1 /*
2  * transport_class.c - implementation of generic transport classes
3  *                     using attribute_containers
4  *
5  * Copyright (c) 2005 - James Bottomley <James.Bottomley@steeleye.com>
6  *
7  * This file is licensed under GPLv2
8  *
9  * The basic idea here is to allow any "device controller" (which
10  * would most often be a Host Bus Adapter to use the services of one
11  * or more tranport classes for performing transport specific
12  * services.  Transport specific services are things that the generic
13  * command layer doesn't want to know about (speed settings, line
14  * condidtioning, etc), but which the user might be interested in.
15  * Thus, the HBA's use the routines exported by the transport classes
16  * to perform these functions.  The transport classes export certain
17  * values to the user via sysfs using attribute containers.
18  *
19  * Note: because not every HBA will care about every transport
20  * attribute, there's a many to one relationship that goes like this:
21  *
22  * transport class<-----attribute container<----class device
23  *
24  * Usually the attribute container is per-HBA, but the design doesn't
25  * mandate that.  Although most of the services will be specific to
26  * the actual external storage connection used by the HBA, the generic
27  * transport class is framed entirely in terms of generic devices to
28  * allow it to be used by any physical HBA in the system.
29  */
30 #include <linux/export.h>
31 #include <linux/attribute_container.h>
32 #include <linux/transport_class.h>
33 
34 /**
35  * transport_class_register - register an initial transport class
36  *
37  * @tclass:	a pointer to the transport class structure to be initialised
38  *
39  * The transport class contains an embedded class which is used to
40  * identify it.  The caller should initialise this structure with
41  * zeros and then generic class must have been initialised with the
42  * actual transport class unique name.  There's a macro
43  * DECLARE_TRANSPORT_CLASS() to do this (declared classes still must
44  * be registered).
45  *
46  * Returns 0 on success or error on failure.
47  */
48 int transport_class_register(struct transport_class *tclass)
49 {
50 	return class_register(&tclass->class);
51 }
52 EXPORT_SYMBOL_GPL(transport_class_register);
53 
54 /**
55  * transport_class_unregister - unregister a previously registered class
56  *
57  * @tclass: The transport class to unregister
58  *
59  * Must be called prior to deallocating the memory for the transport
60  * class.
61  */
62 void transport_class_unregister(struct transport_class *tclass)
63 {
64 	class_unregister(&tclass->class);
65 }
66 EXPORT_SYMBOL_GPL(transport_class_unregister);
67 
68 static int anon_transport_dummy_function(struct transport_container *tc,
69 					 struct device *dev,
70 					 struct device *cdev)
71 {
72 	/* do nothing */
73 	return 0;
74 }
75 
76 /**
77  * anon_transport_class_register - register an anonymous class
78  *
79  * @atc: The anon transport class to register
80  *
81  * The anonymous transport class contains both a transport class and a
82  * container.  The idea of an anonymous class is that it never
83  * actually has any device attributes associated with it (and thus
84  * saves on container storage).  So it can only be used for triggering
85  * events.  Use prezero and then use DECLARE_ANON_TRANSPORT_CLASS() to
86  * initialise the anon transport class storage.
87  */
88 int anon_transport_class_register(struct anon_transport_class *atc)
89 {
90 	int error;
91 	atc->container.class = &atc->tclass.class;
92 	attribute_container_set_no_classdevs(&atc->container);
93 	error = attribute_container_register(&atc->container);
94 	if (error)
95 		return error;
96 	atc->tclass.setup = anon_transport_dummy_function;
97 	atc->tclass.remove = anon_transport_dummy_function;
98 	return 0;
99 }
100 EXPORT_SYMBOL_GPL(anon_transport_class_register);
101 
102 /**
103  * anon_transport_class_unregister - unregister an anon class
104  *
105  * @atc: Pointer to the anon transport class to unregister
106  *
107  * Must be called prior to deallocating the memory for the anon
108  * transport class.
109  */
110 void anon_transport_class_unregister(struct anon_transport_class *atc)
111 {
112 	if (unlikely(attribute_container_unregister(&atc->container)))
113 		BUG();
114 }
115 EXPORT_SYMBOL_GPL(anon_transport_class_unregister);
116 
117 static int transport_setup_classdev(struct attribute_container *cont,
118 				    struct device *dev,
119 				    struct device *classdev)
120 {
121 	struct transport_class *tclass = class_to_transport_class(cont->class);
122 	struct transport_container *tcont = attribute_container_to_transport_container(cont);
123 
124 	if (tclass->setup)
125 		tclass->setup(tcont, dev, classdev);
126 
127 	return 0;
128 }
129 
130 /**
131  * transport_setup_device - declare a new dev for transport class association but don't make it visible yet.
132  * @dev: the generic device representing the entity being added
133  *
134  * Usually, dev represents some component in the HBA system (either
135  * the HBA itself or a device remote across the HBA bus).  This
136  * routine is simply a trigger point to see if any set of transport
137  * classes wishes to associate with the added device.  This allocates
138  * storage for the class device and initialises it, but does not yet
139  * add it to the system or add attributes to it (you do this with
140  * transport_add_device).  If you have no need for a separate setup
141  * and add operations, use transport_register_device (see
142  * transport_class.h).
143  */
144 
145 void transport_setup_device(struct device *dev)
146 {
147 	attribute_container_add_device(dev, transport_setup_classdev);
148 }
149 EXPORT_SYMBOL_GPL(transport_setup_device);
150 
151 static int transport_add_class_device(struct attribute_container *cont,
152 				      struct device *dev,
153 				      struct device *classdev)
154 {
155 	int error = attribute_container_add_class_device(classdev);
156 	struct transport_container *tcont =
157 		attribute_container_to_transport_container(cont);
158 
159 	if (!error && tcont->statistics)
160 		error = sysfs_create_group(&classdev->kobj, tcont->statistics);
161 
162 	return error;
163 }
164 
165 
166 /**
167  * transport_add_device - declare a new dev for transport class association
168  *
169  * @dev: the generic device representing the entity being added
170  *
171  * Usually, dev represents some component in the HBA system (either
172  * the HBA itself or a device remote across the HBA bus).  This
173  * routine is simply a trigger point used to add the device to the
174  * system and register attributes for it.
175  */
176 
177 void transport_add_device(struct device *dev)
178 {
179 	attribute_container_device_trigger(dev, transport_add_class_device);
180 }
181 EXPORT_SYMBOL_GPL(transport_add_device);
182 
183 static int transport_configure(struct attribute_container *cont,
184 			       struct device *dev,
185 			       struct device *cdev)
186 {
187 	struct transport_class *tclass = class_to_transport_class(cont->class);
188 	struct transport_container *tcont = attribute_container_to_transport_container(cont);
189 
190 	if (tclass->configure)
191 		tclass->configure(tcont, dev, cdev);
192 
193 	return 0;
194 }
195 
196 /**
197  * transport_configure_device - configure an already set up device
198  *
199  * @dev: generic device representing device to be configured
200  *
201  * The idea of configure is simply to provide a point within the setup
202  * process to allow the transport class to extract information from a
203  * device after it has been setup.  This is used in SCSI because we
204  * have to have a setup device to begin using the HBA, but after we
205  * send the initial inquiry, we use configure to extract the device
206  * parameters.  The device need not have been added to be configured.
207  */
208 void transport_configure_device(struct device *dev)
209 {
210 	attribute_container_device_trigger(dev, transport_configure);
211 }
212 EXPORT_SYMBOL_GPL(transport_configure_device);
213 
214 static int transport_remove_classdev(struct attribute_container *cont,
215 				     struct device *dev,
216 				     struct device *classdev)
217 {
218 	struct transport_container *tcont =
219 		attribute_container_to_transport_container(cont);
220 	struct transport_class *tclass = class_to_transport_class(cont->class);
221 
222 	if (tclass->remove)
223 		tclass->remove(tcont, dev, classdev);
224 
225 	if (tclass->remove != anon_transport_dummy_function) {
226 		if (tcont->statistics)
227 			sysfs_remove_group(&classdev->kobj, tcont->statistics);
228 		attribute_container_class_device_del(classdev);
229 	}
230 
231 	return 0;
232 }
233 
234 
235 /**
236  * transport_remove_device - remove the visibility of a device
237  *
238  * @dev: generic device to remove
239  *
240  * This call removes the visibility of the device (to the user from
241  * sysfs), but does not destroy it.  To eliminate a device entirely
242  * you must also call transport_destroy_device.  If you don't need to
243  * do remove and destroy as separate operations, use
244  * transport_unregister_device() (see transport_class.h) which will
245  * perform both calls for you.
246  */
247 void transport_remove_device(struct device *dev)
248 {
249 	attribute_container_device_trigger(dev, transport_remove_classdev);
250 }
251 EXPORT_SYMBOL_GPL(transport_remove_device);
252 
253 static void transport_destroy_classdev(struct attribute_container *cont,
254 				      struct device *dev,
255 				      struct device *classdev)
256 {
257 	struct transport_class *tclass = class_to_transport_class(cont->class);
258 
259 	if (tclass->remove != anon_transport_dummy_function)
260 		put_device(classdev);
261 }
262 
263 
264 /**
265  * transport_destroy_device - destroy a removed device
266  *
267  * @dev: device to eliminate from the transport class.
268  *
269  * This call triggers the elimination of storage associated with the
270  * transport classdev.  Note: all it really does is relinquish a
271  * reference to the classdev.  The memory will not be freed until the
272  * last reference goes to zero.  Note also that the classdev retains a
273  * reference count on dev, so dev too will remain for as long as the
274  * transport class device remains around.
275  */
276 void transport_destroy_device(struct device *dev)
277 {
278 	attribute_container_remove_device(dev, transport_destroy_classdev);
279 }
280 EXPORT_SYMBOL_GPL(transport_destroy_device);
281