xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 #include "internal.h"
28 
29 /*
30  * Sometimes for failures during very early init the trace
31  * infrastructure isn't available early enough to be used.  For this
32  * sort of problem defining LOG_DEVICE will add printks for basic
33  * register I/O on a specific device.
34  */
35 #undef LOG_DEVICE
36 
37 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38 			       unsigned int mask, unsigned int val,
39 			       bool *change, bool force_write);
40 
41 static int _regmap_bus_reg_read(void *context, unsigned int reg,
42 				unsigned int *val);
43 static int _regmap_bus_read(void *context, unsigned int reg,
44 			    unsigned int *val);
45 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46 				       unsigned int val);
47 static int _regmap_bus_reg_write(void *context, unsigned int reg,
48 				 unsigned int val);
49 static int _regmap_bus_raw_write(void *context, unsigned int reg,
50 				 unsigned int val);
51 
52 bool regmap_reg_in_ranges(unsigned int reg,
53 			  const struct regmap_range *ranges,
54 			  unsigned int nranges)
55 {
56 	const struct regmap_range *r;
57 	int i;
58 
59 	for (i = 0, r = ranges; i < nranges; i++, r++)
60 		if (regmap_reg_in_range(reg, r))
61 			return true;
62 	return false;
63 }
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65 
66 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67 			      const struct regmap_access_table *table)
68 {
69 	/* Check "no ranges" first */
70 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71 		return false;
72 
73 	/* In case zero "yes ranges" are supplied, any reg is OK */
74 	if (!table->n_yes_ranges)
75 		return true;
76 
77 	return regmap_reg_in_ranges(reg, table->yes_ranges,
78 				    table->n_yes_ranges);
79 }
80 EXPORT_SYMBOL_GPL(regmap_check_range_table);
81 
82 bool regmap_writeable(struct regmap *map, unsigned int reg)
83 {
84 	if (map->max_register && reg > map->max_register)
85 		return false;
86 
87 	if (map->writeable_reg)
88 		return map->writeable_reg(map->dev, reg);
89 
90 	if (map->wr_table)
91 		return regmap_check_range_table(map, reg, map->wr_table);
92 
93 	return true;
94 }
95 
96 bool regmap_cached(struct regmap *map, unsigned int reg)
97 {
98 	int ret;
99 	unsigned int val;
100 
101 	if (map->cache == REGCACHE_NONE)
102 		return false;
103 
104 	if (!map->cache_ops)
105 		return false;
106 
107 	if (map->max_register && reg > map->max_register)
108 		return false;
109 
110 	map->lock(map->lock_arg);
111 	ret = regcache_read(map, reg, &val);
112 	map->unlock(map->lock_arg);
113 	if (ret)
114 		return false;
115 
116 	return true;
117 }
118 
119 bool regmap_readable(struct regmap *map, unsigned int reg)
120 {
121 	if (!map->reg_read)
122 		return false;
123 
124 	if (map->max_register && reg > map->max_register)
125 		return false;
126 
127 	if (map->format.format_write)
128 		return false;
129 
130 	if (map->readable_reg)
131 		return map->readable_reg(map->dev, reg);
132 
133 	if (map->rd_table)
134 		return regmap_check_range_table(map, reg, map->rd_table);
135 
136 	return true;
137 }
138 
139 bool regmap_volatile(struct regmap *map, unsigned int reg)
140 {
141 	if (!map->format.format_write && !regmap_readable(map, reg))
142 		return false;
143 
144 	if (map->volatile_reg)
145 		return map->volatile_reg(map->dev, reg);
146 
147 	if (map->volatile_table)
148 		return regmap_check_range_table(map, reg, map->volatile_table);
149 
150 	if (map->cache_ops)
151 		return false;
152 	else
153 		return true;
154 }
155 
156 bool regmap_precious(struct regmap *map, unsigned int reg)
157 {
158 	if (!regmap_readable(map, reg))
159 		return false;
160 
161 	if (map->precious_reg)
162 		return map->precious_reg(map->dev, reg);
163 
164 	if (map->precious_table)
165 		return regmap_check_range_table(map, reg, map->precious_table);
166 
167 	return false;
168 }
169 
170 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
171 	size_t num)
172 {
173 	unsigned int i;
174 
175 	for (i = 0; i < num; i++)
176 		if (!regmap_volatile(map, reg + i))
177 			return false;
178 
179 	return true;
180 }
181 
182 static void regmap_format_2_6_write(struct regmap *map,
183 				     unsigned int reg, unsigned int val)
184 {
185 	u8 *out = map->work_buf;
186 
187 	*out = (reg << 6) | val;
188 }
189 
190 static void regmap_format_4_12_write(struct regmap *map,
191 				     unsigned int reg, unsigned int val)
192 {
193 	__be16 *out = map->work_buf;
194 	*out = cpu_to_be16((reg << 12) | val);
195 }
196 
197 static void regmap_format_7_9_write(struct regmap *map,
198 				    unsigned int reg, unsigned int val)
199 {
200 	__be16 *out = map->work_buf;
201 	*out = cpu_to_be16((reg << 9) | val);
202 }
203 
204 static void regmap_format_10_14_write(struct regmap *map,
205 				    unsigned int reg, unsigned int val)
206 {
207 	u8 *out = map->work_buf;
208 
209 	out[2] = val;
210 	out[1] = (val >> 8) | (reg << 6);
211 	out[0] = reg >> 2;
212 }
213 
214 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
215 {
216 	u8 *b = buf;
217 
218 	b[0] = val << shift;
219 }
220 
221 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
222 {
223 	__be16 *b = buf;
224 
225 	b[0] = cpu_to_be16(val << shift);
226 }
227 
228 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
229 {
230 	__le16 *b = buf;
231 
232 	b[0] = cpu_to_le16(val << shift);
233 }
234 
235 static void regmap_format_16_native(void *buf, unsigned int val,
236 				    unsigned int shift)
237 {
238 	*(u16 *)buf = val << shift;
239 }
240 
241 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
242 {
243 	u8 *b = buf;
244 
245 	val <<= shift;
246 
247 	b[0] = val >> 16;
248 	b[1] = val >> 8;
249 	b[2] = val;
250 }
251 
252 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
253 {
254 	__be32 *b = buf;
255 
256 	b[0] = cpu_to_be32(val << shift);
257 }
258 
259 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
260 {
261 	__le32 *b = buf;
262 
263 	b[0] = cpu_to_le32(val << shift);
264 }
265 
266 static void regmap_format_32_native(void *buf, unsigned int val,
267 				    unsigned int shift)
268 {
269 	*(u32 *)buf = val << shift;
270 }
271 
272 #ifdef CONFIG_64BIT
273 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	__be64 *b = buf;
276 
277 	b[0] = cpu_to_be64((u64)val << shift);
278 }
279 
280 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
281 {
282 	__le64 *b = buf;
283 
284 	b[0] = cpu_to_le64((u64)val << shift);
285 }
286 
287 static void regmap_format_64_native(void *buf, unsigned int val,
288 				    unsigned int shift)
289 {
290 	*(u64 *)buf = (u64)val << shift;
291 }
292 #endif
293 
294 static void regmap_parse_inplace_noop(void *buf)
295 {
296 }
297 
298 static unsigned int regmap_parse_8(const void *buf)
299 {
300 	const u8 *b = buf;
301 
302 	return b[0];
303 }
304 
305 static unsigned int regmap_parse_16_be(const void *buf)
306 {
307 	const __be16 *b = buf;
308 
309 	return be16_to_cpu(b[0]);
310 }
311 
312 static unsigned int regmap_parse_16_le(const void *buf)
313 {
314 	const __le16 *b = buf;
315 
316 	return le16_to_cpu(b[0]);
317 }
318 
319 static void regmap_parse_16_be_inplace(void *buf)
320 {
321 	__be16 *b = buf;
322 
323 	b[0] = be16_to_cpu(b[0]);
324 }
325 
326 static void regmap_parse_16_le_inplace(void *buf)
327 {
328 	__le16 *b = buf;
329 
330 	b[0] = le16_to_cpu(b[0]);
331 }
332 
333 static unsigned int regmap_parse_16_native(const void *buf)
334 {
335 	return *(u16 *)buf;
336 }
337 
338 static unsigned int regmap_parse_24(const void *buf)
339 {
340 	const u8 *b = buf;
341 	unsigned int ret = b[2];
342 	ret |= ((unsigned int)b[1]) << 8;
343 	ret |= ((unsigned int)b[0]) << 16;
344 
345 	return ret;
346 }
347 
348 static unsigned int regmap_parse_32_be(const void *buf)
349 {
350 	const __be32 *b = buf;
351 
352 	return be32_to_cpu(b[0]);
353 }
354 
355 static unsigned int regmap_parse_32_le(const void *buf)
356 {
357 	const __le32 *b = buf;
358 
359 	return le32_to_cpu(b[0]);
360 }
361 
362 static void regmap_parse_32_be_inplace(void *buf)
363 {
364 	__be32 *b = buf;
365 
366 	b[0] = be32_to_cpu(b[0]);
367 }
368 
369 static void regmap_parse_32_le_inplace(void *buf)
370 {
371 	__le32 *b = buf;
372 
373 	b[0] = le32_to_cpu(b[0]);
374 }
375 
376 static unsigned int regmap_parse_32_native(const void *buf)
377 {
378 	return *(u32 *)buf;
379 }
380 
381 #ifdef CONFIG_64BIT
382 static unsigned int regmap_parse_64_be(const void *buf)
383 {
384 	const __be64 *b = buf;
385 
386 	return be64_to_cpu(b[0]);
387 }
388 
389 static unsigned int regmap_parse_64_le(const void *buf)
390 {
391 	const __le64 *b = buf;
392 
393 	return le64_to_cpu(b[0]);
394 }
395 
396 static void regmap_parse_64_be_inplace(void *buf)
397 {
398 	__be64 *b = buf;
399 
400 	b[0] = be64_to_cpu(b[0]);
401 }
402 
403 static void regmap_parse_64_le_inplace(void *buf)
404 {
405 	__le64 *b = buf;
406 
407 	b[0] = le64_to_cpu(b[0]);
408 }
409 
410 static unsigned int regmap_parse_64_native(const void *buf)
411 {
412 	return *(u64 *)buf;
413 }
414 #endif
415 
416 static void regmap_lock_mutex(void *__map)
417 {
418 	struct regmap *map = __map;
419 	mutex_lock(&map->mutex);
420 }
421 
422 static void regmap_unlock_mutex(void *__map)
423 {
424 	struct regmap *map = __map;
425 	mutex_unlock(&map->mutex);
426 }
427 
428 static void regmap_lock_spinlock(void *__map)
429 __acquires(&map->spinlock)
430 {
431 	struct regmap *map = __map;
432 	unsigned long flags;
433 
434 	spin_lock_irqsave(&map->spinlock, flags);
435 	map->spinlock_flags = flags;
436 }
437 
438 static void regmap_unlock_spinlock(void *__map)
439 __releases(&map->spinlock)
440 {
441 	struct regmap *map = __map;
442 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
443 }
444 
445 static void dev_get_regmap_release(struct device *dev, void *res)
446 {
447 	/*
448 	 * We don't actually have anything to do here; the goal here
449 	 * is not to manage the regmap but to provide a simple way to
450 	 * get the regmap back given a struct device.
451 	 */
452 }
453 
454 static bool _regmap_range_add(struct regmap *map,
455 			      struct regmap_range_node *data)
456 {
457 	struct rb_root *root = &map->range_tree;
458 	struct rb_node **new = &(root->rb_node), *parent = NULL;
459 
460 	while (*new) {
461 		struct regmap_range_node *this =
462 			container_of(*new, struct regmap_range_node, node);
463 
464 		parent = *new;
465 		if (data->range_max < this->range_min)
466 			new = &((*new)->rb_left);
467 		else if (data->range_min > this->range_max)
468 			new = &((*new)->rb_right);
469 		else
470 			return false;
471 	}
472 
473 	rb_link_node(&data->node, parent, new);
474 	rb_insert_color(&data->node, root);
475 
476 	return true;
477 }
478 
479 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
480 						      unsigned int reg)
481 {
482 	struct rb_node *node = map->range_tree.rb_node;
483 
484 	while (node) {
485 		struct regmap_range_node *this =
486 			container_of(node, struct regmap_range_node, node);
487 
488 		if (reg < this->range_min)
489 			node = node->rb_left;
490 		else if (reg > this->range_max)
491 			node = node->rb_right;
492 		else
493 			return this;
494 	}
495 
496 	return NULL;
497 }
498 
499 static void regmap_range_exit(struct regmap *map)
500 {
501 	struct rb_node *next;
502 	struct regmap_range_node *range_node;
503 
504 	next = rb_first(&map->range_tree);
505 	while (next) {
506 		range_node = rb_entry(next, struct regmap_range_node, node);
507 		next = rb_next(&range_node->node);
508 		rb_erase(&range_node->node, &map->range_tree);
509 		kfree(range_node);
510 	}
511 
512 	kfree(map->selector_work_buf);
513 }
514 
515 int regmap_attach_dev(struct device *dev, struct regmap *map,
516 		      const struct regmap_config *config)
517 {
518 	struct regmap **m;
519 
520 	map->dev = dev;
521 
522 	regmap_debugfs_init(map, config->name);
523 
524 	/* Add a devres resource for dev_get_regmap() */
525 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
526 	if (!m) {
527 		regmap_debugfs_exit(map);
528 		return -ENOMEM;
529 	}
530 	*m = map;
531 	devres_add(dev, m);
532 
533 	return 0;
534 }
535 EXPORT_SYMBOL_GPL(regmap_attach_dev);
536 
537 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
538 					const struct regmap_config *config)
539 {
540 	enum regmap_endian endian;
541 
542 	/* Retrieve the endianness specification from the regmap config */
543 	endian = config->reg_format_endian;
544 
545 	/* If the regmap config specified a non-default value, use that */
546 	if (endian != REGMAP_ENDIAN_DEFAULT)
547 		return endian;
548 
549 	/* Retrieve the endianness specification from the bus config */
550 	if (bus && bus->reg_format_endian_default)
551 		endian = bus->reg_format_endian_default;
552 
553 	/* If the bus specified a non-default value, use that */
554 	if (endian != REGMAP_ENDIAN_DEFAULT)
555 		return endian;
556 
557 	/* Use this if no other value was found */
558 	return REGMAP_ENDIAN_BIG;
559 }
560 
561 enum regmap_endian regmap_get_val_endian(struct device *dev,
562 					 const struct regmap_bus *bus,
563 					 const struct regmap_config *config)
564 {
565 	struct device_node *np;
566 	enum regmap_endian endian;
567 
568 	/* Retrieve the endianness specification from the regmap config */
569 	endian = config->val_format_endian;
570 
571 	/* If the regmap config specified a non-default value, use that */
572 	if (endian != REGMAP_ENDIAN_DEFAULT)
573 		return endian;
574 
575 	/* If the dev and dev->of_node exist try to get endianness from DT */
576 	if (dev && dev->of_node) {
577 		np = dev->of_node;
578 
579 		/* Parse the device's DT node for an endianness specification */
580 		if (of_property_read_bool(np, "big-endian"))
581 			endian = REGMAP_ENDIAN_BIG;
582 		else if (of_property_read_bool(np, "little-endian"))
583 			endian = REGMAP_ENDIAN_LITTLE;
584 		else if (of_property_read_bool(np, "native-endian"))
585 			endian = REGMAP_ENDIAN_NATIVE;
586 
587 		/* If the endianness was specified in DT, use that */
588 		if (endian != REGMAP_ENDIAN_DEFAULT)
589 			return endian;
590 	}
591 
592 	/* Retrieve the endianness specification from the bus config */
593 	if (bus && bus->val_format_endian_default)
594 		endian = bus->val_format_endian_default;
595 
596 	/* If the bus specified a non-default value, use that */
597 	if (endian != REGMAP_ENDIAN_DEFAULT)
598 		return endian;
599 
600 	/* Use this if no other value was found */
601 	return REGMAP_ENDIAN_BIG;
602 }
603 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
604 
605 struct regmap *__regmap_init(struct device *dev,
606 			     const struct regmap_bus *bus,
607 			     void *bus_context,
608 			     const struct regmap_config *config,
609 			     struct lock_class_key *lock_key,
610 			     const char *lock_name)
611 {
612 	struct regmap *map;
613 	int ret = -EINVAL;
614 	enum regmap_endian reg_endian, val_endian;
615 	int i, j;
616 
617 	if (!config)
618 		goto err;
619 
620 	map = kzalloc(sizeof(*map), GFP_KERNEL);
621 	if (map == NULL) {
622 		ret = -ENOMEM;
623 		goto err;
624 	}
625 
626 	if (config->lock && config->unlock) {
627 		map->lock = config->lock;
628 		map->unlock = config->unlock;
629 		map->lock_arg = config->lock_arg;
630 	} else {
631 		if ((bus && bus->fast_io) ||
632 		    config->fast_io) {
633 			spin_lock_init(&map->spinlock);
634 			map->lock = regmap_lock_spinlock;
635 			map->unlock = regmap_unlock_spinlock;
636 			lockdep_set_class_and_name(&map->spinlock,
637 						   lock_key, lock_name);
638 		} else {
639 			mutex_init(&map->mutex);
640 			map->lock = regmap_lock_mutex;
641 			map->unlock = regmap_unlock_mutex;
642 			lockdep_set_class_and_name(&map->mutex,
643 						   lock_key, lock_name);
644 		}
645 		map->lock_arg = map;
646 	}
647 
648 	/*
649 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
650 	 * scratch buffers with sleeping allocations.
651 	 */
652 	if ((bus && bus->fast_io) || config->fast_io)
653 		map->alloc_flags = GFP_ATOMIC;
654 	else
655 		map->alloc_flags = GFP_KERNEL;
656 
657 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
658 	map->format.pad_bytes = config->pad_bits / 8;
659 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
660 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
661 			config->val_bits + config->pad_bits, 8);
662 	map->reg_shift = config->pad_bits % 8;
663 	if (config->reg_stride)
664 		map->reg_stride = config->reg_stride;
665 	else
666 		map->reg_stride = 1;
667 	if (is_power_of_2(map->reg_stride))
668 		map->reg_stride_order = ilog2(map->reg_stride);
669 	else
670 		map->reg_stride_order = -1;
671 	map->use_single_read = config->use_single_rw || !bus || !bus->read;
672 	map->use_single_write = config->use_single_rw || !bus || !bus->write;
673 	map->can_multi_write = config->can_multi_write && bus && bus->write;
674 	if (bus) {
675 		map->max_raw_read = bus->max_raw_read;
676 		map->max_raw_write = bus->max_raw_write;
677 	}
678 	map->dev = dev;
679 	map->bus = bus;
680 	map->bus_context = bus_context;
681 	map->max_register = config->max_register;
682 	map->wr_table = config->wr_table;
683 	map->rd_table = config->rd_table;
684 	map->volatile_table = config->volatile_table;
685 	map->precious_table = config->precious_table;
686 	map->writeable_reg = config->writeable_reg;
687 	map->readable_reg = config->readable_reg;
688 	map->volatile_reg = config->volatile_reg;
689 	map->precious_reg = config->precious_reg;
690 	map->cache_type = config->cache_type;
691 	map->name = config->name;
692 
693 	spin_lock_init(&map->async_lock);
694 	INIT_LIST_HEAD(&map->async_list);
695 	INIT_LIST_HEAD(&map->async_free);
696 	init_waitqueue_head(&map->async_waitq);
697 
698 	if (config->read_flag_mask || config->write_flag_mask) {
699 		map->read_flag_mask = config->read_flag_mask;
700 		map->write_flag_mask = config->write_flag_mask;
701 	} else if (bus) {
702 		map->read_flag_mask = bus->read_flag_mask;
703 	}
704 
705 	if (!bus) {
706 		map->reg_read  = config->reg_read;
707 		map->reg_write = config->reg_write;
708 
709 		map->defer_caching = false;
710 		goto skip_format_initialization;
711 	} else if (!bus->read || !bus->write) {
712 		map->reg_read = _regmap_bus_reg_read;
713 		map->reg_write = _regmap_bus_reg_write;
714 
715 		map->defer_caching = false;
716 		goto skip_format_initialization;
717 	} else {
718 		map->reg_read  = _regmap_bus_read;
719 		map->reg_update_bits = bus->reg_update_bits;
720 	}
721 
722 	reg_endian = regmap_get_reg_endian(bus, config);
723 	val_endian = regmap_get_val_endian(dev, bus, config);
724 
725 	switch (config->reg_bits + map->reg_shift) {
726 	case 2:
727 		switch (config->val_bits) {
728 		case 6:
729 			map->format.format_write = regmap_format_2_6_write;
730 			break;
731 		default:
732 			goto err_map;
733 		}
734 		break;
735 
736 	case 4:
737 		switch (config->val_bits) {
738 		case 12:
739 			map->format.format_write = regmap_format_4_12_write;
740 			break;
741 		default:
742 			goto err_map;
743 		}
744 		break;
745 
746 	case 7:
747 		switch (config->val_bits) {
748 		case 9:
749 			map->format.format_write = regmap_format_7_9_write;
750 			break;
751 		default:
752 			goto err_map;
753 		}
754 		break;
755 
756 	case 10:
757 		switch (config->val_bits) {
758 		case 14:
759 			map->format.format_write = regmap_format_10_14_write;
760 			break;
761 		default:
762 			goto err_map;
763 		}
764 		break;
765 
766 	case 8:
767 		map->format.format_reg = regmap_format_8;
768 		break;
769 
770 	case 16:
771 		switch (reg_endian) {
772 		case REGMAP_ENDIAN_BIG:
773 			map->format.format_reg = regmap_format_16_be;
774 			break;
775 		case REGMAP_ENDIAN_LITTLE:
776 			map->format.format_reg = regmap_format_16_le;
777 			break;
778 		case REGMAP_ENDIAN_NATIVE:
779 			map->format.format_reg = regmap_format_16_native;
780 			break;
781 		default:
782 			goto err_map;
783 		}
784 		break;
785 
786 	case 24:
787 		if (reg_endian != REGMAP_ENDIAN_BIG)
788 			goto err_map;
789 		map->format.format_reg = regmap_format_24;
790 		break;
791 
792 	case 32:
793 		switch (reg_endian) {
794 		case REGMAP_ENDIAN_BIG:
795 			map->format.format_reg = regmap_format_32_be;
796 			break;
797 		case REGMAP_ENDIAN_LITTLE:
798 			map->format.format_reg = regmap_format_32_le;
799 			break;
800 		case REGMAP_ENDIAN_NATIVE:
801 			map->format.format_reg = regmap_format_32_native;
802 			break;
803 		default:
804 			goto err_map;
805 		}
806 		break;
807 
808 #ifdef CONFIG_64BIT
809 	case 64:
810 		switch (reg_endian) {
811 		case REGMAP_ENDIAN_BIG:
812 			map->format.format_reg = regmap_format_64_be;
813 			break;
814 		case REGMAP_ENDIAN_LITTLE:
815 			map->format.format_reg = regmap_format_64_le;
816 			break;
817 		case REGMAP_ENDIAN_NATIVE:
818 			map->format.format_reg = regmap_format_64_native;
819 			break;
820 		default:
821 			goto err_map;
822 		}
823 		break;
824 #endif
825 
826 	default:
827 		goto err_map;
828 	}
829 
830 	if (val_endian == REGMAP_ENDIAN_NATIVE)
831 		map->format.parse_inplace = regmap_parse_inplace_noop;
832 
833 	switch (config->val_bits) {
834 	case 8:
835 		map->format.format_val = regmap_format_8;
836 		map->format.parse_val = regmap_parse_8;
837 		map->format.parse_inplace = regmap_parse_inplace_noop;
838 		break;
839 	case 16:
840 		switch (val_endian) {
841 		case REGMAP_ENDIAN_BIG:
842 			map->format.format_val = regmap_format_16_be;
843 			map->format.parse_val = regmap_parse_16_be;
844 			map->format.parse_inplace = regmap_parse_16_be_inplace;
845 			break;
846 		case REGMAP_ENDIAN_LITTLE:
847 			map->format.format_val = regmap_format_16_le;
848 			map->format.parse_val = regmap_parse_16_le;
849 			map->format.parse_inplace = regmap_parse_16_le_inplace;
850 			break;
851 		case REGMAP_ENDIAN_NATIVE:
852 			map->format.format_val = regmap_format_16_native;
853 			map->format.parse_val = regmap_parse_16_native;
854 			break;
855 		default:
856 			goto err_map;
857 		}
858 		break;
859 	case 24:
860 		if (val_endian != REGMAP_ENDIAN_BIG)
861 			goto err_map;
862 		map->format.format_val = regmap_format_24;
863 		map->format.parse_val = regmap_parse_24;
864 		break;
865 	case 32:
866 		switch (val_endian) {
867 		case REGMAP_ENDIAN_BIG:
868 			map->format.format_val = regmap_format_32_be;
869 			map->format.parse_val = regmap_parse_32_be;
870 			map->format.parse_inplace = regmap_parse_32_be_inplace;
871 			break;
872 		case REGMAP_ENDIAN_LITTLE:
873 			map->format.format_val = regmap_format_32_le;
874 			map->format.parse_val = regmap_parse_32_le;
875 			map->format.parse_inplace = regmap_parse_32_le_inplace;
876 			break;
877 		case REGMAP_ENDIAN_NATIVE:
878 			map->format.format_val = regmap_format_32_native;
879 			map->format.parse_val = regmap_parse_32_native;
880 			break;
881 		default:
882 			goto err_map;
883 		}
884 		break;
885 #ifdef CONFIG_64BIT
886 	case 64:
887 		switch (val_endian) {
888 		case REGMAP_ENDIAN_BIG:
889 			map->format.format_val = regmap_format_64_be;
890 			map->format.parse_val = regmap_parse_64_be;
891 			map->format.parse_inplace = regmap_parse_64_be_inplace;
892 			break;
893 		case REGMAP_ENDIAN_LITTLE:
894 			map->format.format_val = regmap_format_64_le;
895 			map->format.parse_val = regmap_parse_64_le;
896 			map->format.parse_inplace = regmap_parse_64_le_inplace;
897 			break;
898 		case REGMAP_ENDIAN_NATIVE:
899 			map->format.format_val = regmap_format_64_native;
900 			map->format.parse_val = regmap_parse_64_native;
901 			break;
902 		default:
903 			goto err_map;
904 		}
905 		break;
906 #endif
907 	}
908 
909 	if (map->format.format_write) {
910 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
911 		    (val_endian != REGMAP_ENDIAN_BIG))
912 			goto err_map;
913 		map->use_single_write = true;
914 	}
915 
916 	if (!map->format.format_write &&
917 	    !(map->format.format_reg && map->format.format_val))
918 		goto err_map;
919 
920 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
921 	if (map->work_buf == NULL) {
922 		ret = -ENOMEM;
923 		goto err_map;
924 	}
925 
926 	if (map->format.format_write) {
927 		map->defer_caching = false;
928 		map->reg_write = _regmap_bus_formatted_write;
929 	} else if (map->format.format_val) {
930 		map->defer_caching = true;
931 		map->reg_write = _regmap_bus_raw_write;
932 	}
933 
934 skip_format_initialization:
935 
936 	map->range_tree = RB_ROOT;
937 	for (i = 0; i < config->num_ranges; i++) {
938 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
939 		struct regmap_range_node *new;
940 
941 		/* Sanity check */
942 		if (range_cfg->range_max < range_cfg->range_min) {
943 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
944 				range_cfg->range_max, range_cfg->range_min);
945 			goto err_range;
946 		}
947 
948 		if (range_cfg->range_max > map->max_register) {
949 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
950 				range_cfg->range_max, map->max_register);
951 			goto err_range;
952 		}
953 
954 		if (range_cfg->selector_reg > map->max_register) {
955 			dev_err(map->dev,
956 				"Invalid range %d: selector out of map\n", i);
957 			goto err_range;
958 		}
959 
960 		if (range_cfg->window_len == 0) {
961 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
962 				i);
963 			goto err_range;
964 		}
965 
966 		/* Make sure, that this register range has no selector
967 		   or data window within its boundary */
968 		for (j = 0; j < config->num_ranges; j++) {
969 			unsigned sel_reg = config->ranges[j].selector_reg;
970 			unsigned win_min = config->ranges[j].window_start;
971 			unsigned win_max = win_min +
972 					   config->ranges[j].window_len - 1;
973 
974 			/* Allow data window inside its own virtual range */
975 			if (j == i)
976 				continue;
977 
978 			if (range_cfg->range_min <= sel_reg &&
979 			    sel_reg <= range_cfg->range_max) {
980 				dev_err(map->dev,
981 					"Range %d: selector for %d in window\n",
982 					i, j);
983 				goto err_range;
984 			}
985 
986 			if (!(win_max < range_cfg->range_min ||
987 			      win_min > range_cfg->range_max)) {
988 				dev_err(map->dev,
989 					"Range %d: window for %d in window\n",
990 					i, j);
991 				goto err_range;
992 			}
993 		}
994 
995 		new = kzalloc(sizeof(*new), GFP_KERNEL);
996 		if (new == NULL) {
997 			ret = -ENOMEM;
998 			goto err_range;
999 		}
1000 
1001 		new->map = map;
1002 		new->name = range_cfg->name;
1003 		new->range_min = range_cfg->range_min;
1004 		new->range_max = range_cfg->range_max;
1005 		new->selector_reg = range_cfg->selector_reg;
1006 		new->selector_mask = range_cfg->selector_mask;
1007 		new->selector_shift = range_cfg->selector_shift;
1008 		new->window_start = range_cfg->window_start;
1009 		new->window_len = range_cfg->window_len;
1010 
1011 		if (!_regmap_range_add(map, new)) {
1012 			dev_err(map->dev, "Failed to add range %d\n", i);
1013 			kfree(new);
1014 			goto err_range;
1015 		}
1016 
1017 		if (map->selector_work_buf == NULL) {
1018 			map->selector_work_buf =
1019 				kzalloc(map->format.buf_size, GFP_KERNEL);
1020 			if (map->selector_work_buf == NULL) {
1021 				ret = -ENOMEM;
1022 				goto err_range;
1023 			}
1024 		}
1025 	}
1026 
1027 	ret = regcache_init(map, config);
1028 	if (ret != 0)
1029 		goto err_range;
1030 
1031 	if (dev) {
1032 		ret = regmap_attach_dev(dev, map, config);
1033 		if (ret != 0)
1034 			goto err_regcache;
1035 	}
1036 
1037 	return map;
1038 
1039 err_regcache:
1040 	regcache_exit(map);
1041 err_range:
1042 	regmap_range_exit(map);
1043 	kfree(map->work_buf);
1044 err_map:
1045 	kfree(map);
1046 err:
1047 	return ERR_PTR(ret);
1048 }
1049 EXPORT_SYMBOL_GPL(__regmap_init);
1050 
1051 static void devm_regmap_release(struct device *dev, void *res)
1052 {
1053 	regmap_exit(*(struct regmap **)res);
1054 }
1055 
1056 struct regmap *__devm_regmap_init(struct device *dev,
1057 				  const struct regmap_bus *bus,
1058 				  void *bus_context,
1059 				  const struct regmap_config *config,
1060 				  struct lock_class_key *lock_key,
1061 				  const char *lock_name)
1062 {
1063 	struct regmap **ptr, *regmap;
1064 
1065 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1066 	if (!ptr)
1067 		return ERR_PTR(-ENOMEM);
1068 
1069 	regmap = __regmap_init(dev, bus, bus_context, config,
1070 			       lock_key, lock_name);
1071 	if (!IS_ERR(regmap)) {
1072 		*ptr = regmap;
1073 		devres_add(dev, ptr);
1074 	} else {
1075 		devres_free(ptr);
1076 	}
1077 
1078 	return regmap;
1079 }
1080 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1081 
1082 static void regmap_field_init(struct regmap_field *rm_field,
1083 	struct regmap *regmap, struct reg_field reg_field)
1084 {
1085 	rm_field->regmap = regmap;
1086 	rm_field->reg = reg_field.reg;
1087 	rm_field->shift = reg_field.lsb;
1088 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1089 	rm_field->id_size = reg_field.id_size;
1090 	rm_field->id_offset = reg_field.id_offset;
1091 }
1092 
1093 /**
1094  * devm_regmap_field_alloc(): Allocate and initialise a register field
1095  * in a register map.
1096  *
1097  * @dev: Device that will be interacted with
1098  * @regmap: regmap bank in which this register field is located.
1099  * @reg_field: Register field with in the bank.
1100  *
1101  * The return value will be an ERR_PTR() on error or a valid pointer
1102  * to a struct regmap_field. The regmap_field will be automatically freed
1103  * by the device management code.
1104  */
1105 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1106 		struct regmap *regmap, struct reg_field reg_field)
1107 {
1108 	struct regmap_field *rm_field = devm_kzalloc(dev,
1109 					sizeof(*rm_field), GFP_KERNEL);
1110 	if (!rm_field)
1111 		return ERR_PTR(-ENOMEM);
1112 
1113 	regmap_field_init(rm_field, regmap, reg_field);
1114 
1115 	return rm_field;
1116 
1117 }
1118 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1119 
1120 /**
1121  * devm_regmap_field_free(): Free register field allocated using
1122  * devm_regmap_field_alloc. Usally drivers need not call this function,
1123  * as the memory allocated via devm will be freed as per device-driver
1124  * life-cyle.
1125  *
1126  * @dev: Device that will be interacted with
1127  * @field: regmap field which should be freed.
1128  */
1129 void devm_regmap_field_free(struct device *dev,
1130 	struct regmap_field *field)
1131 {
1132 	devm_kfree(dev, field);
1133 }
1134 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1135 
1136 /**
1137  * regmap_field_alloc(): Allocate and initialise a register field
1138  * in a register map.
1139  *
1140  * @regmap: regmap bank in which this register field is located.
1141  * @reg_field: Register field with in the bank.
1142  *
1143  * The return value will be an ERR_PTR() on error or a valid pointer
1144  * to a struct regmap_field. The regmap_field should be freed by the
1145  * user once its finished working with it using regmap_field_free().
1146  */
1147 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1148 		struct reg_field reg_field)
1149 {
1150 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1151 
1152 	if (!rm_field)
1153 		return ERR_PTR(-ENOMEM);
1154 
1155 	regmap_field_init(rm_field, regmap, reg_field);
1156 
1157 	return rm_field;
1158 }
1159 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1160 
1161 /**
1162  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1163  *
1164  * @field: regmap field which should be freed.
1165  */
1166 void regmap_field_free(struct regmap_field *field)
1167 {
1168 	kfree(field);
1169 }
1170 EXPORT_SYMBOL_GPL(regmap_field_free);
1171 
1172 /**
1173  * regmap_reinit_cache(): Reinitialise the current register cache
1174  *
1175  * @map: Register map to operate on.
1176  * @config: New configuration.  Only the cache data will be used.
1177  *
1178  * Discard any existing register cache for the map and initialize a
1179  * new cache.  This can be used to restore the cache to defaults or to
1180  * update the cache configuration to reflect runtime discovery of the
1181  * hardware.
1182  *
1183  * No explicit locking is done here, the user needs to ensure that
1184  * this function will not race with other calls to regmap.
1185  */
1186 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1187 {
1188 	regcache_exit(map);
1189 	regmap_debugfs_exit(map);
1190 
1191 	map->max_register = config->max_register;
1192 	map->writeable_reg = config->writeable_reg;
1193 	map->readable_reg = config->readable_reg;
1194 	map->volatile_reg = config->volatile_reg;
1195 	map->precious_reg = config->precious_reg;
1196 	map->cache_type = config->cache_type;
1197 
1198 	regmap_debugfs_init(map, config->name);
1199 
1200 	map->cache_bypass = false;
1201 	map->cache_only = false;
1202 
1203 	return regcache_init(map, config);
1204 }
1205 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1206 
1207 /**
1208  * regmap_exit(): Free a previously allocated register map
1209  */
1210 void regmap_exit(struct regmap *map)
1211 {
1212 	struct regmap_async *async;
1213 
1214 	regcache_exit(map);
1215 	regmap_debugfs_exit(map);
1216 	regmap_range_exit(map);
1217 	if (map->bus && map->bus->free_context)
1218 		map->bus->free_context(map->bus_context);
1219 	kfree(map->work_buf);
1220 	while (!list_empty(&map->async_free)) {
1221 		async = list_first_entry_or_null(&map->async_free,
1222 						 struct regmap_async,
1223 						 list);
1224 		list_del(&async->list);
1225 		kfree(async->work_buf);
1226 		kfree(async);
1227 	}
1228 	kfree(map);
1229 }
1230 EXPORT_SYMBOL_GPL(regmap_exit);
1231 
1232 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1233 {
1234 	struct regmap **r = res;
1235 	if (!r || !*r) {
1236 		WARN_ON(!r || !*r);
1237 		return 0;
1238 	}
1239 
1240 	/* If the user didn't specify a name match any */
1241 	if (data)
1242 		return (*r)->name == data;
1243 	else
1244 		return 1;
1245 }
1246 
1247 /**
1248  * dev_get_regmap(): Obtain the regmap (if any) for a device
1249  *
1250  * @dev: Device to retrieve the map for
1251  * @name: Optional name for the register map, usually NULL.
1252  *
1253  * Returns the regmap for the device if one is present, or NULL.  If
1254  * name is specified then it must match the name specified when
1255  * registering the device, if it is NULL then the first regmap found
1256  * will be used.  Devices with multiple register maps are very rare,
1257  * generic code should normally not need to specify a name.
1258  */
1259 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1260 {
1261 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1262 					dev_get_regmap_match, (void *)name);
1263 
1264 	if (!r)
1265 		return NULL;
1266 	return *r;
1267 }
1268 EXPORT_SYMBOL_GPL(dev_get_regmap);
1269 
1270 /**
1271  * regmap_get_device(): Obtain the device from a regmap
1272  *
1273  * @map: Register map to operate on.
1274  *
1275  * Returns the underlying device that the regmap has been created for.
1276  */
1277 struct device *regmap_get_device(struct regmap *map)
1278 {
1279 	return map->dev;
1280 }
1281 EXPORT_SYMBOL_GPL(regmap_get_device);
1282 
1283 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1284 			       struct regmap_range_node *range,
1285 			       unsigned int val_num)
1286 {
1287 	void *orig_work_buf;
1288 	unsigned int win_offset;
1289 	unsigned int win_page;
1290 	bool page_chg;
1291 	int ret;
1292 
1293 	win_offset = (*reg - range->range_min) % range->window_len;
1294 	win_page = (*reg - range->range_min) / range->window_len;
1295 
1296 	if (val_num > 1) {
1297 		/* Bulk write shouldn't cross range boundary */
1298 		if (*reg + val_num - 1 > range->range_max)
1299 			return -EINVAL;
1300 
1301 		/* ... or single page boundary */
1302 		if (val_num > range->window_len - win_offset)
1303 			return -EINVAL;
1304 	}
1305 
1306 	/* It is possible to have selector register inside data window.
1307 	   In that case, selector register is located on every page and
1308 	   it needs no page switching, when accessed alone. */
1309 	if (val_num > 1 ||
1310 	    range->window_start + win_offset != range->selector_reg) {
1311 		/* Use separate work_buf during page switching */
1312 		orig_work_buf = map->work_buf;
1313 		map->work_buf = map->selector_work_buf;
1314 
1315 		ret = _regmap_update_bits(map, range->selector_reg,
1316 					  range->selector_mask,
1317 					  win_page << range->selector_shift,
1318 					  &page_chg, false);
1319 
1320 		map->work_buf = orig_work_buf;
1321 
1322 		if (ret != 0)
1323 			return ret;
1324 	}
1325 
1326 	*reg = range->window_start + win_offset;
1327 
1328 	return 0;
1329 }
1330 
1331 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1332 					  unsigned long mask)
1333 {
1334 	u8 *buf;
1335 	int i;
1336 
1337 	if (!mask || !map->work_buf)
1338 		return;
1339 
1340 	buf = map->work_buf;
1341 
1342 	for (i = 0; i < max_bytes; i++)
1343 		buf[i] |= (mask >> (8 * i)) & 0xff;
1344 }
1345 
1346 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1347 		      const void *val, size_t val_len)
1348 {
1349 	struct regmap_range_node *range;
1350 	unsigned long flags;
1351 	void *work_val = map->work_buf + map->format.reg_bytes +
1352 		map->format.pad_bytes;
1353 	void *buf;
1354 	int ret = -ENOTSUPP;
1355 	size_t len;
1356 	int i;
1357 
1358 	WARN_ON(!map->bus);
1359 
1360 	/* Check for unwritable registers before we start */
1361 	if (map->writeable_reg)
1362 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1363 			if (!map->writeable_reg(map->dev,
1364 					       reg + regmap_get_offset(map, i)))
1365 				return -EINVAL;
1366 
1367 	if (!map->cache_bypass && map->format.parse_val) {
1368 		unsigned int ival;
1369 		int val_bytes = map->format.val_bytes;
1370 		for (i = 0; i < val_len / val_bytes; i++) {
1371 			ival = map->format.parse_val(val + (i * val_bytes));
1372 			ret = regcache_write(map,
1373 					     reg + regmap_get_offset(map, i),
1374 					     ival);
1375 			if (ret) {
1376 				dev_err(map->dev,
1377 					"Error in caching of register: %x ret: %d\n",
1378 					reg + i, ret);
1379 				return ret;
1380 			}
1381 		}
1382 		if (map->cache_only) {
1383 			map->cache_dirty = true;
1384 			return 0;
1385 		}
1386 	}
1387 
1388 	range = _regmap_range_lookup(map, reg);
1389 	if (range) {
1390 		int val_num = val_len / map->format.val_bytes;
1391 		int win_offset = (reg - range->range_min) % range->window_len;
1392 		int win_residue = range->window_len - win_offset;
1393 
1394 		/* If the write goes beyond the end of the window split it */
1395 		while (val_num > win_residue) {
1396 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1397 				win_residue, val_len / map->format.val_bytes);
1398 			ret = _regmap_raw_write(map, reg, val, win_residue *
1399 						map->format.val_bytes);
1400 			if (ret != 0)
1401 				return ret;
1402 
1403 			reg += win_residue;
1404 			val_num -= win_residue;
1405 			val += win_residue * map->format.val_bytes;
1406 			val_len -= win_residue * map->format.val_bytes;
1407 
1408 			win_offset = (reg - range->range_min) %
1409 				range->window_len;
1410 			win_residue = range->window_len - win_offset;
1411 		}
1412 
1413 		ret = _regmap_select_page(map, &reg, range, val_num);
1414 		if (ret != 0)
1415 			return ret;
1416 	}
1417 
1418 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1419 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1420 				      map->write_flag_mask);
1421 
1422 	/*
1423 	 * Essentially all I/O mechanisms will be faster with a single
1424 	 * buffer to write.  Since register syncs often generate raw
1425 	 * writes of single registers optimise that case.
1426 	 */
1427 	if (val != work_val && val_len == map->format.val_bytes) {
1428 		memcpy(work_val, val, map->format.val_bytes);
1429 		val = work_val;
1430 	}
1431 
1432 	if (map->async && map->bus->async_write) {
1433 		struct regmap_async *async;
1434 
1435 		trace_regmap_async_write_start(map, reg, val_len);
1436 
1437 		spin_lock_irqsave(&map->async_lock, flags);
1438 		async = list_first_entry_or_null(&map->async_free,
1439 						 struct regmap_async,
1440 						 list);
1441 		if (async)
1442 			list_del(&async->list);
1443 		spin_unlock_irqrestore(&map->async_lock, flags);
1444 
1445 		if (!async) {
1446 			async = map->bus->async_alloc();
1447 			if (!async)
1448 				return -ENOMEM;
1449 
1450 			async->work_buf = kzalloc(map->format.buf_size,
1451 						  GFP_KERNEL | GFP_DMA);
1452 			if (!async->work_buf) {
1453 				kfree(async);
1454 				return -ENOMEM;
1455 			}
1456 		}
1457 
1458 		async->map = map;
1459 
1460 		/* If the caller supplied the value we can use it safely. */
1461 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1462 		       map->format.reg_bytes + map->format.val_bytes);
1463 
1464 		spin_lock_irqsave(&map->async_lock, flags);
1465 		list_add_tail(&async->list, &map->async_list);
1466 		spin_unlock_irqrestore(&map->async_lock, flags);
1467 
1468 		if (val != work_val)
1469 			ret = map->bus->async_write(map->bus_context,
1470 						    async->work_buf,
1471 						    map->format.reg_bytes +
1472 						    map->format.pad_bytes,
1473 						    val, val_len, async);
1474 		else
1475 			ret = map->bus->async_write(map->bus_context,
1476 						    async->work_buf,
1477 						    map->format.reg_bytes +
1478 						    map->format.pad_bytes +
1479 						    val_len, NULL, 0, async);
1480 
1481 		if (ret != 0) {
1482 			dev_err(map->dev, "Failed to schedule write: %d\n",
1483 				ret);
1484 
1485 			spin_lock_irqsave(&map->async_lock, flags);
1486 			list_move(&async->list, &map->async_free);
1487 			spin_unlock_irqrestore(&map->async_lock, flags);
1488 		}
1489 
1490 		return ret;
1491 	}
1492 
1493 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1494 
1495 	/* If we're doing a single register write we can probably just
1496 	 * send the work_buf directly, otherwise try to do a gather
1497 	 * write.
1498 	 */
1499 	if (val == work_val)
1500 		ret = map->bus->write(map->bus_context, map->work_buf,
1501 				      map->format.reg_bytes +
1502 				      map->format.pad_bytes +
1503 				      val_len);
1504 	else if (map->bus->gather_write)
1505 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1506 					     map->format.reg_bytes +
1507 					     map->format.pad_bytes,
1508 					     val, val_len);
1509 
1510 	/* If that didn't work fall back on linearising by hand. */
1511 	if (ret == -ENOTSUPP) {
1512 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1513 		buf = kzalloc(len, GFP_KERNEL);
1514 		if (!buf)
1515 			return -ENOMEM;
1516 
1517 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1518 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1519 		       val, val_len);
1520 		ret = map->bus->write(map->bus_context, buf, len);
1521 
1522 		kfree(buf);
1523 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1524 		/* regcache_drop_region() takes lock that we already have,
1525 		 * thus call map->cache_ops->drop() directly
1526 		 */
1527 		if (map->cache_ops && map->cache_ops->drop)
1528 			map->cache_ops->drop(map, reg, reg + 1);
1529 	}
1530 
1531 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1532 
1533 	return ret;
1534 }
1535 
1536 /**
1537  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1538  *
1539  * @map: Map to check.
1540  */
1541 bool regmap_can_raw_write(struct regmap *map)
1542 {
1543 	return map->bus && map->bus->write && map->format.format_val &&
1544 		map->format.format_reg;
1545 }
1546 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1547 
1548 /**
1549  * regmap_get_raw_read_max - Get the maximum size we can read
1550  *
1551  * @map: Map to check.
1552  */
1553 size_t regmap_get_raw_read_max(struct regmap *map)
1554 {
1555 	return map->max_raw_read;
1556 }
1557 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1558 
1559 /**
1560  * regmap_get_raw_write_max - Get the maximum size we can read
1561  *
1562  * @map: Map to check.
1563  */
1564 size_t regmap_get_raw_write_max(struct regmap *map)
1565 {
1566 	return map->max_raw_write;
1567 }
1568 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1569 
1570 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1571 				       unsigned int val)
1572 {
1573 	int ret;
1574 	struct regmap_range_node *range;
1575 	struct regmap *map = context;
1576 
1577 	WARN_ON(!map->bus || !map->format.format_write);
1578 
1579 	range = _regmap_range_lookup(map, reg);
1580 	if (range) {
1581 		ret = _regmap_select_page(map, &reg, range, 1);
1582 		if (ret != 0)
1583 			return ret;
1584 	}
1585 
1586 	map->format.format_write(map, reg, val);
1587 
1588 	trace_regmap_hw_write_start(map, reg, 1);
1589 
1590 	ret = map->bus->write(map->bus_context, map->work_buf,
1591 			      map->format.buf_size);
1592 
1593 	trace_regmap_hw_write_done(map, reg, 1);
1594 
1595 	return ret;
1596 }
1597 
1598 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1599 				 unsigned int val)
1600 {
1601 	struct regmap *map = context;
1602 
1603 	return map->bus->reg_write(map->bus_context, reg, val);
1604 }
1605 
1606 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1607 				 unsigned int val)
1608 {
1609 	struct regmap *map = context;
1610 
1611 	WARN_ON(!map->bus || !map->format.format_val);
1612 
1613 	map->format.format_val(map->work_buf + map->format.reg_bytes
1614 			       + map->format.pad_bytes, val, 0);
1615 	return _regmap_raw_write(map, reg,
1616 				 map->work_buf +
1617 				 map->format.reg_bytes +
1618 				 map->format.pad_bytes,
1619 				 map->format.val_bytes);
1620 }
1621 
1622 static inline void *_regmap_map_get_context(struct regmap *map)
1623 {
1624 	return (map->bus) ? map : map->bus_context;
1625 }
1626 
1627 int _regmap_write(struct regmap *map, unsigned int reg,
1628 		  unsigned int val)
1629 {
1630 	int ret;
1631 	void *context = _regmap_map_get_context(map);
1632 
1633 	if (!regmap_writeable(map, reg))
1634 		return -EIO;
1635 
1636 	if (!map->cache_bypass && !map->defer_caching) {
1637 		ret = regcache_write(map, reg, val);
1638 		if (ret != 0)
1639 			return ret;
1640 		if (map->cache_only) {
1641 			map->cache_dirty = true;
1642 			return 0;
1643 		}
1644 	}
1645 
1646 #ifdef LOG_DEVICE
1647 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1648 		dev_info(map->dev, "%x <= %x\n", reg, val);
1649 #endif
1650 
1651 	trace_regmap_reg_write(map, reg, val);
1652 
1653 	return map->reg_write(context, reg, val);
1654 }
1655 
1656 /**
1657  * regmap_write(): Write a value to a single register
1658  *
1659  * @map: Register map to write to
1660  * @reg: Register to write to
1661  * @val: Value to be written
1662  *
1663  * A value of zero will be returned on success, a negative errno will
1664  * be returned in error cases.
1665  */
1666 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1667 {
1668 	int ret;
1669 
1670 	if (!IS_ALIGNED(reg, map->reg_stride))
1671 		return -EINVAL;
1672 
1673 	map->lock(map->lock_arg);
1674 
1675 	ret = _regmap_write(map, reg, val);
1676 
1677 	map->unlock(map->lock_arg);
1678 
1679 	return ret;
1680 }
1681 EXPORT_SYMBOL_GPL(regmap_write);
1682 
1683 /**
1684  * regmap_write_async(): Write a value to a single register asynchronously
1685  *
1686  * @map: Register map to write to
1687  * @reg: Register to write to
1688  * @val: Value to be written
1689  *
1690  * A value of zero will be returned on success, a negative errno will
1691  * be returned in error cases.
1692  */
1693 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1694 {
1695 	int ret;
1696 
1697 	if (!IS_ALIGNED(reg, map->reg_stride))
1698 		return -EINVAL;
1699 
1700 	map->lock(map->lock_arg);
1701 
1702 	map->async = true;
1703 
1704 	ret = _regmap_write(map, reg, val);
1705 
1706 	map->async = false;
1707 
1708 	map->unlock(map->lock_arg);
1709 
1710 	return ret;
1711 }
1712 EXPORT_SYMBOL_GPL(regmap_write_async);
1713 
1714 /**
1715  * regmap_raw_write(): Write raw values to one or more registers
1716  *
1717  * @map: Register map to write to
1718  * @reg: Initial register to write to
1719  * @val: Block of data to be written, laid out for direct transmission to the
1720  *       device
1721  * @val_len: Length of data pointed to by val.
1722  *
1723  * This function is intended to be used for things like firmware
1724  * download where a large block of data needs to be transferred to the
1725  * device.  No formatting will be done on the data provided.
1726  *
1727  * A value of zero will be returned on success, a negative errno will
1728  * be returned in error cases.
1729  */
1730 int regmap_raw_write(struct regmap *map, unsigned int reg,
1731 		     const void *val, size_t val_len)
1732 {
1733 	int ret;
1734 
1735 	if (!regmap_can_raw_write(map))
1736 		return -EINVAL;
1737 	if (val_len % map->format.val_bytes)
1738 		return -EINVAL;
1739 	if (map->max_raw_write && map->max_raw_write > val_len)
1740 		return -E2BIG;
1741 
1742 	map->lock(map->lock_arg);
1743 
1744 	ret = _regmap_raw_write(map, reg, val, val_len);
1745 
1746 	map->unlock(map->lock_arg);
1747 
1748 	return ret;
1749 }
1750 EXPORT_SYMBOL_GPL(regmap_raw_write);
1751 
1752 /**
1753  * regmap_field_update_bits_base():
1754  *	Perform a read/modify/write cycle on the register field
1755  *	with change, async, force option
1756  *
1757  * @field: Register field to write to
1758  * @mask: Bitmask to change
1759  * @val: Value to be written
1760  * @change: Boolean indicating if a write was done
1761  * @async: Boolean indicating asynchronously
1762  * @force: Boolean indicating use force update
1763  *
1764  * A value of zero will be returned on success, a negative errno will
1765  * be returned in error cases.
1766  */
1767 int regmap_field_update_bits_base(struct regmap_field *field,
1768 				  unsigned int mask, unsigned int val,
1769 				  bool *change, bool async, bool force)
1770 {
1771 	mask = (mask << field->shift) & field->mask;
1772 
1773 	return regmap_update_bits_base(field->regmap, field->reg,
1774 				       mask, val << field->shift,
1775 				       change, async, force);
1776 }
1777 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1778 
1779 /**
1780  * regmap_fields_update_bits_base():
1781  *	Perform a read/modify/write cycle on the register field
1782  *	with change, async, force option
1783  *
1784  * @field: Register field to write to
1785  * @id: port ID
1786  * @mask: Bitmask to change
1787  * @val: Value to be written
1788  * @change: Boolean indicating if a write was done
1789  * @async: Boolean indicating asynchronously
1790  * @force: Boolean indicating use force update
1791  *
1792  * A value of zero will be returned on success, a negative errno will
1793  * be returned in error cases.
1794  */
1795 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1796 				   unsigned int mask, unsigned int val,
1797 				   bool *change, bool async, bool force)
1798 {
1799 	if (id >= field->id_size)
1800 		return -EINVAL;
1801 
1802 	mask = (mask << field->shift) & field->mask;
1803 
1804 	return regmap_update_bits_base(field->regmap,
1805 				       field->reg + (field->id_offset * id),
1806 				       mask, val << field->shift,
1807 				       change, async, force);
1808 }
1809 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1810 
1811 /*
1812  * regmap_bulk_write(): Write multiple registers to the device
1813  *
1814  * @map: Register map to write to
1815  * @reg: First register to be write from
1816  * @val: Block of data to be written, in native register size for device
1817  * @val_count: Number of registers to write
1818  *
1819  * This function is intended to be used for writing a large block of
1820  * data to the device either in single transfer or multiple transfer.
1821  *
1822  * A value of zero will be returned on success, a negative errno will
1823  * be returned in error cases.
1824  */
1825 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1826 		     size_t val_count)
1827 {
1828 	int ret = 0, i;
1829 	size_t val_bytes = map->format.val_bytes;
1830 	size_t total_size = val_bytes * val_count;
1831 
1832 	if (!IS_ALIGNED(reg, map->reg_stride))
1833 		return -EINVAL;
1834 
1835 	/*
1836 	 * Some devices don't support bulk write, for
1837 	 * them we have a series of single write operations in the first two if
1838 	 * blocks.
1839 	 *
1840 	 * The first if block is used for memory mapped io. It does not allow
1841 	 * val_bytes of 3 for example.
1842 	 * The second one is for busses that do not provide raw I/O.
1843 	 * The third one is used for busses which do not have these limitations
1844 	 * and can write arbitrary value lengths.
1845 	 */
1846 	if (!map->bus) {
1847 		map->lock(map->lock_arg);
1848 		for (i = 0; i < val_count; i++) {
1849 			unsigned int ival;
1850 
1851 			switch (val_bytes) {
1852 			case 1:
1853 				ival = *(u8 *)(val + (i * val_bytes));
1854 				break;
1855 			case 2:
1856 				ival = *(u16 *)(val + (i * val_bytes));
1857 				break;
1858 			case 4:
1859 				ival = *(u32 *)(val + (i * val_bytes));
1860 				break;
1861 #ifdef CONFIG_64BIT
1862 			case 8:
1863 				ival = *(u64 *)(val + (i * val_bytes));
1864 				break;
1865 #endif
1866 			default:
1867 				ret = -EINVAL;
1868 				goto out;
1869 			}
1870 
1871 			ret = _regmap_write(map,
1872 					    reg + regmap_get_offset(map, i),
1873 					    ival);
1874 			if (ret != 0)
1875 				goto out;
1876 		}
1877 out:
1878 		map->unlock(map->lock_arg);
1879 	} else if (map->bus && !map->format.parse_inplace) {
1880 		const u8 *u8 = val;
1881 		const u16 *u16 = val;
1882 		const u32 *u32 = val;
1883 		unsigned int ival;
1884 
1885 		for (i = 0; i < val_count; i++) {
1886 			switch (map->format.val_bytes) {
1887 			case 4:
1888 				ival = u32[i];
1889 				break;
1890 			case 2:
1891 				ival = u16[i];
1892 				break;
1893 			case 1:
1894 				ival = u8[i];
1895 				break;
1896 			default:
1897 				return -EINVAL;
1898 			}
1899 
1900 			ret = regmap_write(map, reg + (i * map->reg_stride),
1901 					   ival);
1902 			if (ret)
1903 				return ret;
1904 		}
1905 	} else if (map->use_single_write ||
1906 		   (map->max_raw_write && map->max_raw_write < total_size)) {
1907 		int chunk_stride = map->reg_stride;
1908 		size_t chunk_size = val_bytes;
1909 		size_t chunk_count = val_count;
1910 
1911 		if (!map->use_single_write) {
1912 			chunk_size = map->max_raw_write;
1913 			if (chunk_size % val_bytes)
1914 				chunk_size -= chunk_size % val_bytes;
1915 			chunk_count = total_size / chunk_size;
1916 			chunk_stride *= chunk_size / val_bytes;
1917 		}
1918 
1919 		map->lock(map->lock_arg);
1920 		/* Write as many bytes as possible with chunk_size */
1921 		for (i = 0; i < chunk_count; i++) {
1922 			ret = _regmap_raw_write(map,
1923 						reg + (i * chunk_stride),
1924 						val + (i * chunk_size),
1925 						chunk_size);
1926 			if (ret)
1927 				break;
1928 		}
1929 
1930 		/* Write remaining bytes */
1931 		if (!ret && chunk_size * i < total_size) {
1932 			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1933 						val + (i * chunk_size),
1934 						total_size - i * chunk_size);
1935 		}
1936 		map->unlock(map->lock_arg);
1937 	} else {
1938 		void *wval;
1939 
1940 		if (!val_count)
1941 			return -EINVAL;
1942 
1943 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1944 		if (!wval) {
1945 			dev_err(map->dev, "Error in memory allocation\n");
1946 			return -ENOMEM;
1947 		}
1948 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1949 			map->format.parse_inplace(wval + i);
1950 
1951 		map->lock(map->lock_arg);
1952 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1953 		map->unlock(map->lock_arg);
1954 
1955 		kfree(wval);
1956 	}
1957 	return ret;
1958 }
1959 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1960 
1961 /*
1962  * _regmap_raw_multi_reg_write()
1963  *
1964  * the (register,newvalue) pairs in regs have not been formatted, but
1965  * they are all in the same page and have been changed to being page
1966  * relative. The page register has been written if that was necessary.
1967  */
1968 static int _regmap_raw_multi_reg_write(struct regmap *map,
1969 				       const struct reg_sequence *regs,
1970 				       size_t num_regs)
1971 {
1972 	int ret;
1973 	void *buf;
1974 	int i;
1975 	u8 *u8;
1976 	size_t val_bytes = map->format.val_bytes;
1977 	size_t reg_bytes = map->format.reg_bytes;
1978 	size_t pad_bytes = map->format.pad_bytes;
1979 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1980 	size_t len = pair_size * num_regs;
1981 
1982 	if (!len)
1983 		return -EINVAL;
1984 
1985 	buf = kzalloc(len, GFP_KERNEL);
1986 	if (!buf)
1987 		return -ENOMEM;
1988 
1989 	/* We have to linearise by hand. */
1990 
1991 	u8 = buf;
1992 
1993 	for (i = 0; i < num_regs; i++) {
1994 		unsigned int reg = regs[i].reg;
1995 		unsigned int val = regs[i].def;
1996 		trace_regmap_hw_write_start(map, reg, 1);
1997 		map->format.format_reg(u8, reg, map->reg_shift);
1998 		u8 += reg_bytes + pad_bytes;
1999 		map->format.format_val(u8, val, 0);
2000 		u8 += val_bytes;
2001 	}
2002 	u8 = buf;
2003 	*u8 |= map->write_flag_mask;
2004 
2005 	ret = map->bus->write(map->bus_context, buf, len);
2006 
2007 	kfree(buf);
2008 
2009 	for (i = 0; i < num_regs; i++) {
2010 		int reg = regs[i].reg;
2011 		trace_regmap_hw_write_done(map, reg, 1);
2012 	}
2013 	return ret;
2014 }
2015 
2016 static unsigned int _regmap_register_page(struct regmap *map,
2017 					  unsigned int reg,
2018 					  struct regmap_range_node *range)
2019 {
2020 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2021 
2022 	return win_page;
2023 }
2024 
2025 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2026 					       struct reg_sequence *regs,
2027 					       size_t num_regs)
2028 {
2029 	int ret;
2030 	int i, n;
2031 	struct reg_sequence *base;
2032 	unsigned int this_page = 0;
2033 	unsigned int page_change = 0;
2034 	/*
2035 	 * the set of registers are not neccessarily in order, but
2036 	 * since the order of write must be preserved this algorithm
2037 	 * chops the set each time the page changes. This also applies
2038 	 * if there is a delay required at any point in the sequence.
2039 	 */
2040 	base = regs;
2041 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2042 		unsigned int reg = regs[i].reg;
2043 		struct regmap_range_node *range;
2044 
2045 		range = _regmap_range_lookup(map, reg);
2046 		if (range) {
2047 			unsigned int win_page = _regmap_register_page(map, reg,
2048 								      range);
2049 
2050 			if (i == 0)
2051 				this_page = win_page;
2052 			if (win_page != this_page) {
2053 				this_page = win_page;
2054 				page_change = 1;
2055 			}
2056 		}
2057 
2058 		/* If we have both a page change and a delay make sure to
2059 		 * write the regs and apply the delay before we change the
2060 		 * page.
2061 		 */
2062 
2063 		if (page_change || regs[i].delay_us) {
2064 
2065 				/* For situations where the first write requires
2066 				 * a delay we need to make sure we don't call
2067 				 * raw_multi_reg_write with n=0
2068 				 * This can't occur with page breaks as we
2069 				 * never write on the first iteration
2070 				 */
2071 				if (regs[i].delay_us && i == 0)
2072 					n = 1;
2073 
2074 				ret = _regmap_raw_multi_reg_write(map, base, n);
2075 				if (ret != 0)
2076 					return ret;
2077 
2078 				if (regs[i].delay_us)
2079 					udelay(regs[i].delay_us);
2080 
2081 				base += n;
2082 				n = 0;
2083 
2084 				if (page_change) {
2085 					ret = _regmap_select_page(map,
2086 								  &base[n].reg,
2087 								  range, 1);
2088 					if (ret != 0)
2089 						return ret;
2090 
2091 					page_change = 0;
2092 				}
2093 
2094 		}
2095 
2096 	}
2097 	if (n > 0)
2098 		return _regmap_raw_multi_reg_write(map, base, n);
2099 	return 0;
2100 }
2101 
2102 static int _regmap_multi_reg_write(struct regmap *map,
2103 				   const struct reg_sequence *regs,
2104 				   size_t num_regs)
2105 {
2106 	int i;
2107 	int ret;
2108 
2109 	if (!map->can_multi_write) {
2110 		for (i = 0; i < num_regs; i++) {
2111 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2112 			if (ret != 0)
2113 				return ret;
2114 
2115 			if (regs[i].delay_us)
2116 				udelay(regs[i].delay_us);
2117 		}
2118 		return 0;
2119 	}
2120 
2121 	if (!map->format.parse_inplace)
2122 		return -EINVAL;
2123 
2124 	if (map->writeable_reg)
2125 		for (i = 0; i < num_regs; i++) {
2126 			int reg = regs[i].reg;
2127 			if (!map->writeable_reg(map->dev, reg))
2128 				return -EINVAL;
2129 			if (!IS_ALIGNED(reg, map->reg_stride))
2130 				return -EINVAL;
2131 		}
2132 
2133 	if (!map->cache_bypass) {
2134 		for (i = 0; i < num_regs; i++) {
2135 			unsigned int val = regs[i].def;
2136 			unsigned int reg = regs[i].reg;
2137 			ret = regcache_write(map, reg, val);
2138 			if (ret) {
2139 				dev_err(map->dev,
2140 				"Error in caching of register: %x ret: %d\n",
2141 								reg, ret);
2142 				return ret;
2143 			}
2144 		}
2145 		if (map->cache_only) {
2146 			map->cache_dirty = true;
2147 			return 0;
2148 		}
2149 	}
2150 
2151 	WARN_ON(!map->bus);
2152 
2153 	for (i = 0; i < num_regs; i++) {
2154 		unsigned int reg = regs[i].reg;
2155 		struct regmap_range_node *range;
2156 
2157 		/* Coalesce all the writes between a page break or a delay
2158 		 * in a sequence
2159 		 */
2160 		range = _regmap_range_lookup(map, reg);
2161 		if (range || regs[i].delay_us) {
2162 			size_t len = sizeof(struct reg_sequence)*num_regs;
2163 			struct reg_sequence *base = kmemdup(regs, len,
2164 							   GFP_KERNEL);
2165 			if (!base)
2166 				return -ENOMEM;
2167 			ret = _regmap_range_multi_paged_reg_write(map, base,
2168 								  num_regs);
2169 			kfree(base);
2170 
2171 			return ret;
2172 		}
2173 	}
2174 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2175 }
2176 
2177 /*
2178  * regmap_multi_reg_write(): Write multiple registers to the device
2179  *
2180  * where the set of register,value pairs are supplied in any order,
2181  * possibly not all in a single range.
2182  *
2183  * @map: Register map to write to
2184  * @regs: Array of structures containing register,value to be written
2185  * @num_regs: Number of registers to write
2186  *
2187  * The 'normal' block write mode will send ultimately send data on the
2188  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2189  * addressed. However, this alternative block multi write mode will send
2190  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2191  * must of course support the mode.
2192  *
2193  * A value of zero will be returned on success, a negative errno will be
2194  * returned in error cases.
2195  */
2196 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2197 			   int num_regs)
2198 {
2199 	int ret;
2200 
2201 	map->lock(map->lock_arg);
2202 
2203 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2204 
2205 	map->unlock(map->lock_arg);
2206 
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2210 
2211 /*
2212  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2213  *                                    device but not the cache
2214  *
2215  * where the set of register are supplied in any order
2216  *
2217  * @map: Register map to write to
2218  * @regs: Array of structures containing register,value to be written
2219  * @num_regs: Number of registers to write
2220  *
2221  * This function is intended to be used for writing a large block of data
2222  * atomically to the device in single transfer for those I2C client devices
2223  * that implement this alternative block write mode.
2224  *
2225  * A value of zero will be returned on success, a negative errno will
2226  * be returned in error cases.
2227  */
2228 int regmap_multi_reg_write_bypassed(struct regmap *map,
2229 				    const struct reg_sequence *regs,
2230 				    int num_regs)
2231 {
2232 	int ret;
2233 	bool bypass;
2234 
2235 	map->lock(map->lock_arg);
2236 
2237 	bypass = map->cache_bypass;
2238 	map->cache_bypass = true;
2239 
2240 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2241 
2242 	map->cache_bypass = bypass;
2243 
2244 	map->unlock(map->lock_arg);
2245 
2246 	return ret;
2247 }
2248 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2249 
2250 /**
2251  * regmap_raw_write_async(): Write raw values to one or more registers
2252  *                           asynchronously
2253  *
2254  * @map: Register map to write to
2255  * @reg: Initial register to write to
2256  * @val: Block of data to be written, laid out for direct transmission to the
2257  *       device.  Must be valid until regmap_async_complete() is called.
2258  * @val_len: Length of data pointed to by val.
2259  *
2260  * This function is intended to be used for things like firmware
2261  * download where a large block of data needs to be transferred to the
2262  * device.  No formatting will be done on the data provided.
2263  *
2264  * If supported by the underlying bus the write will be scheduled
2265  * asynchronously, helping maximise I/O speed on higher speed buses
2266  * like SPI.  regmap_async_complete() can be called to ensure that all
2267  * asynchrnous writes have been completed.
2268  *
2269  * A value of zero will be returned on success, a negative errno will
2270  * be returned in error cases.
2271  */
2272 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2273 			   const void *val, size_t val_len)
2274 {
2275 	int ret;
2276 
2277 	if (val_len % map->format.val_bytes)
2278 		return -EINVAL;
2279 	if (!IS_ALIGNED(reg, map->reg_stride))
2280 		return -EINVAL;
2281 
2282 	map->lock(map->lock_arg);
2283 
2284 	map->async = true;
2285 
2286 	ret = _regmap_raw_write(map, reg, val, val_len);
2287 
2288 	map->async = false;
2289 
2290 	map->unlock(map->lock_arg);
2291 
2292 	return ret;
2293 }
2294 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2295 
2296 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2297 			    unsigned int val_len)
2298 {
2299 	struct regmap_range_node *range;
2300 	int ret;
2301 
2302 	WARN_ON(!map->bus);
2303 
2304 	if (!map->bus || !map->bus->read)
2305 		return -EINVAL;
2306 
2307 	range = _regmap_range_lookup(map, reg);
2308 	if (range) {
2309 		ret = _regmap_select_page(map, &reg, range,
2310 					  val_len / map->format.val_bytes);
2311 		if (ret != 0)
2312 			return ret;
2313 	}
2314 
2315 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2316 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2317 				      map->read_flag_mask);
2318 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2319 
2320 	ret = map->bus->read(map->bus_context, map->work_buf,
2321 			     map->format.reg_bytes + map->format.pad_bytes,
2322 			     val, val_len);
2323 
2324 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2325 
2326 	return ret;
2327 }
2328 
2329 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2330 				unsigned int *val)
2331 {
2332 	struct regmap *map = context;
2333 
2334 	return map->bus->reg_read(map->bus_context, reg, val);
2335 }
2336 
2337 static int _regmap_bus_read(void *context, unsigned int reg,
2338 			    unsigned int *val)
2339 {
2340 	int ret;
2341 	struct regmap *map = context;
2342 
2343 	if (!map->format.parse_val)
2344 		return -EINVAL;
2345 
2346 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2347 	if (ret == 0)
2348 		*val = map->format.parse_val(map->work_buf);
2349 
2350 	return ret;
2351 }
2352 
2353 static int _regmap_read(struct regmap *map, unsigned int reg,
2354 			unsigned int *val)
2355 {
2356 	int ret;
2357 	void *context = _regmap_map_get_context(map);
2358 
2359 	if (!map->cache_bypass) {
2360 		ret = regcache_read(map, reg, val);
2361 		if (ret == 0)
2362 			return 0;
2363 	}
2364 
2365 	if (map->cache_only)
2366 		return -EBUSY;
2367 
2368 	if (!regmap_readable(map, reg))
2369 		return -EIO;
2370 
2371 	ret = map->reg_read(context, reg, val);
2372 	if (ret == 0) {
2373 #ifdef LOG_DEVICE
2374 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2375 			dev_info(map->dev, "%x => %x\n", reg, *val);
2376 #endif
2377 
2378 		trace_regmap_reg_read(map, reg, *val);
2379 
2380 		if (!map->cache_bypass)
2381 			regcache_write(map, reg, *val);
2382 	}
2383 
2384 	return ret;
2385 }
2386 
2387 /**
2388  * regmap_read(): Read a value from a single register
2389  *
2390  * @map: Register map to read from
2391  * @reg: Register to be read from
2392  * @val: Pointer to store read value
2393  *
2394  * A value of zero will be returned on success, a negative errno will
2395  * be returned in error cases.
2396  */
2397 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2398 {
2399 	int ret;
2400 
2401 	if (!IS_ALIGNED(reg, map->reg_stride))
2402 		return -EINVAL;
2403 
2404 	map->lock(map->lock_arg);
2405 
2406 	ret = _regmap_read(map, reg, val);
2407 
2408 	map->unlock(map->lock_arg);
2409 
2410 	return ret;
2411 }
2412 EXPORT_SYMBOL_GPL(regmap_read);
2413 
2414 /**
2415  * regmap_raw_read(): Read raw data from the device
2416  *
2417  * @map: Register map to read from
2418  * @reg: First register to be read from
2419  * @val: Pointer to store read value
2420  * @val_len: Size of data to read
2421  *
2422  * A value of zero will be returned on success, a negative errno will
2423  * be returned in error cases.
2424  */
2425 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2426 		    size_t val_len)
2427 {
2428 	size_t val_bytes = map->format.val_bytes;
2429 	size_t val_count = val_len / val_bytes;
2430 	unsigned int v;
2431 	int ret, i;
2432 
2433 	if (!map->bus)
2434 		return -EINVAL;
2435 	if (val_len % map->format.val_bytes)
2436 		return -EINVAL;
2437 	if (!IS_ALIGNED(reg, map->reg_stride))
2438 		return -EINVAL;
2439 	if (val_count == 0)
2440 		return -EINVAL;
2441 
2442 	map->lock(map->lock_arg);
2443 
2444 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2445 	    map->cache_type == REGCACHE_NONE) {
2446 		if (!map->bus->read) {
2447 			ret = -ENOTSUPP;
2448 			goto out;
2449 		}
2450 		if (map->max_raw_read && map->max_raw_read < val_len) {
2451 			ret = -E2BIG;
2452 			goto out;
2453 		}
2454 
2455 		/* Physical block read if there's no cache involved */
2456 		ret = _regmap_raw_read(map, reg, val, val_len);
2457 
2458 	} else {
2459 		/* Otherwise go word by word for the cache; should be low
2460 		 * cost as we expect to hit the cache.
2461 		 */
2462 		for (i = 0; i < val_count; i++) {
2463 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2464 					   &v);
2465 			if (ret != 0)
2466 				goto out;
2467 
2468 			map->format.format_val(val + (i * val_bytes), v, 0);
2469 		}
2470 	}
2471 
2472  out:
2473 	map->unlock(map->lock_arg);
2474 
2475 	return ret;
2476 }
2477 EXPORT_SYMBOL_GPL(regmap_raw_read);
2478 
2479 /**
2480  * regmap_field_read(): Read a value to a single register field
2481  *
2482  * @field: Register field to read from
2483  * @val: Pointer to store read value
2484  *
2485  * A value of zero will be returned on success, a negative errno will
2486  * be returned in error cases.
2487  */
2488 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2489 {
2490 	int ret;
2491 	unsigned int reg_val;
2492 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2493 	if (ret != 0)
2494 		return ret;
2495 
2496 	reg_val &= field->mask;
2497 	reg_val >>= field->shift;
2498 	*val = reg_val;
2499 
2500 	return ret;
2501 }
2502 EXPORT_SYMBOL_GPL(regmap_field_read);
2503 
2504 /**
2505  * regmap_fields_read(): Read a value to a single register field with port ID
2506  *
2507  * @field: Register field to read from
2508  * @id: port ID
2509  * @val: Pointer to store read value
2510  *
2511  * A value of zero will be returned on success, a negative errno will
2512  * be returned in error cases.
2513  */
2514 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2515 		       unsigned int *val)
2516 {
2517 	int ret;
2518 	unsigned int reg_val;
2519 
2520 	if (id >= field->id_size)
2521 		return -EINVAL;
2522 
2523 	ret = regmap_read(field->regmap,
2524 			  field->reg + (field->id_offset * id),
2525 			  &reg_val);
2526 	if (ret != 0)
2527 		return ret;
2528 
2529 	reg_val &= field->mask;
2530 	reg_val >>= field->shift;
2531 	*val = reg_val;
2532 
2533 	return ret;
2534 }
2535 EXPORT_SYMBOL_GPL(regmap_fields_read);
2536 
2537 /**
2538  * regmap_bulk_read(): Read multiple registers from the device
2539  *
2540  * @map: Register map to read from
2541  * @reg: First register to be read from
2542  * @val: Pointer to store read value, in native register size for device
2543  * @val_count: Number of registers to read
2544  *
2545  * A value of zero will be returned on success, a negative errno will
2546  * be returned in error cases.
2547  */
2548 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2549 		     size_t val_count)
2550 {
2551 	int ret, i;
2552 	size_t val_bytes = map->format.val_bytes;
2553 	bool vol = regmap_volatile_range(map, reg, val_count);
2554 
2555 	if (!IS_ALIGNED(reg, map->reg_stride))
2556 		return -EINVAL;
2557 
2558 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2559 		/*
2560 		 * Some devices does not support bulk read, for
2561 		 * them we have a series of single read operations.
2562 		 */
2563 		size_t total_size = val_bytes * val_count;
2564 
2565 		if (!map->use_single_read &&
2566 		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2567 			ret = regmap_raw_read(map, reg, val,
2568 					      val_bytes * val_count);
2569 			if (ret != 0)
2570 				return ret;
2571 		} else {
2572 			/*
2573 			 * Some devices do not support bulk read or do not
2574 			 * support large bulk reads, for them we have a series
2575 			 * of read operations.
2576 			 */
2577 			int chunk_stride = map->reg_stride;
2578 			size_t chunk_size = val_bytes;
2579 			size_t chunk_count = val_count;
2580 
2581 			if (!map->use_single_read) {
2582 				chunk_size = map->max_raw_read;
2583 				if (chunk_size % val_bytes)
2584 					chunk_size -= chunk_size % val_bytes;
2585 				chunk_count = total_size / chunk_size;
2586 				chunk_stride *= chunk_size / val_bytes;
2587 			}
2588 
2589 			/* Read bytes that fit into a multiple of chunk_size */
2590 			for (i = 0; i < chunk_count; i++) {
2591 				ret = regmap_raw_read(map,
2592 						      reg + (i * chunk_stride),
2593 						      val + (i * chunk_size),
2594 						      chunk_size);
2595 				if (ret != 0)
2596 					return ret;
2597 			}
2598 
2599 			/* Read remaining bytes */
2600 			if (chunk_size * i < total_size) {
2601 				ret = regmap_raw_read(map,
2602 						      reg + (i * chunk_stride),
2603 						      val + (i * chunk_size),
2604 						      total_size - i * chunk_size);
2605 				if (ret != 0)
2606 					return ret;
2607 			}
2608 		}
2609 
2610 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2611 			map->format.parse_inplace(val + i);
2612 	} else {
2613 		for (i = 0; i < val_count; i++) {
2614 			unsigned int ival;
2615 			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2616 					  &ival);
2617 			if (ret != 0)
2618 				return ret;
2619 
2620 			if (map->format.format_val) {
2621 				map->format.format_val(val + (i * val_bytes), ival, 0);
2622 			} else {
2623 				/* Devices providing read and write
2624 				 * operations can use the bulk I/O
2625 				 * functions if they define a val_bytes,
2626 				 * we assume that the values are native
2627 				 * endian.
2628 				 */
2629 #ifdef CONFIG_64BIT
2630 				u64 *u64 = val;
2631 #endif
2632 				u32 *u32 = val;
2633 				u16 *u16 = val;
2634 				u8 *u8 = val;
2635 
2636 				switch (map->format.val_bytes) {
2637 #ifdef CONFIG_64BIT
2638 				case 8:
2639 					u64[i] = ival;
2640 					break;
2641 #endif
2642 				case 4:
2643 					u32[i] = ival;
2644 					break;
2645 				case 2:
2646 					u16[i] = ival;
2647 					break;
2648 				case 1:
2649 					u8[i] = ival;
2650 					break;
2651 				default:
2652 					return -EINVAL;
2653 				}
2654 			}
2655 		}
2656 	}
2657 
2658 	return 0;
2659 }
2660 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2661 
2662 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2663 			       unsigned int mask, unsigned int val,
2664 			       bool *change, bool force_write)
2665 {
2666 	int ret;
2667 	unsigned int tmp, orig;
2668 
2669 	if (change)
2670 		*change = false;
2671 
2672 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2673 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2674 		if (ret == 0 && change)
2675 			*change = true;
2676 	} else {
2677 		ret = _regmap_read(map, reg, &orig);
2678 		if (ret != 0)
2679 			return ret;
2680 
2681 		tmp = orig & ~mask;
2682 		tmp |= val & mask;
2683 
2684 		if (force_write || (tmp != orig)) {
2685 			ret = _regmap_write(map, reg, tmp);
2686 			if (ret == 0 && change)
2687 				*change = true;
2688 		}
2689 	}
2690 
2691 	return ret;
2692 }
2693 
2694 /**
2695  * regmap_update_bits_base:
2696  *	Perform a read/modify/write cycle on the
2697  *	register map with change, async, force option
2698  *
2699  * @map: Register map to update
2700  * @reg: Register to update
2701  * @mask: Bitmask to change
2702  * @val: New value for bitmask
2703  * @change: Boolean indicating if a write was done
2704  * @async: Boolean indicating asynchronously
2705  * @force: Boolean indicating use force update
2706  *
2707  * if async was true,
2708  * With most buses the read must be done synchronously so this is most
2709  * useful for devices with a cache which do not need to interact with
2710  * the hardware to determine the current register value.
2711  *
2712  * Returns zero for success, a negative number on error.
2713  */
2714 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2715 			    unsigned int mask, unsigned int val,
2716 			    bool *change, bool async, bool force)
2717 {
2718 	int ret;
2719 
2720 	map->lock(map->lock_arg);
2721 
2722 	map->async = async;
2723 
2724 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2725 
2726 	map->async = false;
2727 
2728 	map->unlock(map->lock_arg);
2729 
2730 	return ret;
2731 }
2732 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2733 
2734 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2735 {
2736 	struct regmap *map = async->map;
2737 	bool wake;
2738 
2739 	trace_regmap_async_io_complete(map);
2740 
2741 	spin_lock(&map->async_lock);
2742 	list_move(&async->list, &map->async_free);
2743 	wake = list_empty(&map->async_list);
2744 
2745 	if (ret != 0)
2746 		map->async_ret = ret;
2747 
2748 	spin_unlock(&map->async_lock);
2749 
2750 	if (wake)
2751 		wake_up(&map->async_waitq);
2752 }
2753 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2754 
2755 static int regmap_async_is_done(struct regmap *map)
2756 {
2757 	unsigned long flags;
2758 	int ret;
2759 
2760 	spin_lock_irqsave(&map->async_lock, flags);
2761 	ret = list_empty(&map->async_list);
2762 	spin_unlock_irqrestore(&map->async_lock, flags);
2763 
2764 	return ret;
2765 }
2766 
2767 /**
2768  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2769  *
2770  * @map: Map to operate on.
2771  *
2772  * Blocks until any pending asynchronous I/O has completed.  Returns
2773  * an error code for any failed I/O operations.
2774  */
2775 int regmap_async_complete(struct regmap *map)
2776 {
2777 	unsigned long flags;
2778 	int ret;
2779 
2780 	/* Nothing to do with no async support */
2781 	if (!map->bus || !map->bus->async_write)
2782 		return 0;
2783 
2784 	trace_regmap_async_complete_start(map);
2785 
2786 	wait_event(map->async_waitq, regmap_async_is_done(map));
2787 
2788 	spin_lock_irqsave(&map->async_lock, flags);
2789 	ret = map->async_ret;
2790 	map->async_ret = 0;
2791 	spin_unlock_irqrestore(&map->async_lock, flags);
2792 
2793 	trace_regmap_async_complete_done(map);
2794 
2795 	return ret;
2796 }
2797 EXPORT_SYMBOL_GPL(regmap_async_complete);
2798 
2799 /**
2800  * regmap_register_patch: Register and apply register updates to be applied
2801  *                        on device initialistion
2802  *
2803  * @map: Register map to apply updates to.
2804  * @regs: Values to update.
2805  * @num_regs: Number of entries in regs.
2806  *
2807  * Register a set of register updates to be applied to the device
2808  * whenever the device registers are synchronised with the cache and
2809  * apply them immediately.  Typically this is used to apply
2810  * corrections to be applied to the device defaults on startup, such
2811  * as the updates some vendors provide to undocumented registers.
2812  *
2813  * The caller must ensure that this function cannot be called
2814  * concurrently with either itself or regcache_sync().
2815  */
2816 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2817 			  int num_regs)
2818 {
2819 	struct reg_sequence *p;
2820 	int ret;
2821 	bool bypass;
2822 
2823 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2824 	    num_regs))
2825 		return 0;
2826 
2827 	p = krealloc(map->patch,
2828 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2829 		     GFP_KERNEL);
2830 	if (p) {
2831 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2832 		map->patch = p;
2833 		map->patch_regs += num_regs;
2834 	} else {
2835 		return -ENOMEM;
2836 	}
2837 
2838 	map->lock(map->lock_arg);
2839 
2840 	bypass = map->cache_bypass;
2841 
2842 	map->cache_bypass = true;
2843 	map->async = true;
2844 
2845 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2846 
2847 	map->async = false;
2848 	map->cache_bypass = bypass;
2849 
2850 	map->unlock(map->lock_arg);
2851 
2852 	regmap_async_complete(map);
2853 
2854 	return ret;
2855 }
2856 EXPORT_SYMBOL_GPL(regmap_register_patch);
2857 
2858 /*
2859  * regmap_get_val_bytes(): Report the size of a register value
2860  *
2861  * Report the size of a register value, mainly intended to for use by
2862  * generic infrastructure built on top of regmap.
2863  */
2864 int regmap_get_val_bytes(struct regmap *map)
2865 {
2866 	if (map->format.format_write)
2867 		return -EINVAL;
2868 
2869 	return map->format.val_bytes;
2870 }
2871 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2872 
2873 /**
2874  * regmap_get_max_register(): Report the max register value
2875  *
2876  * Report the max register value, mainly intended to for use by
2877  * generic infrastructure built on top of regmap.
2878  */
2879 int regmap_get_max_register(struct regmap *map)
2880 {
2881 	return map->max_register ? map->max_register : -EINVAL;
2882 }
2883 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2884 
2885 /**
2886  * regmap_get_reg_stride(): Report the register address stride
2887  *
2888  * Report the register address stride, mainly intended to for use by
2889  * generic infrastructure built on top of regmap.
2890  */
2891 int regmap_get_reg_stride(struct regmap *map)
2892 {
2893 	return map->reg_stride;
2894 }
2895 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2896 
2897 int regmap_parse_val(struct regmap *map, const void *buf,
2898 			unsigned int *val)
2899 {
2900 	if (!map->format.parse_val)
2901 		return -EINVAL;
2902 
2903 	*val = map->format.parse_val(buf);
2904 
2905 	return 0;
2906 }
2907 EXPORT_SYMBOL_GPL(regmap_parse_val);
2908 
2909 static int __init regmap_initcall(void)
2910 {
2911 	regmap_debugfs_initcall();
2912 
2913 	return 0;
2914 }
2915 postcore_initcall(regmap_initcall);
2916