1 /* 2 * linux/amiga/amiflop.c 3 * 4 * Copyright (C) 1993 Greg Harp 5 * Portions of this driver are based on code contributed by Brad Pepers 6 * 7 * revised 28.5.95 by Joerg Dorchain 8 * - now no bugs(?) any more for both HD & DD 9 * - added support for 40 Track 5.25" drives, 80-track hopefully behaves 10 * like 3.5" dd (no way to test - are there any 5.25" drives out there 11 * that work on an A4000?) 12 * - wrote formatting routine (maybe dirty, but works) 13 * 14 * june/july 1995 added ms-dos support by Joerg Dorchain 15 * (portions based on messydos.device and various contributors) 16 * - currently only 9 and 18 sector disks 17 * 18 * - fixed a bug with the internal trackbuffer when using multiple 19 * disks the same time 20 * - made formatting a bit safer 21 * - added command line and machine based default for "silent" df0 22 * 23 * december 1995 adapted for 1.2.13pl4 by Joerg Dorchain 24 * - works but I think it's inefficient. (look in redo_fd_request) 25 * But the changes were very efficient. (only three and a half lines) 26 * 27 * january 1996 added special ioctl for tracking down read/write problems 28 * - usage ioctl(d, RAW_TRACK, ptr); the raw track buffer (MFM-encoded data 29 * is copied to area. (area should be large enough since no checking is 30 * done - 30K is currently sufficient). return the actual size of the 31 * trackbuffer 32 * - replaced udelays() by a timer (CIAA timer B) for the waits 33 * needed for the disk mechanic. 34 * 35 * february 1996 fixed error recovery and multiple disk access 36 * - both got broken the first time I tampered with the driver :-( 37 * - still not safe, but better than before 38 * 39 * revised Marts 3rd, 1996 by Jes Sorensen for use in the 1.3.28 kernel. 40 * - Minor changes to accept the kdev_t. 41 * - Replaced some more udelays with ms_delays. Udelay is just a loop, 42 * and so the delay will be different depending on the given 43 * processor :-( 44 * - The driver could use a major cleanup because of the new 45 * major/minor handling that came with kdev_t. It seems to work for 46 * the time being, but I can't guarantee that it will stay like 47 * that when we start using 16 (24?) bit minors. 48 * 49 * restructured jan 1997 by Joerg Dorchain 50 * - Fixed Bug accessing multiple disks 51 * - some code cleanup 52 * - added trackbuffer for each drive to speed things up 53 * - fixed some race conditions (who finds the next may send it to me ;-) 54 */ 55 56 #include <linux/module.h> 57 #include <linux/slab.h> 58 59 #include <linux/fd.h> 60 #include <linux/hdreg.h> 61 #include <linux/delay.h> 62 #include <linux/init.h> 63 #include <linux/mutex.h> 64 #include <linux/fs.h> 65 #include <linux/blk-mq.h> 66 #include <linux/elevator.h> 67 #include <linux/interrupt.h> 68 #include <linux/platform_device.h> 69 70 #include <asm/setup.h> 71 #include <linux/uaccess.h> 72 #include <asm/amigahw.h> 73 #include <asm/amigaints.h> 74 #include <asm/irq.h> 75 76 #undef DEBUG /* print _LOTS_ of infos */ 77 78 #define RAW_IOCTL 79 #ifdef RAW_IOCTL 80 #define IOCTL_RAW_TRACK 0x5254524B /* 'RTRK' */ 81 #endif 82 83 /* 84 * Defines 85 */ 86 87 /* 88 * CIAAPRA bits (read only) 89 */ 90 91 #define DSKRDY (0x1<<5) /* disk ready when low */ 92 #define DSKTRACK0 (0x1<<4) /* head at track zero when low */ 93 #define DSKPROT (0x1<<3) /* disk protected when low */ 94 #define DSKCHANGE (0x1<<2) /* low when disk removed */ 95 96 /* 97 * CIAAPRB bits (read/write) 98 */ 99 100 #define DSKMOTOR (0x1<<7) /* motor on when low */ 101 #define DSKSEL3 (0x1<<6) /* select drive 3 when low */ 102 #define DSKSEL2 (0x1<<5) /* select drive 2 when low */ 103 #define DSKSEL1 (0x1<<4) /* select drive 1 when low */ 104 #define DSKSEL0 (0x1<<3) /* select drive 0 when low */ 105 #define DSKSIDE (0x1<<2) /* side selection: 0 = upper, 1 = lower */ 106 #define DSKDIREC (0x1<<1) /* step direction: 0=in, 1=out (to trk 0) */ 107 #define DSKSTEP (0x1) /* pulse low to step head 1 track */ 108 109 /* 110 * DSKBYTR bits (read only) 111 */ 112 113 #define DSKBYT (1<<15) /* register contains valid byte when set */ 114 #define DMAON (1<<14) /* disk DMA enabled */ 115 #define DISKWRITE (1<<13) /* disk write bit in DSKLEN enabled */ 116 #define WORDEQUAL (1<<12) /* DSKSYNC register match when true */ 117 /* bits 7-0 are data */ 118 119 /* 120 * ADKCON/ADKCONR bits 121 */ 122 123 #ifndef SETCLR 124 #define ADK_SETCLR (1<<15) /* control bit */ 125 #endif 126 #define ADK_PRECOMP1 (1<<14) /* precompensation selection */ 127 #define ADK_PRECOMP0 (1<<13) /* 00=none, 01=140ns, 10=280ns, 11=500ns */ 128 #define ADK_MFMPREC (1<<12) /* 0=GCR precomp., 1=MFM precomp. */ 129 #define ADK_WORDSYNC (1<<10) /* enable DSKSYNC auto DMA */ 130 #define ADK_MSBSYNC (1<<9) /* when 1, enable sync on MSbit (for GCR) */ 131 #define ADK_FAST (1<<8) /* bit cell: 0=2us (GCR), 1=1us (MFM) */ 132 133 /* 134 * DSKLEN bits 135 */ 136 137 #define DSKLEN_DMAEN (1<<15) 138 #define DSKLEN_WRITE (1<<14) 139 140 /* 141 * INTENA/INTREQ bits 142 */ 143 144 #define DSKINDEX (0x1<<4) /* DSKINDEX bit */ 145 146 /* 147 * Misc 148 */ 149 150 #define MFM_SYNC 0x4489 /* standard MFM sync value */ 151 152 /* Values for FD_COMMAND */ 153 #define FD_RECALIBRATE 0x07 /* move to track 0 */ 154 #define FD_SEEK 0x0F /* seek track */ 155 #define FD_READ 0xE6 /* read with MT, MFM, SKip deleted */ 156 #define FD_WRITE 0xC5 /* write with MT, MFM */ 157 #define FD_SENSEI 0x08 /* Sense Interrupt Status */ 158 #define FD_SPECIFY 0x03 /* specify HUT etc */ 159 #define FD_FORMAT 0x4D /* format one track */ 160 #define FD_VERSION 0x10 /* get version code */ 161 #define FD_CONFIGURE 0x13 /* configure FIFO operation */ 162 #define FD_PERPENDICULAR 0x12 /* perpendicular r/w mode */ 163 164 #define FD_MAX_UNITS 4 /* Max. Number of drives */ 165 #define FLOPPY_MAX_SECTORS 22 /* Max. Number of sectors per track */ 166 167 struct fd_data_type { 168 char *name; /* description of data type */ 169 int sects; /* sectors per track */ 170 int (*read_fkt)(int); /* read whole track */ 171 void (*write_fkt)(int); /* write whole track */ 172 }; 173 174 struct fd_drive_type { 175 unsigned long code; /* code returned from drive */ 176 char *name; /* description of drive */ 177 unsigned int tracks; /* number of tracks */ 178 unsigned int heads; /* number of heads */ 179 unsigned int read_size; /* raw read size for one track */ 180 unsigned int write_size; /* raw write size for one track */ 181 unsigned int sect_mult; /* sectors and gap multiplier (HD = 2) */ 182 unsigned int precomp1; /* start track for precomp 1 */ 183 unsigned int precomp2; /* start track for precomp 2 */ 184 unsigned int step_delay; /* time (in ms) for delay after step */ 185 unsigned int settle_time; /* time to settle after dir change */ 186 unsigned int side_time; /* time needed to change sides */ 187 }; 188 189 struct amiga_floppy_struct { 190 struct fd_drive_type *type; /* type of floppy for this unit */ 191 struct fd_data_type *dtype; /* type of floppy for this unit */ 192 int track; /* current track (-1 == unknown) */ 193 unsigned char *trackbuf; /* current track (kmaloc()'d */ 194 195 int blocks; /* total # blocks on disk */ 196 197 int changed; /* true when not known */ 198 int disk; /* disk in drive (-1 == unknown) */ 199 int motor; /* true when motor is at speed */ 200 int busy; /* true when drive is active */ 201 int dirty; /* true when trackbuf is not on disk */ 202 int status; /* current error code for unit */ 203 struct gendisk *gendisk; 204 struct blk_mq_tag_set tag_set; 205 }; 206 207 /* 208 * Error codes 209 */ 210 #define FD_OK 0 /* operation succeeded */ 211 #define FD_ERROR -1 /* general error (seek, read, write, etc) */ 212 #define FD_NOUNIT 1 /* unit does not exist */ 213 #define FD_UNITBUSY 2 /* unit already active */ 214 #define FD_NOTACTIVE 3 /* unit is not active */ 215 #define FD_NOTREADY 4 /* unit is not ready (motor not on/no disk) */ 216 217 #define MFM_NOSYNC 1 218 #define MFM_HEADER 2 219 #define MFM_DATA 3 220 #define MFM_TRACK 4 221 222 /* 223 * Floppy ID values 224 */ 225 #define FD_NODRIVE 0x00000000 /* response when no unit is present */ 226 #define FD_DD_3 0xffffffff /* double-density 3.5" (880K) drive */ 227 #define FD_HD_3 0x55555555 /* high-density 3.5" (1760K) drive */ 228 #define FD_DD_5 0xaaaaaaaa /* double-density 5.25" (440K) drive */ 229 230 static DEFINE_MUTEX(amiflop_mutex); 231 static unsigned long int fd_def_df0 = FD_DD_3; /* default for df0 if it doesn't identify */ 232 233 module_param(fd_def_df0, ulong, 0); 234 MODULE_LICENSE("GPL"); 235 236 /* 237 * Macros 238 */ 239 #define MOTOR_ON (ciab.prb &= ~DSKMOTOR) 240 #define MOTOR_OFF (ciab.prb |= DSKMOTOR) 241 #define SELECT(mask) (ciab.prb &= ~mask) 242 #define DESELECT(mask) (ciab.prb |= mask) 243 #define SELMASK(drive) (1 << (3 + (drive & 3))) 244 245 static struct fd_drive_type drive_types[] = { 246 /* code name tr he rdsz wrsz sm pc1 pc2 sd st st*/ 247 /* warning: times are now in milliseconds (ms) */ 248 { FD_DD_3, "DD 3.5", 80, 2, 14716, 13630, 1, 80,161, 3, 18, 1}, 249 { FD_HD_3, "HD 3.5", 80, 2, 28344, 27258, 2, 80,161, 3, 18, 1}, 250 { FD_DD_5, "DD 5.25", 40, 2, 14716, 13630, 1, 40, 81, 6, 30, 2}, 251 { FD_NODRIVE, "No Drive", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 252 }; 253 static int num_dr_types = ARRAY_SIZE(drive_types); 254 255 static int amiga_read(int), dos_read(int); 256 static void amiga_write(int), dos_write(int); 257 static struct fd_data_type data_types[] = { 258 { "Amiga", 11 , amiga_read, amiga_write}, 259 { "MS-Dos", 9, dos_read, dos_write} 260 }; 261 262 /* current info on each unit */ 263 static struct amiga_floppy_struct unit[FD_MAX_UNITS]; 264 265 static struct timer_list flush_track_timer[FD_MAX_UNITS]; 266 static struct timer_list post_write_timer; 267 static unsigned long post_write_timer_drive; 268 static struct timer_list motor_on_timer; 269 static struct timer_list motor_off_timer[FD_MAX_UNITS]; 270 static int on_attempts; 271 272 /* Synchronization of FDC access */ 273 /* request loop (trackbuffer) */ 274 static volatile int fdc_busy = -1; 275 static volatile int fdc_nested; 276 static DECLARE_WAIT_QUEUE_HEAD(fdc_wait); 277 278 static DECLARE_COMPLETION(motor_on_completion); 279 280 static volatile int selected = -1; /* currently selected drive */ 281 282 static int writepending; 283 static int writefromint; 284 static char *raw_buf; 285 286 static DEFINE_SPINLOCK(amiflop_lock); 287 288 #define RAW_BUF_SIZE 30000 /* size of raw disk data */ 289 290 /* 291 * These are global variables, as that's the easiest way to give 292 * information to interrupts. They are the data used for the current 293 * request. 294 */ 295 static volatile char block_flag; 296 static DECLARE_WAIT_QUEUE_HEAD(wait_fd_block); 297 298 /* MS-Dos MFM Coding tables (should go quick and easy) */ 299 static unsigned char mfmencode[16]={ 300 0x2a, 0x29, 0x24, 0x25, 0x12, 0x11, 0x14, 0x15, 301 0x4a, 0x49, 0x44, 0x45, 0x52, 0x51, 0x54, 0x55 302 }; 303 static unsigned char mfmdecode[128]; 304 305 /* floppy internal millisecond timer stuff */ 306 static DECLARE_COMPLETION(ms_wait_completion); 307 #define MS_TICKS ((amiga_eclock+50)/1000) 308 309 /* 310 * Note that MAX_ERRORS=X doesn't imply that we retry every bad read 311 * max X times - some types of errors increase the errorcount by 2 or 312 * even 3, so we might actually retry only X/2 times before giving up. 313 */ 314 #define MAX_ERRORS 12 315 316 #define custom amiga_custom 317 318 /* Prevent "aliased" accesses. */ 319 static int fd_ref[4] = { 0,0,0,0 }; 320 static int fd_device[4] = { 0, 0, 0, 0 }; 321 322 /* 323 * Here come the actual hardware access and helper functions. 324 * They are not reentrant and single threaded because all drives 325 * share the same hardware and the same trackbuffer. 326 */ 327 328 /* Milliseconds timer */ 329 330 static irqreturn_t ms_isr(int irq, void *dummy) 331 { 332 complete(&ms_wait_completion); 333 return IRQ_HANDLED; 334 } 335 336 /* all waits are queued up 337 A more generic routine would do a schedule a la timer.device */ 338 static void ms_delay(int ms) 339 { 340 int ticks; 341 static DEFINE_MUTEX(mutex); 342 343 if (ms > 0) { 344 mutex_lock(&mutex); 345 ticks = MS_TICKS*ms-1; 346 ciaa.tblo=ticks%256; 347 ciaa.tbhi=ticks/256; 348 ciaa.crb=0x19; /*count eclock, force load, one-shoot, start */ 349 wait_for_completion(&ms_wait_completion); 350 mutex_unlock(&mutex); 351 } 352 } 353 354 /* Hardware semaphore */ 355 356 /* returns true when we would get the semaphore */ 357 static inline int try_fdc(int drive) 358 { 359 drive &= 3; 360 return ((fdc_busy < 0) || (fdc_busy == drive)); 361 } 362 363 static void get_fdc(int drive) 364 { 365 unsigned long flags; 366 367 drive &= 3; 368 #ifdef DEBUG 369 printk("get_fdc: drive %d fdc_busy %d fdc_nested %d\n",drive,fdc_busy,fdc_nested); 370 #endif 371 local_irq_save(flags); 372 wait_event(fdc_wait, try_fdc(drive)); 373 fdc_busy = drive; 374 fdc_nested++; 375 local_irq_restore(flags); 376 } 377 378 static inline void rel_fdc(void) 379 { 380 #ifdef DEBUG 381 if (fdc_nested == 0) 382 printk("fd: unmatched rel_fdc\n"); 383 printk("rel_fdc: fdc_busy %d fdc_nested %d\n",fdc_busy,fdc_nested); 384 #endif 385 fdc_nested--; 386 if (fdc_nested == 0) { 387 fdc_busy = -1; 388 wake_up(&fdc_wait); 389 } 390 } 391 392 static void fd_select (int drive) 393 { 394 unsigned char prb = ~0; 395 396 drive&=3; 397 #ifdef DEBUG 398 printk("selecting %d\n",drive); 399 #endif 400 if (drive == selected) 401 return; 402 get_fdc(drive); 403 selected = drive; 404 405 if (unit[drive].track % 2 != 0) 406 prb &= ~DSKSIDE; 407 if (unit[drive].motor == 1) 408 prb &= ~DSKMOTOR; 409 ciab.prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3)); 410 ciab.prb = prb; 411 prb &= ~SELMASK(drive); 412 ciab.prb = prb; 413 rel_fdc(); 414 } 415 416 static void fd_deselect (int drive) 417 { 418 unsigned char prb; 419 unsigned long flags; 420 421 drive&=3; 422 #ifdef DEBUG 423 printk("deselecting %d\n",drive); 424 #endif 425 if (drive != selected) { 426 printk(KERN_WARNING "Deselecting drive %d while %d was selected!\n",drive,selected); 427 return; 428 } 429 430 get_fdc(drive); 431 local_irq_save(flags); 432 433 selected = -1; 434 435 prb = ciab.prb; 436 prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3)); 437 ciab.prb = prb; 438 439 local_irq_restore (flags); 440 rel_fdc(); 441 442 } 443 444 static void motor_on_callback(struct timer_list *unused) 445 { 446 if (!(ciaa.pra & DSKRDY) || --on_attempts == 0) { 447 complete_all(&motor_on_completion); 448 } else { 449 motor_on_timer.expires = jiffies + HZ/10; 450 add_timer(&motor_on_timer); 451 } 452 } 453 454 static int fd_motor_on(int nr) 455 { 456 nr &= 3; 457 458 del_timer(motor_off_timer + nr); 459 460 if (!unit[nr].motor) { 461 unit[nr].motor = 1; 462 fd_select(nr); 463 464 reinit_completion(&motor_on_completion); 465 mod_timer(&motor_on_timer, jiffies + HZ/2); 466 467 on_attempts = 10; 468 wait_for_completion(&motor_on_completion); 469 fd_deselect(nr); 470 } 471 472 if (on_attempts == 0) { 473 on_attempts = -1; 474 #if 0 475 printk (KERN_ERR "motor_on failed, turning motor off\n"); 476 fd_motor_off (motor_off_timer + nr); 477 return 0; 478 #else 479 printk (KERN_WARNING "DSKRDY not set after 1.5 seconds - assuming drive is spinning notwithstanding\n"); 480 #endif 481 } 482 483 return 1; 484 } 485 486 static void fd_motor_off(struct timer_list *timer) 487 { 488 unsigned long drive = ((unsigned long)timer - 489 (unsigned long)&motor_off_timer[0]) / 490 sizeof(motor_off_timer[0]); 491 492 drive&=3; 493 if (!try_fdc(drive)) { 494 /* We would be blocked in an interrupt, so try again later */ 495 timer->expires = jiffies + 1; 496 add_timer(timer); 497 return; 498 } 499 unit[drive].motor = 0; 500 fd_select(drive); 501 udelay (1); 502 fd_deselect(drive); 503 } 504 505 static void floppy_off (unsigned int nr) 506 { 507 int drive; 508 509 drive = nr & 3; 510 mod_timer(motor_off_timer + drive, jiffies + 3*HZ); 511 } 512 513 static int fd_calibrate(int drive) 514 { 515 unsigned char prb; 516 int n; 517 518 drive &= 3; 519 get_fdc(drive); 520 if (!fd_motor_on (drive)) 521 return 0; 522 fd_select (drive); 523 prb = ciab.prb; 524 prb |= DSKSIDE; 525 prb &= ~DSKDIREC; 526 ciab.prb = prb; 527 for (n = unit[drive].type->tracks/2; n != 0; --n) { 528 if (ciaa.pra & DSKTRACK0) 529 break; 530 prb &= ~DSKSTEP; 531 ciab.prb = prb; 532 prb |= DSKSTEP; 533 udelay (2); 534 ciab.prb = prb; 535 ms_delay(unit[drive].type->step_delay); 536 } 537 ms_delay (unit[drive].type->settle_time); 538 prb |= DSKDIREC; 539 n = unit[drive].type->tracks + 20; 540 for (;;) { 541 prb &= ~DSKSTEP; 542 ciab.prb = prb; 543 prb |= DSKSTEP; 544 udelay (2); 545 ciab.prb = prb; 546 ms_delay(unit[drive].type->step_delay + 1); 547 if ((ciaa.pra & DSKTRACK0) == 0) 548 break; 549 if (--n == 0) { 550 printk (KERN_ERR "fd%d: calibrate failed, turning motor off\n", drive); 551 fd_motor_off (motor_off_timer + drive); 552 unit[drive].track = -1; 553 rel_fdc(); 554 return 0; 555 } 556 } 557 unit[drive].track = 0; 558 ms_delay(unit[drive].type->settle_time); 559 560 rel_fdc(); 561 fd_deselect(drive); 562 return 1; 563 } 564 565 static int fd_seek(int drive, int track) 566 { 567 unsigned char prb; 568 int cnt; 569 570 #ifdef DEBUG 571 printk("seeking drive %d to track %d\n",drive,track); 572 #endif 573 drive &= 3; 574 get_fdc(drive); 575 if (unit[drive].track == track) { 576 rel_fdc(); 577 return 1; 578 } 579 if (!fd_motor_on(drive)) { 580 rel_fdc(); 581 return 0; 582 } 583 if (unit[drive].track < 0 && !fd_calibrate(drive)) { 584 rel_fdc(); 585 return 0; 586 } 587 588 fd_select (drive); 589 cnt = unit[drive].track/2 - track/2; 590 prb = ciab.prb; 591 prb |= DSKSIDE | DSKDIREC; 592 if (track % 2 != 0) 593 prb &= ~DSKSIDE; 594 if (cnt < 0) { 595 cnt = - cnt; 596 prb &= ~DSKDIREC; 597 } 598 ciab.prb = prb; 599 if (track % 2 != unit[drive].track % 2) 600 ms_delay (unit[drive].type->side_time); 601 unit[drive].track = track; 602 if (cnt == 0) { 603 rel_fdc(); 604 fd_deselect(drive); 605 return 1; 606 } 607 do { 608 prb &= ~DSKSTEP; 609 ciab.prb = prb; 610 prb |= DSKSTEP; 611 udelay (1); 612 ciab.prb = prb; 613 ms_delay (unit[drive].type->step_delay); 614 } while (--cnt != 0); 615 ms_delay (unit[drive].type->settle_time); 616 617 rel_fdc(); 618 fd_deselect(drive); 619 return 1; 620 } 621 622 static unsigned long fd_get_drive_id(int drive) 623 { 624 int i; 625 ulong id = 0; 626 627 drive&=3; 628 get_fdc(drive); 629 /* set up for ID */ 630 MOTOR_ON; 631 udelay(2); 632 SELECT(SELMASK(drive)); 633 udelay(2); 634 DESELECT(SELMASK(drive)); 635 udelay(2); 636 MOTOR_OFF; 637 udelay(2); 638 SELECT(SELMASK(drive)); 639 udelay(2); 640 DESELECT(SELMASK(drive)); 641 udelay(2); 642 643 /* loop and read disk ID */ 644 for (i=0; i<32; i++) { 645 SELECT(SELMASK(drive)); 646 udelay(2); 647 648 /* read and store value of DSKRDY */ 649 id <<= 1; 650 id |= (ciaa.pra & DSKRDY) ? 0 : 1; /* cia regs are low-active! */ 651 652 DESELECT(SELMASK(drive)); 653 } 654 655 rel_fdc(); 656 657 /* 658 * RB: At least A500/A2000's df0: don't identify themselves. 659 * As every (real) Amiga has at least a 3.5" DD drive as df0: 660 * we default to that if df0: doesn't identify as a certain 661 * type. 662 */ 663 if(drive == 0 && id == FD_NODRIVE) 664 { 665 id = fd_def_df0; 666 printk(KERN_NOTICE "fd: drive 0 didn't identify, setting default %08lx\n", (ulong)fd_def_df0); 667 } 668 /* return the ID value */ 669 return (id); 670 } 671 672 static irqreturn_t fd_block_done(int irq, void *dummy) 673 { 674 if (block_flag) 675 custom.dsklen = 0x4000; 676 677 if (block_flag == 2) { /* writing */ 678 writepending = 2; 679 post_write_timer.expires = jiffies + 1; /* at least 2 ms */ 680 post_write_timer_drive = selected; 681 add_timer(&post_write_timer); 682 } 683 else { /* reading */ 684 block_flag = 0; 685 wake_up (&wait_fd_block); 686 } 687 return IRQ_HANDLED; 688 } 689 690 static void raw_read(int drive) 691 { 692 drive&=3; 693 get_fdc(drive); 694 wait_event(wait_fd_block, !block_flag); 695 fd_select(drive); 696 /* setup adkcon bits correctly */ 697 custom.adkcon = ADK_MSBSYNC; 698 custom.adkcon = ADK_SETCLR|ADK_WORDSYNC|ADK_FAST; 699 700 custom.dsksync = MFM_SYNC; 701 702 custom.dsklen = 0; 703 custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf); 704 custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN; 705 custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN; 706 707 block_flag = 1; 708 709 wait_event(wait_fd_block, !block_flag); 710 711 custom.dsklen = 0; 712 fd_deselect(drive); 713 rel_fdc(); 714 } 715 716 static int raw_write(int drive) 717 { 718 ushort adk; 719 720 drive&=3; 721 get_fdc(drive); /* corresponds to rel_fdc() in post_write() */ 722 if ((ciaa.pra & DSKPROT) == 0) { 723 rel_fdc(); 724 return 0; 725 } 726 wait_event(wait_fd_block, !block_flag); 727 fd_select(drive); 728 /* clear adkcon bits */ 729 custom.adkcon = ADK_PRECOMP1|ADK_PRECOMP0|ADK_WORDSYNC|ADK_MSBSYNC; 730 /* set appropriate adkcon bits */ 731 adk = ADK_SETCLR|ADK_FAST; 732 if ((ulong)unit[drive].track >= unit[drive].type->precomp2) 733 adk |= ADK_PRECOMP1; 734 else if ((ulong)unit[drive].track >= unit[drive].type->precomp1) 735 adk |= ADK_PRECOMP0; 736 custom.adkcon = adk; 737 738 custom.dsklen = DSKLEN_WRITE; 739 custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf); 740 custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE; 741 custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE; 742 743 block_flag = 2; 744 return 1; 745 } 746 747 /* 748 * to be called at least 2ms after the write has finished but before any 749 * other access to the hardware. 750 */ 751 static void post_write (unsigned long drive) 752 { 753 #ifdef DEBUG 754 printk("post_write for drive %ld\n",drive); 755 #endif 756 drive &= 3; 757 custom.dsklen = 0; 758 block_flag = 0; 759 writepending = 0; 760 writefromint = 0; 761 unit[drive].dirty = 0; 762 wake_up(&wait_fd_block); 763 fd_deselect(drive); 764 rel_fdc(); /* corresponds to get_fdc() in raw_write */ 765 } 766 767 static void post_write_callback(struct timer_list *timer) 768 { 769 post_write(post_write_timer_drive); 770 } 771 772 /* 773 * The following functions are to convert the block contents into raw data 774 * written to disk and vice versa. 775 * (Add other formats here ;-)) 776 */ 777 778 static unsigned long scan_sync(unsigned long raw, unsigned long end) 779 { 780 ushort *ptr = (ushort *)raw, *endp = (ushort *)end; 781 782 while (ptr < endp && *ptr++ != 0x4489) 783 ; 784 if (ptr < endp) { 785 while (*ptr == 0x4489 && ptr < endp) 786 ptr++; 787 return (ulong)ptr; 788 } 789 return 0; 790 } 791 792 static inline unsigned long checksum(unsigned long *addr, int len) 793 { 794 unsigned long csum = 0; 795 796 len /= sizeof(*addr); 797 while (len-- > 0) 798 csum ^= *addr++; 799 csum = ((csum>>1) & 0x55555555) ^ (csum & 0x55555555); 800 801 return csum; 802 } 803 804 static unsigned long decode (unsigned long *data, unsigned long *raw, 805 int len) 806 { 807 ulong *odd, *even; 808 809 /* convert length from bytes to longwords */ 810 len >>= 2; 811 odd = raw; 812 even = odd + len; 813 814 /* prepare return pointer */ 815 raw += len * 2; 816 817 do { 818 *data++ = ((*odd++ & 0x55555555) << 1) | (*even++ & 0x55555555); 819 } while (--len != 0); 820 821 return (ulong)raw; 822 } 823 824 struct header { 825 unsigned char magic; 826 unsigned char track; 827 unsigned char sect; 828 unsigned char ord; 829 unsigned char labels[16]; 830 unsigned long hdrchk; 831 unsigned long datachk; 832 }; 833 834 static int amiga_read(int drive) 835 { 836 unsigned long raw; 837 unsigned long end; 838 int scnt; 839 unsigned long csum; 840 struct header hdr; 841 842 drive&=3; 843 raw = (long) raw_buf; 844 end = raw + unit[drive].type->read_size; 845 846 for (scnt = 0;scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) { 847 if (!(raw = scan_sync(raw, end))) { 848 printk (KERN_INFO "can't find sync for sector %d\n", scnt); 849 return MFM_NOSYNC; 850 } 851 852 raw = decode ((ulong *)&hdr.magic, (ulong *)raw, 4); 853 raw = decode ((ulong *)&hdr.labels, (ulong *)raw, 16); 854 raw = decode ((ulong *)&hdr.hdrchk, (ulong *)raw, 4); 855 raw = decode ((ulong *)&hdr.datachk, (ulong *)raw, 4); 856 csum = checksum((ulong *)&hdr, 857 (char *)&hdr.hdrchk-(char *)&hdr); 858 859 #ifdef DEBUG 860 printk ("(%x,%d,%d,%d) (%lx,%lx,%lx,%lx) %lx %lx\n", 861 hdr.magic, hdr.track, hdr.sect, hdr.ord, 862 *(ulong *)&hdr.labels[0], *(ulong *)&hdr.labels[4], 863 *(ulong *)&hdr.labels[8], *(ulong *)&hdr.labels[12], 864 hdr.hdrchk, hdr.datachk); 865 #endif 866 867 if (hdr.hdrchk != csum) { 868 printk(KERN_INFO "MFM_HEADER: %08lx,%08lx\n", hdr.hdrchk, csum); 869 return MFM_HEADER; 870 } 871 872 /* verify track */ 873 if (hdr.track != unit[drive].track) { 874 printk(KERN_INFO "MFM_TRACK: %d, %d\n", hdr.track, unit[drive].track); 875 return MFM_TRACK; 876 } 877 878 raw = decode ((ulong *)(unit[drive].trackbuf + hdr.sect*512), 879 (ulong *)raw, 512); 880 csum = checksum((ulong *)(unit[drive].trackbuf + hdr.sect*512), 512); 881 882 if (hdr.datachk != csum) { 883 printk(KERN_INFO "MFM_DATA: (%x:%d:%d:%d) sc=%d %lx, %lx\n", 884 hdr.magic, hdr.track, hdr.sect, hdr.ord, scnt, 885 hdr.datachk, csum); 886 printk (KERN_INFO "data=(%lx,%lx,%lx,%lx)\n", 887 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[0], 888 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[1], 889 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[2], 890 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[3]); 891 return MFM_DATA; 892 } 893 } 894 895 return 0; 896 } 897 898 static void encode(unsigned long data, unsigned long *dest) 899 { 900 unsigned long data2; 901 902 data &= 0x55555555; 903 data2 = data ^ 0x55555555; 904 data |= ((data2 >> 1) | 0x80000000) & (data2 << 1); 905 906 if (*(dest - 1) & 0x00000001) 907 data &= 0x7FFFFFFF; 908 909 *dest = data; 910 } 911 912 static void encode_block(unsigned long *dest, unsigned long *src, int len) 913 { 914 int cnt, to_cnt = 0; 915 unsigned long data; 916 917 /* odd bits */ 918 for (cnt = 0; cnt < len / 4; cnt++) { 919 data = src[cnt] >> 1; 920 encode(data, dest + to_cnt++); 921 } 922 923 /* even bits */ 924 for (cnt = 0; cnt < len / 4; cnt++) { 925 data = src[cnt]; 926 encode(data, dest + to_cnt++); 927 } 928 } 929 930 static unsigned long *putsec(int disk, unsigned long *raw, int cnt) 931 { 932 struct header hdr; 933 int i; 934 935 disk&=3; 936 *raw = (raw[-1]&1) ? 0x2AAAAAAA : 0xAAAAAAAA; 937 raw++; 938 *raw++ = 0x44894489; 939 940 hdr.magic = 0xFF; 941 hdr.track = unit[disk].track; 942 hdr.sect = cnt; 943 hdr.ord = unit[disk].dtype->sects * unit[disk].type->sect_mult - cnt; 944 for (i = 0; i < 16; i++) 945 hdr.labels[i] = 0; 946 hdr.hdrchk = checksum((ulong *)&hdr, 947 (char *)&hdr.hdrchk-(char *)&hdr); 948 hdr.datachk = checksum((ulong *)(unit[disk].trackbuf+cnt*512), 512); 949 950 encode_block(raw, (ulong *)&hdr.magic, 4); 951 raw += 2; 952 encode_block(raw, (ulong *)&hdr.labels, 16); 953 raw += 8; 954 encode_block(raw, (ulong *)&hdr.hdrchk, 4); 955 raw += 2; 956 encode_block(raw, (ulong *)&hdr.datachk, 4); 957 raw += 2; 958 encode_block(raw, (ulong *)(unit[disk].trackbuf+cnt*512), 512); 959 raw += 256; 960 961 return raw; 962 } 963 964 static void amiga_write(int disk) 965 { 966 unsigned int cnt; 967 unsigned long *ptr = (unsigned long *)raw_buf; 968 969 disk&=3; 970 /* gap space */ 971 for (cnt = 0; cnt < 415 * unit[disk].type->sect_mult; cnt++) 972 *ptr++ = 0xaaaaaaaa; 973 974 /* sectors */ 975 for (cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++) 976 ptr = putsec (disk, ptr, cnt); 977 *(ushort *)ptr = (ptr[-1]&1) ? 0x2AA8 : 0xAAA8; 978 } 979 980 981 struct dos_header { 982 unsigned char track, /* 0-80 */ 983 side, /* 0-1 */ 984 sec, /* 0-...*/ 985 len_desc;/* 2 */ 986 unsigned short crc; /* on 68000 we got an alignment problem, 987 but this compiler solves it by adding silently 988 adding a pad byte so data won't fit 989 and this took about 3h to discover.... */ 990 unsigned char gap1[22]; /* for longword-alignedness (0x4e) */ 991 }; 992 993 /* crc routines are borrowed from the messydos-handler */ 994 995 /* excerpt from the messydos-device 996 ; The CRC is computed not only over the actual data, but including 997 ; the SYNC mark (3 * $a1) and the 'ID/DATA - Address Mark' ($fe/$fb). 998 ; As we don't read or encode these fields into our buffers, we have to 999 ; preload the registers containing the CRC with the values they would have 1000 ; after stepping over these fields. 1001 ; 1002 ; How CRCs "really" work: 1003 ; 1004 ; First, you should regard a bitstring as a series of coefficients of 1005 ; polynomials. We calculate with these polynomials in modulo-2 1006 ; arithmetic, in which both add and subtract are done the same as 1007 ; exclusive-or. Now, we modify our data (a very long polynomial) in 1008 ; such a way that it becomes divisible by the CCITT-standard 16-bit 1009 ; 16 12 5 1010 ; polynomial: x + x + x + 1, represented by $11021. The easiest 1011 ; way to do this would be to multiply (using proper arithmetic) our 1012 ; datablock with $11021. So we have: 1013 ; data * $11021 = 1014 ; data * ($10000 + $1021) = 1015 ; data * $10000 + data * $1021 1016 ; The left part of this is simple: Just add two 0 bytes. But then 1017 ; the right part (data $1021) remains difficult and even could have 1018 ; a carry into the left part. The solution is to use a modified 1019 ; multiplication, which has a result that is not correct, but with 1020 ; a difference of any multiple of $11021. We then only need to keep 1021 ; the 16 least significant bits of the result. 1022 ; 1023 ; The following algorithm does this for us: 1024 ; 1025 ; unsigned char *data, c, crclo, crchi; 1026 ; while (not done) { 1027 ; c = *data++ + crchi; 1028 ; crchi = (@ c) >> 8 + crclo; 1029 ; crclo = @ c; 1030 ; } 1031 ; 1032 ; Remember, + is done with EOR, the @ operator is in two tables (high 1033 ; and low byte separately), which is calculated as 1034 ; 1035 ; $1021 * (c & $F0) 1036 ; xor $1021 * (c & $0F) 1037 ; xor $1021 * (c >> 4) (* is regular multiplication) 1038 ; 1039 ; 1040 ; Anyway, the end result is the same as the remainder of the division of 1041 ; the data by $11021. I am afraid I need to study theory a bit more... 1042 1043 1044 my only works was to code this from manx to C.... 1045 1046 */ 1047 1048 static ushort dos_crc(void * data_a3, int data_d0, int data_d1, int data_d3) 1049 { 1050 static unsigned char CRCTable1[] = { 1051 0x00,0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x81,0x91,0xa1,0xb1,0xc1,0xd1,0xe1,0xf1, 1052 0x12,0x02,0x32,0x22,0x52,0x42,0x72,0x62,0x93,0x83,0xb3,0xa3,0xd3,0xc3,0xf3,0xe3, 1053 0x24,0x34,0x04,0x14,0x64,0x74,0x44,0x54,0xa5,0xb5,0x85,0x95,0xe5,0xf5,0xc5,0xd5, 1054 0x36,0x26,0x16,0x06,0x76,0x66,0x56,0x46,0xb7,0xa7,0x97,0x87,0xf7,0xe7,0xd7,0xc7, 1055 0x48,0x58,0x68,0x78,0x08,0x18,0x28,0x38,0xc9,0xd9,0xe9,0xf9,0x89,0x99,0xa9,0xb9, 1056 0x5a,0x4a,0x7a,0x6a,0x1a,0x0a,0x3a,0x2a,0xdb,0xcb,0xfb,0xeb,0x9b,0x8b,0xbb,0xab, 1057 0x6c,0x7c,0x4c,0x5c,0x2c,0x3c,0x0c,0x1c,0xed,0xfd,0xcd,0xdd,0xad,0xbd,0x8d,0x9d, 1058 0x7e,0x6e,0x5e,0x4e,0x3e,0x2e,0x1e,0x0e,0xff,0xef,0xdf,0xcf,0xbf,0xaf,0x9f,0x8f, 1059 0x91,0x81,0xb1,0xa1,0xd1,0xc1,0xf1,0xe1,0x10,0x00,0x30,0x20,0x50,0x40,0x70,0x60, 1060 0x83,0x93,0xa3,0xb3,0xc3,0xd3,0xe3,0xf3,0x02,0x12,0x22,0x32,0x42,0x52,0x62,0x72, 1061 0xb5,0xa5,0x95,0x85,0xf5,0xe5,0xd5,0xc5,0x34,0x24,0x14,0x04,0x74,0x64,0x54,0x44, 1062 0xa7,0xb7,0x87,0x97,0xe7,0xf7,0xc7,0xd7,0x26,0x36,0x06,0x16,0x66,0x76,0x46,0x56, 1063 0xd9,0xc9,0xf9,0xe9,0x99,0x89,0xb9,0xa9,0x58,0x48,0x78,0x68,0x18,0x08,0x38,0x28, 1064 0xcb,0xdb,0xeb,0xfb,0x8b,0x9b,0xab,0xbb,0x4a,0x5a,0x6a,0x7a,0x0a,0x1a,0x2a,0x3a, 1065 0xfd,0xed,0xdd,0xcd,0xbd,0xad,0x9d,0x8d,0x7c,0x6c,0x5c,0x4c,0x3c,0x2c,0x1c,0x0c, 1066 0xef,0xff,0xcf,0xdf,0xaf,0xbf,0x8f,0x9f,0x6e,0x7e,0x4e,0x5e,0x2e,0x3e,0x0e,0x1e 1067 }; 1068 1069 static unsigned char CRCTable2[] = { 1070 0x00,0x21,0x42,0x63,0x84,0xa5,0xc6,0xe7,0x08,0x29,0x4a,0x6b,0x8c,0xad,0xce,0xef, 1071 0x31,0x10,0x73,0x52,0xb5,0x94,0xf7,0xd6,0x39,0x18,0x7b,0x5a,0xbd,0x9c,0xff,0xde, 1072 0x62,0x43,0x20,0x01,0xe6,0xc7,0xa4,0x85,0x6a,0x4b,0x28,0x09,0xee,0xcf,0xac,0x8d, 1073 0x53,0x72,0x11,0x30,0xd7,0xf6,0x95,0xb4,0x5b,0x7a,0x19,0x38,0xdf,0xfe,0x9d,0xbc, 1074 0xc4,0xe5,0x86,0xa7,0x40,0x61,0x02,0x23,0xcc,0xed,0x8e,0xaf,0x48,0x69,0x0a,0x2b, 1075 0xf5,0xd4,0xb7,0x96,0x71,0x50,0x33,0x12,0xfd,0xdc,0xbf,0x9e,0x79,0x58,0x3b,0x1a, 1076 0xa6,0x87,0xe4,0xc5,0x22,0x03,0x60,0x41,0xae,0x8f,0xec,0xcd,0x2a,0x0b,0x68,0x49, 1077 0x97,0xb6,0xd5,0xf4,0x13,0x32,0x51,0x70,0x9f,0xbe,0xdd,0xfc,0x1b,0x3a,0x59,0x78, 1078 0x88,0xa9,0xca,0xeb,0x0c,0x2d,0x4e,0x6f,0x80,0xa1,0xc2,0xe3,0x04,0x25,0x46,0x67, 1079 0xb9,0x98,0xfb,0xda,0x3d,0x1c,0x7f,0x5e,0xb1,0x90,0xf3,0xd2,0x35,0x14,0x77,0x56, 1080 0xea,0xcb,0xa8,0x89,0x6e,0x4f,0x2c,0x0d,0xe2,0xc3,0xa0,0x81,0x66,0x47,0x24,0x05, 1081 0xdb,0xfa,0x99,0xb8,0x5f,0x7e,0x1d,0x3c,0xd3,0xf2,0x91,0xb0,0x57,0x76,0x15,0x34, 1082 0x4c,0x6d,0x0e,0x2f,0xc8,0xe9,0x8a,0xab,0x44,0x65,0x06,0x27,0xc0,0xe1,0x82,0xa3, 1083 0x7d,0x5c,0x3f,0x1e,0xf9,0xd8,0xbb,0x9a,0x75,0x54,0x37,0x16,0xf1,0xd0,0xb3,0x92, 1084 0x2e,0x0f,0x6c,0x4d,0xaa,0x8b,0xe8,0xc9,0x26,0x07,0x64,0x45,0xa2,0x83,0xe0,0xc1, 1085 0x1f,0x3e,0x5d,0x7c,0x9b,0xba,0xd9,0xf8,0x17,0x36,0x55,0x74,0x93,0xb2,0xd1,0xf0 1086 }; 1087 1088 /* look at the asm-code - what looks in C a bit strange is almost as good as handmade */ 1089 register int i; 1090 register unsigned char *CRCT1, *CRCT2, *data, c, crch, crcl; 1091 1092 CRCT1=CRCTable1; 1093 CRCT2=CRCTable2; 1094 data=data_a3; 1095 crcl=data_d1; 1096 crch=data_d0; 1097 for (i=data_d3; i>=0; i--) { 1098 c = (*data++) ^ crch; 1099 crch = CRCT1[c] ^ crcl; 1100 crcl = CRCT2[c]; 1101 } 1102 return (crch<<8)|crcl; 1103 } 1104 1105 static inline ushort dos_hdr_crc (struct dos_header *hdr) 1106 { 1107 return dos_crc(&(hdr->track), 0xb2, 0x30, 3); /* precomputed magic */ 1108 } 1109 1110 static inline ushort dos_data_crc(unsigned char *data) 1111 { 1112 return dos_crc(data, 0xe2, 0x95 ,511); /* precomputed magic */ 1113 } 1114 1115 static inline unsigned char dos_decode_byte(ushort word) 1116 { 1117 register ushort w2; 1118 register unsigned char byte; 1119 register unsigned char *dec = mfmdecode; 1120 1121 w2=word; 1122 w2>>=8; 1123 w2&=127; 1124 byte = dec[w2]; 1125 byte <<= 4; 1126 w2 = word & 127; 1127 byte |= dec[w2]; 1128 return byte; 1129 } 1130 1131 static unsigned long dos_decode(unsigned char *data, unsigned short *raw, int len) 1132 { 1133 int i; 1134 1135 for (i = 0; i < len; i++) 1136 *data++=dos_decode_byte(*raw++); 1137 return ((ulong)raw); 1138 } 1139 1140 #ifdef DEBUG 1141 static void dbg(unsigned long ptr) 1142 { 1143 printk("raw data @%08lx: %08lx, %08lx ,%08lx, %08lx\n", ptr, 1144 ((ulong *)ptr)[0], ((ulong *)ptr)[1], 1145 ((ulong *)ptr)[2], ((ulong *)ptr)[3]); 1146 } 1147 #endif 1148 1149 static int dos_read(int drive) 1150 { 1151 unsigned long end; 1152 unsigned long raw; 1153 int scnt; 1154 unsigned short crc,data_crc[2]; 1155 struct dos_header hdr; 1156 1157 drive&=3; 1158 raw = (long) raw_buf; 1159 end = raw + unit[drive].type->read_size; 1160 1161 for (scnt=0; scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) { 1162 do { /* search for the right sync of each sec-hdr */ 1163 if (!(raw = scan_sync (raw, end))) { 1164 printk(KERN_INFO "dos_read: no hdr sync on " 1165 "track %d, unit %d for sector %d\n", 1166 unit[drive].track,drive,scnt); 1167 return MFM_NOSYNC; 1168 } 1169 #ifdef DEBUG 1170 dbg(raw); 1171 #endif 1172 } while (*((ushort *)raw)!=0x5554); /* loop usually only once done */ 1173 raw+=2; /* skip over headermark */ 1174 raw = dos_decode((unsigned char *)&hdr,(ushort *) raw,8); 1175 crc = dos_hdr_crc(&hdr); 1176 1177 #ifdef DEBUG 1178 printk("(%3d,%d,%2d,%d) %x\n", hdr.track, hdr.side, 1179 hdr.sec, hdr.len_desc, hdr.crc); 1180 #endif 1181 1182 if (crc != hdr.crc) { 1183 printk(KERN_INFO "dos_read: MFM_HEADER %04x,%04x\n", 1184 hdr.crc, crc); 1185 return MFM_HEADER; 1186 } 1187 if (hdr.track != unit[drive].track/unit[drive].type->heads) { 1188 printk(KERN_INFO "dos_read: MFM_TRACK %d, %d\n", 1189 hdr.track, 1190 unit[drive].track/unit[drive].type->heads); 1191 return MFM_TRACK; 1192 } 1193 1194 if (hdr.side != unit[drive].track%unit[drive].type->heads) { 1195 printk(KERN_INFO "dos_read: MFM_SIDE %d, %d\n", 1196 hdr.side, 1197 unit[drive].track%unit[drive].type->heads); 1198 return MFM_TRACK; 1199 } 1200 1201 if (hdr.len_desc != 2) { 1202 printk(KERN_INFO "dos_read: unknown sector len " 1203 "descriptor %d\n", hdr.len_desc); 1204 return MFM_DATA; 1205 } 1206 #ifdef DEBUG 1207 printk("hdr accepted\n"); 1208 #endif 1209 if (!(raw = scan_sync (raw, end))) { 1210 printk(KERN_INFO "dos_read: no data sync on track " 1211 "%d, unit %d for sector%d, disk sector %d\n", 1212 unit[drive].track, drive, scnt, hdr.sec); 1213 return MFM_NOSYNC; 1214 } 1215 #ifdef DEBUG 1216 dbg(raw); 1217 #endif 1218 1219 if (*((ushort *)raw)!=0x5545) { 1220 printk(KERN_INFO "dos_read: no data mark after " 1221 "sync (%d,%d,%d,%d) sc=%d\n", 1222 hdr.track,hdr.side,hdr.sec,hdr.len_desc,scnt); 1223 return MFM_NOSYNC; 1224 } 1225 1226 raw+=2; /* skip data mark (included in checksum) */ 1227 raw = dos_decode((unsigned char *)(unit[drive].trackbuf + (hdr.sec - 1) * 512), (ushort *) raw, 512); 1228 raw = dos_decode((unsigned char *)data_crc,(ushort *) raw,4); 1229 crc = dos_data_crc(unit[drive].trackbuf + (hdr.sec - 1) * 512); 1230 1231 if (crc != data_crc[0]) { 1232 printk(KERN_INFO "dos_read: MFM_DATA (%d,%d,%d,%d) " 1233 "sc=%d, %x %x\n", hdr.track, hdr.side, 1234 hdr.sec, hdr.len_desc, scnt,data_crc[0], crc); 1235 printk(KERN_INFO "data=(%lx,%lx,%lx,%lx,...)\n", 1236 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[0], 1237 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[1], 1238 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[2], 1239 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[3]); 1240 return MFM_DATA; 1241 } 1242 } 1243 return 0; 1244 } 1245 1246 static inline ushort dos_encode_byte(unsigned char byte) 1247 { 1248 register unsigned char *enc, b2, b1; 1249 register ushort word; 1250 1251 enc=mfmencode; 1252 b1=byte; 1253 b2=b1>>4; 1254 b1&=15; 1255 word=enc[b2] <<8 | enc [b1]; 1256 return (word|((word&(256|64)) ? 0: 128)); 1257 } 1258 1259 static void dos_encode_block(ushort *dest, unsigned char *src, int len) 1260 { 1261 int i; 1262 1263 for (i = 0; i < len; i++) { 1264 *dest=dos_encode_byte(*src++); 1265 *dest|=((dest[-1]&1)||(*dest&0x4000))? 0: 0x8000; 1266 dest++; 1267 } 1268 } 1269 1270 static unsigned long *ms_putsec(int drive, unsigned long *raw, int cnt) 1271 { 1272 static struct dos_header hdr={0,0,0,2,0, 1273 {78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78}}; 1274 int i; 1275 static ushort crc[2]={0,0x4e4e}; 1276 1277 drive&=3; 1278 /* id gap 1 */ 1279 /* the MFM word before is always 9254 */ 1280 for(i=0;i<6;i++) 1281 *raw++=0xaaaaaaaa; 1282 /* 3 sync + 1 headermark */ 1283 *raw++=0x44894489; 1284 *raw++=0x44895554; 1285 1286 /* fill in the variable parts of the header */ 1287 hdr.track=unit[drive].track/unit[drive].type->heads; 1288 hdr.side=unit[drive].track%unit[drive].type->heads; 1289 hdr.sec=cnt+1; 1290 hdr.crc=dos_hdr_crc(&hdr); 1291 1292 /* header (without "magic") and id gap 2*/ 1293 dos_encode_block((ushort *)raw,(unsigned char *) &hdr.track,28); 1294 raw+=14; 1295 1296 /*id gap 3 */ 1297 for(i=0;i<6;i++) 1298 *raw++=0xaaaaaaaa; 1299 1300 /* 3 syncs and 1 datamark */ 1301 *raw++=0x44894489; 1302 *raw++=0x44895545; 1303 1304 /* data */ 1305 dos_encode_block((ushort *)raw, 1306 (unsigned char *)unit[drive].trackbuf+cnt*512,512); 1307 raw+=256; 1308 1309 /*data crc + jd's special gap (long words :-/) */ 1310 crc[0]=dos_data_crc(unit[drive].trackbuf+cnt*512); 1311 dos_encode_block((ushort *) raw,(unsigned char *)crc,4); 1312 raw+=2; 1313 1314 /* data gap */ 1315 for(i=0;i<38;i++) 1316 *raw++=0x92549254; 1317 1318 return raw; /* wrote 652 MFM words */ 1319 } 1320 1321 static void dos_write(int disk) 1322 { 1323 int cnt; 1324 unsigned long raw = (unsigned long) raw_buf; 1325 unsigned long *ptr=(unsigned long *)raw; 1326 1327 disk&=3; 1328 /* really gap4 + indexgap , but we write it first and round it up */ 1329 for (cnt=0;cnt<425;cnt++) 1330 *ptr++=0x92549254; 1331 1332 /* the following is just guessed */ 1333 if (unit[disk].type->sect_mult==2) /* check for HD-Disks */ 1334 for(cnt=0;cnt<473;cnt++) 1335 *ptr++=0x92549254; 1336 1337 /* now the index marks...*/ 1338 for (cnt=0;cnt<20;cnt++) 1339 *ptr++=0x92549254; 1340 for (cnt=0;cnt<6;cnt++) 1341 *ptr++=0xaaaaaaaa; 1342 *ptr++=0x52245224; 1343 *ptr++=0x52245552; 1344 for (cnt=0;cnt<20;cnt++) 1345 *ptr++=0x92549254; 1346 1347 /* sectors */ 1348 for(cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++) 1349 ptr=ms_putsec(disk,ptr,cnt); 1350 1351 *(ushort *)ptr = 0xaaa8; /* MFM word before is always 0x9254 */ 1352 } 1353 1354 /* 1355 * Here comes the high level stuff (i.e. the filesystem interface) 1356 * and helper functions. 1357 * Normally this should be the only part that has to be adapted to 1358 * different kernel versions. 1359 */ 1360 1361 /* FIXME: this assumes the drive is still spinning - 1362 * which is only true if we complete writing a track within three seconds 1363 */ 1364 static void flush_track_callback(struct timer_list *timer) 1365 { 1366 unsigned long nr = ((unsigned long)timer - 1367 (unsigned long)&flush_track_timer[0]) / 1368 sizeof(flush_track_timer[0]); 1369 1370 nr&=3; 1371 writefromint = 1; 1372 if (!try_fdc(nr)) { 1373 /* we might block in an interrupt, so try again later */ 1374 flush_track_timer[nr].expires = jiffies + 1; 1375 add_timer(flush_track_timer + nr); 1376 return; 1377 } 1378 get_fdc(nr); 1379 (*unit[nr].dtype->write_fkt)(nr); 1380 if (!raw_write(nr)) { 1381 printk (KERN_NOTICE "floppy disk write protected\n"); 1382 writefromint = 0; 1383 writepending = 0; 1384 } 1385 rel_fdc(); 1386 } 1387 1388 static int non_int_flush_track (unsigned long nr) 1389 { 1390 unsigned long flags; 1391 1392 nr&=3; 1393 writefromint = 0; 1394 del_timer(&post_write_timer); 1395 get_fdc(nr); 1396 if (!fd_motor_on(nr)) { 1397 writepending = 0; 1398 rel_fdc(); 1399 return 0; 1400 } 1401 local_irq_save(flags); 1402 if (writepending != 2) { 1403 local_irq_restore(flags); 1404 (*unit[nr].dtype->write_fkt)(nr); 1405 if (!raw_write(nr)) { 1406 printk (KERN_NOTICE "floppy disk write protected " 1407 "in write!\n"); 1408 writepending = 0; 1409 return 0; 1410 } 1411 wait_event(wait_fd_block, block_flag != 2); 1412 } 1413 else { 1414 local_irq_restore(flags); 1415 ms_delay(2); /* 2 ms post_write delay */ 1416 post_write(nr); 1417 } 1418 rel_fdc(); 1419 return 1; 1420 } 1421 1422 static int get_track(int drive, int track) 1423 { 1424 int error, errcnt; 1425 1426 drive&=3; 1427 if (unit[drive].track == track) 1428 return 0; 1429 get_fdc(drive); 1430 if (!fd_motor_on(drive)) { 1431 rel_fdc(); 1432 return -1; 1433 } 1434 1435 if (unit[drive].dirty == 1) { 1436 del_timer (flush_track_timer + drive); 1437 non_int_flush_track (drive); 1438 } 1439 errcnt = 0; 1440 while (errcnt < MAX_ERRORS) { 1441 if (!fd_seek(drive, track)) 1442 return -1; 1443 raw_read(drive); 1444 error = (*unit[drive].dtype->read_fkt)(drive); 1445 if (error == 0) { 1446 rel_fdc(); 1447 return 0; 1448 } 1449 /* Read Error Handling: recalibrate and try again */ 1450 unit[drive].track = -1; 1451 errcnt++; 1452 } 1453 rel_fdc(); 1454 return -1; 1455 } 1456 1457 static blk_status_t amiflop_rw_cur_segment(struct amiga_floppy_struct *floppy, 1458 struct request *rq) 1459 { 1460 int drive = floppy - unit; 1461 unsigned int cnt, block, track, sector; 1462 char *data; 1463 1464 for (cnt = 0; cnt < blk_rq_cur_sectors(rq); cnt++) { 1465 #ifdef DEBUG 1466 printk("fd: sector %ld + %d requested for %s\n", 1467 blk_rq_pos(rq), cnt, 1468 (rq_data_dir(rq) == READ) ? "read" : "write"); 1469 #endif 1470 block = blk_rq_pos(rq) + cnt; 1471 track = block / (floppy->dtype->sects * floppy->type->sect_mult); 1472 sector = block % (floppy->dtype->sects * floppy->type->sect_mult); 1473 data = bio_data(rq->bio) + 512 * cnt; 1474 #ifdef DEBUG 1475 printk("access to track %d, sector %d, with buffer at " 1476 "0x%08lx\n", track, sector, data); 1477 #endif 1478 1479 if (get_track(drive, track) == -1) 1480 return BLK_STS_IOERR; 1481 1482 if (rq_data_dir(rq) == READ) { 1483 memcpy(data, floppy->trackbuf + sector * 512, 512); 1484 } else { 1485 memcpy(floppy->trackbuf + sector * 512, data, 512); 1486 1487 /* keep the drive spinning while writes are scheduled */ 1488 if (!fd_motor_on(drive)) 1489 return BLK_STS_IOERR; 1490 /* 1491 * setup a callback to write the track buffer 1492 * after a short (1 tick) delay. 1493 */ 1494 floppy->dirty = 1; 1495 /* reset the timer */ 1496 mod_timer (flush_track_timer + drive, jiffies + 1); 1497 } 1498 } 1499 1500 return BLK_STS_OK; 1501 } 1502 1503 static blk_status_t amiflop_queue_rq(struct blk_mq_hw_ctx *hctx, 1504 const struct blk_mq_queue_data *bd) 1505 { 1506 struct request *rq = bd->rq; 1507 struct amiga_floppy_struct *floppy = rq->rq_disk->private_data; 1508 blk_status_t err; 1509 1510 if (!spin_trylock_irq(&amiflop_lock)) 1511 return BLK_STS_DEV_RESOURCE; 1512 1513 blk_mq_start_request(rq); 1514 1515 do { 1516 err = amiflop_rw_cur_segment(floppy, rq); 1517 } while (blk_update_request(rq, err, blk_rq_cur_bytes(rq))); 1518 blk_mq_end_request(rq, err); 1519 1520 spin_unlock_irq(&amiflop_lock); 1521 return BLK_STS_OK; 1522 } 1523 1524 static int fd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1525 { 1526 int drive = MINOR(bdev->bd_dev) & 3; 1527 1528 geo->heads = unit[drive].type->heads; 1529 geo->sectors = unit[drive].dtype->sects * unit[drive].type->sect_mult; 1530 geo->cylinders = unit[drive].type->tracks; 1531 return 0; 1532 } 1533 1534 static int fd_locked_ioctl(struct block_device *bdev, fmode_t mode, 1535 unsigned int cmd, unsigned long param) 1536 { 1537 struct amiga_floppy_struct *p = bdev->bd_disk->private_data; 1538 int drive = p - unit; 1539 static struct floppy_struct getprm; 1540 void __user *argp = (void __user *)param; 1541 1542 switch(cmd){ 1543 case FDFMTBEG: 1544 get_fdc(drive); 1545 if (fd_ref[drive] > 1) { 1546 rel_fdc(); 1547 return -EBUSY; 1548 } 1549 fsync_bdev(bdev); 1550 if (fd_motor_on(drive) == 0) { 1551 rel_fdc(); 1552 return -ENODEV; 1553 } 1554 if (fd_calibrate(drive) == 0) { 1555 rel_fdc(); 1556 return -ENXIO; 1557 } 1558 floppy_off(drive); 1559 rel_fdc(); 1560 break; 1561 case FDFMTTRK: 1562 if (param < p->type->tracks * p->type->heads) 1563 { 1564 get_fdc(drive); 1565 if (fd_seek(drive,param) != 0){ 1566 memset(p->trackbuf, FD_FILL_BYTE, 1567 p->dtype->sects * p->type->sect_mult * 512); 1568 non_int_flush_track(drive); 1569 } 1570 floppy_off(drive); 1571 rel_fdc(); 1572 } 1573 else 1574 return -EINVAL; 1575 break; 1576 case FDFMTEND: 1577 floppy_off(drive); 1578 invalidate_bdev(bdev); 1579 break; 1580 case FDGETPRM: 1581 memset((void *)&getprm, 0, sizeof (getprm)); 1582 getprm.track=p->type->tracks; 1583 getprm.head=p->type->heads; 1584 getprm.sect=p->dtype->sects * p->type->sect_mult; 1585 getprm.size=p->blocks; 1586 if (copy_to_user(argp, &getprm, sizeof(struct floppy_struct))) 1587 return -EFAULT; 1588 break; 1589 case FDSETPRM: 1590 case FDDEFPRM: 1591 return -EINVAL; 1592 case FDFLUSH: /* unconditionally, even if not needed */ 1593 del_timer (flush_track_timer + drive); 1594 non_int_flush_track(drive); 1595 break; 1596 #ifdef RAW_IOCTL 1597 case IOCTL_RAW_TRACK: 1598 if (copy_to_user(argp, raw_buf, p->type->read_size)) 1599 return -EFAULT; 1600 else 1601 return p->type->read_size; 1602 #endif 1603 default: 1604 return -ENOSYS; 1605 } 1606 return 0; 1607 } 1608 1609 static int fd_ioctl(struct block_device *bdev, fmode_t mode, 1610 unsigned int cmd, unsigned long param) 1611 { 1612 int ret; 1613 1614 mutex_lock(&amiflop_mutex); 1615 ret = fd_locked_ioctl(bdev, mode, cmd, param); 1616 mutex_unlock(&amiflop_mutex); 1617 1618 return ret; 1619 } 1620 1621 static void fd_probe(int dev) 1622 { 1623 unsigned long code; 1624 int type; 1625 int drive; 1626 1627 drive = dev & 3; 1628 code = fd_get_drive_id(drive); 1629 1630 /* get drive type */ 1631 for (type = 0; type < num_dr_types; type++) 1632 if (drive_types[type].code == code) 1633 break; 1634 1635 if (type >= num_dr_types) { 1636 printk(KERN_WARNING "fd_probe: unsupported drive type " 1637 "%08lx found\n", code); 1638 unit[drive].type = &drive_types[num_dr_types-1]; /* FD_NODRIVE */ 1639 return; 1640 } 1641 1642 unit[drive].type = drive_types + type; 1643 unit[drive].track = -1; 1644 1645 unit[drive].disk = -1; 1646 unit[drive].motor = 0; 1647 unit[drive].busy = 0; 1648 unit[drive].status = -1; 1649 } 1650 1651 /* 1652 * floppy_open check for aliasing (/dev/fd0 can be the same as 1653 * /dev/PS0 etc), and disallows simultaneous access to the same 1654 * drive with different device numbers. 1655 */ 1656 static int floppy_open(struct block_device *bdev, fmode_t mode) 1657 { 1658 int drive = MINOR(bdev->bd_dev) & 3; 1659 int system = (MINOR(bdev->bd_dev) & 4) >> 2; 1660 int old_dev; 1661 unsigned long flags; 1662 1663 mutex_lock(&amiflop_mutex); 1664 old_dev = fd_device[drive]; 1665 1666 if (fd_ref[drive] && old_dev != system) { 1667 mutex_unlock(&amiflop_mutex); 1668 return -EBUSY; 1669 } 1670 1671 if (mode & (FMODE_READ|FMODE_WRITE)) { 1672 check_disk_change(bdev); 1673 if (mode & FMODE_WRITE) { 1674 int wrprot; 1675 1676 get_fdc(drive); 1677 fd_select (drive); 1678 wrprot = !(ciaa.pra & DSKPROT); 1679 fd_deselect (drive); 1680 rel_fdc(); 1681 1682 if (wrprot) { 1683 mutex_unlock(&amiflop_mutex); 1684 return -EROFS; 1685 } 1686 } 1687 } 1688 1689 local_irq_save(flags); 1690 fd_ref[drive]++; 1691 fd_device[drive] = system; 1692 local_irq_restore(flags); 1693 1694 unit[drive].dtype=&data_types[system]; 1695 unit[drive].blocks=unit[drive].type->heads*unit[drive].type->tracks* 1696 data_types[system].sects*unit[drive].type->sect_mult; 1697 set_capacity(unit[drive].gendisk, unit[drive].blocks); 1698 1699 printk(KERN_INFO "fd%d: accessing %s-disk with %s-layout\n",drive, 1700 unit[drive].type->name, data_types[system].name); 1701 1702 mutex_unlock(&amiflop_mutex); 1703 return 0; 1704 } 1705 1706 static void floppy_release(struct gendisk *disk, fmode_t mode) 1707 { 1708 struct amiga_floppy_struct *p = disk->private_data; 1709 int drive = p - unit; 1710 1711 mutex_lock(&amiflop_mutex); 1712 if (unit[drive].dirty == 1) { 1713 del_timer (flush_track_timer + drive); 1714 non_int_flush_track (drive); 1715 } 1716 1717 if (!fd_ref[drive]--) { 1718 printk(KERN_CRIT "floppy_release with fd_ref == 0"); 1719 fd_ref[drive] = 0; 1720 } 1721 #ifdef MODULE 1722 floppy_off (drive); 1723 #endif 1724 mutex_unlock(&amiflop_mutex); 1725 } 1726 1727 /* 1728 * check_events is never called from an interrupt, so we can relax a bit 1729 * here, sleep etc. Note that floppy-on tries to set current_DOR to point 1730 * to the desired drive, but it will probably not survive the sleep if 1731 * several floppies are used at the same time: thus the loop. 1732 */ 1733 static unsigned amiga_check_events(struct gendisk *disk, unsigned int clearing) 1734 { 1735 struct amiga_floppy_struct *p = disk->private_data; 1736 int drive = p - unit; 1737 int changed; 1738 static int first_time = 1; 1739 1740 if (first_time) 1741 changed = first_time--; 1742 else { 1743 get_fdc(drive); 1744 fd_select (drive); 1745 changed = !(ciaa.pra & DSKCHANGE); 1746 fd_deselect (drive); 1747 rel_fdc(); 1748 } 1749 1750 if (changed) { 1751 fd_probe(drive); 1752 p->track = -1; 1753 p->dirty = 0; 1754 writepending = 0; /* if this was true before, too bad! */ 1755 writefromint = 0; 1756 return DISK_EVENT_MEDIA_CHANGE; 1757 } 1758 return 0; 1759 } 1760 1761 static const struct block_device_operations floppy_fops = { 1762 .owner = THIS_MODULE, 1763 .open = floppy_open, 1764 .release = floppy_release, 1765 .ioctl = fd_ioctl, 1766 .getgeo = fd_getgeo, 1767 .check_events = amiga_check_events, 1768 }; 1769 1770 static const struct blk_mq_ops amiflop_mq_ops = { 1771 .queue_rq = amiflop_queue_rq, 1772 }; 1773 1774 static struct gendisk *fd_alloc_disk(int drive) 1775 { 1776 struct gendisk *disk; 1777 1778 disk = alloc_disk(1); 1779 if (!disk) 1780 goto out; 1781 1782 disk->queue = blk_mq_init_sq_queue(&unit[drive].tag_set, &amiflop_mq_ops, 1783 2, BLK_MQ_F_SHOULD_MERGE); 1784 if (IS_ERR(disk->queue)) { 1785 disk->queue = NULL; 1786 goto out_put_disk; 1787 } 1788 1789 unit[drive].trackbuf = kmalloc(FLOPPY_MAX_SECTORS * 512, GFP_KERNEL); 1790 if (!unit[drive].trackbuf) 1791 goto out_cleanup_queue; 1792 1793 return disk; 1794 1795 out_cleanup_queue: 1796 blk_cleanup_queue(disk->queue); 1797 disk->queue = NULL; 1798 blk_mq_free_tag_set(&unit[drive].tag_set); 1799 out_put_disk: 1800 put_disk(disk); 1801 out: 1802 unit[drive].type->code = FD_NODRIVE; 1803 return NULL; 1804 } 1805 1806 static int __init fd_probe_drives(void) 1807 { 1808 int drive,drives,nomem; 1809 1810 pr_info("FD: probing units\nfound"); 1811 drives=0; 1812 nomem=0; 1813 for(drive=0;drive<FD_MAX_UNITS;drive++) { 1814 struct gendisk *disk; 1815 fd_probe(drive); 1816 if (unit[drive].type->code == FD_NODRIVE) 1817 continue; 1818 1819 disk = fd_alloc_disk(drive); 1820 if (!disk) { 1821 pr_cont(" no mem for fd%d", drive); 1822 nomem = 1; 1823 continue; 1824 } 1825 unit[drive].gendisk = disk; 1826 drives++; 1827 1828 pr_cont(" fd%d",drive); 1829 disk->major = FLOPPY_MAJOR; 1830 disk->first_minor = drive; 1831 disk->fops = &floppy_fops; 1832 disk->events = DISK_EVENT_MEDIA_CHANGE; 1833 sprintf(disk->disk_name, "fd%d", drive); 1834 disk->private_data = &unit[drive]; 1835 set_capacity(disk, 880*2); 1836 add_disk(disk); 1837 } 1838 if ((drives > 0) || (nomem == 0)) { 1839 if (drives == 0) 1840 pr_cont(" no drives"); 1841 pr_cont("\n"); 1842 return drives; 1843 } 1844 pr_cont("\n"); 1845 return -ENOMEM; 1846 } 1847 1848 static struct kobject *floppy_find(dev_t dev, int *part, void *data) 1849 { 1850 int drive = *part & 3; 1851 if (unit[drive].type->code == FD_NODRIVE) 1852 return NULL; 1853 *part = 0; 1854 return get_disk_and_module(unit[drive].gendisk); 1855 } 1856 1857 static int __init amiga_floppy_probe(struct platform_device *pdev) 1858 { 1859 int i, ret; 1860 1861 if (register_blkdev(FLOPPY_MAJOR,"fd")) 1862 return -EBUSY; 1863 1864 ret = -ENOMEM; 1865 raw_buf = amiga_chip_alloc(RAW_BUF_SIZE, "Floppy"); 1866 if (!raw_buf) { 1867 printk("fd: cannot get chip mem buffer\n"); 1868 goto out_blkdev; 1869 } 1870 1871 ret = -EBUSY; 1872 if (request_irq(IRQ_AMIGA_DSKBLK, fd_block_done, 0, "floppy_dma", NULL)) { 1873 printk("fd: cannot get irq for dma\n"); 1874 goto out_irq; 1875 } 1876 1877 if (request_irq(IRQ_AMIGA_CIAA_TB, ms_isr, 0, "floppy_timer", NULL)) { 1878 printk("fd: cannot get irq for timer\n"); 1879 goto out_irq2; 1880 } 1881 1882 ret = -ENODEV; 1883 if (fd_probe_drives() < 1) /* No usable drives */ 1884 goto out_probe; 1885 1886 blk_register_region(MKDEV(FLOPPY_MAJOR, 0), 256, THIS_MODULE, 1887 floppy_find, NULL, NULL); 1888 1889 /* initialize variables */ 1890 timer_setup(&motor_on_timer, motor_on_callback, 0); 1891 motor_on_timer.expires = 0; 1892 for (i = 0; i < FD_MAX_UNITS; i++) { 1893 timer_setup(&motor_off_timer[i], fd_motor_off, 0); 1894 motor_off_timer[i].expires = 0; 1895 timer_setup(&flush_track_timer[i], flush_track_callback, 0); 1896 flush_track_timer[i].expires = 0; 1897 1898 unit[i].track = -1; 1899 } 1900 1901 timer_setup(&post_write_timer, post_write_callback, 0); 1902 post_write_timer.expires = 0; 1903 1904 for (i = 0; i < 128; i++) 1905 mfmdecode[i]=255; 1906 for (i = 0; i < 16; i++) 1907 mfmdecode[mfmencode[i]]=i; 1908 1909 /* make sure that disk DMA is enabled */ 1910 custom.dmacon = DMAF_SETCLR | DMAF_DISK; 1911 1912 /* init ms timer */ 1913 ciaa.crb = 8; /* one-shot, stop */ 1914 return 0; 1915 1916 out_probe: 1917 free_irq(IRQ_AMIGA_CIAA_TB, NULL); 1918 out_irq2: 1919 free_irq(IRQ_AMIGA_DSKBLK, NULL); 1920 out_irq: 1921 amiga_chip_free(raw_buf); 1922 out_blkdev: 1923 unregister_blkdev(FLOPPY_MAJOR,"fd"); 1924 return ret; 1925 } 1926 1927 static struct platform_driver amiga_floppy_driver = { 1928 .driver = { 1929 .name = "amiga-floppy", 1930 }, 1931 }; 1932 1933 static int __init amiga_floppy_init(void) 1934 { 1935 return platform_driver_probe(&amiga_floppy_driver, amiga_floppy_probe); 1936 } 1937 1938 module_init(amiga_floppy_init); 1939 1940 #ifndef MODULE 1941 static int __init amiga_floppy_setup (char *str) 1942 { 1943 int n; 1944 if (!MACH_IS_AMIGA) 1945 return 0; 1946 if (!get_option(&str, &n)) 1947 return 0; 1948 printk (KERN_INFO "amiflop: Setting default df0 to %x\n", n); 1949 fd_def_df0 = n; 1950 return 1; 1951 } 1952 1953 __setup("floppy=", amiga_floppy_setup); 1954 #endif 1955 1956 MODULE_ALIAS("platform:amiga-floppy"); 1957