(void **)pages, pos, FREE_BATCH);
153 
154 		for (i = 0; i < nr_pages; i++) {
155 			void *ret;
156 
157 			BUG_ON(pages[i]->index < pos);
158 			pos = pages[i]->index;
159 			ret = radix_tree_delete(&brd->brd_pages, pos);
160 			BUG_ON(!ret || ret != pages[i]);
161 			__free_page(pages[i]);
162 		}
163 
164 		pos++;
165 
166 		/*
167 		 * This assumes radix_tree_gang_lookup always returns as
168 		 * many pages as possible. If the radix-tree code changes,
169 		 * so will this have to.
170 		 */
171 	} while (nr_pages == FREE_BATCH);
172 }
173 
174 /*
175  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
176  */
177 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
178 {
179 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
180 	size_t copy;
181 
182 	copy = min_t(size_t, n, PAGE_SIZE - offset);
183 	if (!brd_insert_page(brd, sector))
184 		return -ENOSPC;
185 	if (copy < n) {
186 		sector += copy >> SECTOR_SHIFT;
187 		if (!brd_insert_page(brd, sector))
188 			return -ENOSPC;
189 	}
190 	return 0;
191 }
192 
193 /*
194  * Copy n bytes from src to the brd starting at sector. Does not sleep.
195  */
196 static void copy_to_brd(struct brd_device *brd, const void *src,
197 			sector_t sector, size_t n)
198 {
199 	struct page *page;
200 	void *dst;
201 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
202 	size_t copy;
203 
204 	copy = min_t(size_t, n, PAGE_SIZE - offset);
205 	page = brd_lookup_page(brd, sector);
206 	BUG_ON(!page);
207 
208 	dst = kmap_atomic(page);
209 	memcpy(dst + offset, src, copy);
210 	kunmap_atomic(dst);
211 
212 	if (copy < n) {
213 		src += copy;
214 		sector += copy >> SECTOR_SHIFT;
215 		copy = n - copy;
216 		page = brd_lookup_page(brd, sector);
217 		BUG_ON(!page);
218 
219 		dst = kmap_atomic(page);
220 		memcpy(dst, src, copy);
221 		kunmap_atomic(dst);
222 	}
223 }
224 
225 /*
226  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
227  */
228 static void copy_from_brd(void *dst, struct brd_device *brd,
229 			sector_t sector, size_t n)
230 {
231 	struct page *page;
232 	void *src;
233 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
234 	size_t copy;
235 
236 	copy = min_t(size_t, n, PAGE_SIZE - offset);
237 	page = brd_lookup_page(brd, sector);
238 	if (page) {
239 		src = kmap_atomic(page);
240 		memcpy(dst, src + offset, copy);
241 		kunmap_atomic(src);
242 	} else
243 		memset(dst, 0, copy);
244 
245 	if (copy < n) {
246 		dst += copy;
247 		sector += copy >> SECTOR_SHIFT;
248 		copy = n - copy;
249 		page = brd_lookup_page(brd, sector);
250 		if (page) {
251 			src = kmap_atomic(page);
252 			memcpy(dst, src, copy);
253 			kunmap_atomic(src);
254 		} else
255 			memset(dst, 0, copy);
256 	}
257 }
258 
259 /*
260  * Process a single bvec of a bio.
261  */
262 static int brd_do_bvec(struct brd_device *brd, struct page *page,
263 			unsigned int len, unsigned int off, bool is_write,
264 			sector_t sector)
265 {
266 	void *mem;
267 	int err = 0;
268 
269 	if (is_write) {
270 		err = copy_to_brd_setup(brd, sector, len);
271 		if (err)
272 			goto out;
273 	}
274 
275 	mem = kmap_atomic(page);
276 	if (!is_write) {
277 		copy_from_brd(mem + off, brd, sector, len);
278 		flush_dcache_page(page);
279 	} else {
280 		flush_dcache_page(page);
281 		copy_to_brd(brd, mem + off, sector, len);
282 	}
283 	kunmap_atomic(mem);
284 
285 out:
286 	return err;
287 }
288 
289 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
290 {
291 	struct block_device *bdev = bio->bi_bdev;
292 	struct brd_device *brd = bdev->bd_disk->private_data;
293 	struct bio_vec bvec;
294 	sector_t sector;
295 	struct bvec_iter iter;
296 
297 	sector = bio->bi_iter.bi_sector;
298 	if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
299 		goto io_error;
300 
301 	bio_for_each_segment(bvec, bio, iter) {
302 		unsigned int len = bvec.bv_len;
303 		int err;
304 
305 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
306 					op_is_write(bio_op(bio)), sector);
307 		if (err)
308 			goto io_error;
309 		sector += len >> SECTOR_SHIFT;
310 	}
311 
312 	bio_endio(bio);
313 	return BLK_QC_T_NONE;
314 io_error:
315 	bio_io_error(bio);
316 	return BLK_QC_T_NONE;
317 }
318 
319 static int brd_rw_page(struct block_device *bdev, sector_t sector,
320 		       struct page *page, bool is_write)
321 {
322 	struct brd_device *brd = bdev->bd_disk->private_data;
323 	int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
324 	page_endio(page, is_write, err);
325 	return err;
326 }
327 
328 #ifdef CONFIG_BLK_DEV_RAM_DAX
329 static long brd_direct_access(struct block_device *bdev, sector_t sector,
330 			void **kaddr, pfn_t *pfn, long size)
331 {
332 	struct brd_device *brd = bdev->bd_disk->private_data;
333 	struct page *page;
334 
335 	if (!brd)
336 		return -ENODEV;
337 	page = brd_insert_page(brd, sector);
338 	if (!page)
339 		return -ENOSPC;
340 	*kaddr = page_address(page);
341 	*pfn = page_to_pfn_t(page);
342 
343 	return PAGE_SIZE;
344 }
345 #else
346 #define brd_direct_access NULL
347 #endif
348 
349 static const struct block_device_operations brd_fops = {
350 	.owner =		THIS_MODULE,
351 	.rw_page =		brd_rw_page,
352 	.direct_access =	brd_direct_access,
353 };
354 
355 /*
356  * And now the modules code and kernel interface.
357  */
358 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
359 module_param(rd_nr, int, S_IRUGO);
360 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
361 
362 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
363 module_param(rd_size, ulong, S_IRUGO);
364 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
365 
366 static int max_part = 1;
367 module_param(max_part, int, S_IRUGO);
368 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
369 
370 MODULE_LICENSE("GPL");
371 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
372 MODULE_ALIAS("rd");
373 
374 #ifndef MODULE
375 /* Legacy boot options - nonmodular */
376 static int __init ramdisk_size(char *str)
377 {
378 	rd_size = simple_strtol(str, NULL, 0);
379 	return 1;
380 }
381 __setup("ramdisk_size=", ramdisk_size);
382 #endif
383 
384 /*
385  * The device scheme is derived from loop.c. Keep them in synch where possible
386  * (should share code eventually).
387  */
388 static LIST_HEAD(brd_devices);
389 static DEFINE_MUTEX(brd_devices_mutex);
390 
391 static struct brd_device *brd_alloc(int i)
392 {
393 	struct brd_device *brd;
394 	struct gendisk *disk;
395 
396 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
397 	if (!brd)
398 		goto out;
399 	brd->brd_number		= i;
400 	spin_lock_init(&brd->brd_lock);
401 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
402 
403 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
404 	if (!brd->brd_queue)
405 		goto out_free_dev;
406 
407 	blk_queue_make_request(brd->brd_queue, brd_make_request);
408 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
409 	blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
410 
411 	/* This is so fdisk will align partitions on 4k, because of
412 	 * direct_access API needing 4k alignment, returning a PFN
413 	 * (This is only a problem on very small devices <= 4M,
414 	 *  otherwise fdisk will align on 1M. Regardless this call
415 	 *  is harmless)
416 	 */
417 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
418 #ifdef CONFIG_BLK_DEV_RAM_DAX
419 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
420 #endif
421 	disk = brd->brd_disk = alloc_disk(max_part);
422 	if (!disk)
423 		goto out_free_queue;
424 	disk->major		= RAMDISK_MAJOR;
425 	disk->first_minor	= i * max_part;
426 	disk->fops		= &brd_fops;
427 	disk->private_data	= brd;
428 	disk->queue		= brd->brd_queue;
429 	disk->flags		= GENHD_FL_EXT_DEVT;
430 	sprintf(disk->disk_name, "ram%d", i);
431 	set_capacity(disk, rd_size * 2);
432 
433 	return brd;
434 
435 out_free_queue:
436 	blk_cleanup_queue(brd->brd_queue);
437 out_free_dev:
438 	kfree(brd);
439 out:
440 	return NULL;
441 }
442 
443 static void brd_free(struct brd_device *brd)
444 {
445 	put_disk(brd->brd_disk);
446 	blk_cleanup_queue(brd->brd_queue);
447 	brd_free_pages(brd);
448 	kfree(brd);
449 }
450 
451 static struct brd_device *brd_init_one(int i, bool *new)
452 {
453 	struct brd_device *brd;
454 
455 	*new = false;
456 	list_for_each_entry(brd, &brd_devices, brd_list) {
457 		if (brd->brd_number == i)
458 			goto out;
459 	}
460 
461 	brd = brd_alloc(i);
462 	if (brd) {
463 		add_disk(brd->brd_disk);
464 		list_add_tail(&brd->brd_list, &brd_devices);
465 	}
466 	*new = true;
467 out:
468 	return brd;
469 }
470 
471 static void brd_del_one(struct brd_device *brd)
472 {
473 	list_del(&brd->brd_list);
474 	del_gendisk(brd->brd_disk);
475 	brd_free(brd);
476 }
477 
478 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
479 {
480 	struct brd_device *brd;
481 	struct kobject *kobj;
482 	bool new;
483 
484 	mutex_lock(&brd_devices_mutex);
485 	brd = brd_init_one(MINOR(dev) / max_part, &new);
486 	kobj = brd ? get_disk(brd->brd_disk) : NULL;
487 	mutex_unlock(&brd_devices_mutex);
488 
489 	if (new)
490 		*part = 0;
491 
492 	return kobj;
493 }
494 
495 static int __init brd_init(void)
496 {
497 	struct brd_device *brd, *next;
498 	int i;
499 
500 	/*
501 	 * brd module now has a feature to instantiate underlying device
502 	 * structure on-demand, provided that there is an access dev node.
503 	 *
504 	 * (1) if rd_nr is specified, create that many upfront. else
505 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
506 	 * (2) User can further extend brd devices by create dev node themselves
507 	 *     and have kernel automatically instantiate actual device
508 	 *     on-demand. Example:
509 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
510 	 *		fdisk -l /path/devnod_name
511 	 *	If (X / max_part) was not already created it will be created
512 	 *	dynamically.
513 	 */
514 
515 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
516 		return -EIO;
517 
518 	if (unlikely(!max_part))
519 		max_part = 1;
520 
521 	for (i = 0; i < rd_nr; i++) {
522 		brd = brd_alloc(i);
523 		if (!brd)
524 			goto out_free;
525 		list_add_tail(&brd->brd_list, &brd_devices);
526 	}
527 
528 	/* point of no return */
529 
530 	list_for_each_entry(brd, &brd_devices, brd_list)
531 		add_disk(brd->brd_disk);
532 
533 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
534 				  THIS_MODULE, brd_probe, NULL, NULL);
535 
536 	pr_info("brd: module loaded\n");
537 	return 0;
538 
539 out_free:
540 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
541 		list_del(&brd->brd_list);
542 		brd_free(brd);
543 	}
544 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
545 
546 	pr_info("brd: module NOT loaded !!!\n");
547 	return -ENOMEM;
548 }
549 
550 static void __exit brd_exit(void)
551 {
552 	struct brd_device *brd, *next;
553 
554 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
555 		brd_del_one(brd);
556 
557 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
558 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
559 
560 	pr_info("brd: module unloaded\n");
561 }
562 
563 module_init(brd_init);
564 module_exit(brd_exit);
565 
566