1 /* 2 * linux/amiga/amiflop.c 3 * 4 * Copyright (C) 1993 Greg Harp 5 * Portions of this driver are based on code contributed by Brad Pepers 6 * 7 * revised 28.5.95 by Joerg Dorchain 8 * - now no bugs(?) any more for both HD & DD 9 * - added support for 40 Track 5.25" drives, 80-track hopefully behaves 10 * like 3.5" dd (no way to test - are there any 5.25" drives out there 11 * that work on an A4000?) 12 * - wrote formatting routine (maybe dirty, but works) 13 * 14 * june/july 1995 added ms-dos support by Joerg Dorchain 15 * (portions based on messydos.device and various contributors) 16 * - currently only 9 and 18 sector disks 17 * 18 * - fixed a bug with the internal trackbuffer when using multiple 19 * disks the same time 20 * - made formatting a bit safer 21 * - added command line and machine based default for "silent" df0 22 * 23 * december 1995 adapted for 1.2.13pl4 by Joerg Dorchain 24 * - works but I think it's inefficient. (look in redo_fd_request) 25 * But the changes were very efficient. (only three and a half lines) 26 * 27 * january 1996 added special ioctl for tracking down read/write problems 28 * - usage ioctl(d, RAW_TRACK, ptr); the raw track buffer (MFM-encoded data 29 * is copied to area. (area should be large enough since no checking is 30 * done - 30K is currently sufficient). return the actual size of the 31 * trackbuffer 32 * - replaced udelays() by a timer (CIAA timer B) for the waits 33 * needed for the disk mechanic. 34 * 35 * february 1996 fixed error recovery and multiple disk access 36 * - both got broken the first time I tampered with the driver :-( 37 * - still not safe, but better than before 38 * 39 * revised Marts 3rd, 1996 by Jes Sorensen for use in the 1.3.28 kernel. 40 * - Minor changes to accept the kdev_t. 41 * - Replaced some more udelays with ms_delays. Udelay is just a loop, 42 * and so the delay will be different depending on the given 43 * processor :-( 44 * - The driver could use a major cleanup because of the new 45 * major/minor handling that came with kdev_t. It seems to work for 46 * the time being, but I can't guarantee that it will stay like 47 * that when we start using 16 (24?) bit minors. 48 * 49 * restructured jan 1997 by Joerg Dorchain 50 * - Fixed Bug accessing multiple disks 51 * - some code cleanup 52 * - added trackbuffer for each drive to speed things up 53 * - fixed some race conditions (who finds the next may send it to me ;-) 54 */ 55 56 #include <linux/module.h> 57 58 #include <linux/fd.h> 59 #include <linux/hdreg.h> 60 #include <linux/delay.h> 61 #include <linux/init.h> 62 #include <linux/amifdreg.h> 63 #include <linux/amifd.h> 64 #include <linux/buffer_head.h> 65 #include <linux/blkdev.h> 66 #include <linux/elevator.h> 67 #include <linux/interrupt.h> 68 69 #include <asm/setup.h> 70 #include <asm/uaccess.h> 71 #include <asm/amigahw.h> 72 #include <asm/amigaints.h> 73 #include <asm/irq.h> 74 75 #undef DEBUG /* print _LOTS_ of infos */ 76 77 #define RAW_IOCTL 78 #ifdef RAW_IOCTL 79 #define IOCTL_RAW_TRACK 0x5254524B /* 'RTRK' */ 80 #endif 81 82 /* 83 * Defines 84 */ 85 86 /* 87 * Error codes 88 */ 89 #define FD_OK 0 /* operation succeeded */ 90 #define FD_ERROR -1 /* general error (seek, read, write, etc) */ 91 #define FD_NOUNIT 1 /* unit does not exist */ 92 #define FD_UNITBUSY 2 /* unit already active */ 93 #define FD_NOTACTIVE 3 /* unit is not active */ 94 #define FD_NOTREADY 4 /* unit is not ready (motor not on/no disk) */ 95 96 #define MFM_NOSYNC 1 97 #define MFM_HEADER 2 98 #define MFM_DATA 3 99 #define MFM_TRACK 4 100 101 /* 102 * Floppy ID values 103 */ 104 #define FD_NODRIVE 0x00000000 /* response when no unit is present */ 105 #define FD_DD_3 0xffffffff /* double-density 3.5" (880K) drive */ 106 #define FD_HD_3 0x55555555 /* high-density 3.5" (1760K) drive */ 107 #define FD_DD_5 0xaaaaaaaa /* double-density 5.25" (440K) drive */ 108 109 static unsigned long int fd_def_df0 = FD_DD_3; /* default for df0 if it doesn't identify */ 110 111 module_param(fd_def_df0, ulong, 0); 112 MODULE_LICENSE("GPL"); 113 114 static struct request_queue *floppy_queue; 115 #define QUEUE (floppy_queue) 116 #define CURRENT elv_next_request(floppy_queue) 117 118 /* 119 * Macros 120 */ 121 #define MOTOR_ON (ciab.prb &= ~DSKMOTOR) 122 #define MOTOR_OFF (ciab.prb |= DSKMOTOR) 123 #define SELECT(mask) (ciab.prb &= ~mask) 124 #define DESELECT(mask) (ciab.prb |= mask) 125 #define SELMASK(drive) (1 << (3 + (drive & 3))) 126 127 static struct fd_drive_type drive_types[] = { 128 /* code name tr he rdsz wrsz sm pc1 pc2 sd st st*/ 129 /* warning: times are now in milliseconds (ms) */ 130 { FD_DD_3, "DD 3.5", 80, 2, 14716, 13630, 1, 80,161, 3, 18, 1}, 131 { FD_HD_3, "HD 3.5", 80, 2, 28344, 27258, 2, 80,161, 3, 18, 1}, 132 { FD_DD_5, "DD 5.25", 40, 2, 14716, 13630, 1, 40, 81, 6, 30, 2}, 133 { FD_NODRIVE, "No Drive", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 134 }; 135 static int num_dr_types = ARRAY_SIZE(drive_types); 136 137 static int amiga_read(int), dos_read(int); 138 static void amiga_write(int), dos_write(int); 139 static struct fd_data_type data_types[] = { 140 { "Amiga", 11 , amiga_read, amiga_write}, 141 { "MS-Dos", 9, dos_read, dos_write} 142 }; 143 144 /* current info on each unit */ 145 static struct amiga_floppy_struct unit[FD_MAX_UNITS]; 146 147 static struct timer_list flush_track_timer[FD_MAX_UNITS]; 148 static struct timer_list post_write_timer; 149 static struct timer_list motor_on_timer; 150 static struct timer_list motor_off_timer[FD_MAX_UNITS]; 151 static int on_attempts; 152 153 /* Synchronization of FDC access */ 154 /* request loop (trackbuffer) */ 155 static volatile int fdc_busy = -1; 156 static volatile int fdc_nested; 157 static DECLARE_WAIT_QUEUE_HEAD(fdc_wait); 158 159 static DECLARE_WAIT_QUEUE_HEAD(motor_wait); 160 161 static volatile int selected = -1; /* currently selected drive */ 162 163 static int writepending; 164 static int writefromint; 165 static char *raw_buf; 166 167 static DEFINE_SPINLOCK(amiflop_lock); 168 169 #define RAW_BUF_SIZE 30000 /* size of raw disk data */ 170 171 /* 172 * These are global variables, as that's the easiest way to give 173 * information to interrupts. They are the data used for the current 174 * request. 175 */ 176 static volatile char block_flag; 177 static DECLARE_WAIT_QUEUE_HEAD(wait_fd_block); 178 179 /* MS-Dos MFM Coding tables (should go quick and easy) */ 180 static unsigned char mfmencode[16]={ 181 0x2a, 0x29, 0x24, 0x25, 0x12, 0x11, 0x14, 0x15, 182 0x4a, 0x49, 0x44, 0x45, 0x52, 0x51, 0x54, 0x55 183 }; 184 static unsigned char mfmdecode[128]; 185 186 /* floppy internal millisecond timer stuff */ 187 static volatile int ms_busy = -1; 188 static DECLARE_WAIT_QUEUE_HEAD(ms_wait); 189 #define MS_TICKS ((amiga_eclock+50)/1000) 190 191 /* 192 * Note that MAX_ERRORS=X doesn't imply that we retry every bad read 193 * max X times - some types of errors increase the errorcount by 2 or 194 * even 3, so we might actually retry only X/2 times before giving up. 195 */ 196 #define MAX_ERRORS 12 197 198 #define custom amiga_custom 199 200 /* Prevent "aliased" accesses. */ 201 static int fd_ref[4] = { 0,0,0,0 }; 202 static int fd_device[4] = { 0, 0, 0, 0 }; 203 204 /* 205 * Here come the actual hardware access and helper functions. 206 * They are not reentrant and single threaded because all drives 207 * share the same hardware and the same trackbuffer. 208 */ 209 210 /* Milliseconds timer */ 211 212 static irqreturn_t ms_isr(int irq, void *dummy) 213 { 214 ms_busy = -1; 215 wake_up(&ms_wait); 216 return IRQ_HANDLED; 217 } 218 219 /* all waits are queued up 220 A more generic routine would do a schedule a la timer.device */ 221 static void ms_delay(int ms) 222 { 223 unsigned long flags; 224 int ticks; 225 if (ms > 0) { 226 local_irq_save(flags); 227 while (ms_busy == 0) 228 sleep_on(&ms_wait); 229 ms_busy = 0; 230 local_irq_restore(flags); 231 ticks = MS_TICKS*ms-1; 232 ciaa.tblo=ticks%256; 233 ciaa.tbhi=ticks/256; 234 ciaa.crb=0x19; /*count eclock, force load, one-shoot, start */ 235 sleep_on(&ms_wait); 236 } 237 } 238 239 /* Hardware semaphore */ 240 241 /* returns true when we would get the semaphore */ 242 static inline int try_fdc(int drive) 243 { 244 drive &= 3; 245 return ((fdc_busy < 0) || (fdc_busy == drive)); 246 } 247 248 static void get_fdc(int drive) 249 { 250 unsigned long flags; 251 252 drive &= 3; 253 #ifdef DEBUG 254 printk("get_fdc: drive %d fdc_busy %d fdc_nested %d\n",drive,fdc_busy,fdc_nested); 255 #endif 256 local_irq_save(flags); 257 while (!try_fdc(drive)) 258 sleep_on(&fdc_wait); 259 fdc_busy = drive; 260 fdc_nested++; 261 local_irq_restore(flags); 262 } 263 264 static inline void rel_fdc(void) 265 { 266 #ifdef DEBUG 267 if (fdc_nested == 0) 268 printk("fd: unmatched rel_fdc\n"); 269 printk("rel_fdc: fdc_busy %d fdc_nested %d\n",fdc_busy,fdc_nested); 270 #endif 271 fdc_nested--; 272 if (fdc_nested == 0) { 273 fdc_busy = -1; 274 wake_up(&fdc_wait); 275 } 276 } 277 278 static void fd_select (int drive) 279 { 280 unsigned char prb = ~0; 281 282 drive&=3; 283 #ifdef DEBUG 284 printk("selecting %d\n",drive); 285 #endif 286 if (drive == selected) 287 return; 288 get_fdc(drive); 289 selected = drive; 290 291 if (unit[drive].track % 2 != 0) 292 prb &= ~DSKSIDE; 293 if (unit[drive].motor == 1) 294 prb &= ~DSKMOTOR; 295 ciab.prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3)); 296 ciab.prb = prb; 297 prb &= ~SELMASK(drive); 298 ciab.prb = prb; 299 rel_fdc(); 300 } 301 302 static void fd_deselect (int drive) 303 { 304 unsigned char prb; 305 unsigned long flags; 306 307 drive&=3; 308 #ifdef DEBUG 309 printk("deselecting %d\n",drive); 310 #endif 311 if (drive != selected) { 312 printk(KERN_WARNING "Deselecting drive %d while %d was selected!\n",drive,selected); 313 return; 314 } 315 316 get_fdc(drive); 317 local_irq_save(flags); 318 319 selected = -1; 320 321 prb = ciab.prb; 322 prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3)); 323 ciab.prb = prb; 324 325 local_irq_restore (flags); 326 rel_fdc(); 327 328 } 329 330 static void motor_on_callback(unsigned long nr) 331 { 332 if (!(ciaa.pra & DSKRDY) || --on_attempts == 0) { 333 wake_up (&motor_wait); 334 } else { 335 motor_on_timer.expires = jiffies + HZ/10; 336 add_timer(&motor_on_timer); 337 } 338 } 339 340 static int fd_motor_on(int nr) 341 { 342 nr &= 3; 343 344 del_timer(motor_off_timer + nr); 345 346 if (!unit[nr].motor) { 347 unit[nr].motor = 1; 348 fd_select(nr); 349 350 motor_on_timer.data = nr; 351 mod_timer(&motor_on_timer, jiffies + HZ/2); 352 353 on_attempts = 10; 354 sleep_on (&motor_wait); 355 fd_deselect(nr); 356 } 357 358 if (on_attempts == 0) { 359 on_attempts = -1; 360 #if 0 361 printk (KERN_ERR "motor_on failed, turning motor off\n"); 362 fd_motor_off (nr); 363 return 0; 364 #else 365 printk (KERN_WARNING "DSKRDY not set after 1.5 seconds - assuming drive is spinning notwithstanding\n"); 366 #endif 367 } 368 369 return 1; 370 } 371 372 static void fd_motor_off(unsigned long drive) 373 { 374 long calledfromint; 375 #ifdef MODULE 376 long decusecount; 377 378 decusecount = drive & 0x40000000; 379 #endif 380 calledfromint = drive & 0x80000000; 381 drive&=3; 382 if (calledfromint && !try_fdc(drive)) { 383 /* We would be blocked in an interrupt, so try again later */ 384 motor_off_timer[drive].expires = jiffies + 1; 385 add_timer(motor_off_timer + drive); 386 return; 387 } 388 unit[drive].motor = 0; 389 fd_select(drive); 390 udelay (1); 391 fd_deselect(drive); 392 } 393 394 static void floppy_off (unsigned int nr) 395 { 396 int drive; 397 398 drive = nr & 3; 399 /* called this way it is always from interrupt */ 400 motor_off_timer[drive].data = nr | 0x80000000; 401 mod_timer(motor_off_timer + drive, jiffies + 3*HZ); 402 } 403 404 static int fd_calibrate(int drive) 405 { 406 unsigned char prb; 407 int n; 408 409 drive &= 3; 410 get_fdc(drive); 411 if (!fd_motor_on (drive)) 412 return 0; 413 fd_select (drive); 414 prb = ciab.prb; 415 prb |= DSKSIDE; 416 prb &= ~DSKDIREC; 417 ciab.prb = prb; 418 for (n = unit[drive].type->tracks/2; n != 0; --n) { 419 if (ciaa.pra & DSKTRACK0) 420 break; 421 prb &= ~DSKSTEP; 422 ciab.prb = prb; 423 prb |= DSKSTEP; 424 udelay (2); 425 ciab.prb = prb; 426 ms_delay(unit[drive].type->step_delay); 427 } 428 ms_delay (unit[drive].type->settle_time); 429 prb |= DSKDIREC; 430 n = unit[drive].type->tracks + 20; 431 for (;;) { 432 prb &= ~DSKSTEP; 433 ciab.prb = prb; 434 prb |= DSKSTEP; 435 udelay (2); 436 ciab.prb = prb; 437 ms_delay(unit[drive].type->step_delay + 1); 438 if ((ciaa.pra & DSKTRACK0) == 0) 439 break; 440 if (--n == 0) { 441 printk (KERN_ERR "fd%d: calibrate failed, turning motor off\n", drive); 442 fd_motor_off (drive); 443 unit[drive].track = -1; 444 rel_fdc(); 445 return 0; 446 } 447 } 448 unit[drive].track = 0; 449 ms_delay(unit[drive].type->settle_time); 450 451 rel_fdc(); 452 fd_deselect(drive); 453 return 1; 454 } 455 456 static int fd_seek(int drive, int track) 457 { 458 unsigned char prb; 459 int cnt; 460 461 #ifdef DEBUG 462 printk("seeking drive %d to track %d\n",drive,track); 463 #endif 464 drive &= 3; 465 get_fdc(drive); 466 if (unit[drive].track == track) { 467 rel_fdc(); 468 return 1; 469 } 470 if (!fd_motor_on(drive)) { 471 rel_fdc(); 472 return 0; 473 } 474 if (unit[drive].track < 0 && !fd_calibrate(drive)) { 475 rel_fdc(); 476 return 0; 477 } 478 479 fd_select (drive); 480 cnt = unit[drive].track/2 - track/2; 481 prb = ciab.prb; 482 prb |= DSKSIDE | DSKDIREC; 483 if (track % 2 != 0) 484 prb &= ~DSKSIDE; 485 if (cnt < 0) { 486 cnt = - cnt; 487 prb &= ~DSKDIREC; 488 } 489 ciab.prb = prb; 490 if (track % 2 != unit[drive].track % 2) 491 ms_delay (unit[drive].type->side_time); 492 unit[drive].track = track; 493 if (cnt == 0) { 494 rel_fdc(); 495 fd_deselect(drive); 496 return 1; 497 } 498 do { 499 prb &= ~DSKSTEP; 500 ciab.prb = prb; 501 prb |= DSKSTEP; 502 udelay (1); 503 ciab.prb = prb; 504 ms_delay (unit[drive].type->step_delay); 505 } while (--cnt != 0); 506 ms_delay (unit[drive].type->settle_time); 507 508 rel_fdc(); 509 fd_deselect(drive); 510 return 1; 511 } 512 513 static unsigned long fd_get_drive_id(int drive) 514 { 515 int i; 516 ulong id = 0; 517 518 drive&=3; 519 get_fdc(drive); 520 /* set up for ID */ 521 MOTOR_ON; 522 udelay(2); 523 SELECT(SELMASK(drive)); 524 udelay(2); 525 DESELECT(SELMASK(drive)); 526 udelay(2); 527 MOTOR_OFF; 528 udelay(2); 529 SELECT(SELMASK(drive)); 530 udelay(2); 531 DESELECT(SELMASK(drive)); 532 udelay(2); 533 534 /* loop and read disk ID */ 535 for (i=0; i<32; i++) { 536 SELECT(SELMASK(drive)); 537 udelay(2); 538 539 /* read and store value of DSKRDY */ 540 id <<= 1; 541 id |= (ciaa.pra & DSKRDY) ? 0 : 1; /* cia regs are low-active! */ 542 543 DESELECT(SELMASK(drive)); 544 } 545 546 rel_fdc(); 547 548 /* 549 * RB: At least A500/A2000's df0: don't identify themselves. 550 * As every (real) Amiga has at least a 3.5" DD drive as df0: 551 * we default to that if df0: doesn't identify as a certain 552 * type. 553 */ 554 if(drive == 0 && id == FD_NODRIVE) 555 { 556 id = fd_def_df0; 557 printk(KERN_NOTICE "fd: drive 0 didn't identify, setting default %08lx\n", (ulong)fd_def_df0); 558 } 559 /* return the ID value */ 560 return (id); 561 } 562 563 static irqreturn_t fd_block_done(int irq, void *dummy) 564 { 565 if (block_flag) 566 custom.dsklen = 0x4000; 567 568 if (block_flag == 2) { /* writing */ 569 writepending = 2; 570 post_write_timer.expires = jiffies + 1; /* at least 2 ms */ 571 post_write_timer.data = selected; 572 add_timer(&post_write_timer); 573 } 574 else { /* reading */ 575 block_flag = 0; 576 wake_up (&wait_fd_block); 577 } 578 return IRQ_HANDLED; 579 } 580 581 static void raw_read(int drive) 582 { 583 drive&=3; 584 get_fdc(drive); 585 while (block_flag) 586 sleep_on(&wait_fd_block); 587 fd_select(drive); 588 /* setup adkcon bits correctly */ 589 custom.adkcon = ADK_MSBSYNC; 590 custom.adkcon = ADK_SETCLR|ADK_WORDSYNC|ADK_FAST; 591 592 custom.dsksync = MFM_SYNC; 593 594 custom.dsklen = 0; 595 custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf); 596 custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN; 597 custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN; 598 599 block_flag = 1; 600 601 while (block_flag) 602 sleep_on (&wait_fd_block); 603 604 custom.dsklen = 0; 605 fd_deselect(drive); 606 rel_fdc(); 607 } 608 609 static int raw_write(int drive) 610 { 611 ushort adk; 612 613 drive&=3; 614 get_fdc(drive); /* corresponds to rel_fdc() in post_write() */ 615 if ((ciaa.pra & DSKPROT) == 0) { 616 rel_fdc(); 617 return 0; 618 } 619 while (block_flag) 620 sleep_on(&wait_fd_block); 621 fd_select(drive); 622 /* clear adkcon bits */ 623 custom.adkcon = ADK_PRECOMP1|ADK_PRECOMP0|ADK_WORDSYNC|ADK_MSBSYNC; 624 /* set appropriate adkcon bits */ 625 adk = ADK_SETCLR|ADK_FAST; 626 if ((ulong)unit[drive].track >= unit[drive].type->precomp2) 627 adk |= ADK_PRECOMP1; 628 else if ((ulong)unit[drive].track >= unit[drive].type->precomp1) 629 adk |= ADK_PRECOMP0; 630 custom.adkcon = adk; 631 632 custom.dsklen = DSKLEN_WRITE; 633 custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf); 634 custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE; 635 custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE; 636 637 block_flag = 2; 638 return 1; 639 } 640 641 /* 642 * to be called at least 2ms after the write has finished but before any 643 * other access to the hardware. 644 */ 645 static void post_write (unsigned long drive) 646 { 647 #ifdef DEBUG 648 printk("post_write for drive %ld\n",drive); 649 #endif 650 drive &= 3; 651 custom.dsklen = 0; 652 block_flag = 0; 653 writepending = 0; 654 writefromint = 0; 655 unit[drive].dirty = 0; 656 wake_up(&wait_fd_block); 657 fd_deselect(drive); 658 rel_fdc(); /* corresponds to get_fdc() in raw_write */ 659 } 660 661 662 /* 663 * The following functions are to convert the block contents into raw data 664 * written to disk and vice versa. 665 * (Add other formats here ;-)) 666 */ 667 668 static unsigned long scan_sync(unsigned long raw, unsigned long end) 669 { 670 ushort *ptr = (ushort *)raw, *endp = (ushort *)end; 671 672 while (ptr < endp && *ptr++ != 0x4489) 673 ; 674 if (ptr < endp) { 675 while (*ptr == 0x4489 && ptr < endp) 676 ptr++; 677 return (ulong)ptr; 678 } 679 return 0; 680 } 681 682 static inline unsigned long checksum(unsigned long *addr, int len) 683 { 684 unsigned long csum = 0; 685 686 len /= sizeof(*addr); 687 while (len-- > 0) 688 csum ^= *addr++; 689 csum = ((csum>>1) & 0x55555555) ^ (csum & 0x55555555); 690 691 return csum; 692 } 693 694 static unsigned long decode (unsigned long *data, unsigned long *raw, 695 int len) 696 { 697 ulong *odd, *even; 698 699 /* convert length from bytes to longwords */ 700 len >>= 2; 701 odd = raw; 702 even = odd + len; 703 704 /* prepare return pointer */ 705 raw += len * 2; 706 707 do { 708 *data++ = ((*odd++ & 0x55555555) << 1) | (*even++ & 0x55555555); 709 } while (--len != 0); 710 711 return (ulong)raw; 712 } 713 714 struct header { 715 unsigned char magic; 716 unsigned char track; 717 unsigned char sect; 718 unsigned char ord; 719 unsigned char labels[16]; 720 unsigned long hdrchk; 721 unsigned long datachk; 722 }; 723 724 static int amiga_read(int drive) 725 { 726 unsigned long raw; 727 unsigned long end; 728 int scnt; 729 unsigned long csum; 730 struct header hdr; 731 732 drive&=3; 733 raw = (long) raw_buf; 734 end = raw + unit[drive].type->read_size; 735 736 for (scnt = 0;scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) { 737 if (!(raw = scan_sync(raw, end))) { 738 printk (KERN_INFO "can't find sync for sector %d\n", scnt); 739 return MFM_NOSYNC; 740 } 741 742 raw = decode ((ulong *)&hdr.magic, (ulong *)raw, 4); 743 raw = decode ((ulong *)&hdr.labels, (ulong *)raw, 16); 744 raw = decode ((ulong *)&hdr.hdrchk, (ulong *)raw, 4); 745 raw = decode ((ulong *)&hdr.datachk, (ulong *)raw, 4); 746 csum = checksum((ulong *)&hdr, 747 (char *)&hdr.hdrchk-(char *)&hdr); 748 749 #ifdef DEBUG 750 printk ("(%x,%d,%d,%d) (%lx,%lx,%lx,%lx) %lx %lx\n", 751 hdr.magic, hdr.track, hdr.sect, hdr.ord, 752 *(ulong *)&hdr.labels[0], *(ulong *)&hdr.labels[4], 753 *(ulong *)&hdr.labels[8], *(ulong *)&hdr.labels[12], 754 hdr.hdrchk, hdr.datachk); 755 #endif 756 757 if (hdr.hdrchk != csum) { 758 printk(KERN_INFO "MFM_HEADER: %08lx,%08lx\n", hdr.hdrchk, csum); 759 return MFM_HEADER; 760 } 761 762 /* verify track */ 763 if (hdr.track != unit[drive].track) { 764 printk(KERN_INFO "MFM_TRACK: %d, %d\n", hdr.track, unit[drive].track); 765 return MFM_TRACK; 766 } 767 768 raw = decode ((ulong *)(unit[drive].trackbuf + hdr.sect*512), 769 (ulong *)raw, 512); 770 csum = checksum((ulong *)(unit[drive].trackbuf + hdr.sect*512), 512); 771 772 if (hdr.datachk != csum) { 773 printk(KERN_INFO "MFM_DATA: (%x:%d:%d:%d) sc=%d %lx, %lx\n", 774 hdr.magic, hdr.track, hdr.sect, hdr.ord, scnt, 775 hdr.datachk, csum); 776 printk (KERN_INFO "data=(%lx,%lx,%lx,%lx)\n", 777 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[0], 778 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[1], 779 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[2], 780 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[3]); 781 return MFM_DATA; 782 } 783 } 784 785 return 0; 786 } 787 788 static void encode(unsigned long data, unsigned long *dest) 789 { 790 unsigned long data2; 791 792 data &= 0x55555555; 793 data2 = data ^ 0x55555555; 794 data |= ((data2 >> 1) | 0x80000000) & (data2 << 1); 795 796 if (*(dest - 1) & 0x00000001) 797 data &= 0x7FFFFFFF; 798 799 *dest = data; 800 } 801 802 static void encode_block(unsigned long *dest, unsigned long *src, int len) 803 { 804 int cnt, to_cnt = 0; 805 unsigned long data; 806 807 /* odd bits */ 808 for (cnt = 0; cnt < len / 4; cnt++) { 809 data = src[cnt] >> 1; 810 encode(data, dest + to_cnt++); 811 } 812 813 /* even bits */ 814 for (cnt = 0; cnt < len / 4; cnt++) { 815 data = src[cnt]; 816 encode(data, dest + to_cnt++); 817 } 818 } 819 820 static unsigned long *putsec(int disk, unsigned long *raw, int cnt) 821 { 822 struct header hdr; 823 int i; 824 825 disk&=3; 826 *raw = (raw[-1]&1) ? 0x2AAAAAAA : 0xAAAAAAAA; 827 raw++; 828 *raw++ = 0x44894489; 829 830 hdr.magic = 0xFF; 831 hdr.track = unit[disk].track; 832 hdr.sect = cnt; 833 hdr.ord = unit[disk].dtype->sects * unit[disk].type->sect_mult - cnt; 834 for (i = 0; i < 16; i++) 835 hdr.labels[i] = 0; 836 hdr.hdrchk = checksum((ulong *)&hdr, 837 (char *)&hdr.hdrchk-(char *)&hdr); 838 hdr.datachk = checksum((ulong *)(unit[disk].trackbuf+cnt*512), 512); 839 840 encode_block(raw, (ulong *)&hdr.magic, 4); 841 raw += 2; 842 encode_block(raw, (ulong *)&hdr.labels, 16); 843 raw += 8; 844 encode_block(raw, (ulong *)&hdr.hdrchk, 4); 845 raw += 2; 846 encode_block(raw, (ulong *)&hdr.datachk, 4); 847 raw += 2; 848 encode_block(raw, (ulong *)(unit[disk].trackbuf+cnt*512), 512); 849 raw += 256; 850 851 return raw; 852 } 853 854 static void amiga_write(int disk) 855 { 856 unsigned int cnt; 857 unsigned long *ptr = (unsigned long *)raw_buf; 858 859 disk&=3; 860 /* gap space */ 861 for (cnt = 0; cnt < 415 * unit[disk].type->sect_mult; cnt++) 862 *ptr++ = 0xaaaaaaaa; 863 864 /* sectors */ 865 for (cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++) 866 ptr = putsec (disk, ptr, cnt); 867 *(ushort *)ptr = (ptr[-1]&1) ? 0x2AA8 : 0xAAA8; 868 } 869 870 871 struct dos_header { 872 unsigned char track, /* 0-80 */ 873 side, /* 0-1 */ 874 sec, /* 0-...*/ 875 len_desc;/* 2 */ 876 unsigned short crc; /* on 68000 we got an alignment problem, 877 but this compiler solves it by adding silently 878 adding a pad byte so data won't fit 879 and this took about 3h to discover.... */ 880 unsigned char gap1[22]; /* for longword-alignedness (0x4e) */ 881 }; 882 883 /* crc routines are borrowed from the messydos-handler */ 884 885 /* excerpt from the messydos-device 886 ; The CRC is computed not only over the actual data, but including 887 ; the SYNC mark (3 * $a1) and the 'ID/DATA - Address Mark' ($fe/$fb). 888 ; As we don't read or encode these fields into our buffers, we have to 889 ; preload the registers containing the CRC with the values they would have 890 ; after stepping over these fields. 891 ; 892 ; How CRCs "really" work: 893 ; 894 ; First, you should regard a bitstring as a series of coefficients of 895 ; polynomials. We calculate with these polynomials in modulo-2 896 ; arithmetic, in which both add and subtract are done the same as 897 ; exclusive-or. Now, we modify our data (a very long polynomial) in 898 ; such a way that it becomes divisible by the CCITT-standard 16-bit 899 ; 16 12 5 900 ; polynomial: x + x + x + 1, represented by $11021. The easiest 901 ; way to do this would be to multiply (using proper arithmetic) our 902 ; datablock with $11021. So we have: 903 ; data * $11021 = 904 ; data * ($10000 + $1021) = 905 ; data * $10000 + data * $1021 906 ; The left part of this is simple: Just add two 0 bytes. But then 907 ; the right part (data $1021) remains difficult and even could have 908 ; a carry into the left part. The solution is to use a modified 909 ; multiplication, which has a result that is not correct, but with 910 ; a difference of any multiple of $11021. We then only need to keep 911 ; the 16 least significant bits of the result. 912 ; 913 ; The following algorithm does this for us: 914 ; 915 ; unsigned char *data, c, crclo, crchi; 916 ; while (not done) { 917 ; c = *data++ + crchi; 918 ; crchi = (@ c) >> 8 + crclo; 919 ; crclo = @ c; 920 ; } 921 ; 922 ; Remember, + is done with EOR, the @ operator is in two tables (high 923 ; and low byte separately), which is calculated as 924 ; 925 ; $1021 * (c & $F0) 926 ; xor $1021 * (c & $0F) 927 ; xor $1021 * (c >> 4) (* is regular multiplication) 928 ; 929 ; 930 ; Anyway, the end result is the same as the remainder of the division of 931 ; the data by $11021. I am afraid I need to study theory a bit more... 932 933 934 my only works was to code this from manx to C.... 935 936 */ 937 938 static ushort dos_crc(void * data_a3, int data_d0, int data_d1, int data_d3) 939 { 940 static unsigned char CRCTable1[] = { 941 0x00,0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x81,0x91,0xa1,0xb1,0xc1,0xd1,0xe1,0xf1, 942 0x12,0x02,0x32,0x22,0x52,0x42,0x72,0x62,0x93,0x83,0xb3,0xa3,0xd3,0xc3,0xf3,0xe3, 943 0x24,0x34,0x04,0x14,0x64,0x74,0x44,0x54,0xa5,0xb5,0x85,0x95,0xe5,0xf5,0xc5,0xd5, 944 0x36,0x26,0x16,0x06,0x76,0x66,0x56,0x46,0xb7,0xa7,0x97,0x87,0xf7,0xe7,0xd7,0xc7, 945 0x48,0x58,0x68,0x78,0x08,0x18,0x28,0x38,0xc9,0xd9,0xe9,0xf9,0x89,0x99,0xa9,0xb9, 946 0x5a,0x4a,0x7a,0x6a,0x1a,0x0a,0x3a,0x2a,0xdb,0xcb,0xfb,0xeb,0x9b,0x8b,0xbb,0xab, 947 0x6c,0x7c,0x4c,0x5c,0x2c,0x3c,0x0c,0x1c,0xed,0xfd,0xcd,0xdd,0xad,0xbd,0x8d,0x9d, 948 0x7e,0x6e,0x5e,0x4e,0x3e,0x2e,0x1e,0x0e,0xff,0xef,0xdf,0xcf,0xbf,0xaf,0x9f,0x8f, 949 0x91,0x81,0xb1,0xa1,0xd1,0xc1,0xf1,0xe1,0x10,0x00,0x30,0x20,0x50,0x40,0x70,0x60, 950 0x83,0x93,0xa3,0xb3,0xc3,0xd3,0xe3,0xf3,0x02,0x12,0x22,0x32,0x42,0x52,0x62,0x72, 951 0xb5,0xa5,0x95,0x85,0xf5,0xe5,0xd5,0xc5,0x34,0x24,0x14,0x04,0x74,0x64,0x54,0x44, 952 0xa7,0xb7,0x87,0x97,0xe7,0xf7,0xc7,0xd7,0x26,0x36,0x06,0x16,0x66,0x76,0x46,0x56, 953 0xd9,0xc9,0xf9,0xe9,0x99,0x89,0xb9,0xa9,0x58,0x48,0x78,0x68,0x18,0x08,0x38,0x28, 954 0xcb,0xdb,0xeb,0xfb,0x8b,0x9b,0xab,0xbb,0x4a,0x5a,0x6a,0x7a,0x0a,0x1a,0x2a,0x3a, 955 0xfd,0xed,0xdd,0xcd,0xbd,0xad,0x9d,0x8d,0x7c,0x6c,0x5c,0x4c,0x3c,0x2c,0x1c,0x0c, 956 0xef,0xff,0xcf,0xdf,0xaf,0xbf,0x8f,0x9f,0x6e,0x7e,0x4e,0x5e,0x2e,0x3e,0x0e,0x1e 957 }; 958 959 static unsigned char CRCTable2[] = { 960 0x00,0x21,0x42,0x63,0x84,0xa5,0xc6,0xe7,0x08,0x29,0x4a,0x6b,0x8c,0xad,0xce,0xef, 961 0x31,0x10,0x73,0x52,0xb5,0x94,0xf7,0xd6,0x39,0x18,0x7b,0x5a,0xbd,0x9c,0xff,0xde, 962 0x62,0x43,0x20,0x01,0xe6,0xc7,0xa4,0x85,0x6a,0x4b,0x28,0x09,0xee,0xcf,0xac,0x8d, 963 0x53,0x72,0x11,0x30,0xd7,0xf6,0x95,0xb4,0x5b,0x7a,0x19,0x38,0xdf,0xfe,0x9d,0xbc, 964 0xc4,0xe5,0x86,0xa7,0x40,0x61,0x02,0x23,0xcc,0xed,0x8e,0xaf,0x48,0x69,0x0a,0x2b, 965 0xf5,0xd4,0xb7,0x96,0x71,0x50,0x33,0x12,0xfd,0xdc,0xbf,0x9e,0x79,0x58,0x3b,0x1a, 966 0xa6,0x87,0xe4,0xc5,0x22,0x03,0x60,0x41,0xae,0x8f,0xec,0xcd,0x2a,0x0b,0x68,0x49, 967 0x97,0xb6,0xd5,0xf4,0x13,0x32,0x51,0x70,0x9f,0xbe,0xdd,0xfc,0x1b,0x3a,0x59,0x78, 968 0x88,0xa9,0xca,0xeb,0x0c,0x2d,0x4e,0x6f,0x80,0xa1,0xc2,0xe3,0x04,0x25,0x46,0x67, 969 0xb9,0x98,0xfb,0xda,0x3d,0x1c,0x7f,0x5e,0xb1,0x90,0xf3,0xd2,0x35,0x14,0x77,0x56, 970 0xea,0xcb,0xa8,0x89,0x6e,0x4f,0x2c,0x0d,0xe2,0xc3,0xa0,0x81,0x66,0x47,0x24,0x05, 971 0xdb,0xfa,0x99,0xb8,0x5f,0x7e,0x1d,0x3c,0xd3,0xf2,0x91,0xb0,0x57,0x76,0x15,0x34, 972 0x4c,0x6d,0x0e,0x2f,0xc8,0xe9,0x8a,0xab,0x44,0x65,0x06,0x27,0xc0,0xe1,0x82,0xa3, 973 0x7d,0x5c,0x3f,0x1e,0xf9,0xd8,0xbb,0x9a,0x75,0x54,0x37,0x16,0xf1,0xd0,0xb3,0x92, 974 0x2e,0x0f,0x6c,0x4d,0xaa,0x8b,0xe8,0xc9,0x26,0x07,0x64,0x45,0xa2,0x83,0xe0,0xc1, 975 0x1f,0x3e,0x5d,0x7c,0x9b,0xba,0xd9,0xf8,0x17,0x36,0x55,0x74,0x93,0xb2,0xd1,0xf0 976 }; 977 978 /* look at the asm-code - what looks in C a bit strange is almost as good as handmade */ 979 register int i; 980 register unsigned char *CRCT1, *CRCT2, *data, c, crch, crcl; 981 982 CRCT1=CRCTable1; 983 CRCT2=CRCTable2; 984 data=data_a3; 985 crcl=data_d1; 986 crch=data_d0; 987 for (i=data_d3; i>=0; i--) { 988 c = (*data++) ^ crch; 989 crch = CRCT1[c] ^ crcl; 990 crcl = CRCT2[c]; 991 } 992 return (crch<<8)|crcl; 993 } 994 995 static inline ushort dos_hdr_crc (struct dos_header *hdr) 996 { 997 return dos_crc(&(hdr->track), 0xb2, 0x30, 3); /* precomputed magic */ 998 } 999 1000 static inline ushort dos_data_crc(unsigned char *data) 1001 { 1002 return dos_crc(data, 0xe2, 0x95 ,511); /* precomputed magic */ 1003 } 1004 1005 static inline unsigned char dos_decode_byte(ushort word) 1006 { 1007 register ushort w2; 1008 register unsigned char byte; 1009 register unsigned char *dec = mfmdecode; 1010 1011 w2=word; 1012 w2>>=8; 1013 w2&=127; 1014 byte = dec[w2]; 1015 byte <<= 4; 1016 w2 = word & 127; 1017 byte |= dec[w2]; 1018 return byte; 1019 } 1020 1021 static unsigned long dos_decode(unsigned char *data, unsigned short *raw, int len) 1022 { 1023 int i; 1024 1025 for (i = 0; i < len; i++) 1026 *data++=dos_decode_byte(*raw++); 1027 return ((ulong)raw); 1028 } 1029 1030 #ifdef DEBUG 1031 static void dbg(unsigned long ptr) 1032 { 1033 printk("raw data @%08lx: %08lx, %08lx ,%08lx, %08lx\n", ptr, 1034 ((ulong *)ptr)[0], ((ulong *)ptr)[1], 1035 ((ulong *)ptr)[2], ((ulong *)ptr)[3]); 1036 } 1037 #endif 1038 1039 static int dos_read(int drive) 1040 { 1041 unsigned long end; 1042 unsigned long raw; 1043 int scnt; 1044 unsigned short crc,data_crc[2]; 1045 struct dos_header hdr; 1046 1047 drive&=3; 1048 raw = (long) raw_buf; 1049 end = raw + unit[drive].type->read_size; 1050 1051 for (scnt=0; scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) { 1052 do { /* search for the right sync of each sec-hdr */ 1053 if (!(raw = scan_sync (raw, end))) { 1054 printk(KERN_INFO "dos_read: no hdr sync on " 1055 "track %d, unit %d for sector %d\n", 1056 unit[drive].track,drive,scnt); 1057 return MFM_NOSYNC; 1058 } 1059 #ifdef DEBUG 1060 dbg(raw); 1061 #endif 1062 } while (*((ushort *)raw)!=0x5554); /* loop usually only once done */ 1063 raw+=2; /* skip over headermark */ 1064 raw = dos_decode((unsigned char *)&hdr,(ushort *) raw,8); 1065 crc = dos_hdr_crc(&hdr); 1066 1067 #ifdef DEBUG 1068 printk("(%3d,%d,%2d,%d) %x\n", hdr.track, hdr.side, 1069 hdr.sec, hdr.len_desc, hdr.crc); 1070 #endif 1071 1072 if (crc != hdr.crc) { 1073 printk(KERN_INFO "dos_read: MFM_HEADER %04x,%04x\n", 1074 hdr.crc, crc); 1075 return MFM_HEADER; 1076 } 1077 if (hdr.track != unit[drive].track/unit[drive].type->heads) { 1078 printk(KERN_INFO "dos_read: MFM_TRACK %d, %d\n", 1079 hdr.track, 1080 unit[drive].track/unit[drive].type->heads); 1081 return MFM_TRACK; 1082 } 1083 1084 if (hdr.side != unit[drive].track%unit[drive].type->heads) { 1085 printk(KERN_INFO "dos_read: MFM_SIDE %d, %d\n", 1086 hdr.side, 1087 unit[drive].track%unit[drive].type->heads); 1088 return MFM_TRACK; 1089 } 1090 1091 if (hdr.len_desc != 2) { 1092 printk(KERN_INFO "dos_read: unknown sector len " 1093 "descriptor %d\n", hdr.len_desc); 1094 return MFM_DATA; 1095 } 1096 #ifdef DEBUG 1097 printk("hdr accepted\n"); 1098 #endif 1099 if (!(raw = scan_sync (raw, end))) { 1100 printk(KERN_INFO "dos_read: no data sync on track " 1101 "%d, unit %d for sector%d, disk sector %d\n", 1102 unit[drive].track, drive, scnt, hdr.sec); 1103 return MFM_NOSYNC; 1104 } 1105 #ifdef DEBUG 1106 dbg(raw); 1107 #endif 1108 1109 if (*((ushort *)raw)!=0x5545) { 1110 printk(KERN_INFO "dos_read: no data mark after " 1111 "sync (%d,%d,%d,%d) sc=%d\n", 1112 hdr.track,hdr.side,hdr.sec,hdr.len_desc,scnt); 1113 return MFM_NOSYNC; 1114 } 1115 1116 raw+=2; /* skip data mark (included in checksum) */ 1117 raw = dos_decode((unsigned char *)(unit[drive].trackbuf + (hdr.sec - 1) * 512), (ushort *) raw, 512); 1118 raw = dos_decode((unsigned char *)data_crc,(ushort *) raw,4); 1119 crc = dos_data_crc(unit[drive].trackbuf + (hdr.sec - 1) * 512); 1120 1121 if (crc != data_crc[0]) { 1122 printk(KERN_INFO "dos_read: MFM_DATA (%d,%d,%d,%d) " 1123 "sc=%d, %x %x\n", hdr.track, hdr.side, 1124 hdr.sec, hdr.len_desc, scnt,data_crc[0], crc); 1125 printk(KERN_INFO "data=(%lx,%lx,%lx,%lx,...)\n", 1126 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[0], 1127 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[1], 1128 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[2], 1129 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[3]); 1130 return MFM_DATA; 1131 } 1132 } 1133 return 0; 1134 } 1135 1136 static inline ushort dos_encode_byte(unsigned char byte) 1137 { 1138 register unsigned char *enc, b2, b1; 1139 register ushort word; 1140 1141 enc=mfmencode; 1142 b1=byte; 1143 b2=b1>>4; 1144 b1&=15; 1145 word=enc[b2] <<8 | enc [b1]; 1146 return (word|((word&(256|64)) ? 0: 128)); 1147 } 1148 1149 static void dos_encode_block(ushort *dest, unsigned char *src, int len) 1150 { 1151 int i; 1152 1153 for (i = 0; i < len; i++) { 1154 *dest=dos_encode_byte(*src++); 1155 *dest|=((dest[-1]&1)||(*dest&0x4000))? 0: 0x8000; 1156 dest++; 1157 } 1158 } 1159 1160 static unsigned long *ms_putsec(int drive, unsigned long *raw, int cnt) 1161 { 1162 static struct dos_header hdr={0,0,0,2,0, 1163 {78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78}}; 1164 int i; 1165 static ushort crc[2]={0,0x4e4e}; 1166 1167 drive&=3; 1168 /* id gap 1 */ 1169 /* the MFM word before is always 9254 */ 1170 for(i=0;i<6;i++) 1171 *raw++=0xaaaaaaaa; 1172 /* 3 sync + 1 headermark */ 1173 *raw++=0x44894489; 1174 *raw++=0x44895554; 1175 1176 /* fill in the variable parts of the header */ 1177 hdr.track=unit[drive].track/unit[drive].type->heads; 1178 hdr.side=unit[drive].track%unit[drive].type->heads; 1179 hdr.sec=cnt+1; 1180 hdr.crc=dos_hdr_crc(&hdr); 1181 1182 /* header (without "magic") and id gap 2*/ 1183 dos_encode_block((ushort *)raw,(unsigned char *) &hdr.track,28); 1184 raw+=14; 1185 1186 /*id gap 3 */ 1187 for(i=0;i<6;i++) 1188 *raw++=0xaaaaaaaa; 1189 1190 /* 3 syncs and 1 datamark */ 1191 *raw++=0x44894489; 1192 *raw++=0x44895545; 1193 1194 /* data */ 1195 dos_encode_block((ushort *)raw, 1196 (unsigned char *)unit[drive].trackbuf+cnt*512,512); 1197 raw+=256; 1198 1199 /*data crc + jd's special gap (long words :-/) */ 1200 crc[0]=dos_data_crc(unit[drive].trackbuf+cnt*512); 1201 dos_encode_block((ushort *) raw,(unsigned char *)crc,4); 1202 raw+=2; 1203 1204 /* data gap */ 1205 for(i=0;i<38;i++) 1206 *raw++=0x92549254; 1207 1208 return raw; /* wrote 652 MFM words */ 1209 } 1210 1211 static void dos_write(int disk) 1212 { 1213 int cnt; 1214 unsigned long raw = (unsigned long) raw_buf; 1215 unsigned long *ptr=(unsigned long *)raw; 1216 1217 disk&=3; 1218 /* really gap4 + indexgap , but we write it first and round it up */ 1219 for (cnt=0;cnt<425;cnt++) 1220 *ptr++=0x92549254; 1221 1222 /* the following is just guessed */ 1223 if (unit[disk].type->sect_mult==2) /* check for HD-Disks */ 1224 for(cnt=0;cnt<473;cnt++) 1225 *ptr++=0x92549254; 1226 1227 /* now the index marks...*/ 1228 for (cnt=0;cnt<20;cnt++) 1229 *ptr++=0x92549254; 1230 for (cnt=0;cnt<6;cnt++) 1231 *ptr++=0xaaaaaaaa; 1232 *ptr++=0x52245224; 1233 *ptr++=0x52245552; 1234 for (cnt=0;cnt<20;cnt++) 1235 *ptr++=0x92549254; 1236 1237 /* sectors */ 1238 for(cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++) 1239 ptr=ms_putsec(disk,ptr,cnt); 1240 1241 *(ushort *)ptr = 0xaaa8; /* MFM word before is always 0x9254 */ 1242 } 1243 1244 /* 1245 * Here comes the high level stuff (i.e. the filesystem interface) 1246 * and helper functions. 1247 * Normally this should be the only part that has to be adapted to 1248 * different kernel versions. 1249 */ 1250 1251 /* FIXME: this assumes the drive is still spinning - 1252 * which is only true if we complete writing a track within three seconds 1253 */ 1254 static void flush_track_callback(unsigned long nr) 1255 { 1256 nr&=3; 1257 writefromint = 1; 1258 if (!try_fdc(nr)) { 1259 /* we might block in an interrupt, so try again later */ 1260 flush_track_timer[nr].expires = jiffies + 1; 1261 add_timer(flush_track_timer + nr); 1262 return; 1263 } 1264 get_fdc(nr); 1265 (*unit[nr].dtype->write_fkt)(nr); 1266 if (!raw_write(nr)) { 1267 printk (KERN_NOTICE "floppy disk write protected\n"); 1268 writefromint = 0; 1269 writepending = 0; 1270 } 1271 rel_fdc(); 1272 } 1273 1274 static int non_int_flush_track (unsigned long nr) 1275 { 1276 unsigned long flags; 1277 1278 nr&=3; 1279 writefromint = 0; 1280 del_timer(&post_write_timer); 1281 get_fdc(nr); 1282 if (!fd_motor_on(nr)) { 1283 writepending = 0; 1284 rel_fdc(); 1285 return 0; 1286 } 1287 local_irq_save(flags); 1288 if (writepending != 2) { 1289 local_irq_restore(flags); 1290 (*unit[nr].dtype->write_fkt)(nr); 1291 if (!raw_write(nr)) { 1292 printk (KERN_NOTICE "floppy disk write protected " 1293 "in write!\n"); 1294 writepending = 0; 1295 return 0; 1296 } 1297 while (block_flag == 2) 1298 sleep_on (&wait_fd_block); 1299 } 1300 else { 1301 local_irq_restore(flags); 1302 ms_delay(2); /* 2 ms post_write delay */ 1303 post_write(nr); 1304 } 1305 rel_fdc(); 1306 return 1; 1307 } 1308 1309 static int get_track(int drive, int track) 1310 { 1311 int error, errcnt; 1312 1313 drive&=3; 1314 if (unit[drive].track == track) 1315 return 0; 1316 get_fdc(drive); 1317 if (!fd_motor_on(drive)) { 1318 rel_fdc(); 1319 return -1; 1320 } 1321 1322 if (unit[drive].dirty == 1) { 1323 del_timer (flush_track_timer + drive); 1324 non_int_flush_track (drive); 1325 } 1326 errcnt = 0; 1327 while (errcnt < MAX_ERRORS) { 1328 if (!fd_seek(drive, track)) 1329 return -1; 1330 raw_read(drive); 1331 error = (*unit[drive].dtype->read_fkt)(drive); 1332 if (error == 0) { 1333 rel_fdc(); 1334 return 0; 1335 } 1336 /* Read Error Handling: recalibrate and try again */ 1337 unit[drive].track = -1; 1338 errcnt++; 1339 } 1340 rel_fdc(); 1341 return -1; 1342 } 1343 1344 static void redo_fd_request(void) 1345 { 1346 unsigned int cnt, block, track, sector; 1347 int drive; 1348 struct amiga_floppy_struct *floppy; 1349 char *data; 1350 unsigned long flags; 1351 1352 repeat: 1353 if (!CURRENT) { 1354 /* Nothing left to do */ 1355 return; 1356 } 1357 1358 floppy = CURRENT->rq_disk->private_data; 1359 drive = floppy - unit; 1360 1361 /* Here someone could investigate to be more efficient */ 1362 for (cnt = 0; cnt < CURRENT->current_nr_sectors; cnt++) { 1363 #ifdef DEBUG 1364 printk("fd: sector %ld + %d requested for %s\n", 1365 CURRENT->sector,cnt, 1366 (rq_data_dir(CURRENT) == READ) ? "read" : "write"); 1367 #endif 1368 block = CURRENT->sector + cnt; 1369 if ((int)block > floppy->blocks) { 1370 end_request(CURRENT, 0); 1371 goto repeat; 1372 } 1373 1374 track = block / (floppy->dtype->sects * floppy->type->sect_mult); 1375 sector = block % (floppy->dtype->sects * floppy->type->sect_mult); 1376 data = CURRENT->buffer + 512 * cnt; 1377 #ifdef DEBUG 1378 printk("access to track %d, sector %d, with buffer at " 1379 "0x%08lx\n", track, sector, data); 1380 #endif 1381 1382 if ((rq_data_dir(CURRENT) != READ) && (rq_data_dir(CURRENT) != WRITE)) { 1383 printk(KERN_WARNING "do_fd_request: unknown command\n"); 1384 end_request(CURRENT, 0); 1385 goto repeat; 1386 } 1387 if (get_track(drive, track) == -1) { 1388 end_request(CURRENT, 0); 1389 goto repeat; 1390 } 1391 1392 switch (rq_data_dir(CURRENT)) { 1393 case READ: 1394 memcpy(data, floppy->trackbuf + sector * 512, 512); 1395 break; 1396 1397 case WRITE: 1398 memcpy(floppy->trackbuf + sector * 512, data, 512); 1399 1400 /* keep the drive spinning while writes are scheduled */ 1401 if (!fd_motor_on(drive)) { 1402 end_request(CURRENT, 0); 1403 goto repeat; 1404 } 1405 /* 1406 * setup a callback to write the track buffer 1407 * after a short (1 tick) delay. 1408 */ 1409 local_irq_save(flags); 1410 1411 floppy->dirty = 1; 1412 /* reset the timer */ 1413 mod_timer (flush_track_timer + drive, jiffies + 1); 1414 local_irq_restore(flags); 1415 break; 1416 } 1417 } 1418 CURRENT->nr_sectors -= CURRENT->current_nr_sectors; 1419 CURRENT->sector += CURRENT->current_nr_sectors; 1420 1421 end_request(CURRENT, 1); 1422 goto repeat; 1423 } 1424 1425 static void do_fd_request(struct request_queue * q) 1426 { 1427 redo_fd_request(); 1428 } 1429 1430 static int fd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1431 { 1432 int drive = MINOR(bdev->bd_dev) & 3; 1433 1434 geo->heads = unit[drive].type->heads; 1435 geo->sectors = unit[drive].dtype->sects * unit[drive].type->sect_mult; 1436 geo->cylinders = unit[drive].type->tracks; 1437 return 0; 1438 } 1439 1440 static int fd_ioctl(struct inode *inode, struct file *filp, 1441 unsigned int cmd, unsigned long param) 1442 { 1443 int drive = iminor(inode) & 3; 1444 static struct floppy_struct getprm; 1445 void __user *argp = (void __user *)param; 1446 1447 switch(cmd){ 1448 case FDFMTBEG: 1449 get_fdc(drive); 1450 if (fd_ref[drive] > 1) { 1451 rel_fdc(); 1452 return -EBUSY; 1453 } 1454 fsync_bdev(inode->i_bdev); 1455 if (fd_motor_on(drive) == 0) { 1456 rel_fdc(); 1457 return -ENODEV; 1458 } 1459 if (fd_calibrate(drive) == 0) { 1460 rel_fdc(); 1461 return -ENXIO; 1462 } 1463 floppy_off(drive); 1464 rel_fdc(); 1465 break; 1466 case FDFMTTRK: 1467 if (param < unit[drive].type->tracks * unit[drive].type->heads) 1468 { 1469 get_fdc(drive); 1470 if (fd_seek(drive,param) != 0){ 1471 memset(unit[drive].trackbuf, FD_FILL_BYTE, 1472 unit[drive].dtype->sects * unit[drive].type->sect_mult * 512); 1473 non_int_flush_track(drive); 1474 } 1475 floppy_off(drive); 1476 rel_fdc(); 1477 } 1478 else 1479 return -EINVAL; 1480 break; 1481 case FDFMTEND: 1482 floppy_off(drive); 1483 invalidate_bdev(inode->i_bdev); 1484 break; 1485 case FDGETPRM: 1486 memset((void *)&getprm, 0, sizeof (getprm)); 1487 getprm.track=unit[drive].type->tracks; 1488 getprm.head=unit[drive].type->heads; 1489 getprm.sect=unit[drive].dtype->sects * unit[drive].type->sect_mult; 1490 getprm.size=unit[drive].blocks; 1491 if (copy_to_user(argp, &getprm, sizeof(struct floppy_struct))) 1492 return -EFAULT; 1493 break; 1494 case FDSETPRM: 1495 case FDDEFPRM: 1496 return -EINVAL; 1497 case FDFLUSH: /* unconditionally, even if not needed */ 1498 del_timer (flush_track_timer + drive); 1499 non_int_flush_track(drive); 1500 break; 1501 #ifdef RAW_IOCTL 1502 case IOCTL_RAW_TRACK: 1503 if (copy_to_user(argp, raw_buf, unit[drive].type->read_size)) 1504 return -EFAULT; 1505 else 1506 return unit[drive].type->read_size; 1507 #endif 1508 default: 1509 printk(KERN_DEBUG "fd_ioctl: unknown cmd %d for drive %d.", 1510 cmd, drive); 1511 return -ENOSYS; 1512 } 1513 return 0; 1514 } 1515 1516 static void fd_probe(int dev) 1517 { 1518 unsigned long code; 1519 int type; 1520 int drive; 1521 1522 drive = dev & 3; 1523 code = fd_get_drive_id(drive); 1524 1525 /* get drive type */ 1526 for (type = 0; type < num_dr_types; type++) 1527 if (drive_types[type].code == code) 1528 break; 1529 1530 if (type >= num_dr_types) { 1531 printk(KERN_WARNING "fd_probe: unsupported drive type " 1532 "%08lx found\n", code); 1533 unit[drive].type = &drive_types[num_dr_types-1]; /* FD_NODRIVE */ 1534 return; 1535 } 1536 1537 unit[drive].type = drive_types + type; 1538 unit[drive].track = -1; 1539 1540 unit[drive].disk = -1; 1541 unit[drive].motor = 0; 1542 unit[drive].busy = 0; 1543 unit[drive].status = -1; 1544 } 1545 1546 /* 1547 * floppy_open check for aliasing (/dev/fd0 can be the same as 1548 * /dev/PS0 etc), and disallows simultaneous access to the same 1549 * drive with different device numbers. 1550 */ 1551 static int floppy_open(struct inode *inode, struct file *filp) 1552 { 1553 int drive = iminor(inode) & 3; 1554 int system = (iminor(inode) & 4) >> 2; 1555 int old_dev; 1556 unsigned long flags; 1557 1558 old_dev = fd_device[drive]; 1559 1560 if (fd_ref[drive] && old_dev != system) 1561 return -EBUSY; 1562 1563 if (filp && filp->f_mode & 3) { 1564 check_disk_change(inode->i_bdev); 1565 if (filp->f_mode & 2 ) { 1566 int wrprot; 1567 1568 get_fdc(drive); 1569 fd_select (drive); 1570 wrprot = !(ciaa.pra & DSKPROT); 1571 fd_deselect (drive); 1572 rel_fdc(); 1573 1574 if (wrprot) 1575 return -EROFS; 1576 } 1577 } 1578 1579 local_irq_save(flags); 1580 fd_ref[drive]++; 1581 fd_device[drive] = system; 1582 local_irq_restore(flags); 1583 1584 unit[drive].dtype=&data_types[system]; 1585 unit[drive].blocks=unit[drive].type->heads*unit[drive].type->tracks* 1586 data_types[system].sects*unit[drive].type->sect_mult; 1587 set_capacity(unit[drive].gendisk, unit[drive].blocks); 1588 1589 printk(KERN_INFO "fd%d: accessing %s-disk with %s-layout\n",drive, 1590 unit[drive].type->name, data_types[system].name); 1591 1592 return 0; 1593 } 1594 1595 static int floppy_release(struct inode * inode, struct file * filp) 1596 { 1597 int drive = iminor(inode) & 3; 1598 1599 if (unit[drive].dirty == 1) { 1600 del_timer (flush_track_timer + drive); 1601 non_int_flush_track (drive); 1602 } 1603 1604 if (!fd_ref[drive]--) { 1605 printk(KERN_CRIT "floppy_release with fd_ref == 0"); 1606 fd_ref[drive] = 0; 1607 } 1608 #ifdef MODULE 1609 /* the mod_use counter is handled this way */ 1610 floppy_off (drive | 0x40000000); 1611 #endif 1612 return 0; 1613 } 1614 1615 /* 1616 * floppy-change is never called from an interrupt, so we can relax a bit 1617 * here, sleep etc. Note that floppy-on tries to set current_DOR to point 1618 * to the desired drive, but it will probably not survive the sleep if 1619 * several floppies are used at the same time: thus the loop. 1620 */ 1621 static int amiga_floppy_change(struct gendisk *disk) 1622 { 1623 struct amiga_floppy_struct *p = disk->private_data; 1624 int drive = p - unit; 1625 int changed; 1626 static int first_time = 1; 1627 1628 if (first_time) 1629 changed = first_time--; 1630 else { 1631 get_fdc(drive); 1632 fd_select (drive); 1633 changed = !(ciaa.pra & DSKCHANGE); 1634 fd_deselect (drive); 1635 rel_fdc(); 1636 } 1637 1638 if (changed) { 1639 fd_probe(drive); 1640 p->track = -1; 1641 p->dirty = 0; 1642 writepending = 0; /* if this was true before, too bad! */ 1643 writefromint = 0; 1644 return 1; 1645 } 1646 return 0; 1647 } 1648 1649 static struct block_device_operations floppy_fops = { 1650 .owner = THIS_MODULE, 1651 .open = floppy_open, 1652 .release = floppy_release, 1653 .ioctl = fd_ioctl, 1654 .getgeo = fd_getgeo, 1655 .media_changed = amiga_floppy_change, 1656 }; 1657 1658 static int __init fd_probe_drives(void) 1659 { 1660 int drive,drives,nomem; 1661 1662 printk(KERN_INFO "FD: probing units\n" KERN_INFO "found "); 1663 drives=0; 1664 nomem=0; 1665 for(drive=0;drive<FD_MAX_UNITS;drive++) { 1666 struct gendisk *disk; 1667 fd_probe(drive); 1668 if (unit[drive].type->code == FD_NODRIVE) 1669 continue; 1670 disk = alloc_disk(1); 1671 if (!disk) { 1672 unit[drive].type->code = FD_NODRIVE; 1673 continue; 1674 } 1675 unit[drive].gendisk = disk; 1676 drives++; 1677 if ((unit[drive].trackbuf = kmalloc(FLOPPY_MAX_SECTORS * 512, GFP_KERNEL)) == NULL) { 1678 printk("no mem for "); 1679 unit[drive].type = &drive_types[num_dr_types - 1]; /* FD_NODRIVE */ 1680 drives--; 1681 nomem = 1; 1682 } 1683 printk("fd%d ",drive); 1684 disk->major = FLOPPY_MAJOR; 1685 disk->first_minor = drive; 1686 disk->fops = &floppy_fops; 1687 sprintf(disk->disk_name, "fd%d", drive); 1688 disk->private_data = &unit[drive]; 1689 disk->queue = floppy_queue; 1690 set_capacity(disk, 880*2); 1691 add_disk(disk); 1692 } 1693 if ((drives > 0) || (nomem == 0)) { 1694 if (drives == 0) 1695 printk("no drives"); 1696 printk("\n"); 1697 return drives; 1698 } 1699 printk("\n"); 1700 return -ENOMEM; 1701 } 1702 1703 static struct kobject *floppy_find(dev_t dev, int *part, void *data) 1704 { 1705 int drive = *part & 3; 1706 if (unit[drive].type->code == FD_NODRIVE) 1707 return NULL; 1708 *part = 0; 1709 return get_disk(unit[drive].gendisk); 1710 } 1711 1712 static int __init amiga_floppy_init(void) 1713 { 1714 int i, ret; 1715 1716 if (!MACH_IS_AMIGA) 1717 return -ENXIO; 1718 1719 if (!AMIGAHW_PRESENT(AMI_FLOPPY)) 1720 return -ENXIO; 1721 1722 if (register_blkdev(FLOPPY_MAJOR,"fd")) 1723 return -EBUSY; 1724 1725 /* 1726 * We request DSKPTR, DSKLEN and DSKDATA only, because the other 1727 * floppy registers are too spreaded over the custom register space 1728 */ 1729 ret = -EBUSY; 1730 if (!request_mem_region(CUSTOM_PHYSADDR+0x20, 8, "amiflop [Paula]")) { 1731 printk("fd: cannot get floppy registers\n"); 1732 goto out_blkdev; 1733 } 1734 1735 ret = -ENOMEM; 1736 if ((raw_buf = (char *)amiga_chip_alloc (RAW_BUF_SIZE, "Floppy")) == 1737 NULL) { 1738 printk("fd: cannot get chip mem buffer\n"); 1739 goto out_memregion; 1740 } 1741 1742 ret = -EBUSY; 1743 if (request_irq(IRQ_AMIGA_DSKBLK, fd_block_done, 0, "floppy_dma", NULL)) { 1744 printk("fd: cannot get irq for dma\n"); 1745 goto out_irq; 1746 } 1747 1748 if (request_irq(IRQ_AMIGA_CIAA_TB, ms_isr, 0, "floppy_timer", NULL)) { 1749 printk("fd: cannot get irq for timer\n"); 1750 goto out_irq2; 1751 } 1752 1753 ret = -ENOMEM; 1754 floppy_queue = blk_init_queue(do_fd_request, &amiflop_lock); 1755 if (!floppy_queue) 1756 goto out_queue; 1757 1758 ret = -ENXIO; 1759 if (fd_probe_drives() < 1) /* No usable drives */ 1760 goto out_probe; 1761 1762 blk_register_region(MKDEV(FLOPPY_MAJOR, 0), 256, THIS_MODULE, 1763 floppy_find, NULL, NULL); 1764 1765 /* initialize variables */ 1766 init_timer(&motor_on_timer); 1767 motor_on_timer.expires = 0; 1768 motor_on_timer.data = 0; 1769 motor_on_timer.function = motor_on_callback; 1770 for (i = 0; i < FD_MAX_UNITS; i++) { 1771 init_timer(&motor_off_timer[i]); 1772 motor_off_timer[i].expires = 0; 1773 motor_off_timer[i].data = i|0x80000000; 1774 motor_off_timer[i].function = fd_motor_off; 1775 init_timer(&flush_track_timer[i]); 1776 flush_track_timer[i].expires = 0; 1777 flush_track_timer[i].data = i; 1778 flush_track_timer[i].function = flush_track_callback; 1779 1780 unit[i].track = -1; 1781 } 1782 1783 init_timer(&post_write_timer); 1784 post_write_timer.expires = 0; 1785 post_write_timer.data = 0; 1786 post_write_timer.function = post_write; 1787 1788 for (i = 0; i < 128; i++) 1789 mfmdecode[i]=255; 1790 for (i = 0; i < 16; i++) 1791 mfmdecode[mfmencode[i]]=i; 1792 1793 /* make sure that disk DMA is enabled */ 1794 custom.dmacon = DMAF_SETCLR | DMAF_DISK; 1795 1796 /* init ms timer */ 1797 ciaa.crb = 8; /* one-shot, stop */ 1798 return 0; 1799 1800 out_probe: 1801 blk_cleanup_queue(floppy_queue); 1802 out_queue: 1803 free_irq(IRQ_AMIGA_CIAA_TB, NULL); 1804 out_irq2: 1805 free_irq(IRQ_AMIGA_DSKBLK, NULL); 1806 out_irq: 1807 amiga_chip_free(raw_buf); 1808 out_memregion: 1809 release_mem_region(CUSTOM_PHYSADDR+0x20, 8); 1810 out_blkdev: 1811 unregister_blkdev(FLOPPY_MAJOR,"fd"); 1812 return ret; 1813 } 1814 1815 module_init(amiga_floppy_init); 1816 #ifdef MODULE 1817 1818 #if 0 /* not safe to unload */ 1819 void cleanup_module(void) 1820 { 1821 int i; 1822 1823 for( i = 0; i < FD_MAX_UNITS; i++) { 1824 if (unit[i].type->code != FD_NODRIVE) { 1825 del_gendisk(unit[i].gendisk); 1826 put_disk(unit[i].gendisk); 1827 kfree(unit[i].trackbuf); 1828 } 1829 } 1830 blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256); 1831 free_irq(IRQ_AMIGA_CIAA_TB, NULL); 1832 free_irq(IRQ_AMIGA_DSKBLK, NULL); 1833 custom.dmacon = DMAF_DISK; /* disable DMA */ 1834 amiga_chip_free(raw_buf); 1835 blk_cleanup_queue(floppy_queue); 1836 release_mem_region(CUSTOM_PHYSADDR+0x20, 8); 1837 unregister_blkdev(FLOPPY_MAJOR, "fd"); 1838 } 1839 #endif 1840 1841 #else 1842 static int __init amiga_floppy_setup (char *str) 1843 { 1844 int n; 1845 if (!MACH_IS_AMIGA) 1846 return 0; 1847 if (!get_option(&str, &n)) 1848 return 0; 1849 printk (KERN_INFO "amiflop: Setting default df0 to %x\n", n); 1850 fd_def_df0 = n; 1851 return 1; 1852 } 1853 1854 __setup("floppy=", amiga_floppy_setup); 1855 #endif 1856