1 /* 2 * Ram backed block device driver. 3 * 4 * Copyright (C) 2007 Nick Piggin 5 * Copyright (C) 2007 Novell Inc. 6 * 7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 8 * of their respective owners. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/major.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/highmem.h> 18 #include <linux/mutex.h> 19 #include <linux/radix-tree.h> 20 #include <linux/fs.h> 21 #include <linux/slab.h> 22 #ifdef CONFIG_BLK_DEV_RAM_DAX 23 #include <linux/pfn_t.h> 24 #endif 25 26 #include <linux/uaccess.h> 27 28 #define SECTOR_SHIFT 9 29 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 30 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 31 32 /* 33 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 34 * the pages containing the block device's contents. A brd page's ->index is 35 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 36 * with, the kernel's pagecache or buffer cache (which sit above our block 37 * device). 38 */ 39 struct brd_device { 40 int brd_number; 41 42 struct request_queue *brd_queue; 43 struct gendisk *brd_disk; 44 struct list_head brd_list; 45 46 /* 47 * Backing store of pages and lock to protect it. This is the contents 48 * of the block device. 49 */ 50 spinlock_t brd_lock; 51 struct radix_tree_root brd_pages; 52 }; 53 54 /* 55 * Look up and return a brd's page for a given sector. 56 */ 57 static DEFINE_MUTEX(brd_mutex); 58 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 59 { 60 pgoff_t idx; 61 struct page *page; 62 63 /* 64 * The page lifetime is protected by the fact that we have opened the 65 * device node -- brd pages will never be deleted under us, so we 66 * don't need any further locking or refcounting. 67 * 68 * This is strictly true for the radix-tree nodes as well (ie. we 69 * don't actually need the rcu_read_lock()), however that is not a 70 * documented feature of the radix-tree API so it is better to be 71 * safe here (we don't have total exclusion from radix tree updates 72 * here, only deletes). 73 */ 74 rcu_read_lock(); 75 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 76 page = radix_tree_lookup(&brd->brd_pages, idx); 77 rcu_read_unlock(); 78 79 BUG_ON(page && page->index != idx); 80 81 return page; 82 } 83 84 /* 85 * Look up and return a brd's page for a given sector. 86 * If one does not exist, allocate an empty page, and insert that. Then 87 * return it. 88 */ 89 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 90 { 91 pgoff_t idx; 92 struct page *page; 93 gfp_t gfp_flags; 94 95 page = brd_lookup_page(brd, sector); 96 if (page) 97 return page; 98 99 /* 100 * Must use NOIO because we don't want to recurse back into the 101 * block or filesystem layers from page reclaim. 102 * 103 * Cannot support DAX and highmem, because our ->direct_access 104 * routine for DAX must return memory that is always addressable. 105 * If DAX was reworked to use pfns and kmap throughout, this 106 * restriction might be able to be lifted. 107 */ 108 gfp_flags = GFP_NOIO | __GFP_ZERO; 109 #ifndef CONFIG_BLK_DEV_RAM_DAX 110 gfp_flags |= __GFP_HIGHMEM; 111 #endif 112 page = alloc_page(gfp_flags); 113 if (!page) 114 return NULL; 115 116 if (radix_tree_preload(GFP_NOIO)) { 117 __free_page(page); 118 return NULL; 119 } 120 121 spin_lock(&brd->brd_lock); 122 idx = sector >> PAGE_SECTORS_SHIFT; 123 page->index = idx; 124 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 125 __free_page(page); 126 page = radix_tree_lookup(&brd->brd_pages, idx); 127 BUG_ON(!page); 128 BUG_ON(page->index != idx); 129 } 130 spin_unlock(&brd->brd_lock); 131 132 radix_tree_preload_end(); 133 134 return page; 135 } 136 137 /* 138 * Free all backing store pages and radix tree. This must only be called when 139 * there are no other users of the device. 140 */ 141 #define FREE_BATCH 16 142 static void brd_free_pages(struct brd_device *brd) 143 { 144 unsigned long pos = 0; 145 struct page *pages[FREE_BATCH]; 146 int nr_pages; 147 148 do { 149 int i; 150 151 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 152 (void **)pages, pos, FREE_BATCH); 153 154 for (i = 0; i < nr_pages; i++) { 155 void *ret; 156 157 BUG_ON(pages[i]->index < pos); 158 pos = pages[i]->index; 159 ret = radix_tree_delete(&brd->brd_pages, pos); 160 BUG_ON(!ret || ret != pages[i]); 161 __free_page(pages[i]); 162 } 163 164 pos++; 165 166 /* 167 * This assumes radix_tree_gang_lookup always returns as 168 * many pages as possible. If the radix-tree code changes, 169 * so will this have to. 170 */ 171 } while (nr_pages == FREE_BATCH); 172 } 173 174 /* 175 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 176 */ 177 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 178 { 179 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 180 size_t copy; 181 182 copy = min_t(size_t, n, PAGE_SIZE - offset); 183 if (!brd_insert_page(brd, sector)) 184 return -ENOSPC; 185 if (copy < n) { 186 sector += copy >> SECTOR_SHIFT; 187 if (!brd_insert_page(brd, sector)) 188 return -ENOSPC; 189 } 190 return 0; 191 } 192 193 /* 194 * Copy n bytes from src to the brd starting at sector. Does not sleep. 195 */ 196 static void copy_to_brd(struct brd_device *brd, const void *src, 197 sector_t sector, size_t n) 198 { 199 struct page *page; 200 void *dst; 201 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 202 size_t copy; 203 204 copy = min_t(size_t, n, PAGE_SIZE - offset); 205 page = brd_lookup_page(brd, sector); 206 BUG_ON(!page); 207 208 dst = kmap_atomic(page); 209 memcpy(dst + offset, src, copy); 210 kunmap_atomic(dst); 211 212 if (copy < n) { 213 src += copy; 214 sector += copy >> SECTOR_SHIFT; 215 copy = n - copy; 216 page = brd_lookup_page(brd, sector); 217 BUG_ON(!page); 218 219 dst = kmap_atomic(page); 220 memcpy(dst, src, copy); 221 kunmap_atomic(dst); 222 } 223 } 224 225 /* 226 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 227 */ 228 static void copy_from_brd(void *dst, struct brd_device *brd, 229 sector_t sector, size_t n) 230 { 231 struct page *page; 232 void *src; 233 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 234 size_t copy; 235 236 copy = min_t(size_t, n, PAGE_SIZE - offset); 237 page = brd_lookup_page(brd, sector); 238 if (page) { 239 src = kmap_atomic(page); 240 memcpy(dst, src + offset, copy); 241 kunmap_atomic(src); 242 } else 243 memset(dst, 0, copy); 244 245 if (copy < n) { 246 dst += copy; 247 sector += copy >> SECTOR_SHIFT; 248 copy = n - copy; 249 page = brd_lookup_page(brd, sector); 250 if (page) { 251 src = kmap_atomic(page); 252 memcpy(dst, src, copy); 253 kunmap_atomic(src); 254 } else 255 memset(dst, 0, copy); 256 } 257 } 258 259 /* 260 * Process a single bvec of a bio. 261 */ 262 static int brd_do_bvec(struct brd_device *brd, struct page *page, 263 unsigned int len, unsigned int off, bool is_write, 264 sector_t sector) 265 { 266 void *mem; 267 int err = 0; 268 269 if (is_write) { 270 err = copy_to_brd_setup(brd, sector, len); 271 if (err) 272 goto out; 273 } 274 275 mem = kmap_atomic(page); 276 if (!is_write) { 277 copy_from_brd(mem + off, brd, sector, len); 278 flush_dcache_page(page); 279 } else { 280 flush_dcache_page(page); 281 copy_to_brd(brd, mem + off, sector, len); 282 } 283 kunmap_atomic(mem); 284 285 out: 286 return err; 287 } 288 289 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio) 290 { 291 struct block_device *bdev = bio->bi_bdev; 292 struct brd_device *brd = bdev->bd_disk->private_data; 293 struct bio_vec bvec; 294 sector_t sector; 295 struct bvec_iter iter; 296 297 sector = bio->bi_iter.bi_sector; 298 if (bio_end_sector(bio) > get_capacity(bdev->bd_disk)) 299 goto io_error; 300 301 bio_for_each_segment(bvec, bio, iter) { 302 unsigned int len = bvec.bv_len; 303 int err; 304 305 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 306 op_is_write(bio_op(bio)), sector); 307 if (err) 308 goto io_error; 309 sector += len >> SECTOR_SHIFT; 310 } 311 312 bio_endio(bio); 313 return BLK_QC_T_NONE; 314 io_error: 315 bio_io_error(bio); 316 return BLK_QC_T_NONE; 317 } 318 319 static int brd_rw_page(struct block_device *bdev, sector_t sector, 320 struct page *page, bool is_write) 321 { 322 struct brd_device *brd = bdev->bd_disk->private_data; 323 int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector); 324 page_endio(page, is_write, err); 325 return err; 326 } 327 328 #ifdef CONFIG_BLK_DEV_RAM_DAX 329 static long brd_direct_access(struct block_device *bdev, sector_t sector, 330 void **kaddr, pfn_t *pfn, long size) 331 { 332 struct brd_device *brd = bdev->bd_disk->private_data; 333 struct page *page; 334 335 if (!brd) 336 return -ENODEV; 337 page = brd_insert_page(brd, sector); 338 if (!page) 339 return -ENOSPC; 340 *kaddr = page_address(page); 341 *pfn = page_to_pfn_t(page); 342 343 return PAGE_SIZE; 344 } 345 #else 346 #define brd_direct_access NULL 347 #endif 348 349 static const struct block_device_operations brd_fops = { 350 .owner = THIS_MODULE, 351 .rw_page = brd_rw_page, 352 .direct_access = brd_direct_access, 353 }; 354 355 /* 356 * And now the modules code and kernel interface. 357 */ 358 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 359 module_param(rd_nr, int, S_IRUGO); 360 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 361 362 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 363 module_param(rd_size, ulong, S_IRUGO); 364 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 365 366 static int max_part = 1; 367 module_param(max_part, int, S_IRUGO); 368 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 369 370 MODULE_LICENSE("GPL"); 371 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 372 MODULE_ALIAS("rd"); 373 374 #ifndef MODULE 375 /* Legacy boot options - nonmodular */ 376 static int __init ramdisk_size(char *str) 377 { 378 rd_size = simple_strtol(str, NULL, 0); 379 return 1; 380 } 381 __setup("ramdisk_size=", ramdisk_size); 382 #endif 383 384 /* 385 * The device scheme is derived from loop.c. Keep them in synch where possible 386 * (should share code eventually). 387 */ 388 static LIST_HEAD(brd_devices); 389 static DEFINE_MUTEX(brd_devices_mutex); 390 391 static struct brd_device *brd_alloc(int i) 392 { 393 struct brd_device *brd; 394 struct gendisk *disk; 395 396 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 397 if (!brd) 398 goto out; 399 brd->brd_number = i; 400 spin_lock_init(&brd->brd_lock); 401 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 402 403 brd->brd_queue = blk_alloc_queue(GFP_KERNEL); 404 if (!brd->brd_queue) 405 goto out_free_dev; 406 407 blk_queue_make_request(brd->brd_queue, brd_make_request); 408 blk_queue_max_hw_sectors(brd->brd_queue, 1024); 409 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY); 410 411 /* This is so fdisk will align partitions on 4k, because of 412 * direct_access API needing 4k alignment, returning a PFN 413 * (This is only a problem on very small devices <= 4M, 414 * otherwise fdisk will align on 1M. Regardless this call 415 * is harmless) 416 */ 417 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); 418 #ifdef CONFIG_BLK_DEV_RAM_DAX 419 queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue); 420 #endif 421 disk = brd->brd_disk = alloc_disk(max_part); 422 if (!disk) 423 goto out_free_queue; 424 disk->major = RAMDISK_MAJOR; 425 disk->first_minor = i * max_part; 426 disk->fops = &brd_fops; 427 disk->private_data = brd; 428 disk->queue = brd->brd_queue; 429 disk->flags = GENHD_FL_EXT_DEVT; 430 sprintf(disk->disk_name, "ram%d", i); 431 set_capacity(disk, rd_size * 2); 432 433 return brd; 434 435 out_free_queue: 436 blk_cleanup_queue(brd->brd_queue); 437 out_free_dev: 438 kfree(brd); 439 out: 440 return NULL; 441 } 442 443 static void brd_free(struct brd_device *brd) 444 { 445 put_disk(brd->brd_disk); 446 blk_cleanup_queue(brd->brd_queue); 447 brd_free_pages(brd); 448 kfree(brd); 449 } 450 451 static struct brd_device *brd_init_one(int i, bool *new) 452 { 453 struct brd_device *brd; 454 455 *new = false; 456 list_for_each_entry(brd, &brd_devices, brd_list) { 457 if (brd->brd_number == i) 458 goto out; 459 } 460 461 brd = brd_alloc(i); 462 if (brd) { 463 add_disk(brd->brd_disk); 464 list_add_tail(&brd->brd_list, &brd_devices); 465 } 466 *new = true; 467 out: 468 return brd; 469 } 470 471 static void brd_del_one(struct brd_device *brd) 472 { 473 list_del(&brd->brd_list); 474 del_gendisk(brd->brd_disk); 475 brd_free(brd); 476 } 477 478 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 479 { 480 struct brd_device *brd; 481 struct kobject *kobj; 482 bool new; 483 484 mutex_lock(&brd_devices_mutex); 485 brd = brd_init_one(MINOR(dev) / max_part, &new); 486 kobj = brd ? get_disk(brd->brd_disk) : NULL; 487 mutex_unlock(&brd_devices_mutex); 488 489 if (new) 490 *part = 0; 491 492 return kobj; 493 } 494 495 static int __init brd_init(void) 496 { 497 struct brd_device *brd, *next; 498 int i; 499 500 /* 501 * brd module now has a feature to instantiate underlying device 502 * structure on-demand, provided that there is an access dev node. 503 * 504 * (1) if rd_nr is specified, create that many upfront. else 505 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 506 * (2) User can further extend brd devices by create dev node themselves 507 * and have kernel automatically instantiate actual device 508 * on-demand. Example: 509 * mknod /path/devnod_name b 1 X # 1 is the rd major 510 * fdisk -l /path/devnod_name 511 * If (X / max_part) was not already created it will be created 512 * dynamically. 513 */ 514 515 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 516 return -EIO; 517 518 if (unlikely(!max_part)) 519 max_part = 1; 520 521 for (i = 0; i < rd_nr; i++) { 522 brd = brd_alloc(i); 523 if (!brd) 524 goto out_free; 525 list_add_tail(&brd->brd_list, &brd_devices); 526 } 527 528 /* point of no return */ 529 530 list_for_each_entry(brd, &brd_devices, brd_list) 531 add_disk(brd->brd_disk); 532 533 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS, 534 THIS_MODULE, brd_probe, NULL, NULL); 535 536 pr_info("brd: module loaded\n"); 537 return 0; 538 539 out_free: 540 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 541 list_del(&brd->brd_list); 542 brd_free(brd); 543 } 544 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 545 546 pr_info("brd: module NOT loaded !!!\n"); 547 return -ENOMEM; 548 } 549 550 static void __exit brd_exit(void) 551 { 552 struct brd_device *brd, *next; 553 554 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 555 brd_del_one(brd); 556 557 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS); 558 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 559 560 pr_info("brd: module unloaded\n"); 561 } 562 563 module_init(brd_init); 564 module_exit(brd_exit); 565 566