1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Ram backed block device driver. 4 * 5 * Copyright (C) 2007 Nick Piggin 6 * Copyright (C) 2007 Novell Inc. 7 * 8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 9 * of their respective owners. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/initrd.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/major.h> 17 #include <linux/blkdev.h> 18 #include <linux/bio.h> 19 #include <linux/highmem.h> 20 #include <linux/mutex.h> 21 #include <linux/radix-tree.h> 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/backing-dev.h> 25 26 #include <linux/uaccess.h> 27 28 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 29 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 30 31 /* 32 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 33 * the pages containing the block device's contents. A brd page's ->index is 34 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 35 * with, the kernel's pagecache or buffer cache (which sit above our block 36 * device). 37 */ 38 struct brd_device { 39 int brd_number; 40 41 struct request_queue *brd_queue; 42 struct gendisk *brd_disk; 43 struct list_head brd_list; 44 45 /* 46 * Backing store of pages and lock to protect it. This is the contents 47 * of the block device. 48 */ 49 spinlock_t brd_lock; 50 struct radix_tree_root brd_pages; 51 }; 52 53 /* 54 * Look up and return a brd's page for a given sector. 55 */ 56 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 57 { 58 pgoff_t idx; 59 struct page *page; 60 61 /* 62 * The page lifetime is protected by the fact that we have opened the 63 * device node -- brd pages will never be deleted under us, so we 64 * don't need any further locking or refcounting. 65 * 66 * This is strictly true for the radix-tree nodes as well (ie. we 67 * don't actually need the rcu_read_lock()), however that is not a 68 * documented feature of the radix-tree API so it is better to be 69 * safe here (we don't have total exclusion from radix tree updates 70 * here, only deletes). 71 */ 72 rcu_read_lock(); 73 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 74 page = radix_tree_lookup(&brd->brd_pages, idx); 75 rcu_read_unlock(); 76 77 BUG_ON(page && page->index != idx); 78 79 return page; 80 } 81 82 /* 83 * Look up and return a brd's page for a given sector. 84 * If one does not exist, allocate an empty page, and insert that. Then 85 * return it. 86 */ 87 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 88 { 89 pgoff_t idx; 90 struct page *page; 91 gfp_t gfp_flags; 92 93 page = brd_lookup_page(brd, sector); 94 if (page) 95 return page; 96 97 /* 98 * Must use NOIO because we don't want to recurse back into the 99 * block or filesystem layers from page reclaim. 100 */ 101 gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; 102 page = alloc_page(gfp_flags); 103 if (!page) 104 return NULL; 105 106 if (radix_tree_preload(GFP_NOIO)) { 107 __free_page(page); 108 return NULL; 109 } 110 111 spin_lock(&brd->brd_lock); 112 idx = sector >> PAGE_SECTORS_SHIFT; 113 page->index = idx; 114 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 115 __free_page(page); 116 page = radix_tree_lookup(&brd->brd_pages, idx); 117 BUG_ON(!page); 118 BUG_ON(page->index != idx); 119 } 120 spin_unlock(&brd->brd_lock); 121 122 radix_tree_preload_end(); 123 124 return page; 125 } 126 127 /* 128 * Free all backing store pages and radix tree. This must only be called when 129 * there are no other users of the device. 130 */ 131 #define FREE_BATCH 16 132 static void brd_free_pages(struct brd_device *brd) 133 { 134 unsigned long pos = 0; 135 struct page *pages[FREE_BATCH]; 136 int nr_pages; 137 138 do { 139 int i; 140 141 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 142 (void **)pages, pos, FREE_BATCH); 143 144 for (i = 0; i < nr_pages; i++) { 145 void *ret; 146 147 BUG_ON(pages[i]->index < pos); 148 pos = pages[i]->index; 149 ret = radix_tree_delete(&brd->brd_pages, pos); 150 BUG_ON(!ret || ret != pages[i]); 151 __free_page(pages[i]); 152 } 153 154 pos++; 155 156 /* 157 * It takes 3.4 seconds to remove 80GiB ramdisk. 158 * So, we need cond_resched to avoid stalling the CPU. 159 */ 160 cond_resched(); 161 162 /* 163 * This assumes radix_tree_gang_lookup always returns as 164 * many pages as possible. If the radix-tree code changes, 165 * so will this have to. 166 */ 167 } while (nr_pages == FREE_BATCH); 168 } 169 170 /* 171 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 172 */ 173 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 174 { 175 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 176 size_t copy; 177 178 copy = min_t(size_t, n, PAGE_SIZE - offset); 179 if (!brd_insert_page(brd, sector)) 180 return -ENOSPC; 181 if (copy < n) { 182 sector += copy >> SECTOR_SHIFT; 183 if (!brd_insert_page(brd, sector)) 184 return -ENOSPC; 185 } 186 return 0; 187 } 188 189 /* 190 * Copy n bytes from src to the brd starting at sector. Does not sleep. 191 */ 192 static void copy_to_brd(struct brd_device *brd, const void *src, 193 sector_t sector, size_t n) 194 { 195 struct page *page; 196 void *dst; 197 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 198 size_t copy; 199 200 copy = min_t(size_t, n, PAGE_SIZE - offset); 201 page = brd_lookup_page(brd, sector); 202 BUG_ON(!page); 203 204 dst = kmap_atomic(page); 205 memcpy(dst + offset, src, copy); 206 kunmap_atomic(dst); 207 208 if (copy < n) { 209 src += copy; 210 sector += copy >> SECTOR_SHIFT; 211 copy = n - copy; 212 page = brd_lookup_page(brd, sector); 213 BUG_ON(!page); 214 215 dst = kmap_atomic(page); 216 memcpy(dst, src, copy); 217 kunmap_atomic(dst); 218 } 219 } 220 221 /* 222 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 223 */ 224 static void copy_from_brd(void *dst, struct brd_device *brd, 225 sector_t sector, size_t n) 226 { 227 struct page *page; 228 void *src; 229 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 230 size_t copy; 231 232 copy = min_t(size_t, n, PAGE_SIZE - offset); 233 page = brd_lookup_page(brd, sector); 234 if (page) { 235 src = kmap_atomic(page); 236 memcpy(dst, src + offset, copy); 237 kunmap_atomic(src); 238 } else 239 memset(dst, 0, copy); 240 241 if (copy < n) { 242 dst += copy; 243 sector += copy >> SECTOR_SHIFT; 244 copy = n - copy; 245 page = brd_lookup_page(brd, sector); 246 if (page) { 247 src = kmap_atomic(page); 248 memcpy(dst, src, copy); 249 kunmap_atomic(src); 250 } else 251 memset(dst, 0, copy); 252 } 253 } 254 255 /* 256 * Process a single bvec of a bio. 257 */ 258 static int brd_do_bvec(struct brd_device *brd, struct page *page, 259 unsigned int len, unsigned int off, unsigned int op, 260 sector_t sector) 261 { 262 void *mem; 263 int err = 0; 264 265 if (op_is_write(op)) { 266 err = copy_to_brd_setup(brd, sector, len); 267 if (err) 268 goto out; 269 } 270 271 mem = kmap_atomic(page); 272 if (!op_is_write(op)) { 273 copy_from_brd(mem + off, brd, sector, len); 274 flush_dcache_page(page); 275 } else { 276 flush_dcache_page(page); 277 copy_to_brd(brd, mem + off, sector, len); 278 } 279 kunmap_atomic(mem); 280 281 out: 282 return err; 283 } 284 285 static blk_qc_t brd_submit_bio(struct bio *bio) 286 { 287 struct brd_device *brd = bio->bi_disk->private_data; 288 struct bio_vec bvec; 289 sector_t sector; 290 struct bvec_iter iter; 291 292 sector = bio->bi_iter.bi_sector; 293 if (bio_end_sector(bio) > get_capacity(bio->bi_disk)) 294 goto io_error; 295 296 bio_for_each_segment(bvec, bio, iter) { 297 unsigned int len = bvec.bv_len; 298 int err; 299 300 /* Don't support un-aligned buffer */ 301 WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) || 302 (len & (SECTOR_SIZE - 1))); 303 304 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 305 bio_op(bio), sector); 306 if (err) 307 goto io_error; 308 sector += len >> SECTOR_SHIFT; 309 } 310 311 bio_endio(bio); 312 return BLK_QC_T_NONE; 313 io_error: 314 bio_io_error(bio); 315 return BLK_QC_T_NONE; 316 } 317 318 static int brd_rw_page(struct block_device *bdev, sector_t sector, 319 struct page *page, unsigned int op) 320 { 321 struct brd_device *brd = bdev->bd_disk->private_data; 322 int err; 323 324 if (PageTransHuge(page)) 325 return -ENOTSUPP; 326 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector); 327 page_endio(page, op_is_write(op), err); 328 return err; 329 } 330 331 static const struct block_device_operations brd_fops = { 332 .owner = THIS_MODULE, 333 .submit_bio = brd_submit_bio, 334 .rw_page = brd_rw_page, 335 }; 336 337 /* 338 * And now the modules code and kernel interface. 339 */ 340 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 341 module_param(rd_nr, int, 0444); 342 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 343 344 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 345 module_param(rd_size, ulong, 0444); 346 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 347 348 static int max_part = 1; 349 module_param(max_part, int, 0444); 350 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 351 352 MODULE_LICENSE("GPL"); 353 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 354 MODULE_ALIAS("rd"); 355 356 #ifndef MODULE 357 /* Legacy boot options - nonmodular */ 358 static int __init ramdisk_size(char *str) 359 { 360 rd_size = simple_strtol(str, NULL, 0); 361 return 1; 362 } 363 __setup("ramdisk_size=", ramdisk_size); 364 #endif 365 366 /* 367 * The device scheme is derived from loop.c. Keep them in synch where possible 368 * (should share code eventually). 369 */ 370 static LIST_HEAD(brd_devices); 371 static DEFINE_MUTEX(brd_devices_mutex); 372 373 static struct brd_device *brd_alloc(int i) 374 { 375 struct brd_device *brd; 376 struct gendisk *disk; 377 378 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 379 if (!brd) 380 goto out; 381 brd->brd_number = i; 382 spin_lock_init(&brd->brd_lock); 383 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 384 385 brd->brd_queue = blk_alloc_queue(NUMA_NO_NODE); 386 if (!brd->brd_queue) 387 goto out_free_dev; 388 389 /* This is so fdisk will align partitions on 4k, because of 390 * direct_access API needing 4k alignment, returning a PFN 391 * (This is only a problem on very small devices <= 4M, 392 * otherwise fdisk will align on 1M. Regardless this call 393 * is harmless) 394 */ 395 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); 396 disk = brd->brd_disk = alloc_disk(max_part); 397 if (!disk) 398 goto out_free_queue; 399 disk->major = RAMDISK_MAJOR; 400 disk->first_minor = i * max_part; 401 disk->fops = &brd_fops; 402 disk->private_data = brd; 403 disk->flags = GENHD_FL_EXT_DEVT; 404 sprintf(disk->disk_name, "ram%d", i); 405 set_capacity(disk, rd_size * 2); 406 brd->brd_queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO; 407 408 /* Tell the block layer that this is not a rotational device */ 409 blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue); 410 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue); 411 412 return brd; 413 414 out_free_queue: 415 blk_cleanup_queue(brd->brd_queue); 416 out_free_dev: 417 kfree(brd); 418 out: 419 return NULL; 420 } 421 422 static void brd_free(struct brd_device *brd) 423 { 424 put_disk(brd->brd_disk); 425 blk_cleanup_queue(brd->brd_queue); 426 brd_free_pages(brd); 427 kfree(brd); 428 } 429 430 static struct brd_device *brd_init_one(int i, bool *new) 431 { 432 struct brd_device *brd; 433 434 *new = false; 435 list_for_each_entry(brd, &brd_devices, brd_list) { 436 if (brd->brd_number == i) 437 goto out; 438 } 439 440 brd = brd_alloc(i); 441 if (brd) { 442 brd->brd_disk->queue = brd->brd_queue; 443 add_disk(brd->brd_disk); 444 list_add_tail(&brd->brd_list, &brd_devices); 445 } 446 *new = true; 447 out: 448 return brd; 449 } 450 451 static void brd_del_one(struct brd_device *brd) 452 { 453 list_del(&brd->brd_list); 454 del_gendisk(brd->brd_disk); 455 brd_free(brd); 456 } 457 458 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 459 { 460 struct brd_device *brd; 461 struct kobject *kobj; 462 bool new; 463 464 mutex_lock(&brd_devices_mutex); 465 brd = brd_init_one(MINOR(dev) / max_part, &new); 466 kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL; 467 mutex_unlock(&brd_devices_mutex); 468 469 if (new) 470 *part = 0; 471 472 return kobj; 473 } 474 475 static inline void brd_check_and_reset_par(void) 476 { 477 if (unlikely(!max_part)) 478 max_part = 1; 479 480 /* 481 * make sure 'max_part' can be divided exactly by (1U << MINORBITS), 482 * otherwise, it is possiable to get same dev_t when adding partitions. 483 */ 484 if ((1U << MINORBITS) % max_part != 0) 485 max_part = 1UL << fls(max_part); 486 487 if (max_part > DISK_MAX_PARTS) { 488 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n", 489 DISK_MAX_PARTS, DISK_MAX_PARTS); 490 max_part = DISK_MAX_PARTS; 491 } 492 } 493 494 static int __init brd_init(void) 495 { 496 struct brd_device *brd, *next; 497 int i; 498 499 /* 500 * brd module now has a feature to instantiate underlying device 501 * structure on-demand, provided that there is an access dev node. 502 * 503 * (1) if rd_nr is specified, create that many upfront. else 504 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 505 * (2) User can further extend brd devices by create dev node themselves 506 * and have kernel automatically instantiate actual device 507 * on-demand. Example: 508 * mknod /path/devnod_name b 1 X # 1 is the rd major 509 * fdisk -l /path/devnod_name 510 * If (X / max_part) was not already created it will be created 511 * dynamically. 512 */ 513 514 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 515 return -EIO; 516 517 brd_check_and_reset_par(); 518 519 for (i = 0; i < rd_nr; i++) { 520 brd = brd_alloc(i); 521 if (!brd) 522 goto out_free; 523 list_add_tail(&brd->brd_list, &brd_devices); 524 } 525 526 /* point of no return */ 527 528 list_for_each_entry(brd, &brd_devices, brd_list) { 529 /* 530 * associate with queue just before adding disk for 531 * avoiding to mess up failure path 532 */ 533 brd->brd_disk->queue = brd->brd_queue; 534 add_disk(brd->brd_disk); 535 } 536 537 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS, 538 THIS_MODULE, brd_probe, NULL, NULL); 539 540 pr_info("brd: module loaded\n"); 541 return 0; 542 543 out_free: 544 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 545 list_del(&brd->brd_list); 546 brd_free(brd); 547 } 548 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 549 550 pr_info("brd: module NOT loaded !!!\n"); 551 return -ENOMEM; 552 } 553 554 static void __exit brd_exit(void) 555 { 556 struct brd_device *brd, *next; 557 558 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 559 brd_del_one(brd); 560 561 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS); 562 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 563 564 pr_info("brd: module unloaded\n"); 565 } 566 567 module_init(brd_init); 568 module_exit(brd_exit); 569 570