1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/amiga/amiflop.c
4 *
5 * Copyright (C) 1993 Greg Harp
6 * Portions of this driver are based on code contributed by Brad Pepers
7 *
8 * revised 28.5.95 by Joerg Dorchain
9 * - now no bugs(?) any more for both HD & DD
10 * - added support for 40 Track 5.25" drives, 80-track hopefully behaves
11 * like 3.5" dd (no way to test - are there any 5.25" drives out there
12 * that work on an A4000?)
13 * - wrote formatting routine (maybe dirty, but works)
14 *
15 * june/july 1995 added ms-dos support by Joerg Dorchain
16 * (portions based on messydos.device and various contributors)
17 * - currently only 9 and 18 sector disks
18 *
19 * - fixed a bug with the internal trackbuffer when using multiple
20 * disks the same time
21 * - made formatting a bit safer
22 * - added command line and machine based default for "silent" df0
23 *
24 * december 1995 adapted for 1.2.13pl4 by Joerg Dorchain
25 * - works but I think it's inefficient. (look in redo_fd_request)
26 * But the changes were very efficient. (only three and a half lines)
27 *
28 * january 1996 added special ioctl for tracking down read/write problems
29 * - usage ioctl(d, RAW_TRACK, ptr); the raw track buffer (MFM-encoded data
30 * is copied to area. (area should be large enough since no checking is
31 * done - 30K is currently sufficient). return the actual size of the
32 * trackbuffer
33 * - replaced udelays() by a timer (CIAA timer B) for the waits
34 * needed for the disk mechanic.
35 *
36 * february 1996 fixed error recovery and multiple disk access
37 * - both got broken the first time I tampered with the driver :-(
38 * - still not safe, but better than before
39 *
40 * revised Marts 3rd, 1996 by Jes Sorensen for use in the 1.3.28 kernel.
41 * - Minor changes to accept the kdev_t.
42 * - Replaced some more udelays with ms_delays. Udelay is just a loop,
43 * and so the delay will be different depending on the given
44 * processor :-(
45 * - The driver could use a major cleanup because of the new
46 * major/minor handling that came with kdev_t. It seems to work for
47 * the time being, but I can't guarantee that it will stay like
48 * that when we start using 16 (24?) bit minors.
49 *
50 * restructured jan 1997 by Joerg Dorchain
51 * - Fixed Bug accessing multiple disks
52 * - some code cleanup
53 * - added trackbuffer for each drive to speed things up
54 * - fixed some race conditions (who finds the next may send it to me ;-)
55 */
56
57 #include <linux/module.h>
58 #include <linux/slab.h>
59
60 #include <linux/fd.h>
61 #include <linux/hdreg.h>
62 #include <linux/delay.h>
63 #include <linux/init.h>
64 #include <linux/major.h>
65 #include <linux/mutex.h>
66 #include <linux/fs.h>
67 #include <linux/blk-mq.h>
68 #include <linux/interrupt.h>
69 #include <linux/platform_device.h>
70
71 #include <asm/setup.h>
72 #include <linux/uaccess.h>
73 #include <asm/amigahw.h>
74 #include <asm/amigaints.h>
75 #include <asm/irq.h>
76
77 #undef DEBUG /* print _LOTS_ of infos */
78
79 #define RAW_IOCTL
80 #ifdef RAW_IOCTL
81 #define IOCTL_RAW_TRACK 0x5254524B /* 'RTRK' */
82 #endif
83
84 /*
85 * Defines
86 */
87
88 /*
89 * CIAAPRA bits (read only)
90 */
91
92 #define DSKRDY (0x1<<5) /* disk ready when low */
93 #define DSKTRACK0 (0x1<<4) /* head at track zero when low */
94 #define DSKPROT (0x1<<3) /* disk protected when low */
95 #define DSKCHANGE (0x1<<2) /* low when disk removed */
96
97 /*
98 * CIAAPRB bits (read/write)
99 */
100
101 #define DSKMOTOR (0x1<<7) /* motor on when low */
102 #define DSKSEL3 (0x1<<6) /* select drive 3 when low */
103 #define DSKSEL2 (0x1<<5) /* select drive 2 when low */
104 #define DSKSEL1 (0x1<<4) /* select drive 1 when low */
105 #define DSKSEL0 (0x1<<3) /* select drive 0 when low */
106 #define DSKSIDE (0x1<<2) /* side selection: 0 = upper, 1 = lower */
107 #define DSKDIREC (0x1<<1) /* step direction: 0=in, 1=out (to trk 0) */
108 #define DSKSTEP (0x1) /* pulse low to step head 1 track */
109
110 /*
111 * DSKBYTR bits (read only)
112 */
113
114 #define DSKBYT (1<<15) /* register contains valid byte when set */
115 #define DMAON (1<<14) /* disk DMA enabled */
116 #define DISKWRITE (1<<13) /* disk write bit in DSKLEN enabled */
117 #define WORDEQUAL (1<<12) /* DSKSYNC register match when true */
118 /* bits 7-0 are data */
119
120 /*
121 * ADKCON/ADKCONR bits
122 */
123
124 #ifndef SETCLR
125 #define ADK_SETCLR (1<<15) /* control bit */
126 #endif
127 #define ADK_PRECOMP1 (1<<14) /* precompensation selection */
128 #define ADK_PRECOMP0 (1<<13) /* 00=none, 01=140ns, 10=280ns, 11=500ns */
129 #define ADK_MFMPREC (1<<12) /* 0=GCR precomp., 1=MFM precomp. */
130 #define ADK_WORDSYNC (1<<10) /* enable DSKSYNC auto DMA */
131 #define ADK_MSBSYNC (1<<9) /* when 1, enable sync on MSbit (for GCR) */
132 #define ADK_FAST (1<<8) /* bit cell: 0=2us (GCR), 1=1us (MFM) */
133
134 /*
135 * DSKLEN bits
136 */
137
138 #define DSKLEN_DMAEN (1<<15)
139 #define DSKLEN_WRITE (1<<14)
140
141 /*
142 * INTENA/INTREQ bits
143 */
144
145 #define DSKINDEX (0x1<<4) /* DSKINDEX bit */
146
147 /*
148 * Misc
149 */
150
151 #define MFM_SYNC 0x4489 /* standard MFM sync value */
152
153 /* Values for FD_COMMAND */
154 #define FD_RECALIBRATE 0x07 /* move to track 0 */
155 #define FD_SEEK 0x0F /* seek track */
156 #define FD_READ 0xE6 /* read with MT, MFM, SKip deleted */
157 #define FD_WRITE 0xC5 /* write with MT, MFM */
158 #define FD_SENSEI 0x08 /* Sense Interrupt Status */
159 #define FD_SPECIFY 0x03 /* specify HUT etc */
160 #define FD_FORMAT 0x4D /* format one track */
161 #define FD_VERSION 0x10 /* get version code */
162 #define FD_CONFIGURE 0x13 /* configure FIFO operation */
163 #define FD_PERPENDICULAR 0x12 /* perpendicular r/w mode */
164
165 #define FD_MAX_UNITS 4 /* Max. Number of drives */
166 #define FLOPPY_MAX_SECTORS 22 /* Max. Number of sectors per track */
167
168 struct fd_data_type {
169 char *name; /* description of data type */
170 int sects; /* sectors per track */
171 int (*read_fkt)(int); /* read whole track */
172 void (*write_fkt)(int); /* write whole track */
173 };
174
175 struct fd_drive_type {
176 unsigned long code; /* code returned from drive */
177 char *name; /* description of drive */
178 unsigned int tracks; /* number of tracks */
179 unsigned int heads; /* number of heads */
180 unsigned int read_size; /* raw read size for one track */
181 unsigned int write_size; /* raw write size for one track */
182 unsigned int sect_mult; /* sectors and gap multiplier (HD = 2) */
183 unsigned int precomp1; /* start track for precomp 1 */
184 unsigned int precomp2; /* start track for precomp 2 */
185 unsigned int step_delay; /* time (in ms) for delay after step */
186 unsigned int settle_time; /* time to settle after dir change */
187 unsigned int side_time; /* time needed to change sides */
188 };
189
190 struct amiga_floppy_struct {
191 struct fd_drive_type *type; /* type of floppy for this unit */
192 struct fd_data_type *dtype; /* type of floppy for this unit */
193 int track; /* current track (-1 == unknown) */
194 unsigned char *trackbuf; /* current track (kmaloc()'d */
195
196 int blocks; /* total # blocks on disk */
197
198 int changed; /* true when not known */
199 int disk; /* disk in drive (-1 == unknown) */
200 int motor; /* true when motor is at speed */
201 int busy; /* true when drive is active */
202 int dirty; /* true when trackbuf is not on disk */
203 int status; /* current error code for unit */
204 struct gendisk *gendisk[2];
205 struct blk_mq_tag_set tag_set;
206 };
207
208 /*
209 * Error codes
210 */
211 #define FD_OK 0 /* operation succeeded */
212 #define FD_ERROR -1 /* general error (seek, read, write, etc) */
213 #define FD_NOUNIT 1 /* unit does not exist */
214 #define FD_UNITBUSY 2 /* unit already active */
215 #define FD_NOTACTIVE 3 /* unit is not active */
216 #define FD_NOTREADY 4 /* unit is not ready (motor not on/no disk) */
217
218 #define MFM_NOSYNC 1
219 #define MFM_HEADER 2
220 #define MFM_DATA 3
221 #define MFM_TRACK 4
222
223 /*
224 * Floppy ID values
225 */
226 #define FD_NODRIVE 0x00000000 /* response when no unit is present */
227 #define FD_DD_3 0xffffffff /* double-density 3.5" (880K) drive */
228 #define FD_HD_3 0x55555555 /* high-density 3.5" (1760K) drive */
229 #define FD_DD_5 0xaaaaaaaa /* double-density 5.25" (440K) drive */
230
231 static DEFINE_MUTEX(amiflop_mutex);
232 static unsigned long int fd_def_df0 = FD_DD_3; /* default for df0 if it doesn't identify */
233
234 module_param(fd_def_df0, ulong, 0);
235 MODULE_LICENSE("GPL");
236
237 /*
238 * Macros
239 */
240 #define MOTOR_ON (ciab.prb &= ~DSKMOTOR)
241 #define MOTOR_OFF (ciab.prb |= DSKMOTOR)
242 #define SELECT(mask) (ciab.prb &= ~mask)
243 #define DESELECT(mask) (ciab.prb |= mask)
244 #define SELMASK(drive) (1 << (3 + (drive & 3)))
245
246 static struct fd_drive_type drive_types[] = {
247 /* code name tr he rdsz wrsz sm pc1 pc2 sd st st*/
248 /* warning: times are now in milliseconds (ms) */
249 { FD_DD_3, "DD 3.5", 80, 2, 14716, 13630, 1, 80,161, 3, 18, 1},
250 { FD_HD_3, "HD 3.5", 80, 2, 28344, 27258, 2, 80,161, 3, 18, 1},
251 { FD_DD_5, "DD 5.25", 40, 2, 14716, 13630, 1, 40, 81, 6, 30, 2},
252 { FD_NODRIVE, "No Drive", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
253 };
254 static int num_dr_types = ARRAY_SIZE(drive_types);
255
256 static int amiga_read(int), dos_read(int);
257 static void amiga_write(int), dos_write(int);
258 static struct fd_data_type data_types[] = {
259 { "Amiga", 11 , amiga_read, amiga_write},
260 { "MS-Dos", 9, dos_read, dos_write}
261 };
262
263 /* current info on each unit */
264 static struct amiga_floppy_struct unit[FD_MAX_UNITS];
265
266 static struct timer_list flush_track_timer[FD_MAX_UNITS];
267 static struct timer_list post_write_timer;
268 static unsigned long post_write_timer_drive;
269 static struct timer_list motor_on_timer;
270 static struct timer_list motor_off_timer[FD_MAX_UNITS];
271 static int on_attempts;
272
273 /* Synchronization of FDC access */
274 /* request loop (trackbuffer) */
275 static volatile int fdc_busy = -1;
276 static volatile int fdc_nested;
277 static DECLARE_WAIT_QUEUE_HEAD(fdc_wait);
278
279 static DECLARE_COMPLETION(motor_on_completion);
280
281 static volatile int selected = -1; /* currently selected drive */
282
283 static int writepending;
284 static int writefromint;
285 static char *raw_buf;
286
287 static DEFINE_SPINLOCK(amiflop_lock);
288
289 #define RAW_BUF_SIZE 30000 /* size of raw disk data */
290
291 /*
292 * These are global variables, as that's the easiest way to give
293 * information to interrupts. They are the data used for the current
294 * request.
295 */
296 static volatile char block_flag;
297 static DECLARE_WAIT_QUEUE_HEAD(wait_fd_block);
298
299 /* MS-Dos MFM Coding tables (should go quick and easy) */
300 static unsigned char mfmencode[16]={
301 0x2a, 0x29, 0x24, 0x25, 0x12, 0x11, 0x14, 0x15,
302 0x4a, 0x49, 0x44, 0x45, 0x52, 0x51, 0x54, 0x55
303 };
304 static unsigned char mfmdecode[128];
305
306 /* floppy internal millisecond timer stuff */
307 static DECLARE_COMPLETION(ms_wait_completion);
308 #define MS_TICKS ((amiga_eclock+50)/1000)
309
310 /*
311 * Note that MAX_ERRORS=X doesn't imply that we retry every bad read
312 * max X times - some types of errors increase the errorcount by 2 or
313 * even 3, so we might actually retry only X/2 times before giving up.
314 */
315 #define MAX_ERRORS 12
316
317 #define custom amiga_custom
318
319 /* Prevent "aliased" accesses. */
320 static int fd_ref[4] = { 0,0,0,0 };
321 static int fd_device[4] = { 0, 0, 0, 0 };
322
323 /*
324 * Here come the actual hardware access and helper functions.
325 * They are not reentrant and single threaded because all drives
326 * share the same hardware and the same trackbuffer.
327 */
328
329 /* Milliseconds timer */
330
ms_isr(int irq,void * dummy)331 static irqreturn_t ms_isr(int irq, void *dummy)
332 {
333 complete(&ms_wait_completion);
334 return IRQ_HANDLED;
335 }
336
337 /* all waits are queued up
338 A more generic routine would do a schedule a la timer.device */
ms_delay(int ms)339 static void ms_delay(int ms)
340 {
341 int ticks;
342 static DEFINE_MUTEX(mutex);
343
344 if (ms > 0) {
345 mutex_lock(&mutex);
346 ticks = MS_TICKS*ms-1;
347 ciaa.tblo=ticks%256;
348 ciaa.tbhi=ticks/256;
349 ciaa.crb=0x19; /*count eclock, force load, one-shoot, start */
350 wait_for_completion(&ms_wait_completion);
351 mutex_unlock(&mutex);
352 }
353 }
354
355 /* Hardware semaphore */
356
357 /* returns true when we would get the semaphore */
try_fdc(int drive)358 static inline int try_fdc(int drive)
359 {
360 drive &= 3;
361 return ((fdc_busy < 0) || (fdc_busy == drive));
362 }
363
get_fdc(int drive)364 static void get_fdc(int drive)
365 {
366 unsigned long flags;
367
368 drive &= 3;
369 #ifdef DEBUG
370 printk("get_fdc: drive %d fdc_busy %d fdc_nested %d\n",drive,fdc_busy,fdc_nested);
371 #endif
372 local_irq_save(flags);
373 wait_event(fdc_wait, try_fdc(drive));
374 fdc_busy = drive;
375 fdc_nested++;
376 local_irq_restore(flags);
377 }
378
rel_fdc(void)379 static inline void rel_fdc(void)
380 {
381 #ifdef DEBUG
382 if (fdc_nested == 0)
383 printk("fd: unmatched rel_fdc\n");
384 printk("rel_fdc: fdc_busy %d fdc_nested %d\n",fdc_busy,fdc_nested);
385 #endif
386 fdc_nested--;
387 if (fdc_nested == 0) {
388 fdc_busy = -1;
389 wake_up(&fdc_wait);
390 }
391 }
392
fd_select(int drive)393 static void fd_select (int drive)
394 {
395 unsigned char prb = ~0;
396
397 drive&=3;
398 #ifdef DEBUG
399 printk("selecting %d\n",drive);
400 #endif
401 if (drive == selected)
402 return;
403 get_fdc(drive);
404 selected = drive;
405
406 if (unit[drive].track % 2 != 0)
407 prb &= ~DSKSIDE;
408 if (unit[drive].motor == 1)
409 prb &= ~DSKMOTOR;
410 ciab.prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3));
411 ciab.prb = prb;
412 prb &= ~SELMASK(drive);
413 ciab.prb = prb;
414 rel_fdc();
415 }
416
fd_deselect(int drive)417 static void fd_deselect (int drive)
418 {
419 unsigned char prb;
420 unsigned long flags;
421
422 drive&=3;
423 #ifdef DEBUG
424 printk("deselecting %d\n",drive);
425 #endif
426 if (drive != selected) {
427 printk(KERN_WARNING "Deselecting drive %d while %d was selected!\n",drive,selected);
428 return;
429 }
430
431 get_fdc(drive);
432 local_irq_save(flags);
433
434 selected = -1;
435
436 prb = ciab.prb;
437 prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3));
438 ciab.prb = prb;
439
440 local_irq_restore (flags);
441 rel_fdc();
442
443 }
444
motor_on_callback(struct timer_list * unused)445 static void motor_on_callback(struct timer_list *unused)
446 {
447 if (!(ciaa.pra & DSKRDY) || --on_attempts == 0) {
448 complete_all(&motor_on_completion);
449 } else {
450 motor_on_timer.expires = jiffies + HZ/10;
451 add_timer(&motor_on_timer);
452 }
453 }
454
fd_motor_on(int nr)455 static int fd_motor_on(int nr)
456 {
457 nr &= 3;
458
459 del_timer(motor_off_timer + nr);
460
461 if (!unit[nr].motor) {
462 unit[nr].motor = 1;
463 fd_select(nr);
464
465 reinit_completion(&motor_on_completion);
466 mod_timer(&motor_on_timer, jiffies + HZ/2);
467
468 on_attempts = 10;
469 wait_for_completion(&motor_on_completion);
470 fd_deselect(nr);
471 }
472
473 if (on_attempts == 0) {
474 on_attempts = -1;
475 #if 0
476 printk (KERN_ERR "motor_on failed, turning motor off\n");
477 fd_motor_off (motor_off_timer + nr);
478 return 0;
479 #else
480 printk (KERN_WARNING "DSKRDY not set after 1.5 seconds - assuming drive is spinning notwithstanding\n");
481 #endif
482 }
483
484 return 1;
485 }
486
fd_motor_off(struct timer_list * timer)487 static void fd_motor_off(struct timer_list *timer)
488 {
489 unsigned long drive = ((unsigned long)timer -
490 (unsigned long)&motor_off_timer[0]) /
491 sizeof(motor_off_timer[0]);
492
493 drive&=3;
494 if (!try_fdc(drive)) {
495 /* We would be blocked in an interrupt, so try again later */
496 timer->expires = jiffies + 1;
497 add_timer(timer);
498 return;
499 }
500 unit[drive].motor = 0;
501 fd_select(drive);
502 udelay (1);
503 fd_deselect(drive);
504 }
505
floppy_off(unsigned int nr)506 static void floppy_off (unsigned int nr)
507 {
508 int drive;
509
510 drive = nr & 3;
511 mod_timer(motor_off_timer + drive, jiffies + 3*HZ);
512 }
513
fd_calibrate(int drive)514 static int fd_calibrate(int drive)
515 {
516 unsigned char prb;
517 int n;
518
519 drive &= 3;
520 get_fdc(drive);
521 if (!fd_motor_on (drive))
522 return 0;
523 fd_select (drive);
524 prb = ciab.prb;
525 prb |= DSKSIDE;
526 prb &= ~DSKDIREC;
527 ciab.prb = prb;
528 for (n = unit[drive].type->tracks/2; n != 0; --n) {
529 if (ciaa.pra & DSKTRACK0)
530 break;
531 prb &= ~DSKSTEP;
532 ciab.prb = prb;
533 prb |= DSKSTEP;
534 udelay (2);
535 ciab.prb = prb;
536 ms_delay(unit[drive].type->step_delay);
537 }
538 ms_delay (unit[drive].type->settle_time);
539 prb |= DSKDIREC;
540 n = unit[drive].type->tracks + 20;
541 for (;;) {
542 prb &= ~DSKSTEP;
543 ciab.prb = prb;
544 prb |= DSKSTEP;
545 udelay (2);
546 ciab.prb = prb;
547 ms_delay(unit[drive].type->step_delay + 1);
548 if ((ciaa.pra & DSKTRACK0) == 0)
549 break;
550 if (--n == 0) {
551 printk (KERN_ERR "fd%d: calibrate failed, turning motor off\n", drive);
552 fd_motor_off (motor_off_timer + drive);
553 unit[drive].track = -1;
554 rel_fdc();
555 return 0;
556 }
557 }
558 unit[drive].track = 0;
559 ms_delay(unit[drive].type->settle_time);
560
561 rel_fdc();
562 fd_deselect(drive);
563 return 1;
564 }
565
fd_seek(int drive,int track)566 static int fd_seek(int drive, int track)
567 {
568 unsigned char prb;
569 int cnt;
570
571 #ifdef DEBUG
572 printk("seeking drive %d to track %d\n",drive,track);
573 #endif
574 drive &= 3;
575 get_fdc(drive);
576 if (unit[drive].track == track) {
577 rel_fdc();
578 return 1;
579 }
580 if (!fd_motor_on(drive)) {
581 rel_fdc();
582 return 0;
583 }
584 if (unit[drive].track < 0 && !fd_calibrate(drive)) {
585 rel_fdc();
586 return 0;
587 }
588
589 fd_select (drive);
590 cnt = unit[drive].track/2 - track/2;
591 prb = ciab.prb;
592 prb |= DSKSIDE | DSKDIREC;
593 if (track % 2 != 0)
594 prb &= ~DSKSIDE;
595 if (cnt < 0) {
596 cnt = - cnt;
597 prb &= ~DSKDIREC;
598 }
599 ciab.prb = prb;
600 if (track % 2 != unit[drive].track % 2)
601 ms_delay (unit[drive].type->side_time);
602 unit[drive].track = track;
603 if (cnt == 0) {
604 rel_fdc();
605 fd_deselect(drive);
606 return 1;
607 }
608 do {
609 prb &= ~DSKSTEP;
610 ciab.prb = prb;
611 prb |= DSKSTEP;
612 udelay (1);
613 ciab.prb = prb;
614 ms_delay (unit[drive].type->step_delay);
615 } while (--cnt != 0);
616 ms_delay (unit[drive].type->settle_time);
617
618 rel_fdc();
619 fd_deselect(drive);
620 return 1;
621 }
622
fd_get_drive_id(int drive)623 static unsigned long fd_get_drive_id(int drive)
624 {
625 int i;
626 ulong id = 0;
627
628 drive&=3;
629 get_fdc(drive);
630 /* set up for ID */
631 MOTOR_ON;
632 udelay(2);
633 SELECT(SELMASK(drive));
634 udelay(2);
635 DESELECT(SELMASK(drive));
636 udelay(2);
637 MOTOR_OFF;
638 udelay(2);
639 SELECT(SELMASK(drive));
640 udelay(2);
641 DESELECT(SELMASK(drive));
642 udelay(2);
643
644 /* loop and read disk ID */
645 for (i=0; i<32; i++) {
646 SELECT(SELMASK(drive));
647 udelay(2);
648
649 /* read and store value of DSKRDY */
650 id <<= 1;
651 id |= (ciaa.pra & DSKRDY) ? 0 : 1; /* cia regs are low-active! */
652
653 DESELECT(SELMASK(drive));
654 }
655
656 rel_fdc();
657
658 /*
659 * RB: At least A500/A2000's df0: don't identify themselves.
660 * As every (real) Amiga has at least a 3.5" DD drive as df0:
661 * we default to that if df0: doesn't identify as a certain
662 * type.
663 */
664 if(drive == 0 && id == FD_NODRIVE)
665 {
666 id = fd_def_df0;
667 printk(KERN_NOTICE "fd: drive 0 didn't identify, setting default %08lx\n", (ulong)fd_def_df0);
668 }
669 /* return the ID value */
670 return (id);
671 }
672
fd_block_done(int irq,void * dummy)673 static irqreturn_t fd_block_done(int irq, void *dummy)
674 {
675 if (block_flag)
676 custom.dsklen = 0x4000;
677
678 if (block_flag == 2) { /* writing */
679 writepending = 2;
680 post_write_timer.expires = jiffies + 1; /* at least 2 ms */
681 post_write_timer_drive = selected;
682 add_timer(&post_write_timer);
683 }
684 else { /* reading */
685 block_flag = 0;
686 wake_up (&wait_fd_block);
687 }
688 return IRQ_HANDLED;
689 }
690
raw_read(int drive)691 static void raw_read(int drive)
692 {
693 drive&=3;
694 get_fdc(drive);
695 wait_event(wait_fd_block, !block_flag);
696 fd_select(drive);
697 /* setup adkcon bits correctly */
698 custom.adkcon = ADK_MSBSYNC;
699 custom.adkcon = ADK_SETCLR|ADK_WORDSYNC|ADK_FAST;
700
701 custom.dsksync = MFM_SYNC;
702
703 custom.dsklen = 0;
704 custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf);
705 custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN;
706 custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN;
707
708 block_flag = 1;
709
710 wait_event(wait_fd_block, !block_flag);
711
712 custom.dsklen = 0;
713 fd_deselect(drive);
714 rel_fdc();
715 }
716
raw_write(int drive)717 static int raw_write(int drive)
718 {
719 ushort adk;
720
721 drive&=3;
722 get_fdc(drive); /* corresponds to rel_fdc() in post_write() */
723 if ((ciaa.pra & DSKPROT) == 0) {
724 rel_fdc();
725 return 0;
726 }
727 wait_event(wait_fd_block, !block_flag);
728 fd_select(drive);
729 /* clear adkcon bits */
730 custom.adkcon = ADK_PRECOMP1|ADK_PRECOMP0|ADK_WORDSYNC|ADK_MSBSYNC;
731 /* set appropriate adkcon bits */
732 adk = ADK_SETCLR|ADK_FAST;
733 if ((ulong)unit[drive].track >= unit[drive].type->precomp2)
734 adk |= ADK_PRECOMP1;
735 else if ((ulong)unit[drive].track >= unit[drive].type->precomp1)
736 adk |= ADK_PRECOMP0;
737 custom.adkcon = adk;
738
739 custom.dsklen = DSKLEN_WRITE;
740 custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf);
741 custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE;
742 custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE;
743
744 block_flag = 2;
745 return 1;
746 }
747
748 /*
749 * to be called at least 2ms after the write has finished but before any
750 * other access to the hardware.
751 */
post_write(unsigned long drive)752 static void post_write (unsigned long drive)
753 {
754 #ifdef DEBUG
755 printk("post_write for drive %ld\n",drive);
756 #endif
757 drive &= 3;
758 custom.dsklen = 0;
759 block_flag = 0;
760 writepending = 0;
761 writefromint = 0;
762 unit[drive].dirty = 0;
763 wake_up(&wait_fd_block);
764 fd_deselect(drive);
765 rel_fdc(); /* corresponds to get_fdc() in raw_write */
766 }
767
post_write_callback(struct timer_list * timer)768 static void post_write_callback(struct timer_list *timer)
769 {
770 post_write(post_write_timer_drive);
771 }
772
773 /*
774 * The following functions are to convert the block contents into raw data
775 * written to disk and vice versa.
776 * (Add other formats here ;-))
777 */
778
scan_sync(unsigned long raw,unsigned long end)779 static unsigned long scan_sync(unsigned long raw, unsigned long end)
780 {
781 ushort *ptr = (ushort *)raw, *endp = (ushort *)end;
782
783 while (ptr < endp && *ptr++ != 0x4489)
784 ;
785 if (ptr < endp) {
786 while (*ptr == 0x4489 && ptr < endp)
787 ptr++;
788 return (ulong)ptr;
789 }
790 return 0;
791 }
792
checksum(unsigned long * addr,int len)793 static inline unsigned long checksum(unsigned long *addr, int len)
794 {
795 unsigned long csum = 0;
796
797 len /= sizeof(*addr);
798 while (len-- > 0)
799 csum ^= *addr++;
800 csum = ((csum>>1) & 0x55555555) ^ (csum & 0x55555555);
801
802 return csum;
803 }
804
decode(unsigned long * data,unsigned long * raw,int len)805 static unsigned long decode (unsigned long *data, unsigned long *raw,
806 int len)
807 {
808 ulong *odd, *even;
809
810 /* convert length from bytes to longwords */
811 len >>= 2;
812 odd = raw;
813 even = odd + len;
814
815 /* prepare return pointer */
816 raw += len * 2;
817
818 do {
819 *data++ = ((*odd++ & 0x55555555) << 1) | (*even++ & 0x55555555);
820 } while (--len != 0);
821
822 return (ulong)raw;
823 }
824
825 struct header {
826 unsigned char magic;
827 unsigned char track;
828 unsigned char sect;
829 unsigned char ord;
830 unsigned char labels[16];
831 unsigned long hdrchk;
832 unsigned long datachk;
833 };
834
amiga_read(int drive)835 static int amiga_read(int drive)
836 {
837 unsigned long raw;
838 unsigned long end;
839 int scnt;
840 unsigned long csum;
841 struct header hdr;
842
843 drive&=3;
844 raw = (long) raw_buf;
845 end = raw + unit[drive].type->read_size;
846
847 for (scnt = 0;scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) {
848 if (!(raw = scan_sync(raw, end))) {
849 printk (KERN_INFO "can't find sync for sector %d\n", scnt);
850 return MFM_NOSYNC;
851 }
852
853 raw = decode ((ulong *)&hdr.magic, (ulong *)raw, 4);
854 raw = decode ((ulong *)&hdr.labels, (ulong *)raw, 16);
855 raw = decode ((ulong *)&hdr.hdrchk, (ulong *)raw, 4);
856 raw = decode ((ulong *)&hdr.datachk, (ulong *)raw, 4);
857 csum = checksum((ulong *)&hdr,
858 (char *)&hdr.hdrchk-(char *)&hdr);
859
860 #ifdef DEBUG
861 printk ("(%x,%d,%d,%d) (%lx,%lx,%lx,%lx) %lx %lx\n",
862 hdr.magic, hdr.track, hdr.sect, hdr.ord,
863 *(ulong *)&hdr.labels[0], *(ulong *)&hdr.labels[4],
864 *(ulong *)&hdr.labels[8], *(ulong *)&hdr.labels[12],
865 hdr.hdrchk, hdr.datachk);
866 #endif
867
868 if (hdr.hdrchk != csum) {
869 printk(KERN_INFO "MFM_HEADER: %08lx,%08lx\n", hdr.hdrchk, csum);
870 return MFM_HEADER;
871 }
872
873 /* verify track */
874 if (hdr.track != unit[drive].track) {
875 printk(KERN_INFO "MFM_TRACK: %d, %d\n", hdr.track, unit[drive].track);
876 return MFM_TRACK;
877 }
878
879 raw = decode ((ulong *)(unit[drive].trackbuf + hdr.sect*512),
880 (ulong *)raw, 512);
881 csum = checksum((ulong *)(unit[drive].trackbuf + hdr.sect*512), 512);
882
883 if (hdr.datachk != csum) {
884 printk(KERN_INFO "MFM_DATA: (%x:%d:%d:%d) sc=%d %lx, %lx\n",
885 hdr.magic, hdr.track, hdr.sect, hdr.ord, scnt,
886 hdr.datachk, csum);
887 printk (KERN_INFO "data=(%lx,%lx,%lx,%lx)\n",
888 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[0],
889 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[1],
890 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[2],
891 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[3]);
892 return MFM_DATA;
893 }
894 }
895
896 return 0;
897 }
898
encode(unsigned long data,unsigned long * dest)899 static void encode(unsigned long data, unsigned long *dest)
900 {
901 unsigned long data2;
902
903 data &= 0x55555555;
904 data2 = data ^ 0x55555555;
905 data |= ((data2 >> 1) | 0x80000000) & (data2 << 1);
906
907 if (*(dest - 1) & 0x00000001)
908 data &= 0x7FFFFFFF;
909
910 *dest = data;
911 }
912
encode_block(unsigned long * dest,unsigned long * src,int len)913 static void encode_block(unsigned long *dest, unsigned long *src, int len)
914 {
915 int cnt, to_cnt = 0;
916 unsigned long data;
917
918 /* odd bits */
919 for (cnt = 0; cnt < len / 4; cnt++) {
920 data = src[cnt] >> 1;
921 encode(data, dest + to_cnt++);
922 }
923
924 /* even bits */
925 for (cnt = 0; cnt < len / 4; cnt++) {
926 data = src[cnt];
927 encode(data, dest + to_cnt++);
928 }
929 }
930
putsec(int disk,unsigned long * raw,int cnt)931 static unsigned long *putsec(int disk, unsigned long *raw, int cnt)
932 {
933 struct header hdr;
934 int i;
935
936 disk&=3;
937 *raw = (raw[-1]&1) ? 0x2AAAAAAA : 0xAAAAAAAA;
938 raw++;
939 *raw++ = 0x44894489;
940
941 hdr.magic = 0xFF;
942 hdr.track = unit[disk].track;
943 hdr.sect = cnt;
944 hdr.ord = unit[disk].dtype->sects * unit[disk].type->sect_mult - cnt;
945 for (i = 0; i < 16; i++)
946 hdr.labels[i] = 0;
947 hdr.hdrchk = checksum((ulong *)&hdr,
948 (char *)&hdr.hdrchk-(char *)&hdr);
949 hdr.datachk = checksum((ulong *)(unit[disk].trackbuf+cnt*512), 512);
950
951 encode_block(raw, (ulong *)&hdr.magic, 4);
952 raw += 2;
953 encode_block(raw, (ulong *)&hdr.labels, 16);
954 raw += 8;
955 encode_block(raw, (ulong *)&hdr.hdrchk, 4);
956 raw += 2;
957 encode_block(raw, (ulong *)&hdr.datachk, 4);
958 raw += 2;
959 encode_block(raw, (ulong *)(unit[disk].trackbuf+cnt*512), 512);
960 raw += 256;
961
962 return raw;
963 }
964
amiga_write(int disk)965 static void amiga_write(int disk)
966 {
967 unsigned int cnt;
968 unsigned long *ptr = (unsigned long *)raw_buf;
969
970 disk&=3;
971 /* gap space */
972 for (cnt = 0; cnt < 415 * unit[disk].type->sect_mult; cnt++)
973 *ptr++ = 0xaaaaaaaa;
974
975 /* sectors */
976 for (cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++)
977 ptr = putsec (disk, ptr, cnt);
978 *(ushort *)ptr = (ptr[-1]&1) ? 0x2AA8 : 0xAAA8;
979 }
980
981
982 struct dos_header {
983 unsigned char track, /* 0-80 */
984 side, /* 0-1 */
985 sec, /* 0-...*/
986 len_desc;/* 2 */
987 unsigned short crc; /* on 68000 we got an alignment problem,
988 but this compiler solves it by adding silently
989 adding a pad byte so data won't fit
990 and this took about 3h to discover.... */
991 unsigned char gap1[22]; /* for longword-alignedness (0x4e) */
992 };
993
994 /* crc routines are borrowed from the messydos-handler */
995
996 /* excerpt from the messydos-device
997 ; The CRC is computed not only over the actual data, but including
998 ; the SYNC mark (3 * $a1) and the 'ID/DATA - Address Mark' ($fe/$fb).
999 ; As we don't read or encode these fields into our buffers, we have to
1000 ; preload the registers containing the CRC with the values they would have
1001 ; after stepping over these fields.
1002 ;
1003 ; How CRCs "really" work:
1004 ;
1005 ; First, you should regard a bitstring as a series of coefficients of
1006 ; polynomials. We calculate with these polynomials in modulo-2
1007 ; arithmetic, in which both add and subtract are done the same as
1008 ; exclusive-or. Now, we modify our data (a very long polynomial) in
1009 ; such a way that it becomes divisible by the CCITT-standard 16-bit
1010 ; 16 12 5
1011 ; polynomial: x + x + x + 1, represented by $11021. The easiest
1012 ; way to do this would be to multiply (using proper arithmetic) our
1013 ; datablock with $11021. So we have:
1014 ; data * $11021 =
1015 ; data * ($10000 + $1021) =
1016 ; data * $10000 + data * $1021
1017 ; The left part of this is simple: Just add two 0 bytes. But then
1018 ; the right part (data $1021) remains difficult and even could have
1019 ; a carry into the left part. The solution is to use a modified
1020 ; multiplication, which has a result that is not correct, but with
1021 ; a difference of any multiple of $11021. We then only need to keep
1022 ; the 16 least significant bits of the result.
1023 ;
1024 ; The following algorithm does this for us:
1025 ;
1026 ; unsigned char *data, c, crclo, crchi;
1027 ; while (not done) {
1028 ; c = *data++ + crchi;
1029 ; crchi = (@ c) >> 8 + crclo;
1030 ; crclo = @ c;
1031 ; }
1032 ;
1033 ; Remember, + is done with EOR, the @ operator is in two tables (high
1034 ; and low byte separately), which is calculated as
1035 ;
1036 ; $1021 * (c & $F0)
1037 ; xor $1021 * (c & $0F)
1038 ; xor $1021 * (c >> 4) (* is regular multiplication)
1039 ;
1040 ;
1041 ; Anyway, the end result is the same as the remainder of the division of
1042 ; the data by $11021. I am afraid I need to study theory a bit more...
1043
1044
1045 my only works was to code this from manx to C....
1046
1047 */
1048
dos_crc(void * data_a3,int data_d0,int data_d1,int data_d3)1049 static ushort dos_crc(void * data_a3, int data_d0, int data_d1, int data_d3)
1050 {
1051 static unsigned char CRCTable1[] = {
1052 0x00,0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x81,0x91,0xa1,0xb1,0xc1,0xd1,0xe1,0xf1,
1053 0x12,0x02,0x32,0x22,0x52,0x42,0x72,0x62,0x93,0x83,0xb3,0xa3,0xd3,0xc3,0xf3,0xe3,
1054 0x24,0x34,0x04,0x14,0x64,0x74,0x44,0x54,0xa5,0xb5,0x85,0x95,0xe5,0xf5,0xc5,0xd5,
1055 0x36,0x26,0x16,0x06,0x76,0x66,0x56,0x46,0xb7,0xa7,0x97,0x87,0xf7,0xe7,0xd7,0xc7,
1056 0x48,0x58,0x68,0x78,0x08,0x18,0x28,0x38,0xc9,0xd9,0xe9,0xf9,0x89,0x99,0xa9,0xb9,
1057 0x5a,0x4a,0x7a,0x6a,0x1a,0x0a,0x3a,0x2a,0xdb,0xcb,0xfb,0xeb,0x9b,0x8b,0xbb,0xab,
1058 0x6c,0x7c,0x4c,0x5c,0x2c,0x3c,0x0c,0x1c,0xed,0xfd,0xcd,0xdd,0xad,0xbd,0x8d,0x9d,
1059 0x7e,0x6e,0x5e,0x4e,0x3e,0x2e,0x1e,0x0e,0xff,0xef,0xdf,0xcf,0xbf,0xaf,0x9f,0x8f,
1060 0x91,0x81,0xb1,0xa1,0xd1,0xc1,0xf1,0xe1,0x10,0x00,0x30,0x20,0x50,0x40,0x70,0x60,
1061 0x83,0x93,0xa3,0xb3,0xc3,0xd3,0xe3,0xf3,0x02,0x12,0x22,0x32,0x42,0x52,0x62,0x72,
1062 0xb5,0xa5,0x95,0x85,0xf5,0xe5,0xd5,0xc5,0x34,0x24,0x14,0x04,0x74,0x64,0x54,0x44,
1063 0xa7,0xb7,0x87,0x97,0xe7,0xf7,0xc7,0xd7,0x26,0x36,0x06,0x16,0x66,0x76,0x46,0x56,
1064 0xd9,0xc9,0xf9,0xe9,0x99,0x89,0xb9,0xa9,0x58,0x48,0x78,0x68,0x18,0x08,0x38,0x28,
1065 0xcb,0xdb,0xeb,0xfb,0x8b,0x9b,0xab,0xbb,0x4a,0x5a,0x6a,0x7a,0x0a,0x1a,0x2a,0x3a,
1066 0xfd,0xed,0xdd,0xcd,0xbd,0xad,0x9d,0x8d,0x7c,0x6c,0x5c,0x4c,0x3c,0x2c,0x1c,0x0c,
1067 0xef,0xff,0xcf,0xdf,0xaf,0xbf,0x8f,0x9f,0x6e,0x7e,0x4e,0x5e,0x2e,0x3e,0x0e,0x1e
1068 };
1069
1070 static unsigned char CRCTable2[] = {
1071 0x00,0x21,0x42,0x63,0x84,0xa5,0xc6,0xe7,0x08,0x29,0x4a,0x6b,0x8c,0xad,0xce,0xef,
1072 0x31,0x10,0x73,0x52,0xb5,0x94,0xf7,0xd6,0x39,0x18,0x7b,0x5a,0xbd,0x9c,0xff,0xde,
1073 0x62,0x43,0x20,0x01,0xe6,0xc7,0xa4,0x85,0x6a,0x4b,0x28,0x09,0xee,0xcf,0xac,0x8d,
1074 0x53,0x72,0x11,0x30,0xd7,0xf6,0x95,0xb4,0x5b,0x7a,0x19,0x38,0xdf,0xfe,0x9d,0xbc,
1075 0xc4,0xe5,0x86,0xa7,0x40,0x61,0x02,0x23,0xcc,0xed,0x8e,0xaf,0x48,0x69,0x0a,0x2b,
1076 0xf5,0xd4,0xb7,0x96,0x71,0x50,0x33,0x12,0xfd,0xdc,0xbf,0x9e,0x79,0x58,0x3b,0x1a,
1077 0xa6,0x87,0xe4,0xc5,0x22,0x03,0x60,0x41,0xae,0x8f,0xec,0xcd,0x2a,0x0b,0x68,0x49,
1078 0x97,0xb6,0xd5,0xf4,0x13,0x32,0x51,0x70,0x9f,0xbe,0xdd,0xfc,0x1b,0x3a,0x59,0x78,
1079 0x88,0xa9,0xca,0xeb,0x0c,0x2d,0x4e,0x6f,0x80,0xa1,0xc2,0xe3,0x04,0x25,0x46,0x67,
1080 0xb9,0x98,0xfb,0xda,0x3d,0x1c,0x7f,0x5e,0xb1,0x90,0xf3,0xd2,0x35,0x14,0x77,0x56,
1081 0xea,0xcb,0xa8,0x89,0x6e,0x4f,0x2c,0x0d,0xe2,0xc3,0xa0,0x81,0x66,0x47,0x24,0x05,
1082 0xdb,0xfa,0x99,0xb8,0x5f,0x7e,0x1d,0x3c,0xd3,0xf2,0x91,0xb0,0x57,0x76,0x15,0x34,
1083 0x4c,0x6d,0x0e,0x2f,0xc8,0xe9,0x8a,0xab,0x44,0x65,0x06,0x27,0xc0,0xe1,0x82,0xa3,
1084 0x7d,0x5c,0x3f,0x1e,0xf9,0xd8,0xbb,0x9a,0x75,0x54,0x37,0x16,0xf1,0xd0,0xb3,0x92,
1085 0x2e,0x0f,0x6c,0x4d,0xaa,0x8b,0xe8,0xc9,0x26,0x07,0x64,0x45,0xa2,0x83,0xe0,0xc1,
1086 0x1f,0x3e,0x5d,0x7c,0x9b,0xba,0xd9,0xf8,0x17,0x36,0x55,0x74,0x93,0xb2,0xd1,0xf0
1087 };
1088
1089 /* look at the asm-code - what looks in C a bit strange is almost as good as handmade */
1090 register int i;
1091 register unsigned char *CRCT1, *CRCT2, *data, c, crch, crcl;
1092
1093 CRCT1=CRCTable1;
1094 CRCT2=CRCTable2;
1095 data=data_a3;
1096 crcl=data_d1;
1097 crch=data_d0;
1098 for (i=data_d3; i>=0; i--) {
1099 c = (*data++) ^ crch;
1100 crch = CRCT1[c] ^ crcl;
1101 crcl = CRCT2[c];
1102 }
1103 return (crch<<8)|crcl;
1104 }
1105
dos_hdr_crc(struct dos_header * hdr)1106 static inline ushort dos_hdr_crc (struct dos_header *hdr)
1107 {
1108 return dos_crc(&(hdr->track), 0xb2, 0x30, 3); /* precomputed magic */
1109 }
1110
dos_data_crc(unsigned char * data)1111 static inline ushort dos_data_crc(unsigned char *data)
1112 {
1113 return dos_crc(data, 0xe2, 0x95 ,511); /* precomputed magic */
1114 }
1115
dos_decode_byte(ushort word)1116 static inline unsigned char dos_decode_byte(ushort word)
1117 {
1118 register ushort w2;
1119 register unsigned char byte;
1120 register unsigned char *dec = mfmdecode;
1121
1122 w2=word;
1123 w2>>=8;
1124 w2&=127;
1125 byte = dec[w2];
1126 byte <<= 4;
1127 w2 = word & 127;
1128 byte |= dec[w2];
1129 return byte;
1130 }
1131
dos_decode(unsigned char * data,unsigned short * raw,int len)1132 static unsigned long dos_decode(unsigned char *data, unsigned short *raw, int len)
1133 {
1134 int i;
1135
1136 for (i = 0; i < len; i++)
1137 *data++=dos_decode_byte(*raw++);
1138 return ((ulong)raw);
1139 }
1140
1141 #ifdef DEBUG
dbg(unsigned long ptr)1142 static void dbg(unsigned long ptr)
1143 {
1144 printk("raw data @%08lx: %08lx, %08lx ,%08lx, %08lx\n", ptr,
1145 ((ulong *)ptr)[0], ((ulong *)ptr)[1],
1146 ((ulong *)ptr)[2], ((ulong *)ptr)[3]);
1147 }
1148 #endif
1149
dos_read(int drive)1150 static int dos_read(int drive)
1151 {
1152 unsigned long end;
1153 unsigned long raw;
1154 int scnt;
1155 unsigned short crc,data_crc[2];
1156 struct dos_header hdr;
1157
1158 drive&=3;
1159 raw = (long) raw_buf;
1160 end = raw + unit[drive].type->read_size;
1161
1162 for (scnt=0; scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) {
1163 do { /* search for the right sync of each sec-hdr */
1164 if (!(raw = scan_sync (raw, end))) {
1165 printk(KERN_INFO "dos_read: no hdr sync on "
1166 "track %d, unit %d for sector %d\n",
1167 unit[drive].track,drive,scnt);
1168 return MFM_NOSYNC;
1169 }
1170 #ifdef DEBUG
1171 dbg(raw);
1172 #endif
1173 } while (*((ushort *)raw)!=0x5554); /* loop usually only once done */
1174 raw+=2; /* skip over headermark */
1175 raw = dos_decode((unsigned char *)&hdr,(ushort *) raw,8);
1176 crc = dos_hdr_crc(&hdr);
1177
1178 #ifdef DEBUG
1179 printk("(%3d,%d,%2d,%d) %x\n", hdr.track, hdr.side,
1180 hdr.sec, hdr.len_desc, hdr.crc);
1181 #endif
1182
1183 if (crc != hdr.crc) {
1184 printk(KERN_INFO "dos_read: MFM_HEADER %04x,%04x\n",
1185 hdr.crc, crc);
1186 return MFM_HEADER;
1187 }
1188 if (hdr.track != unit[drive].track/unit[drive].type->heads) {
1189 printk(KERN_INFO "dos_read: MFM_TRACK %d, %d\n",
1190 hdr.track,
1191 unit[drive].track/unit[drive].type->heads);
1192 return MFM_TRACK;
1193 }
1194
1195 if (hdr.side != unit[drive].track%unit[drive].type->heads) {
1196 printk(KERN_INFO "dos_read: MFM_SIDE %d, %d\n",
1197 hdr.side,
1198 unit[drive].track%unit[drive].type->heads);
1199 return MFM_TRACK;
1200 }
1201
1202 if (hdr.len_desc != 2) {
1203 printk(KERN_INFO "dos_read: unknown sector len "
1204 "descriptor %d\n", hdr.len_desc);
1205 return MFM_DATA;
1206 }
1207 #ifdef DEBUG
1208 printk("hdr accepted\n");
1209 #endif
1210 if (!(raw = scan_sync (raw, end))) {
1211 printk(KERN_INFO "dos_read: no data sync on track "
1212 "%d, unit %d for sector%d, disk sector %d\n",
1213 unit[drive].track, drive, scnt, hdr.sec);
1214 return MFM_NOSYNC;
1215 }
1216 #ifdef DEBUG
1217 dbg(raw);
1218 #endif
1219
1220 if (*((ushort *)raw)!=0x5545) {
1221 printk(KERN_INFO "dos_read: no data mark after "
1222 "sync (%d,%d,%d,%d) sc=%d\n",
1223 hdr.track,hdr.side,hdr.sec,hdr.len_desc,scnt);
1224 return MFM_NOSYNC;
1225 }
1226
1227 raw+=2; /* skip data mark (included in checksum) */
1228 raw = dos_decode((unsigned char *)(unit[drive].trackbuf + (hdr.sec - 1) * 512), (ushort *) raw, 512);
1229 raw = dos_decode((unsigned char *)data_crc,(ushort *) raw,4);
1230 crc = dos_data_crc(unit[drive].trackbuf + (hdr.sec - 1) * 512);
1231
1232 if (crc != data_crc[0]) {
1233 printk(KERN_INFO "dos_read: MFM_DATA (%d,%d,%d,%d) "
1234 "sc=%d, %x %x\n", hdr.track, hdr.side,
1235 hdr.sec, hdr.len_desc, scnt,data_crc[0], crc);
1236 printk(KERN_INFO "data=(%lx,%lx,%lx,%lx,...)\n",
1237 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[0],
1238 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[1],
1239 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[2],
1240 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[3]);
1241 return MFM_DATA;
1242 }
1243 }
1244 return 0;
1245 }
1246
dos_encode_byte(unsigned char byte)1247 static inline ushort dos_encode_byte(unsigned char byte)
1248 {
1249 register unsigned char *enc, b2, b1;
1250 register ushort word;
1251
1252 enc=mfmencode;
1253 b1=byte;
1254 b2=b1>>4;
1255 b1&=15;
1256 word=enc[b2] <<8 | enc [b1];
1257 return (word|((word&(256|64)) ? 0: 128));
1258 }
1259
dos_encode_block(ushort * dest,unsigned char * src,int len)1260 static void dos_encode_block(ushort *dest, unsigned char *src, int len)
1261 {
1262 int i;
1263
1264 for (i = 0; i < len; i++) {
1265 *dest=dos_encode_byte(*src++);
1266 *dest|=((dest[-1]&1)||(*dest&0x4000))? 0: 0x8000;
1267 dest++;
1268 }
1269 }
1270
ms_putsec(int drive,unsigned long * raw,int cnt)1271 static unsigned long *ms_putsec(int drive, unsigned long *raw, int cnt)
1272 {
1273 static struct dos_header hdr={0,0,0,2,0,
1274 {78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78}};
1275 int i;
1276 static ushort crc[2]={0,0x4e4e};
1277
1278 drive&=3;
1279 /* id gap 1 */
1280 /* the MFM word before is always 9254 */
1281 for(i=0;i<6;i++)
1282 *raw++=0xaaaaaaaa;
1283 /* 3 sync + 1 headermark */
1284 *raw++=0x44894489;
1285 *raw++=0x44895554;
1286
1287 /* fill in the variable parts of the header */
1288 hdr.track=unit[drive].track/unit[drive].type->heads;
1289 hdr.side=unit[drive].track%unit[drive].type->heads;
1290 hdr.sec=cnt+1;
1291 hdr.crc=dos_hdr_crc(&hdr);
1292
1293 /* header (without "magic") and id gap 2*/
1294 dos_encode_block((ushort *)raw,(unsigned char *) &hdr.track,28);
1295 raw+=14;
1296
1297 /*id gap 3 */
1298 for(i=0;i<6;i++)
1299 *raw++=0xaaaaaaaa;
1300
1301 /* 3 syncs and 1 datamark */
1302 *raw++=0x44894489;
1303 *raw++=0x44895545;
1304
1305 /* data */
1306 dos_encode_block((ushort *)raw,
1307 (unsigned char *)unit[drive].trackbuf+cnt*512,512);
1308 raw+=256;
1309
1310 /*data crc + jd's special gap (long words :-/) */
1311 crc[0]=dos_data_crc(unit[drive].trackbuf+cnt*512);
1312 dos_encode_block((ushort *) raw,(unsigned char *)crc,4);
1313 raw+=2;
1314
1315 /* data gap */
1316 for(i=0;i<38;i++)
1317 *raw++=0x92549254;
1318
1319 return raw; /* wrote 652 MFM words */
1320 }
1321
dos_write(int disk)1322 static void dos_write(int disk)
1323 {
1324 int cnt;
1325 unsigned long raw = (unsigned long) raw_buf;
1326 unsigned long *ptr=(unsigned long *)raw;
1327
1328 disk&=3;
1329 /* really gap4 + indexgap , but we write it first and round it up */
1330 for (cnt=0;cnt<425;cnt++)
1331 *ptr++=0x92549254;
1332
1333 /* the following is just guessed */
1334 if (unit[disk].type->sect_mult==2) /* check for HD-Disks */
1335 for(cnt=0;cnt<473;cnt++)
1336 *ptr++=0x92549254;
1337
1338 /* now the index marks...*/
1339 for (cnt=0;cnt<20;cnt++)
1340 *ptr++=0x92549254;
1341 for (cnt=0;cnt<6;cnt++)
1342 *ptr++=0xaaaaaaaa;
1343 *ptr++=0x52245224;
1344 *ptr++=0x52245552;
1345 for (cnt=0;cnt<20;cnt++)
1346 *ptr++=0x92549254;
1347
1348 /* sectors */
1349 for(cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++)
1350 ptr=ms_putsec(disk,ptr,cnt);
1351
1352 *(ushort *)ptr = 0xaaa8; /* MFM word before is always 0x9254 */
1353 }
1354
1355 /*
1356 * Here comes the high level stuff (i.e. the filesystem interface)
1357 * and helper functions.
1358 * Normally this should be the only part that has to be adapted to
1359 * different kernel versions.
1360 */
1361
1362 /* FIXME: this assumes the drive is still spinning -
1363 * which is only true if we complete writing a track within three seconds
1364 */
flush_track_callback(struct timer_list * timer)1365 static void flush_track_callback(struct timer_list *timer)
1366 {
1367 unsigned long nr = ((unsigned long)timer -
1368 (unsigned long)&flush_track_timer[0]) /
1369 sizeof(flush_track_timer[0]);
1370
1371 nr&=3;
1372 writefromint = 1;
1373 if (!try_fdc(nr)) {
1374 /* we might block in an interrupt, so try again later */
1375 flush_track_timer[nr].expires = jiffies + 1;
1376 add_timer(flush_track_timer + nr);
1377 return;
1378 }
1379 get_fdc(nr);
1380 (*unit[nr].dtype->write_fkt)(nr);
1381 if (!raw_write(nr)) {
1382 printk (KERN_NOTICE "floppy disk write protected\n");
1383 writefromint = 0;
1384 writepending = 0;
1385 }
1386 rel_fdc();
1387 }
1388
non_int_flush_track(unsigned long nr)1389 static int non_int_flush_track (unsigned long nr)
1390 {
1391 unsigned long flags;
1392
1393 nr&=3;
1394 writefromint = 0;
1395 del_timer(&post_write_timer);
1396 get_fdc(nr);
1397 if (!fd_motor_on(nr)) {
1398 writepending = 0;
1399 rel_fdc();
1400 return 0;
1401 }
1402 local_irq_save(flags);
1403 if (writepending != 2) {
1404 local_irq_restore(flags);
1405 (*unit[nr].dtype->write_fkt)(nr);
1406 if (!raw_write(nr)) {
1407 printk (KERN_NOTICE "floppy disk write protected "
1408 "in write!\n");
1409 writepending = 0;
1410 return 0;
1411 }
1412 wait_event(wait_fd_block, block_flag != 2);
1413 }
1414 else {
1415 local_irq_restore(flags);
1416 ms_delay(2); /* 2 ms post_write delay */
1417 post_write(nr);
1418 }
1419 rel_fdc();
1420 return 1;
1421 }
1422
get_track(int drive,int track)1423 static int get_track(int drive, int track)
1424 {
1425 int error, errcnt;
1426
1427 drive&=3;
1428 if (unit[drive].track == track)
1429 return 0;
1430 get_fdc(drive);
1431 if (!fd_motor_on(drive)) {
1432 rel_fdc();
1433 return -1;
1434 }
1435
1436 if (unit[drive].dirty == 1) {
1437 del_timer (flush_track_timer + drive);
1438 non_int_flush_track (drive);
1439 }
1440 errcnt = 0;
1441 while (errcnt < MAX_ERRORS) {
1442 if (!fd_seek(drive, track))
1443 return -1;
1444 raw_read(drive);
1445 error = (*unit[drive].dtype->read_fkt)(drive);
1446 if (error == 0) {
1447 rel_fdc();
1448 return 0;
1449 }
1450 /* Read Error Handling: recalibrate and try again */
1451 unit[drive].track = -1;
1452 errcnt++;
1453 }
1454 rel_fdc();
1455 return -1;
1456 }
1457
amiflop_rw_cur_segment(struct amiga_floppy_struct * floppy,struct request * rq)1458 static blk_status_t amiflop_rw_cur_segment(struct amiga_floppy_struct *floppy,
1459 struct request *rq)
1460 {
1461 int drive = floppy - unit;
1462 unsigned int cnt, block, track, sector;
1463 char *data;
1464
1465 for (cnt = 0; cnt < blk_rq_cur_sectors(rq); cnt++) {
1466 #ifdef DEBUG
1467 printk("fd: sector %ld + %d requested for %s\n",
1468 blk_rq_pos(rq), cnt,
1469 (rq_data_dir(rq) == READ) ? "read" : "write");
1470 #endif
1471 block = blk_rq_pos(rq) + cnt;
1472 track = block / (floppy->dtype->sects * floppy->type->sect_mult);
1473 sector = block % (floppy->dtype->sects * floppy->type->sect_mult);
1474 data = bio_data(rq->bio) + 512 * cnt;
1475 #ifdef DEBUG
1476 printk("access to track %d, sector %d, with buffer at "
1477 "0x%08lx\n", track, sector, data);
1478 #endif
1479
1480 if (get_track(drive, track) == -1)
1481 return BLK_STS_IOERR;
1482
1483 if (rq_data_dir(rq) == READ) {
1484 memcpy(data, floppy->trackbuf + sector * 512, 512);
1485 } else {
1486 memcpy(floppy->trackbuf + sector * 512, data, 512);
1487
1488 /* keep the drive spinning while writes are scheduled */
1489 if (!fd_motor_on(drive))
1490 return BLK_STS_IOERR;
1491 /*
1492 * setup a callback to write the track buffer
1493 * after a short (1 tick) delay.
1494 */
1495 floppy->dirty = 1;
1496 /* reset the timer */
1497 mod_timer (flush_track_timer + drive, jiffies + 1);
1498 }
1499 }
1500
1501 return BLK_STS_OK;
1502 }
1503
amiflop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1504 static blk_status_t amiflop_queue_rq(struct blk_mq_hw_ctx *hctx,
1505 const struct blk_mq_queue_data *bd)
1506 {
1507 struct request *rq = bd->rq;
1508 struct amiga_floppy_struct *floppy = rq->q->disk->private_data;
1509 blk_status_t err;
1510
1511 if (!spin_trylock_irq(&amiflop_lock))
1512 return BLK_STS_DEV_RESOURCE;
1513
1514 blk_mq_start_request(rq);
1515
1516 do {
1517 err = amiflop_rw_cur_segment(floppy, rq);
1518 } while (blk_update_request(rq, err, blk_rq_cur_bytes(rq)));
1519 blk_mq_end_request(rq, err);
1520
1521 spin_unlock_irq(&amiflop_lock);
1522 return BLK_STS_OK;
1523 }
1524
fd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1525 static int fd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1526 {
1527 int drive = MINOR(bdev->bd_dev) & 3;
1528
1529 geo->heads = unit[drive].type->heads;
1530 geo->sectors = unit[drive].dtype->sects * unit[drive].type->sect_mult;
1531 geo->cylinders = unit[drive].type->tracks;
1532 return 0;
1533 }
1534
fd_locked_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long param)1535 static int fd_locked_ioctl(struct block_device *bdev, blk_mode_t mode,
1536 unsigned int cmd, unsigned long param)
1537 {
1538 struct amiga_floppy_struct *p = bdev->bd_disk->private_data;
1539 int drive = p - unit;
1540 static struct floppy_struct getprm;
1541 void __user *argp = (void __user *)param;
1542
1543 switch(cmd){
1544 case FDFMTBEG:
1545 get_fdc(drive);
1546 if (fd_ref[drive] > 1) {
1547 rel_fdc();
1548 return -EBUSY;
1549 }
1550 if (fd_motor_on(drive) == 0) {
1551 rel_fdc();
1552 return -ENODEV;
1553 }
1554 if (fd_calibrate(drive) == 0) {
1555 rel_fdc();
1556 return -ENXIO;
1557 }
1558 floppy_off(drive);
1559 rel_fdc();
1560 break;
1561 case FDFMTTRK:
1562 if (param < p->type->tracks * p->type->heads)
1563 {
1564 get_fdc(drive);
1565 if (fd_seek(drive,param) != 0){
1566 memset(p->trackbuf, FD_FILL_BYTE,
1567 p->dtype->sects * p->type->sect_mult * 512);
1568 non_int_flush_track(drive);
1569 }
1570 floppy_off(drive);
1571 rel_fdc();
1572 }
1573 else
1574 return -EINVAL;
1575 break;
1576 case FDFMTEND:
1577 floppy_off(drive);
1578 invalidate_bdev(bdev);
1579 break;
1580 case FDGETPRM:
1581 memset((void *)&getprm, 0, sizeof (getprm));
1582 getprm.track=p->type->tracks;
1583 getprm.head=p->type->heads;
1584 getprm.sect=p->dtype->sects * p->type->sect_mult;
1585 getprm.size=p->blocks;
1586 if (copy_to_user(argp, &getprm, sizeof(struct floppy_struct)))
1587 return -EFAULT;
1588 break;
1589 case FDSETPRM:
1590 case FDDEFPRM:
1591 return -EINVAL;
1592 case FDFLUSH: /* unconditionally, even if not needed */
1593 del_timer (flush_track_timer + drive);
1594 non_int_flush_track(drive);
1595 break;
1596 #ifdef RAW_IOCTL
1597 case IOCTL_RAW_TRACK:
1598 if (copy_to_user(argp, raw_buf, p->type->read_size))
1599 return -EFAULT;
1600 else
1601 return p->type->read_size;
1602 #endif
1603 default:
1604 return -ENOSYS;
1605 }
1606 return 0;
1607 }
1608
fd_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long param)1609 static int fd_ioctl(struct block_device *bdev, blk_mode_t mode,
1610 unsigned int cmd, unsigned long param)
1611 {
1612 int ret;
1613
1614 mutex_lock(&amiflop_mutex);
1615 ret = fd_locked_ioctl(bdev, mode, cmd, param);
1616 mutex_unlock(&amiflop_mutex);
1617
1618 return ret;
1619 }
1620
fd_probe(int dev)1621 static void fd_probe(int dev)
1622 {
1623 unsigned long code;
1624 int type;
1625 int drive;
1626
1627 drive = dev & 3;
1628 code = fd_get_drive_id(drive);
1629
1630 /* get drive type */
1631 for (type = 0; type < num_dr_types; type++)
1632 if (drive_types[type].code == code)
1633 break;
1634
1635 if (type >= num_dr_types) {
1636 printk(KERN_WARNING "fd_probe: unsupported drive type "
1637 "%08lx found\n", code);
1638 unit[drive].type = &drive_types[num_dr_types-1]; /* FD_NODRIVE */
1639 return;
1640 }
1641
1642 unit[drive].type = drive_types + type;
1643 unit[drive].track = -1;
1644
1645 unit[drive].disk = -1;
1646 unit[drive].motor = 0;
1647 unit[drive].busy = 0;
1648 unit[drive].status = -1;
1649 }
1650
1651 /*
1652 * floppy_open check for aliasing (/dev/fd0 can be the same as
1653 * /dev/PS0 etc), and disallows simultaneous access to the same
1654 * drive with different device numbers.
1655 */
floppy_open(struct gendisk * disk,blk_mode_t mode)1656 static int floppy_open(struct gendisk *disk, blk_mode_t mode)
1657 {
1658 int drive = disk->first_minor & 3;
1659 int system = (disk->first_minor & 4) >> 2;
1660 int old_dev;
1661 unsigned long flags;
1662
1663 mutex_lock(&amiflop_mutex);
1664 old_dev = fd_device[drive];
1665
1666 if (fd_ref[drive] && old_dev != system) {
1667 mutex_unlock(&amiflop_mutex);
1668 return -EBUSY;
1669 }
1670
1671 if (unit[drive].type->code == FD_NODRIVE) {
1672 mutex_unlock(&amiflop_mutex);
1673 return -ENXIO;
1674 }
1675 if (mode & (BLK_OPEN_READ | BLK_OPEN_WRITE)) {
1676 disk_check_media_change(disk);
1677 if (mode & BLK_OPEN_WRITE) {
1678 int wrprot;
1679
1680 get_fdc(drive);
1681 fd_select (drive);
1682 wrprot = !(ciaa.pra & DSKPROT);
1683 fd_deselect (drive);
1684 rel_fdc();
1685
1686 if (wrprot) {
1687 mutex_unlock(&amiflop_mutex);
1688 return -EROFS;
1689 }
1690 }
1691 }
1692 local_irq_save(flags);
1693 fd_ref[drive]++;
1694 fd_device[drive] = system;
1695 local_irq_restore(flags);
1696
1697 unit[drive].dtype=&data_types[system];
1698 unit[drive].blocks=unit[drive].type->heads*unit[drive].type->tracks*
1699 data_types[system].sects*unit[drive].type->sect_mult;
1700 set_capacity(unit[drive].gendisk[system], unit[drive].blocks);
1701
1702 printk(KERN_INFO "fd%d: accessing %s-disk with %s-layout\n",drive,
1703 unit[drive].type->name, data_types[system].name);
1704
1705 mutex_unlock(&amiflop_mutex);
1706 return 0;
1707 }
1708
floppy_release(struct gendisk * disk)1709 static void floppy_release(struct gendisk *disk)
1710 {
1711 struct amiga_floppy_struct *p = disk->private_data;
1712 int drive = p - unit;
1713
1714 mutex_lock(&amiflop_mutex);
1715 if (unit[drive].dirty == 1) {
1716 del_timer (flush_track_timer + drive);
1717 non_int_flush_track (drive);
1718 }
1719
1720 if (!fd_ref[drive]--) {
1721 printk(KERN_CRIT "floppy_release with fd_ref == 0");
1722 fd_ref[drive] = 0;
1723 }
1724 #ifdef MODULE
1725 floppy_off (drive);
1726 #endif
1727 mutex_unlock(&amiflop_mutex);
1728 }
1729
1730 /*
1731 * check_events is never called from an interrupt, so we can relax a bit
1732 * here, sleep etc. Note that floppy-on tries to set current_DOR to point
1733 * to the desired drive, but it will probably not survive the sleep if
1734 * several floppies are used at the same time: thus the loop.
1735 */
amiga_check_events(struct gendisk * disk,unsigned int clearing)1736 static unsigned amiga_check_events(struct gendisk *disk, unsigned int clearing)
1737 {
1738 struct amiga_floppy_struct *p = disk->private_data;
1739 int drive = p - unit;
1740 int changed;
1741 static int first_time = 1;
1742
1743 if (first_time)
1744 changed = first_time--;
1745 else {
1746 get_fdc(drive);
1747 fd_select (drive);
1748 changed = !(ciaa.pra & DSKCHANGE);
1749 fd_deselect (drive);
1750 rel_fdc();
1751 }
1752
1753 if (changed) {
1754 fd_probe(drive);
1755 p->track = -1;
1756 p->dirty = 0;
1757 writepending = 0; /* if this was true before, too bad! */
1758 writefromint = 0;
1759 return DISK_EVENT_MEDIA_CHANGE;
1760 }
1761 return 0;
1762 }
1763
1764 static const struct block_device_operations floppy_fops = {
1765 .owner = THIS_MODULE,
1766 .open = floppy_open,
1767 .release = floppy_release,
1768 .ioctl = fd_ioctl,
1769 .getgeo = fd_getgeo,
1770 .check_events = amiga_check_events,
1771 };
1772
1773 static const struct blk_mq_ops amiflop_mq_ops = {
1774 .queue_rq = amiflop_queue_rq,
1775 };
1776
fd_alloc_disk(int drive,int system)1777 static int fd_alloc_disk(int drive, int system)
1778 {
1779 struct gendisk *disk;
1780 int err;
1781
1782 disk = blk_mq_alloc_disk(&unit[drive].tag_set, NULL);
1783 if (IS_ERR(disk))
1784 return PTR_ERR(disk);
1785
1786 disk->major = FLOPPY_MAJOR;
1787 disk->first_minor = drive + system;
1788 disk->minors = 1;
1789 disk->fops = &floppy_fops;
1790 disk->flags |= GENHD_FL_NO_PART;
1791 disk->events = DISK_EVENT_MEDIA_CHANGE;
1792 if (system)
1793 sprintf(disk->disk_name, "fd%d_msdos", drive);
1794 else
1795 sprintf(disk->disk_name, "fd%d", drive);
1796 disk->private_data = &unit[drive];
1797 set_capacity(disk, 880 * 2);
1798
1799 unit[drive].gendisk[system] = disk;
1800 err = add_disk(disk);
1801 if (err)
1802 put_disk(disk);
1803 return err;
1804 }
1805
fd_alloc_drive(int drive)1806 static int fd_alloc_drive(int drive)
1807 {
1808 unit[drive].trackbuf = kmalloc(FLOPPY_MAX_SECTORS * 512, GFP_KERNEL);
1809 if (!unit[drive].trackbuf)
1810 goto out;
1811
1812 memset(&unit[drive].tag_set, 0, sizeof(unit[drive].tag_set));
1813 unit[drive].tag_set.ops = &amiflop_mq_ops;
1814 unit[drive].tag_set.nr_hw_queues = 1;
1815 unit[drive].tag_set.nr_maps = 1;
1816 unit[drive].tag_set.queue_depth = 2;
1817 unit[drive].tag_set.numa_node = NUMA_NO_NODE;
1818 unit[drive].tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1819 if (blk_mq_alloc_tag_set(&unit[drive].tag_set))
1820 goto out_cleanup_trackbuf;
1821
1822 pr_cont(" fd%d", drive);
1823
1824 if (fd_alloc_disk(drive, 0) || fd_alloc_disk(drive, 1))
1825 goto out_cleanup_tagset;
1826 return 0;
1827
1828 out_cleanup_tagset:
1829 blk_mq_free_tag_set(&unit[drive].tag_set);
1830 out_cleanup_trackbuf:
1831 kfree(unit[drive].trackbuf);
1832 out:
1833 unit[drive].type->code = FD_NODRIVE;
1834 return -ENOMEM;
1835 }
1836
fd_probe_drives(void)1837 static int __init fd_probe_drives(void)
1838 {
1839 int drive,drives,nomem;
1840
1841 pr_info("FD: probing units\nfound");
1842 drives=0;
1843 nomem=0;
1844 for(drive=0;drive<FD_MAX_UNITS;drive++) {
1845 fd_probe(drive);
1846 if (unit[drive].type->code == FD_NODRIVE)
1847 continue;
1848
1849 if (fd_alloc_drive(drive) < 0) {
1850 pr_cont(" no mem for fd%d", drive);
1851 nomem = 1;
1852 continue;
1853 }
1854 drives++;
1855 }
1856 if ((drives > 0) || (nomem == 0)) {
1857 if (drives == 0)
1858 pr_cont(" no drives");
1859 pr_cont("\n");
1860 return drives;
1861 }
1862 pr_cont("\n");
1863 return -ENOMEM;
1864 }
1865
amiga_floppy_probe(struct platform_device * pdev)1866 static int __init amiga_floppy_probe(struct platform_device *pdev)
1867 {
1868 int i, ret;
1869
1870 if (register_blkdev(FLOPPY_MAJOR,"fd"))
1871 return -EBUSY;
1872
1873 ret = -ENOMEM;
1874 raw_buf = amiga_chip_alloc(RAW_BUF_SIZE, "Floppy");
1875 if (!raw_buf) {
1876 printk("fd: cannot get chip mem buffer\n");
1877 goto out_blkdev;
1878 }
1879
1880 ret = -EBUSY;
1881 if (request_irq(IRQ_AMIGA_DSKBLK, fd_block_done, 0, "floppy_dma", NULL)) {
1882 printk("fd: cannot get irq for dma\n");
1883 goto out_irq;
1884 }
1885
1886 if (request_irq(IRQ_AMIGA_CIAA_TB, ms_isr, 0, "floppy_timer", NULL)) {
1887 printk("fd: cannot get irq for timer\n");
1888 goto out_irq2;
1889 }
1890
1891 ret = -ENODEV;
1892 if (fd_probe_drives() < 1) /* No usable drives */
1893 goto out_probe;
1894
1895 /* initialize variables */
1896 timer_setup(&motor_on_timer, motor_on_callback, 0);
1897 motor_on_timer.expires = 0;
1898 for (i = 0; i < FD_MAX_UNITS; i++) {
1899 timer_setup(&motor_off_timer[i], fd_motor_off, 0);
1900 motor_off_timer[i].expires = 0;
1901 timer_setup(&flush_track_timer[i], flush_track_callback, 0);
1902 flush_track_timer[i].expires = 0;
1903
1904 unit[i].track = -1;
1905 }
1906
1907 timer_setup(&post_write_timer, post_write_callback, 0);
1908 post_write_timer.expires = 0;
1909
1910 for (i = 0; i < 128; i++)
1911 mfmdecode[i]=255;
1912 for (i = 0; i < 16; i++)
1913 mfmdecode[mfmencode[i]]=i;
1914
1915 /* make sure that disk DMA is enabled */
1916 custom.dmacon = DMAF_SETCLR | DMAF_DISK;
1917
1918 /* init ms timer */
1919 ciaa.crb = 8; /* one-shot, stop */
1920 return 0;
1921
1922 out_probe:
1923 free_irq(IRQ_AMIGA_CIAA_TB, NULL);
1924 out_irq2:
1925 free_irq(IRQ_AMIGA_DSKBLK, NULL);
1926 out_irq:
1927 amiga_chip_free(raw_buf);
1928 out_blkdev:
1929 unregister_blkdev(FLOPPY_MAJOR,"fd");
1930 return ret;
1931 }
1932
1933 static struct platform_driver amiga_floppy_driver = {
1934 .driver = {
1935 .name = "amiga-floppy",
1936 },
1937 };
1938
amiga_floppy_init(void)1939 static int __init amiga_floppy_init(void)
1940 {
1941 return platform_driver_probe(&amiga_floppy_driver, amiga_floppy_probe);
1942 }
1943
1944 module_init(amiga_floppy_init);
1945
1946 #ifndef MODULE
amiga_floppy_setup(char * str)1947 static int __init amiga_floppy_setup (char *str)
1948 {
1949 int n;
1950 if (!MACH_IS_AMIGA)
1951 return 0;
1952 if (!get_option(&str, &n))
1953 return 0;
1954 printk (KERN_INFO "amiflop: Setting default df0 to %x\n", n);
1955 fd_def_df0 = n;
1956 return 1;
1957 }
1958
1959 __setup("floppy=", amiga_floppy_setup);
1960 #endif
1961
1962 MODULE_ALIAS("platform:amiga-floppy");
1963