xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision e8377f49)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292 {
293 	u8 *b = buf;
294 
295 	val <<= shift;
296 
297 	b[0] = val >> 16;
298 	b[1] = val >> 8;
299 	b[2] = val;
300 }
301 
302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303 {
304 	put_unaligned_be32(val << shift, buf);
305 }
306 
307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308 {
309 	put_unaligned_le32(val << shift, buf);
310 }
311 
312 static void regmap_format_32_native(void *buf, unsigned int val,
313 				    unsigned int shift)
314 {
315 	u32 v = val << shift;
316 
317 	memcpy(buf, &v, sizeof(v));
318 }
319 
320 #ifdef CONFIG_64BIT
321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322 {
323 	put_unaligned_be64((u64) val << shift, buf);
324 }
325 
326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327 {
328 	put_unaligned_le64((u64) val << shift, buf);
329 }
330 
331 static void regmap_format_64_native(void *buf, unsigned int val,
332 				    unsigned int shift)
333 {
334 	u64 v = (u64) val << shift;
335 
336 	memcpy(buf, &v, sizeof(v));
337 }
338 #endif
339 
340 static void regmap_parse_inplace_noop(void *buf)
341 {
342 }
343 
344 static unsigned int regmap_parse_8(const void *buf)
345 {
346 	const u8 *b = buf;
347 
348 	return b[0];
349 }
350 
351 static unsigned int regmap_parse_16_be(const void *buf)
352 {
353 	return get_unaligned_be16(buf);
354 }
355 
356 static unsigned int regmap_parse_16_le(const void *buf)
357 {
358 	return get_unaligned_le16(buf);
359 }
360 
361 static void regmap_parse_16_be_inplace(void *buf)
362 {
363 	u16 v = get_unaligned_be16(buf);
364 
365 	memcpy(buf, &v, sizeof(v));
366 }
367 
368 static void regmap_parse_16_le_inplace(void *buf)
369 {
370 	u16 v = get_unaligned_le16(buf);
371 
372 	memcpy(buf, &v, sizeof(v));
373 }
374 
375 static unsigned int regmap_parse_16_native(const void *buf)
376 {
377 	u16 v;
378 
379 	memcpy(&v, buf, sizeof(v));
380 	return v;
381 }
382 
383 static unsigned int regmap_parse_24(const void *buf)
384 {
385 	const u8 *b = buf;
386 	unsigned int ret = b[2];
387 	ret |= ((unsigned int)b[1]) << 8;
388 	ret |= ((unsigned int)b[0]) << 16;
389 
390 	return ret;
391 }
392 
393 static unsigned int regmap_parse_32_be(const void *buf)
394 {
395 	return get_unaligned_be32(buf);
396 }
397 
398 static unsigned int regmap_parse_32_le(const void *buf)
399 {
400 	return get_unaligned_le32(buf);
401 }
402 
403 static void regmap_parse_32_be_inplace(void *buf)
404 {
405 	u32 v = get_unaligned_be32(buf);
406 
407 	memcpy(buf, &v, sizeof(v));
408 }
409 
410 static void regmap_parse_32_le_inplace(void *buf)
411 {
412 	u32 v = get_unaligned_le32(buf);
413 
414 	memcpy(buf, &v, sizeof(v));
415 }
416 
417 static unsigned int regmap_parse_32_native(const void *buf)
418 {
419 	u32 v;
420 
421 	memcpy(&v, buf, sizeof(v));
422 	return v;
423 }
424 
425 #ifdef CONFIG_64BIT
426 static unsigned int regmap_parse_64_be(const void *buf)
427 {
428 	return get_unaligned_be64(buf);
429 }
430 
431 static unsigned int regmap_parse_64_le(const void *buf)
432 {
433 	return get_unaligned_le64(buf);
434 }
435 
436 static void regmap_parse_64_be_inplace(void *buf)
437 {
438 	u64 v =  get_unaligned_be64(buf);
439 
440 	memcpy(buf, &v, sizeof(v));
441 }
442 
443 static void regmap_parse_64_le_inplace(void *buf)
444 {
445 	u64 v = get_unaligned_le64(buf);
446 
447 	memcpy(buf, &v, sizeof(v));
448 }
449 
450 static unsigned int regmap_parse_64_native(const void *buf)
451 {
452 	u64 v;
453 
454 	memcpy(&v, buf, sizeof(v));
455 	return v;
456 }
457 #endif
458 
459 static void regmap_lock_hwlock(void *__map)
460 {
461 	struct regmap *map = __map;
462 
463 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
464 }
465 
466 static void regmap_lock_hwlock_irq(void *__map)
467 {
468 	struct regmap *map = __map;
469 
470 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471 }
472 
473 static void regmap_lock_hwlock_irqsave(void *__map)
474 {
475 	struct regmap *map = __map;
476 
477 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 				    &map->spinlock_flags);
479 }
480 
481 static void regmap_unlock_hwlock(void *__map)
482 {
483 	struct regmap *map = __map;
484 
485 	hwspin_unlock(map->hwlock);
486 }
487 
488 static void regmap_unlock_hwlock_irq(void *__map)
489 {
490 	struct regmap *map = __map;
491 
492 	hwspin_unlock_irq(map->hwlock);
493 }
494 
495 static void regmap_unlock_hwlock_irqrestore(void *__map)
496 {
497 	struct regmap *map = __map;
498 
499 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500 }
501 
502 static void regmap_lock_unlock_none(void *__map)
503 {
504 
505 }
506 
507 static void regmap_lock_mutex(void *__map)
508 {
509 	struct regmap *map = __map;
510 	mutex_lock(&map->mutex);
511 }
512 
513 static void regmap_unlock_mutex(void *__map)
514 {
515 	struct regmap *map = __map;
516 	mutex_unlock(&map->mutex);
517 }
518 
519 static void regmap_lock_spinlock(void *__map)
520 __acquires(&map->spinlock)
521 {
522 	struct regmap *map = __map;
523 	unsigned long flags;
524 
525 	spin_lock_irqsave(&map->spinlock, flags);
526 	map->spinlock_flags = flags;
527 }
528 
529 static void regmap_unlock_spinlock(void *__map)
530 __releases(&map->spinlock)
531 {
532 	struct regmap *map = __map;
533 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534 }
535 
536 static void regmap_lock_raw_spinlock(void *__map)
537 __acquires(&map->raw_spinlock)
538 {
539 	struct regmap *map = __map;
540 	unsigned long flags;
541 
542 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 	map->raw_spinlock_flags = flags;
544 }
545 
546 static void regmap_unlock_raw_spinlock(void *__map)
547 __releases(&map->raw_spinlock)
548 {
549 	struct regmap *map = __map;
550 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
551 }
552 
553 static void dev_get_regmap_release(struct device *dev, void *res)
554 {
555 	/*
556 	 * We don't actually have anything to do here; the goal here
557 	 * is not to manage the regmap but to provide a simple way to
558 	 * get the regmap back given a struct device.
559 	 */
560 }
561 
562 static bool _regmap_range_add(struct regmap *map,
563 			      struct regmap_range_node *data)
564 {
565 	struct rb_root *root = &map->range_tree;
566 	struct rb_node **new = &(root->rb_node), *parent = NULL;
567 
568 	while (*new) {
569 		struct regmap_range_node *this =
570 			rb_entry(*new, struct regmap_range_node, node);
571 
572 		parent = *new;
573 		if (data->range_max < this->range_min)
574 			new = &((*new)->rb_left);
575 		else if (data->range_min > this->range_max)
576 			new = &((*new)->rb_right);
577 		else
578 			return false;
579 	}
580 
581 	rb_link_node(&data->node, parent, new);
582 	rb_insert_color(&data->node, root);
583 
584 	return true;
585 }
586 
587 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
588 						      unsigned int reg)
589 {
590 	struct rb_node *node = map->range_tree.rb_node;
591 
592 	while (node) {
593 		struct regmap_range_node *this =
594 			rb_entry(node, struct regmap_range_node, node);
595 
596 		if (reg < this->range_min)
597 			node = node->rb_left;
598 		else if (reg > this->range_max)
599 			node = node->rb_right;
600 		else
601 			return this;
602 	}
603 
604 	return NULL;
605 }
606 
607 static void regmap_range_exit(struct regmap *map)
608 {
609 	struct rb_node *next;
610 	struct regmap_range_node *range_node;
611 
612 	next = rb_first(&map->range_tree);
613 	while (next) {
614 		range_node = rb_entry(next, struct regmap_range_node, node);
615 		next = rb_next(&range_node->node);
616 		rb_erase(&range_node->node, &map->range_tree);
617 		kfree(range_node);
618 	}
619 
620 	kfree(map->selector_work_buf);
621 }
622 
623 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
624 {
625 	if (config->name) {
626 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
627 
628 		if (!name)
629 			return -ENOMEM;
630 
631 		kfree_const(map->name);
632 		map->name = name;
633 	}
634 
635 	return 0;
636 }
637 
638 int regmap_attach_dev(struct device *dev, struct regmap *map,
639 		      const struct regmap_config *config)
640 {
641 	struct regmap **m;
642 	int ret;
643 
644 	map->dev = dev;
645 
646 	ret = regmap_set_name(map, config);
647 	if (ret)
648 		return ret;
649 
650 	regmap_debugfs_init(map);
651 
652 	/* Add a devres resource for dev_get_regmap() */
653 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
654 	if (!m) {
655 		regmap_debugfs_exit(map);
656 		return -ENOMEM;
657 	}
658 	*m = map;
659 	devres_add(dev, m);
660 
661 	return 0;
662 }
663 EXPORT_SYMBOL_GPL(regmap_attach_dev);
664 
665 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
666 					const struct regmap_config *config)
667 {
668 	enum regmap_endian endian;
669 
670 	/* Retrieve the endianness specification from the regmap config */
671 	endian = config->reg_format_endian;
672 
673 	/* If the regmap config specified a non-default value, use that */
674 	if (endian != REGMAP_ENDIAN_DEFAULT)
675 		return endian;
676 
677 	/* Retrieve the endianness specification from the bus config */
678 	if (bus && bus->reg_format_endian_default)
679 		endian = bus->reg_format_endian_default;
680 
681 	/* If the bus specified a non-default value, use that */
682 	if (endian != REGMAP_ENDIAN_DEFAULT)
683 		return endian;
684 
685 	/* Use this if no other value was found */
686 	return REGMAP_ENDIAN_BIG;
687 }
688 
689 enum regmap_endian regmap_get_val_endian(struct device *dev,
690 					 const struct regmap_bus *bus,
691 					 const struct regmap_config *config)
692 {
693 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
694 	enum regmap_endian endian;
695 
696 	/* Retrieve the endianness specification from the regmap config */
697 	endian = config->val_format_endian;
698 
699 	/* If the regmap config specified a non-default value, use that */
700 	if (endian != REGMAP_ENDIAN_DEFAULT)
701 		return endian;
702 
703 	/* If the firmware node exist try to get endianness from it */
704 	if (fwnode_property_read_bool(fwnode, "big-endian"))
705 		endian = REGMAP_ENDIAN_BIG;
706 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
707 		endian = REGMAP_ENDIAN_LITTLE;
708 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
709 		endian = REGMAP_ENDIAN_NATIVE;
710 
711 	/* If the endianness was specified in fwnode, use that */
712 	if (endian != REGMAP_ENDIAN_DEFAULT)
713 		return endian;
714 
715 	/* Retrieve the endianness specification from the bus config */
716 	if (bus && bus->val_format_endian_default)
717 		endian = bus->val_format_endian_default;
718 
719 	/* If the bus specified a non-default value, use that */
720 	if (endian != REGMAP_ENDIAN_DEFAULT)
721 		return endian;
722 
723 	/* Use this if no other value was found */
724 	return REGMAP_ENDIAN_BIG;
725 }
726 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
727 
728 struct regmap *__regmap_init(struct device *dev,
729 			     const struct regmap_bus *bus,
730 			     void *bus_context,
731 			     const struct regmap_config *config,
732 			     struct lock_class_key *lock_key,
733 			     const char *lock_name)
734 {
735 	struct regmap *map;
736 	int ret = -EINVAL;
737 	enum regmap_endian reg_endian, val_endian;
738 	int i, j;
739 
740 	if (!config)
741 		goto err;
742 
743 	map = kzalloc(sizeof(*map), GFP_KERNEL);
744 	if (map == NULL) {
745 		ret = -ENOMEM;
746 		goto err;
747 	}
748 
749 	ret = regmap_set_name(map, config);
750 	if (ret)
751 		goto err_map;
752 
753 	ret = -EINVAL; /* Later error paths rely on this */
754 
755 	if (config->disable_locking) {
756 		map->lock = map->unlock = regmap_lock_unlock_none;
757 		map->can_sleep = config->can_sleep;
758 		regmap_debugfs_disable(map);
759 	} else if (config->lock && config->unlock) {
760 		map->lock = config->lock;
761 		map->unlock = config->unlock;
762 		map->lock_arg = config->lock_arg;
763 		map->can_sleep = config->can_sleep;
764 	} else if (config->use_hwlock) {
765 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
766 		if (!map->hwlock) {
767 			ret = -ENXIO;
768 			goto err_name;
769 		}
770 
771 		switch (config->hwlock_mode) {
772 		case HWLOCK_IRQSTATE:
773 			map->lock = regmap_lock_hwlock_irqsave;
774 			map->unlock = regmap_unlock_hwlock_irqrestore;
775 			break;
776 		case HWLOCK_IRQ:
777 			map->lock = regmap_lock_hwlock_irq;
778 			map->unlock = regmap_unlock_hwlock_irq;
779 			break;
780 		default:
781 			map->lock = regmap_lock_hwlock;
782 			map->unlock = regmap_unlock_hwlock;
783 			break;
784 		}
785 
786 		map->lock_arg = map;
787 	} else {
788 		if ((bus && bus->fast_io) ||
789 		    config->fast_io) {
790 			if (config->use_raw_spinlock) {
791 				raw_spin_lock_init(&map->raw_spinlock);
792 				map->lock = regmap_lock_raw_spinlock;
793 				map->unlock = regmap_unlock_raw_spinlock;
794 				lockdep_set_class_and_name(&map->raw_spinlock,
795 							   lock_key, lock_name);
796 			} else {
797 				spin_lock_init(&map->spinlock);
798 				map->lock = regmap_lock_spinlock;
799 				map->unlock = regmap_unlock_spinlock;
800 				lockdep_set_class_and_name(&map->spinlock,
801 							   lock_key, lock_name);
802 			}
803 		} else {
804 			mutex_init(&map->mutex);
805 			map->lock = regmap_lock_mutex;
806 			map->unlock = regmap_unlock_mutex;
807 			map->can_sleep = true;
808 			lockdep_set_class_and_name(&map->mutex,
809 						   lock_key, lock_name);
810 		}
811 		map->lock_arg = map;
812 	}
813 
814 	/*
815 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
816 	 * scratch buffers with sleeping allocations.
817 	 */
818 	if ((bus && bus->fast_io) || config->fast_io)
819 		map->alloc_flags = GFP_ATOMIC;
820 	else
821 		map->alloc_flags = GFP_KERNEL;
822 
823 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
824 	map->format.pad_bytes = config->pad_bits / 8;
825 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
826 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
827 			config->val_bits + config->pad_bits, 8);
828 	map->reg_shift = config->pad_bits % 8;
829 	if (config->reg_stride)
830 		map->reg_stride = config->reg_stride;
831 	else
832 		map->reg_stride = 1;
833 	if (is_power_of_2(map->reg_stride))
834 		map->reg_stride_order = ilog2(map->reg_stride);
835 	else
836 		map->reg_stride_order = -1;
837 	map->use_single_read = config->use_single_read || !bus || !bus->read;
838 	map->use_single_write = config->use_single_write || !bus || !bus->write;
839 	map->can_multi_write = config->can_multi_write && bus && bus->write;
840 	if (bus) {
841 		map->max_raw_read = bus->max_raw_read;
842 		map->max_raw_write = bus->max_raw_write;
843 	}
844 	map->dev = dev;
845 	map->bus = bus;
846 	map->bus_context = bus_context;
847 	map->max_register = config->max_register;
848 	map->wr_table = config->wr_table;
849 	map->rd_table = config->rd_table;
850 	map->volatile_table = config->volatile_table;
851 	map->precious_table = config->precious_table;
852 	map->wr_noinc_table = config->wr_noinc_table;
853 	map->rd_noinc_table = config->rd_noinc_table;
854 	map->writeable_reg = config->writeable_reg;
855 	map->readable_reg = config->readable_reg;
856 	map->volatile_reg = config->volatile_reg;
857 	map->precious_reg = config->precious_reg;
858 	map->writeable_noinc_reg = config->writeable_noinc_reg;
859 	map->readable_noinc_reg = config->readable_noinc_reg;
860 	map->cache_type = config->cache_type;
861 
862 	spin_lock_init(&map->async_lock);
863 	INIT_LIST_HEAD(&map->async_list);
864 	INIT_LIST_HEAD(&map->async_free);
865 	init_waitqueue_head(&map->async_waitq);
866 
867 	if (config->read_flag_mask ||
868 	    config->write_flag_mask ||
869 	    config->zero_flag_mask) {
870 		map->read_flag_mask = config->read_flag_mask;
871 		map->write_flag_mask = config->write_flag_mask;
872 	} else if (bus) {
873 		map->read_flag_mask = bus->read_flag_mask;
874 	}
875 
876 	if (!bus) {
877 		map->reg_read  = config->reg_read;
878 		map->reg_write = config->reg_write;
879 
880 		map->defer_caching = false;
881 		goto skip_format_initialization;
882 	} else if (!bus->read || !bus->write) {
883 		map->reg_read = _regmap_bus_reg_read;
884 		map->reg_write = _regmap_bus_reg_write;
885 		map->reg_update_bits = bus->reg_update_bits;
886 
887 		map->defer_caching = false;
888 		goto skip_format_initialization;
889 	} else {
890 		map->reg_read  = _regmap_bus_read;
891 		map->reg_update_bits = bus->reg_update_bits;
892 	}
893 
894 	reg_endian = regmap_get_reg_endian(bus, config);
895 	val_endian = regmap_get_val_endian(dev, bus, config);
896 
897 	switch (config->reg_bits + map->reg_shift) {
898 	case 2:
899 		switch (config->val_bits) {
900 		case 6:
901 			map->format.format_write = regmap_format_2_6_write;
902 			break;
903 		default:
904 			goto err_hwlock;
905 		}
906 		break;
907 
908 	case 4:
909 		switch (config->val_bits) {
910 		case 12:
911 			map->format.format_write = regmap_format_4_12_write;
912 			break;
913 		default:
914 			goto err_hwlock;
915 		}
916 		break;
917 
918 	case 7:
919 		switch (config->val_bits) {
920 		case 9:
921 			map->format.format_write = regmap_format_7_9_write;
922 			break;
923 		case 17:
924 			map->format.format_write = regmap_format_7_17_write;
925 			break;
926 		default:
927 			goto err_hwlock;
928 		}
929 		break;
930 
931 	case 10:
932 		switch (config->val_bits) {
933 		case 14:
934 			map->format.format_write = regmap_format_10_14_write;
935 			break;
936 		default:
937 			goto err_hwlock;
938 		}
939 		break;
940 
941 	case 12:
942 		switch (config->val_bits) {
943 		case 20:
944 			map->format.format_write = regmap_format_12_20_write;
945 			break;
946 		default:
947 			goto err_hwlock;
948 		}
949 		break;
950 
951 	case 8:
952 		map->format.format_reg = regmap_format_8;
953 		break;
954 
955 	case 16:
956 		switch (reg_endian) {
957 		case REGMAP_ENDIAN_BIG:
958 			map->format.format_reg = regmap_format_16_be;
959 			break;
960 		case REGMAP_ENDIAN_LITTLE:
961 			map->format.format_reg = regmap_format_16_le;
962 			break;
963 		case REGMAP_ENDIAN_NATIVE:
964 			map->format.format_reg = regmap_format_16_native;
965 			break;
966 		default:
967 			goto err_hwlock;
968 		}
969 		break;
970 
971 	case 24:
972 		if (reg_endian != REGMAP_ENDIAN_BIG)
973 			goto err_hwlock;
974 		map->format.format_reg = regmap_format_24;
975 		break;
976 
977 	case 32:
978 		switch (reg_endian) {
979 		case REGMAP_ENDIAN_BIG:
980 			map->format.format_reg = regmap_format_32_be;
981 			break;
982 		case REGMAP_ENDIAN_LITTLE:
983 			map->format.format_reg = regmap_format_32_le;
984 			break;
985 		case REGMAP_ENDIAN_NATIVE:
986 			map->format.format_reg = regmap_format_32_native;
987 			break;
988 		default:
989 			goto err_hwlock;
990 		}
991 		break;
992 
993 #ifdef CONFIG_64BIT
994 	case 64:
995 		switch (reg_endian) {
996 		case REGMAP_ENDIAN_BIG:
997 			map->format.format_reg = regmap_format_64_be;
998 			break;
999 		case REGMAP_ENDIAN_LITTLE:
1000 			map->format.format_reg = regmap_format_64_le;
1001 			break;
1002 		case REGMAP_ENDIAN_NATIVE:
1003 			map->format.format_reg = regmap_format_64_native;
1004 			break;
1005 		default:
1006 			goto err_hwlock;
1007 		}
1008 		break;
1009 #endif
1010 
1011 	default:
1012 		goto err_hwlock;
1013 	}
1014 
1015 	if (val_endian == REGMAP_ENDIAN_NATIVE)
1016 		map->format.parse_inplace = regmap_parse_inplace_noop;
1017 
1018 	switch (config->val_bits) {
1019 	case 8:
1020 		map->format.format_val = regmap_format_8;
1021 		map->format.parse_val = regmap_parse_8;
1022 		map->format.parse_inplace = regmap_parse_inplace_noop;
1023 		break;
1024 	case 16:
1025 		switch (val_endian) {
1026 		case REGMAP_ENDIAN_BIG:
1027 			map->format.format_val = regmap_format_16_be;
1028 			map->format.parse_val = regmap_parse_16_be;
1029 			map->format.parse_inplace = regmap_parse_16_be_inplace;
1030 			break;
1031 		case REGMAP_ENDIAN_LITTLE:
1032 			map->format.format_val = regmap_format_16_le;
1033 			map->format.parse_val = regmap_parse_16_le;
1034 			map->format.parse_inplace = regmap_parse_16_le_inplace;
1035 			break;
1036 		case REGMAP_ENDIAN_NATIVE:
1037 			map->format.format_val = regmap_format_16_native;
1038 			map->format.parse_val = regmap_parse_16_native;
1039 			break;
1040 		default:
1041 			goto err_hwlock;
1042 		}
1043 		break;
1044 	case 24:
1045 		if (val_endian != REGMAP_ENDIAN_BIG)
1046 			goto err_hwlock;
1047 		map->format.format_val = regmap_format_24;
1048 		map->format.parse_val = regmap_parse_24;
1049 		break;
1050 	case 32:
1051 		switch (val_endian) {
1052 		case REGMAP_ENDIAN_BIG:
1053 			map->format.format_val = regmap_format_32_be;
1054 			map->format.parse_val = regmap_parse_32_be;
1055 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1056 			break;
1057 		case REGMAP_ENDIAN_LITTLE:
1058 			map->format.format_val = regmap_format_32_le;
1059 			map->format.parse_val = regmap_parse_32_le;
1060 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1061 			break;
1062 		case REGMAP_ENDIAN_NATIVE:
1063 			map->format.format_val = regmap_format_32_native;
1064 			map->format.parse_val = regmap_parse_32_native;
1065 			break;
1066 		default:
1067 			goto err_hwlock;
1068 		}
1069 		break;
1070 #ifdef CONFIG_64BIT
1071 	case 64:
1072 		switch (val_endian) {
1073 		case REGMAP_ENDIAN_BIG:
1074 			map->format.format_val = regmap_format_64_be;
1075 			map->format.parse_val = regmap_parse_64_be;
1076 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1077 			break;
1078 		case REGMAP_ENDIAN_LITTLE:
1079 			map->format.format_val = regmap_format_64_le;
1080 			map->format.parse_val = regmap_parse_64_le;
1081 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1082 			break;
1083 		case REGMAP_ENDIAN_NATIVE:
1084 			map->format.format_val = regmap_format_64_native;
1085 			map->format.parse_val = regmap_parse_64_native;
1086 			break;
1087 		default:
1088 			goto err_hwlock;
1089 		}
1090 		break;
1091 #endif
1092 	}
1093 
1094 	if (map->format.format_write) {
1095 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1096 		    (val_endian != REGMAP_ENDIAN_BIG))
1097 			goto err_hwlock;
1098 		map->use_single_write = true;
1099 	}
1100 
1101 	if (!map->format.format_write &&
1102 	    !(map->format.format_reg && map->format.format_val))
1103 		goto err_hwlock;
1104 
1105 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1106 	if (map->work_buf == NULL) {
1107 		ret = -ENOMEM;
1108 		goto err_hwlock;
1109 	}
1110 
1111 	if (map->format.format_write) {
1112 		map->defer_caching = false;
1113 		map->reg_write = _regmap_bus_formatted_write;
1114 	} else if (map->format.format_val) {
1115 		map->defer_caching = true;
1116 		map->reg_write = _regmap_bus_raw_write;
1117 	}
1118 
1119 skip_format_initialization:
1120 
1121 	map->range_tree = RB_ROOT;
1122 	for (i = 0; i < config->num_ranges; i++) {
1123 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1124 		struct regmap_range_node *new;
1125 
1126 		/* Sanity check */
1127 		if (range_cfg->range_max < range_cfg->range_min) {
1128 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1129 				range_cfg->range_max, range_cfg->range_min);
1130 			goto err_range;
1131 		}
1132 
1133 		if (range_cfg->range_max > map->max_register) {
1134 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1135 				range_cfg->range_max, map->max_register);
1136 			goto err_range;
1137 		}
1138 
1139 		if (range_cfg->selector_reg > map->max_register) {
1140 			dev_err(map->dev,
1141 				"Invalid range %d: selector out of map\n", i);
1142 			goto err_range;
1143 		}
1144 
1145 		if (range_cfg->window_len == 0) {
1146 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1147 				i);
1148 			goto err_range;
1149 		}
1150 
1151 		/* Make sure, that this register range has no selector
1152 		   or data window within its boundary */
1153 		for (j = 0; j < config->num_ranges; j++) {
1154 			unsigned int sel_reg = config->ranges[j].selector_reg;
1155 			unsigned int win_min = config->ranges[j].window_start;
1156 			unsigned int win_max = win_min +
1157 					       config->ranges[j].window_len - 1;
1158 
1159 			/* Allow data window inside its own virtual range */
1160 			if (j == i)
1161 				continue;
1162 
1163 			if (range_cfg->range_min <= sel_reg &&
1164 			    sel_reg <= range_cfg->range_max) {
1165 				dev_err(map->dev,
1166 					"Range %d: selector for %d in window\n",
1167 					i, j);
1168 				goto err_range;
1169 			}
1170 
1171 			if (!(win_max < range_cfg->range_min ||
1172 			      win_min > range_cfg->range_max)) {
1173 				dev_err(map->dev,
1174 					"Range %d: window for %d in window\n",
1175 					i, j);
1176 				goto err_range;
1177 			}
1178 		}
1179 
1180 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1181 		if (new == NULL) {
1182 			ret = -ENOMEM;
1183 			goto err_range;
1184 		}
1185 
1186 		new->map = map;
1187 		new->name = range_cfg->name;
1188 		new->range_min = range_cfg->range_min;
1189 		new->range_max = range_cfg->range_max;
1190 		new->selector_reg = range_cfg->selector_reg;
1191 		new->selector_mask = range_cfg->selector_mask;
1192 		new->selector_shift = range_cfg->selector_shift;
1193 		new->window_start = range_cfg->window_start;
1194 		new->window_len = range_cfg->window_len;
1195 
1196 		if (!_regmap_range_add(map, new)) {
1197 			dev_err(map->dev, "Failed to add range %d\n", i);
1198 			kfree(new);
1199 			goto err_range;
1200 		}
1201 
1202 		if (map->selector_work_buf == NULL) {
1203 			map->selector_work_buf =
1204 				kzalloc(map->format.buf_size, GFP_KERNEL);
1205 			if (map->selector_work_buf == NULL) {
1206 				ret = -ENOMEM;
1207 				goto err_range;
1208 			}
1209 		}
1210 	}
1211 
1212 	ret = regcache_init(map, config);
1213 	if (ret != 0)
1214 		goto err_range;
1215 
1216 	if (dev) {
1217 		ret = regmap_attach_dev(dev, map, config);
1218 		if (ret != 0)
1219 			goto err_regcache;
1220 	} else {
1221 		regmap_debugfs_init(map);
1222 	}
1223 
1224 	return map;
1225 
1226 err_regcache:
1227 	regcache_exit(map);
1228 err_range:
1229 	regmap_range_exit(map);
1230 	kfree(map->work_buf);
1231 err_hwlock:
1232 	if (map->hwlock)
1233 		hwspin_lock_free(map->hwlock);
1234 err_name:
1235 	kfree_const(map->name);
1236 err_map:
1237 	kfree(map);
1238 err:
1239 	return ERR_PTR(ret);
1240 }
1241 EXPORT_SYMBOL_GPL(__regmap_init);
1242 
1243 static void devm_regmap_release(struct device *dev, void *res)
1244 {
1245 	regmap_exit(*(struct regmap **)res);
1246 }
1247 
1248 struct regmap *__devm_regmap_init(struct device *dev,
1249 				  const struct regmap_bus *bus,
1250 				  void *bus_context,
1251 				  const struct regmap_config *config,
1252 				  struct lock_class_key *lock_key,
1253 				  const char *lock_name)
1254 {
1255 	struct regmap **ptr, *regmap;
1256 
1257 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1258 	if (!ptr)
1259 		return ERR_PTR(-ENOMEM);
1260 
1261 	regmap = __regmap_init(dev, bus, bus_context, config,
1262 			       lock_key, lock_name);
1263 	if (!IS_ERR(regmap)) {
1264 		*ptr = regmap;
1265 		devres_add(dev, ptr);
1266 	} else {
1267 		devres_free(ptr);
1268 	}
1269 
1270 	return regmap;
1271 }
1272 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1273 
1274 static void regmap_field_init(struct regmap_field *rm_field,
1275 	struct regmap *regmap, struct reg_field reg_field)
1276 {
1277 	rm_field->regmap = regmap;
1278 	rm_field->reg = reg_field.reg;
1279 	rm_field->shift = reg_field.lsb;
1280 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1281 	rm_field->id_size = reg_field.id_size;
1282 	rm_field->id_offset = reg_field.id_offset;
1283 }
1284 
1285 /**
1286  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1287  *
1288  * @dev: Device that will be interacted with
1289  * @regmap: regmap bank in which this register field is located.
1290  * @reg_field: Register field with in the bank.
1291  *
1292  * The return value will be an ERR_PTR() on error or a valid pointer
1293  * to a struct regmap_field. The regmap_field will be automatically freed
1294  * by the device management code.
1295  */
1296 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1297 		struct regmap *regmap, struct reg_field reg_field)
1298 {
1299 	struct regmap_field *rm_field = devm_kzalloc(dev,
1300 					sizeof(*rm_field), GFP_KERNEL);
1301 	if (!rm_field)
1302 		return ERR_PTR(-ENOMEM);
1303 
1304 	regmap_field_init(rm_field, regmap, reg_field);
1305 
1306 	return rm_field;
1307 
1308 }
1309 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1310 
1311 
1312 /**
1313  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1314  *
1315  * @regmap: regmap bank in which this register field is located.
1316  * @rm_field: regmap register fields within the bank.
1317  * @reg_field: Register fields within the bank.
1318  * @num_fields: Number of register fields.
1319  *
1320  * The return value will be an -ENOMEM on error or zero for success.
1321  * Newly allocated regmap_fields should be freed by calling
1322  * regmap_field_bulk_free()
1323  */
1324 int regmap_field_bulk_alloc(struct regmap *regmap,
1325 			    struct regmap_field **rm_field,
1326 			    const struct reg_field *reg_field,
1327 			    int num_fields)
1328 {
1329 	struct regmap_field *rf;
1330 	int i;
1331 
1332 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1333 	if (!rf)
1334 		return -ENOMEM;
1335 
1336 	for (i = 0; i < num_fields; i++) {
1337 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1338 		rm_field[i] = &rf[i];
1339 	}
1340 
1341 	return 0;
1342 }
1343 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1344 
1345 /**
1346  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1347  * fields.
1348  *
1349  * @dev: Device that will be interacted with
1350  * @regmap: regmap bank in which this register field is located.
1351  * @rm_field: regmap register fields within the bank.
1352  * @reg_field: Register fields within the bank.
1353  * @num_fields: Number of register fields.
1354  *
1355  * The return value will be an -ENOMEM on error or zero for success.
1356  * Newly allocated regmap_fields will be automatically freed by the
1357  * device management code.
1358  */
1359 int devm_regmap_field_bulk_alloc(struct device *dev,
1360 				 struct regmap *regmap,
1361 				 struct regmap_field **rm_field,
1362 				 const struct reg_field *reg_field,
1363 				 int num_fields)
1364 {
1365 	struct regmap_field *rf;
1366 	int i;
1367 
1368 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1369 	if (!rf)
1370 		return -ENOMEM;
1371 
1372 	for (i = 0; i < num_fields; i++) {
1373 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1374 		rm_field[i] = &rf[i];
1375 	}
1376 
1377 	return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1380 
1381 /**
1382  * regmap_field_bulk_free() - Free register field allocated using
1383  *                       regmap_field_bulk_alloc.
1384  *
1385  * @field: regmap fields which should be freed.
1386  */
1387 void regmap_field_bulk_free(struct regmap_field *field)
1388 {
1389 	kfree(field);
1390 }
1391 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1392 
1393 /**
1394  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1395  *                            devm_regmap_field_bulk_alloc.
1396  *
1397  * @dev: Device that will be interacted with
1398  * @field: regmap field which should be freed.
1399  *
1400  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1401  * drivers need not call this function, as the memory allocated via devm
1402  * will be freed as per device-driver life-cycle.
1403  */
1404 void devm_regmap_field_bulk_free(struct device *dev,
1405 				 struct regmap_field *field)
1406 {
1407 	devm_kfree(dev, field);
1408 }
1409 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1410 
1411 /**
1412  * devm_regmap_field_free() - Free a register field allocated using
1413  *                            devm_regmap_field_alloc.
1414  *
1415  * @dev: Device that will be interacted with
1416  * @field: regmap field which should be freed.
1417  *
1418  * Free register field allocated using devm_regmap_field_alloc(). Usually
1419  * drivers need not call this function, as the memory allocated via devm
1420  * will be freed as per device-driver life-cyle.
1421  */
1422 void devm_regmap_field_free(struct device *dev,
1423 	struct regmap_field *field)
1424 {
1425 	devm_kfree(dev, field);
1426 }
1427 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1428 
1429 /**
1430  * regmap_field_alloc() - Allocate and initialise a register field.
1431  *
1432  * @regmap: regmap bank in which this register field is located.
1433  * @reg_field: Register field with in the bank.
1434  *
1435  * The return value will be an ERR_PTR() on error or a valid pointer
1436  * to a struct regmap_field. The regmap_field should be freed by the
1437  * user once its finished working with it using regmap_field_free().
1438  */
1439 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1440 		struct reg_field reg_field)
1441 {
1442 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1443 
1444 	if (!rm_field)
1445 		return ERR_PTR(-ENOMEM);
1446 
1447 	regmap_field_init(rm_field, regmap, reg_field);
1448 
1449 	return rm_field;
1450 }
1451 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1452 
1453 /**
1454  * regmap_field_free() - Free register field allocated using
1455  *                       regmap_field_alloc.
1456  *
1457  * @field: regmap field which should be freed.
1458  */
1459 void regmap_field_free(struct regmap_field *field)
1460 {
1461 	kfree(field);
1462 }
1463 EXPORT_SYMBOL_GPL(regmap_field_free);
1464 
1465 /**
1466  * regmap_reinit_cache() - Reinitialise the current register cache
1467  *
1468  * @map: Register map to operate on.
1469  * @config: New configuration.  Only the cache data will be used.
1470  *
1471  * Discard any existing register cache for the map and initialize a
1472  * new cache.  This can be used to restore the cache to defaults or to
1473  * update the cache configuration to reflect runtime discovery of the
1474  * hardware.
1475  *
1476  * No explicit locking is done here, the user needs to ensure that
1477  * this function will not race with other calls to regmap.
1478  */
1479 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1480 {
1481 	int ret;
1482 
1483 	regcache_exit(map);
1484 	regmap_debugfs_exit(map);
1485 
1486 	map->max_register = config->max_register;
1487 	map->writeable_reg = config->writeable_reg;
1488 	map->readable_reg = config->readable_reg;
1489 	map->volatile_reg = config->volatile_reg;
1490 	map->precious_reg = config->precious_reg;
1491 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1492 	map->readable_noinc_reg = config->readable_noinc_reg;
1493 	map->cache_type = config->cache_type;
1494 
1495 	ret = regmap_set_name(map, config);
1496 	if (ret)
1497 		return ret;
1498 
1499 	regmap_debugfs_init(map);
1500 
1501 	map->cache_bypass = false;
1502 	map->cache_only = false;
1503 
1504 	return regcache_init(map, config);
1505 }
1506 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1507 
1508 /**
1509  * regmap_exit() - Free a previously allocated register map
1510  *
1511  * @map: Register map to operate on.
1512  */
1513 void regmap_exit(struct regmap *map)
1514 {
1515 	struct regmap_async *async;
1516 
1517 	regcache_exit(map);
1518 	regmap_debugfs_exit(map);
1519 	regmap_range_exit(map);
1520 	if (map->bus && map->bus->free_context)
1521 		map->bus->free_context(map->bus_context);
1522 	kfree(map->work_buf);
1523 	while (!list_empty(&map->async_free)) {
1524 		async = list_first_entry_or_null(&map->async_free,
1525 						 struct regmap_async,
1526 						 list);
1527 		list_del(&async->list);
1528 		kfree(async->work_buf);
1529 		kfree(async);
1530 	}
1531 	if (map->hwlock)
1532 		hwspin_lock_free(map->hwlock);
1533 	if (map->lock == regmap_lock_mutex)
1534 		mutex_destroy(&map->mutex);
1535 	kfree_const(map->name);
1536 	kfree(map->patch);
1537 	if (map->bus && map->bus->free_on_exit)
1538 		kfree(map->bus);
1539 	kfree(map);
1540 }
1541 EXPORT_SYMBOL_GPL(regmap_exit);
1542 
1543 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1544 {
1545 	struct regmap **r = res;
1546 	if (!r || !*r) {
1547 		WARN_ON(!r || !*r);
1548 		return 0;
1549 	}
1550 
1551 	/* If the user didn't specify a name match any */
1552 	if (data)
1553 		return !strcmp((*r)->name, data);
1554 	else
1555 		return 1;
1556 }
1557 
1558 /**
1559  * dev_get_regmap() - Obtain the regmap (if any) for a device
1560  *
1561  * @dev: Device to retrieve the map for
1562  * @name: Optional name for the register map, usually NULL.
1563  *
1564  * Returns the regmap for the device if one is present, or NULL.  If
1565  * name is specified then it must match the name specified when
1566  * registering the device, if it is NULL then the first regmap found
1567  * will be used.  Devices with multiple register maps are very rare,
1568  * generic code should normally not need to specify a name.
1569  */
1570 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1571 {
1572 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1573 					dev_get_regmap_match, (void *)name);
1574 
1575 	if (!r)
1576 		return NULL;
1577 	return *r;
1578 }
1579 EXPORT_SYMBOL_GPL(dev_get_regmap);
1580 
1581 /**
1582  * regmap_get_device() - Obtain the device from a regmap
1583  *
1584  * @map: Register map to operate on.
1585  *
1586  * Returns the underlying device that the regmap has been created for.
1587  */
1588 struct device *regmap_get_device(struct regmap *map)
1589 {
1590 	return map->dev;
1591 }
1592 EXPORT_SYMBOL_GPL(regmap_get_device);
1593 
1594 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1595 			       struct regmap_range_node *range,
1596 			       unsigned int val_num)
1597 {
1598 	void *orig_work_buf;
1599 	unsigned int win_offset;
1600 	unsigned int win_page;
1601 	bool page_chg;
1602 	int ret;
1603 
1604 	win_offset = (*reg - range->range_min) % range->window_len;
1605 	win_page = (*reg - range->range_min) / range->window_len;
1606 
1607 	if (val_num > 1) {
1608 		/* Bulk write shouldn't cross range boundary */
1609 		if (*reg + val_num - 1 > range->range_max)
1610 			return -EINVAL;
1611 
1612 		/* ... or single page boundary */
1613 		if (val_num > range->window_len - win_offset)
1614 			return -EINVAL;
1615 	}
1616 
1617 	/* It is possible to have selector register inside data window.
1618 	   In that case, selector register is located on every page and
1619 	   it needs no page switching, when accessed alone. */
1620 	if (val_num > 1 ||
1621 	    range->window_start + win_offset != range->selector_reg) {
1622 		/* Use separate work_buf during page switching */
1623 		orig_work_buf = map->work_buf;
1624 		map->work_buf = map->selector_work_buf;
1625 
1626 		ret = _regmap_update_bits(map, range->selector_reg,
1627 					  range->selector_mask,
1628 					  win_page << range->selector_shift,
1629 					  &page_chg, false);
1630 
1631 		map->work_buf = orig_work_buf;
1632 
1633 		if (ret != 0)
1634 			return ret;
1635 	}
1636 
1637 	*reg = range->window_start + win_offset;
1638 
1639 	return 0;
1640 }
1641 
1642 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1643 					  unsigned long mask)
1644 {
1645 	u8 *buf;
1646 	int i;
1647 
1648 	if (!mask || !map->work_buf)
1649 		return;
1650 
1651 	buf = map->work_buf;
1652 
1653 	for (i = 0; i < max_bytes; i++)
1654 		buf[i] |= (mask >> (8 * i)) & 0xff;
1655 }
1656 
1657 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1658 				  const void *val, size_t val_len, bool noinc)
1659 {
1660 	struct regmap_range_node *range;
1661 	unsigned long flags;
1662 	void *work_val = map->work_buf + map->format.reg_bytes +
1663 		map->format.pad_bytes;
1664 	void *buf;
1665 	int ret = -ENOTSUPP;
1666 	size_t len;
1667 	int i;
1668 
1669 	WARN_ON(!map->bus);
1670 
1671 	/* Check for unwritable or noinc registers in range
1672 	 * before we start
1673 	 */
1674 	if (!regmap_writeable_noinc(map, reg)) {
1675 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1676 			unsigned int element =
1677 				reg + regmap_get_offset(map, i);
1678 			if (!regmap_writeable(map, element) ||
1679 				regmap_writeable_noinc(map, element))
1680 				return -EINVAL;
1681 		}
1682 	}
1683 
1684 	if (!map->cache_bypass && map->format.parse_val) {
1685 		unsigned int ival;
1686 		int val_bytes = map->format.val_bytes;
1687 		for (i = 0; i < val_len / val_bytes; i++) {
1688 			ival = map->format.parse_val(val + (i * val_bytes));
1689 			ret = regcache_write(map,
1690 					     reg + regmap_get_offset(map, i),
1691 					     ival);
1692 			if (ret) {
1693 				dev_err(map->dev,
1694 					"Error in caching of register: %x ret: %d\n",
1695 					reg + regmap_get_offset(map, i), ret);
1696 				return ret;
1697 			}
1698 		}
1699 		if (map->cache_only) {
1700 			map->cache_dirty = true;
1701 			return 0;
1702 		}
1703 	}
1704 
1705 	range = _regmap_range_lookup(map, reg);
1706 	if (range) {
1707 		int val_num = val_len / map->format.val_bytes;
1708 		int win_offset = (reg - range->range_min) % range->window_len;
1709 		int win_residue = range->window_len - win_offset;
1710 
1711 		/* If the write goes beyond the end of the window split it */
1712 		while (val_num > win_residue) {
1713 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1714 				win_residue, val_len / map->format.val_bytes);
1715 			ret = _regmap_raw_write_impl(map, reg, val,
1716 						     win_residue *
1717 						     map->format.val_bytes, noinc);
1718 			if (ret != 0)
1719 				return ret;
1720 
1721 			reg += win_residue;
1722 			val_num -= win_residue;
1723 			val += win_residue * map->format.val_bytes;
1724 			val_len -= win_residue * map->format.val_bytes;
1725 
1726 			win_offset = (reg - range->range_min) %
1727 				range->window_len;
1728 			win_residue = range->window_len - win_offset;
1729 		}
1730 
1731 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1732 		if (ret != 0)
1733 			return ret;
1734 	}
1735 
1736 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1737 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1738 				      map->write_flag_mask);
1739 
1740 	/*
1741 	 * Essentially all I/O mechanisms will be faster with a single
1742 	 * buffer to write.  Since register syncs often generate raw
1743 	 * writes of single registers optimise that case.
1744 	 */
1745 	if (val != work_val && val_len == map->format.val_bytes) {
1746 		memcpy(work_val, val, map->format.val_bytes);
1747 		val = work_val;
1748 	}
1749 
1750 	if (map->async && map->bus->async_write) {
1751 		struct regmap_async *async;
1752 
1753 		trace_regmap_async_write_start(map, reg, val_len);
1754 
1755 		spin_lock_irqsave(&map->async_lock, flags);
1756 		async = list_first_entry_or_null(&map->async_free,
1757 						 struct regmap_async,
1758 						 list);
1759 		if (async)
1760 			list_del(&async->list);
1761 		spin_unlock_irqrestore(&map->async_lock, flags);
1762 
1763 		if (!async) {
1764 			async = map->bus->async_alloc();
1765 			if (!async)
1766 				return -ENOMEM;
1767 
1768 			async->work_buf = kzalloc(map->format.buf_size,
1769 						  GFP_KERNEL | GFP_DMA);
1770 			if (!async->work_buf) {
1771 				kfree(async);
1772 				return -ENOMEM;
1773 			}
1774 		}
1775 
1776 		async->map = map;
1777 
1778 		/* If the caller supplied the value we can use it safely. */
1779 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1780 		       map->format.reg_bytes + map->format.val_bytes);
1781 
1782 		spin_lock_irqsave(&map->async_lock, flags);
1783 		list_add_tail(&async->list, &map->async_list);
1784 		spin_unlock_irqrestore(&map->async_lock, flags);
1785 
1786 		if (val != work_val)
1787 			ret = map->bus->async_write(map->bus_context,
1788 						    async->work_buf,
1789 						    map->format.reg_bytes +
1790 						    map->format.pad_bytes,
1791 						    val, val_len, async);
1792 		else
1793 			ret = map->bus->async_write(map->bus_context,
1794 						    async->work_buf,
1795 						    map->format.reg_bytes +
1796 						    map->format.pad_bytes +
1797 						    val_len, NULL, 0, async);
1798 
1799 		if (ret != 0) {
1800 			dev_err(map->dev, "Failed to schedule write: %d\n",
1801 				ret);
1802 
1803 			spin_lock_irqsave(&map->async_lock, flags);
1804 			list_move(&async->list, &map->async_free);
1805 			spin_unlock_irqrestore(&map->async_lock, flags);
1806 		}
1807 
1808 		return ret;
1809 	}
1810 
1811 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1812 
1813 	/* If we're doing a single register write we can probably just
1814 	 * send the work_buf directly, otherwise try to do a gather
1815 	 * write.
1816 	 */
1817 	if (val == work_val)
1818 		ret = map->bus->write(map->bus_context, map->work_buf,
1819 				      map->format.reg_bytes +
1820 				      map->format.pad_bytes +
1821 				      val_len);
1822 	else if (map->bus->gather_write)
1823 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1824 					     map->format.reg_bytes +
1825 					     map->format.pad_bytes,
1826 					     val, val_len);
1827 	else
1828 		ret = -ENOTSUPP;
1829 
1830 	/* If that didn't work fall back on linearising by hand. */
1831 	if (ret == -ENOTSUPP) {
1832 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1833 		buf = kzalloc(len, GFP_KERNEL);
1834 		if (!buf)
1835 			return -ENOMEM;
1836 
1837 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1838 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1839 		       val, val_len);
1840 		ret = map->bus->write(map->bus_context, buf, len);
1841 
1842 		kfree(buf);
1843 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1844 		/* regcache_drop_region() takes lock that we already have,
1845 		 * thus call map->cache_ops->drop() directly
1846 		 */
1847 		if (map->cache_ops && map->cache_ops->drop)
1848 			map->cache_ops->drop(map, reg, reg + 1);
1849 	}
1850 
1851 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1852 
1853 	return ret;
1854 }
1855 
1856 /**
1857  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1858  *
1859  * @map: Map to check.
1860  */
1861 bool regmap_can_raw_write(struct regmap *map)
1862 {
1863 	return map->bus && map->bus->write && map->format.format_val &&
1864 		map->format.format_reg;
1865 }
1866 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1867 
1868 /**
1869  * regmap_get_raw_read_max - Get the maximum size we can read
1870  *
1871  * @map: Map to check.
1872  */
1873 size_t regmap_get_raw_read_max(struct regmap *map)
1874 {
1875 	return map->max_raw_read;
1876 }
1877 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1878 
1879 /**
1880  * regmap_get_raw_write_max - Get the maximum size we can read
1881  *
1882  * @map: Map to check.
1883  */
1884 size_t regmap_get_raw_write_max(struct regmap *map)
1885 {
1886 	return map->max_raw_write;
1887 }
1888 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1889 
1890 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1891 				       unsigned int val)
1892 {
1893 	int ret;
1894 	struct regmap_range_node *range;
1895 	struct regmap *map = context;
1896 
1897 	WARN_ON(!map->bus || !map->format.format_write);
1898 
1899 	range = _regmap_range_lookup(map, reg);
1900 	if (range) {
1901 		ret = _regmap_select_page(map, &reg, range, 1);
1902 		if (ret != 0)
1903 			return ret;
1904 	}
1905 
1906 	map->format.format_write(map, reg, val);
1907 
1908 	trace_regmap_hw_write_start(map, reg, 1);
1909 
1910 	ret = map->bus->write(map->bus_context, map->work_buf,
1911 			      map->format.buf_size);
1912 
1913 	trace_regmap_hw_write_done(map, reg, 1);
1914 
1915 	return ret;
1916 }
1917 
1918 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1919 				 unsigned int val)
1920 {
1921 	struct regmap *map = context;
1922 
1923 	return map->bus->reg_write(map->bus_context, reg, val);
1924 }
1925 
1926 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1927 				 unsigned int val)
1928 {
1929 	struct regmap *map = context;
1930 
1931 	WARN_ON(!map->bus || !map->format.format_val);
1932 
1933 	map->format.format_val(map->work_buf + map->format.reg_bytes
1934 			       + map->format.pad_bytes, val, 0);
1935 	return _regmap_raw_write_impl(map, reg,
1936 				      map->work_buf +
1937 				      map->format.reg_bytes +
1938 				      map->format.pad_bytes,
1939 				      map->format.val_bytes,
1940 				      false);
1941 }
1942 
1943 static inline void *_regmap_map_get_context(struct regmap *map)
1944 {
1945 	return (map->bus) ? map : map->bus_context;
1946 }
1947 
1948 int _regmap_write(struct regmap *map, unsigned int reg,
1949 		  unsigned int val)
1950 {
1951 	int ret;
1952 	void *context = _regmap_map_get_context(map);
1953 
1954 	if (!regmap_writeable(map, reg))
1955 		return -EIO;
1956 
1957 	if (!map->cache_bypass && !map->defer_caching) {
1958 		ret = regcache_write(map, reg, val);
1959 		if (ret != 0)
1960 			return ret;
1961 		if (map->cache_only) {
1962 			map->cache_dirty = true;
1963 			return 0;
1964 		}
1965 	}
1966 
1967 	ret = map->reg_write(context, reg, val);
1968 	if (ret == 0) {
1969 		if (regmap_should_log(map))
1970 			dev_info(map->dev, "%x <= %x\n", reg, val);
1971 
1972 		trace_regmap_reg_write(map, reg, val);
1973 	}
1974 
1975 	return ret;
1976 }
1977 
1978 /**
1979  * regmap_write() - Write a value to a single register
1980  *
1981  * @map: Register map to write to
1982  * @reg: Register to write to
1983  * @val: Value to be written
1984  *
1985  * A value of zero will be returned on success, a negative errno will
1986  * be returned in error cases.
1987  */
1988 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1989 {
1990 	int ret;
1991 
1992 	if (!IS_ALIGNED(reg, map->reg_stride))
1993 		return -EINVAL;
1994 
1995 	map->lock(map->lock_arg);
1996 
1997 	ret = _regmap_write(map, reg, val);
1998 
1999 	map->unlock(map->lock_arg);
2000 
2001 	return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(regmap_write);
2004 
2005 /**
2006  * regmap_write_async() - Write a value to a single register asynchronously
2007  *
2008  * @map: Register map to write to
2009  * @reg: Register to write to
2010  * @val: Value to be written
2011  *
2012  * A value of zero will be returned on success, a negative errno will
2013  * be returned in error cases.
2014  */
2015 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2016 {
2017 	int ret;
2018 
2019 	if (!IS_ALIGNED(reg, map->reg_stride))
2020 		return -EINVAL;
2021 
2022 	map->lock(map->lock_arg);
2023 
2024 	map->async = true;
2025 
2026 	ret = _regmap_write(map, reg, val);
2027 
2028 	map->async = false;
2029 
2030 	map->unlock(map->lock_arg);
2031 
2032 	return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(regmap_write_async);
2035 
2036 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2037 		      const void *val, size_t val_len, bool noinc)
2038 {
2039 	size_t val_bytes = map->format.val_bytes;
2040 	size_t val_count = val_len / val_bytes;
2041 	size_t chunk_count, chunk_bytes;
2042 	size_t chunk_regs = val_count;
2043 	int ret, i;
2044 
2045 	if (!val_count)
2046 		return -EINVAL;
2047 
2048 	if (map->use_single_write)
2049 		chunk_regs = 1;
2050 	else if (map->max_raw_write && val_len > map->max_raw_write)
2051 		chunk_regs = map->max_raw_write / val_bytes;
2052 
2053 	chunk_count = val_count / chunk_regs;
2054 	chunk_bytes = chunk_regs * val_bytes;
2055 
2056 	/* Write as many bytes as possible with chunk_size */
2057 	for (i = 0; i < chunk_count; i++) {
2058 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2059 		if (ret)
2060 			return ret;
2061 
2062 		reg += regmap_get_offset(map, chunk_regs);
2063 		val += chunk_bytes;
2064 		val_len -= chunk_bytes;
2065 	}
2066 
2067 	/* Write remaining bytes */
2068 	if (val_len)
2069 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2070 
2071 	return ret;
2072 }
2073 
2074 /**
2075  * regmap_raw_write() - Write raw values to one or more registers
2076  *
2077  * @map: Register map to write to
2078  * @reg: Initial register to write to
2079  * @val: Block of data to be written, laid out for direct transmission to the
2080  *       device
2081  * @val_len: Length of data pointed to by val.
2082  *
2083  * This function is intended to be used for things like firmware
2084  * download where a large block of data needs to be transferred to the
2085  * device.  No formatting will be done on the data provided.
2086  *
2087  * A value of zero will be returned on success, a negative errno will
2088  * be returned in error cases.
2089  */
2090 int regmap_raw_write(struct regmap *map, unsigned int reg,
2091 		     const void *val, size_t val_len)
2092 {
2093 	int ret;
2094 
2095 	if (!regmap_can_raw_write(map))
2096 		return -EINVAL;
2097 	if (val_len % map->format.val_bytes)
2098 		return -EINVAL;
2099 
2100 	map->lock(map->lock_arg);
2101 
2102 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2103 
2104 	map->unlock(map->lock_arg);
2105 
2106 	return ret;
2107 }
2108 EXPORT_SYMBOL_GPL(regmap_raw_write);
2109 
2110 /**
2111  * regmap_noinc_write(): Write data from a register without incrementing the
2112  *			register number
2113  *
2114  * @map: Register map to write to
2115  * @reg: Register to write to
2116  * @val: Pointer to data buffer
2117  * @val_len: Length of output buffer in bytes.
2118  *
2119  * The regmap API usually assumes that bulk bus write operations will write a
2120  * range of registers. Some devices have certain registers for which a write
2121  * operation can write to an internal FIFO.
2122  *
2123  * The target register must be volatile but registers after it can be
2124  * completely unrelated cacheable registers.
2125  *
2126  * This will attempt multiple writes as required to write val_len bytes.
2127  *
2128  * A value of zero will be returned on success, a negative errno will be
2129  * returned in error cases.
2130  */
2131 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2132 		      const void *val, size_t val_len)
2133 {
2134 	size_t write_len;
2135 	int ret;
2136 
2137 	if (!map->bus)
2138 		return -EINVAL;
2139 	if (!map->bus->write)
2140 		return -ENOTSUPP;
2141 	if (val_len % map->format.val_bytes)
2142 		return -EINVAL;
2143 	if (!IS_ALIGNED(reg, map->reg_stride))
2144 		return -EINVAL;
2145 	if (val_len == 0)
2146 		return -EINVAL;
2147 
2148 	map->lock(map->lock_arg);
2149 
2150 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2151 		ret = -EINVAL;
2152 		goto out_unlock;
2153 	}
2154 
2155 	while (val_len) {
2156 		if (map->max_raw_write && map->max_raw_write < val_len)
2157 			write_len = map->max_raw_write;
2158 		else
2159 			write_len = val_len;
2160 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2161 		if (ret)
2162 			goto out_unlock;
2163 		val = ((u8 *)val) + write_len;
2164 		val_len -= write_len;
2165 	}
2166 
2167 out_unlock:
2168 	map->unlock(map->lock_arg);
2169 	return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2172 
2173 /**
2174  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2175  *                                   register field.
2176  *
2177  * @field: Register field to write to
2178  * @mask: Bitmask to change
2179  * @val: Value to be written
2180  * @change: Boolean indicating if a write was done
2181  * @async: Boolean indicating asynchronously
2182  * @force: Boolean indicating use force update
2183  *
2184  * Perform a read/modify/write cycle on the register field with change,
2185  * async, force option.
2186  *
2187  * A value of zero will be returned on success, a negative errno will
2188  * be returned in error cases.
2189  */
2190 int regmap_field_update_bits_base(struct regmap_field *field,
2191 				  unsigned int mask, unsigned int val,
2192 				  bool *change, bool async, bool force)
2193 {
2194 	mask = (mask << field->shift) & field->mask;
2195 
2196 	return regmap_update_bits_base(field->regmap, field->reg,
2197 				       mask, val << field->shift,
2198 				       change, async, force);
2199 }
2200 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2201 
2202 /**
2203  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2204  *                                    register field with port ID
2205  *
2206  * @field: Register field to write to
2207  * @id: port ID
2208  * @mask: Bitmask to change
2209  * @val: Value to be written
2210  * @change: Boolean indicating if a write was done
2211  * @async: Boolean indicating asynchronously
2212  * @force: Boolean indicating use force update
2213  *
2214  * A value of zero will be returned on success, a negative errno will
2215  * be returned in error cases.
2216  */
2217 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2218 				   unsigned int mask, unsigned int val,
2219 				   bool *change, bool async, bool force)
2220 {
2221 	if (id >= field->id_size)
2222 		return -EINVAL;
2223 
2224 	mask = (mask << field->shift) & field->mask;
2225 
2226 	return regmap_update_bits_base(field->regmap,
2227 				       field->reg + (field->id_offset * id),
2228 				       mask, val << field->shift,
2229 				       change, async, force);
2230 }
2231 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2232 
2233 /**
2234  * regmap_bulk_write() - Write multiple registers to the device
2235  *
2236  * @map: Register map to write to
2237  * @reg: First register to be write from
2238  * @val: Block of data to be written, in native register size for device
2239  * @val_count: Number of registers to write
2240  *
2241  * This function is intended to be used for writing a large block of
2242  * data to the device either in single transfer or multiple transfer.
2243  *
2244  * A value of zero will be returned on success, a negative errno will
2245  * be returned in error cases.
2246  */
2247 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2248 		     size_t val_count)
2249 {
2250 	int ret = 0, i;
2251 	size_t val_bytes = map->format.val_bytes;
2252 
2253 	if (!IS_ALIGNED(reg, map->reg_stride))
2254 		return -EINVAL;
2255 
2256 	/*
2257 	 * Some devices don't support bulk write, for them we have a series of
2258 	 * single write operations.
2259 	 */
2260 	if (!map->bus || !map->format.parse_inplace) {
2261 		map->lock(map->lock_arg);
2262 		for (i = 0; i < val_count; i++) {
2263 			unsigned int ival;
2264 
2265 			switch (val_bytes) {
2266 			case 1:
2267 				ival = *(u8 *)(val + (i * val_bytes));
2268 				break;
2269 			case 2:
2270 				ival = *(u16 *)(val + (i * val_bytes));
2271 				break;
2272 			case 4:
2273 				ival = *(u32 *)(val + (i * val_bytes));
2274 				break;
2275 #ifdef CONFIG_64BIT
2276 			case 8:
2277 				ival = *(u64 *)(val + (i * val_bytes));
2278 				break;
2279 #endif
2280 			default:
2281 				ret = -EINVAL;
2282 				goto out;
2283 			}
2284 
2285 			ret = _regmap_write(map,
2286 					    reg + regmap_get_offset(map, i),
2287 					    ival);
2288 			if (ret != 0)
2289 				goto out;
2290 		}
2291 out:
2292 		map->unlock(map->lock_arg);
2293 	} else {
2294 		void *wval;
2295 
2296 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2297 		if (!wval)
2298 			return -ENOMEM;
2299 
2300 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2301 			map->format.parse_inplace(wval + i);
2302 
2303 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2304 
2305 		kfree(wval);
2306 	}
2307 	return ret;
2308 }
2309 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2310 
2311 /*
2312  * _regmap_raw_multi_reg_write()
2313  *
2314  * the (register,newvalue) pairs in regs have not been formatted, but
2315  * they are all in the same page and have been changed to being page
2316  * relative. The page register has been written if that was necessary.
2317  */
2318 static int _regmap_raw_multi_reg_write(struct regmap *map,
2319 				       const struct reg_sequence *regs,
2320 				       size_t num_regs)
2321 {
2322 	int ret;
2323 	void *buf;
2324 	int i;
2325 	u8 *u8;
2326 	size_t val_bytes = map->format.val_bytes;
2327 	size_t reg_bytes = map->format.reg_bytes;
2328 	size_t pad_bytes = map->format.pad_bytes;
2329 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2330 	size_t len = pair_size * num_regs;
2331 
2332 	if (!len)
2333 		return -EINVAL;
2334 
2335 	buf = kzalloc(len, GFP_KERNEL);
2336 	if (!buf)
2337 		return -ENOMEM;
2338 
2339 	/* We have to linearise by hand. */
2340 
2341 	u8 = buf;
2342 
2343 	for (i = 0; i < num_regs; i++) {
2344 		unsigned int reg = regs[i].reg;
2345 		unsigned int val = regs[i].def;
2346 		trace_regmap_hw_write_start(map, reg, 1);
2347 		map->format.format_reg(u8, reg, map->reg_shift);
2348 		u8 += reg_bytes + pad_bytes;
2349 		map->format.format_val(u8, val, 0);
2350 		u8 += val_bytes;
2351 	}
2352 	u8 = buf;
2353 	*u8 |= map->write_flag_mask;
2354 
2355 	ret = map->bus->write(map->bus_context, buf, len);
2356 
2357 	kfree(buf);
2358 
2359 	for (i = 0; i < num_regs; i++) {
2360 		int reg = regs[i].reg;
2361 		trace_regmap_hw_write_done(map, reg, 1);
2362 	}
2363 	return ret;
2364 }
2365 
2366 static unsigned int _regmap_register_page(struct regmap *map,
2367 					  unsigned int reg,
2368 					  struct regmap_range_node *range)
2369 {
2370 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2371 
2372 	return win_page;
2373 }
2374 
2375 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2376 					       struct reg_sequence *regs,
2377 					       size_t num_regs)
2378 {
2379 	int ret;
2380 	int i, n;
2381 	struct reg_sequence *base;
2382 	unsigned int this_page = 0;
2383 	unsigned int page_change = 0;
2384 	/*
2385 	 * the set of registers are not neccessarily in order, but
2386 	 * since the order of write must be preserved this algorithm
2387 	 * chops the set each time the page changes. This also applies
2388 	 * if there is a delay required at any point in the sequence.
2389 	 */
2390 	base = regs;
2391 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2392 		unsigned int reg = regs[i].reg;
2393 		struct regmap_range_node *range;
2394 
2395 		range = _regmap_range_lookup(map, reg);
2396 		if (range) {
2397 			unsigned int win_page = _regmap_register_page(map, reg,
2398 								      range);
2399 
2400 			if (i == 0)
2401 				this_page = win_page;
2402 			if (win_page != this_page) {
2403 				this_page = win_page;
2404 				page_change = 1;
2405 			}
2406 		}
2407 
2408 		/* If we have both a page change and a delay make sure to
2409 		 * write the regs and apply the delay before we change the
2410 		 * page.
2411 		 */
2412 
2413 		if (page_change || regs[i].delay_us) {
2414 
2415 				/* For situations where the first write requires
2416 				 * a delay we need to make sure we don't call
2417 				 * raw_multi_reg_write with n=0
2418 				 * This can't occur with page breaks as we
2419 				 * never write on the first iteration
2420 				 */
2421 				if (regs[i].delay_us && i == 0)
2422 					n = 1;
2423 
2424 				ret = _regmap_raw_multi_reg_write(map, base, n);
2425 				if (ret != 0)
2426 					return ret;
2427 
2428 				if (regs[i].delay_us) {
2429 					if (map->can_sleep)
2430 						fsleep(regs[i].delay_us);
2431 					else
2432 						udelay(regs[i].delay_us);
2433 				}
2434 
2435 				base += n;
2436 				n = 0;
2437 
2438 				if (page_change) {
2439 					ret = _regmap_select_page(map,
2440 								  &base[n].reg,
2441 								  range, 1);
2442 					if (ret != 0)
2443 						return ret;
2444 
2445 					page_change = 0;
2446 				}
2447 
2448 		}
2449 
2450 	}
2451 	if (n > 0)
2452 		return _regmap_raw_multi_reg_write(map, base, n);
2453 	return 0;
2454 }
2455 
2456 static int _regmap_multi_reg_write(struct regmap *map,
2457 				   const struct reg_sequence *regs,
2458 				   size_t num_regs)
2459 {
2460 	int i;
2461 	int ret;
2462 
2463 	if (!map->can_multi_write) {
2464 		for (i = 0; i < num_regs; i++) {
2465 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2466 			if (ret != 0)
2467 				return ret;
2468 
2469 			if (regs[i].delay_us) {
2470 				if (map->can_sleep)
2471 					fsleep(regs[i].delay_us);
2472 				else
2473 					udelay(regs[i].delay_us);
2474 			}
2475 		}
2476 		return 0;
2477 	}
2478 
2479 	if (!map->format.parse_inplace)
2480 		return -EINVAL;
2481 
2482 	if (map->writeable_reg)
2483 		for (i = 0; i < num_regs; i++) {
2484 			int reg = regs[i].reg;
2485 			if (!map->writeable_reg(map->dev, reg))
2486 				return -EINVAL;
2487 			if (!IS_ALIGNED(reg, map->reg_stride))
2488 				return -EINVAL;
2489 		}
2490 
2491 	if (!map->cache_bypass) {
2492 		for (i = 0; i < num_regs; i++) {
2493 			unsigned int val = regs[i].def;
2494 			unsigned int reg = regs[i].reg;
2495 			ret = regcache_write(map, reg, val);
2496 			if (ret) {
2497 				dev_err(map->dev,
2498 				"Error in caching of register: %x ret: %d\n",
2499 								reg, ret);
2500 				return ret;
2501 			}
2502 		}
2503 		if (map->cache_only) {
2504 			map->cache_dirty = true;
2505 			return 0;
2506 		}
2507 	}
2508 
2509 	WARN_ON(!map->bus);
2510 
2511 	for (i = 0; i < num_regs; i++) {
2512 		unsigned int reg = regs[i].reg;
2513 		struct regmap_range_node *range;
2514 
2515 		/* Coalesce all the writes between a page break or a delay
2516 		 * in a sequence
2517 		 */
2518 		range = _regmap_range_lookup(map, reg);
2519 		if (range || regs[i].delay_us) {
2520 			size_t len = sizeof(struct reg_sequence)*num_regs;
2521 			struct reg_sequence *base = kmemdup(regs, len,
2522 							   GFP_KERNEL);
2523 			if (!base)
2524 				return -ENOMEM;
2525 			ret = _regmap_range_multi_paged_reg_write(map, base,
2526 								  num_regs);
2527 			kfree(base);
2528 
2529 			return ret;
2530 		}
2531 	}
2532 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2533 }
2534 
2535 /**
2536  * regmap_multi_reg_write() - Write multiple registers to the device
2537  *
2538  * @map: Register map to write to
2539  * @regs: Array of structures containing register,value to be written
2540  * @num_regs: Number of registers to write
2541  *
2542  * Write multiple registers to the device where the set of register, value
2543  * pairs are supplied in any order, possibly not all in a single range.
2544  *
2545  * The 'normal' block write mode will send ultimately send data on the
2546  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2547  * addressed. However, this alternative block multi write mode will send
2548  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2549  * must of course support the mode.
2550  *
2551  * A value of zero will be returned on success, a negative errno will be
2552  * returned in error cases.
2553  */
2554 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2555 			   int num_regs)
2556 {
2557 	int ret;
2558 
2559 	map->lock(map->lock_arg);
2560 
2561 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2562 
2563 	map->unlock(map->lock_arg);
2564 
2565 	return ret;
2566 }
2567 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2568 
2569 /**
2570  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2571  *                                     device but not the cache
2572  *
2573  * @map: Register map to write to
2574  * @regs: Array of structures containing register,value to be written
2575  * @num_regs: Number of registers to write
2576  *
2577  * Write multiple registers to the device but not the cache where the set
2578  * of register are supplied in any order.
2579  *
2580  * This function is intended to be used for writing a large block of data
2581  * atomically to the device in single transfer for those I2C client devices
2582  * that implement this alternative block write mode.
2583  *
2584  * A value of zero will be returned on success, a negative errno will
2585  * be returned in error cases.
2586  */
2587 int regmap_multi_reg_write_bypassed(struct regmap *map,
2588 				    const struct reg_sequence *regs,
2589 				    int num_regs)
2590 {
2591 	int ret;
2592 	bool bypass;
2593 
2594 	map->lock(map->lock_arg);
2595 
2596 	bypass = map->cache_bypass;
2597 	map->cache_bypass = true;
2598 
2599 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2600 
2601 	map->cache_bypass = bypass;
2602 
2603 	map->unlock(map->lock_arg);
2604 
2605 	return ret;
2606 }
2607 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2608 
2609 /**
2610  * regmap_raw_write_async() - Write raw values to one or more registers
2611  *                            asynchronously
2612  *
2613  * @map: Register map to write to
2614  * @reg: Initial register to write to
2615  * @val: Block of data to be written, laid out for direct transmission to the
2616  *       device.  Must be valid until regmap_async_complete() is called.
2617  * @val_len: Length of data pointed to by val.
2618  *
2619  * This function is intended to be used for things like firmware
2620  * download where a large block of data needs to be transferred to the
2621  * device.  No formatting will be done on the data provided.
2622  *
2623  * If supported by the underlying bus the write will be scheduled
2624  * asynchronously, helping maximise I/O speed on higher speed buses
2625  * like SPI.  regmap_async_complete() can be called to ensure that all
2626  * asynchrnous writes have been completed.
2627  *
2628  * A value of zero will be returned on success, a negative errno will
2629  * be returned in error cases.
2630  */
2631 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2632 			   const void *val, size_t val_len)
2633 {
2634 	int ret;
2635 
2636 	if (val_len % map->format.val_bytes)
2637 		return -EINVAL;
2638 	if (!IS_ALIGNED(reg, map->reg_stride))
2639 		return -EINVAL;
2640 
2641 	map->lock(map->lock_arg);
2642 
2643 	map->async = true;
2644 
2645 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2646 
2647 	map->async = false;
2648 
2649 	map->unlock(map->lock_arg);
2650 
2651 	return ret;
2652 }
2653 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2654 
2655 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2656 			    unsigned int val_len, bool noinc)
2657 {
2658 	struct regmap_range_node *range;
2659 	int ret;
2660 
2661 	WARN_ON(!map->bus);
2662 
2663 	if (!map->bus || !map->bus->read)
2664 		return -EINVAL;
2665 
2666 	range = _regmap_range_lookup(map, reg);
2667 	if (range) {
2668 		ret = _regmap_select_page(map, &reg, range,
2669 					  noinc ? 1 : val_len / map->format.val_bytes);
2670 		if (ret != 0)
2671 			return ret;
2672 	}
2673 
2674 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2675 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2676 				      map->read_flag_mask);
2677 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2678 
2679 	ret = map->bus->read(map->bus_context, map->work_buf,
2680 			     map->format.reg_bytes + map->format.pad_bytes,
2681 			     val, val_len);
2682 
2683 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2684 
2685 	return ret;
2686 }
2687 
2688 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2689 				unsigned int *val)
2690 {
2691 	struct regmap *map = context;
2692 
2693 	return map->bus->reg_read(map->bus_context, reg, val);
2694 }
2695 
2696 static int _regmap_bus_read(void *context, unsigned int reg,
2697 			    unsigned int *val)
2698 {
2699 	int ret;
2700 	struct regmap *map = context;
2701 	void *work_val = map->work_buf + map->format.reg_bytes +
2702 		map->format.pad_bytes;
2703 
2704 	if (!map->format.parse_val)
2705 		return -EINVAL;
2706 
2707 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2708 	if (ret == 0)
2709 		*val = map->format.parse_val(work_val);
2710 
2711 	return ret;
2712 }
2713 
2714 static int _regmap_read(struct regmap *map, unsigned int reg,
2715 			unsigned int *val)
2716 {
2717 	int ret;
2718 	void *context = _regmap_map_get_context(map);
2719 
2720 	if (!map->cache_bypass) {
2721 		ret = regcache_read(map, reg, val);
2722 		if (ret == 0)
2723 			return 0;
2724 	}
2725 
2726 	if (map->cache_only)
2727 		return -EBUSY;
2728 
2729 	if (!regmap_readable(map, reg))
2730 		return -EIO;
2731 
2732 	ret = map->reg_read(context, reg, val);
2733 	if (ret == 0) {
2734 		if (regmap_should_log(map))
2735 			dev_info(map->dev, "%x => %x\n", reg, *val);
2736 
2737 		trace_regmap_reg_read(map, reg, *val);
2738 
2739 		if (!map->cache_bypass)
2740 			regcache_write(map, reg, *val);
2741 	}
2742 
2743 	return ret;
2744 }
2745 
2746 /**
2747  * regmap_read() - Read a value from a single register
2748  *
2749  * @map: Register map to read from
2750  * @reg: Register to be read from
2751  * @val: Pointer to store read value
2752  *
2753  * A value of zero will be returned on success, a negative errno will
2754  * be returned in error cases.
2755  */
2756 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2757 {
2758 	int ret;
2759 
2760 	if (!IS_ALIGNED(reg, map->reg_stride))
2761 		return -EINVAL;
2762 
2763 	map->lock(map->lock_arg);
2764 
2765 	ret = _regmap_read(map, reg, val);
2766 
2767 	map->unlock(map->lock_arg);
2768 
2769 	return ret;
2770 }
2771 EXPORT_SYMBOL_GPL(regmap_read);
2772 
2773 /**
2774  * regmap_raw_read() - Read raw data from the device
2775  *
2776  * @map: Register map to read from
2777  * @reg: First register to be read from
2778  * @val: Pointer to store read value
2779  * @val_len: Size of data to read
2780  *
2781  * A value of zero will be returned on success, a negative errno will
2782  * be returned in error cases.
2783  */
2784 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2785 		    size_t val_len)
2786 {
2787 	size_t val_bytes = map->format.val_bytes;
2788 	size_t val_count = val_len / val_bytes;
2789 	unsigned int v;
2790 	int ret, i;
2791 
2792 	if (!map->bus)
2793 		return -EINVAL;
2794 	if (val_len % map->format.val_bytes)
2795 		return -EINVAL;
2796 	if (!IS_ALIGNED(reg, map->reg_stride))
2797 		return -EINVAL;
2798 	if (val_count == 0)
2799 		return -EINVAL;
2800 
2801 	map->lock(map->lock_arg);
2802 
2803 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2804 	    map->cache_type == REGCACHE_NONE) {
2805 		size_t chunk_count, chunk_bytes;
2806 		size_t chunk_regs = val_count;
2807 
2808 		if (!map->bus->read) {
2809 			ret = -ENOTSUPP;
2810 			goto out;
2811 		}
2812 
2813 		if (map->use_single_read)
2814 			chunk_regs = 1;
2815 		else if (map->max_raw_read && val_len > map->max_raw_read)
2816 			chunk_regs = map->max_raw_read / val_bytes;
2817 
2818 		chunk_count = val_count / chunk_regs;
2819 		chunk_bytes = chunk_regs * val_bytes;
2820 
2821 		/* Read bytes that fit into whole chunks */
2822 		for (i = 0; i < chunk_count; i++) {
2823 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2824 			if (ret != 0)
2825 				goto out;
2826 
2827 			reg += regmap_get_offset(map, chunk_regs);
2828 			val += chunk_bytes;
2829 			val_len -= chunk_bytes;
2830 		}
2831 
2832 		/* Read remaining bytes */
2833 		if (val_len) {
2834 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2835 			if (ret != 0)
2836 				goto out;
2837 		}
2838 	} else {
2839 		/* Otherwise go word by word for the cache; should be low
2840 		 * cost as we expect to hit the cache.
2841 		 */
2842 		for (i = 0; i < val_count; i++) {
2843 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2844 					   &v);
2845 			if (ret != 0)
2846 				goto out;
2847 
2848 			map->format.format_val(val + (i * val_bytes), v, 0);
2849 		}
2850 	}
2851 
2852  out:
2853 	map->unlock(map->lock_arg);
2854 
2855 	return ret;
2856 }
2857 EXPORT_SYMBOL_GPL(regmap_raw_read);
2858 
2859 /**
2860  * regmap_noinc_read(): Read data from a register without incrementing the
2861  *			register number
2862  *
2863  * @map: Register map to read from
2864  * @reg: Register to read from
2865  * @val: Pointer to data buffer
2866  * @val_len: Length of output buffer in bytes.
2867  *
2868  * The regmap API usually assumes that bulk bus read operations will read a
2869  * range of registers. Some devices have certain registers for which a read
2870  * operation read will read from an internal FIFO.
2871  *
2872  * The target register must be volatile but registers after it can be
2873  * completely unrelated cacheable registers.
2874  *
2875  * This will attempt multiple reads as required to read val_len bytes.
2876  *
2877  * A value of zero will be returned on success, a negative errno will be
2878  * returned in error cases.
2879  */
2880 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2881 		      void *val, size_t val_len)
2882 {
2883 	size_t read_len;
2884 	int ret;
2885 
2886 	if (!map->bus)
2887 		return -EINVAL;
2888 	if (!map->bus->read)
2889 		return -ENOTSUPP;
2890 	if (val_len % map->format.val_bytes)
2891 		return -EINVAL;
2892 	if (!IS_ALIGNED(reg, map->reg_stride))
2893 		return -EINVAL;
2894 	if (val_len == 0)
2895 		return -EINVAL;
2896 
2897 	map->lock(map->lock_arg);
2898 
2899 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2900 		ret = -EINVAL;
2901 		goto out_unlock;
2902 	}
2903 
2904 	while (val_len) {
2905 		if (map->max_raw_read && map->max_raw_read < val_len)
2906 			read_len = map->max_raw_read;
2907 		else
2908 			read_len = val_len;
2909 		ret = _regmap_raw_read(map, reg, val, read_len, true);
2910 		if (ret)
2911 			goto out_unlock;
2912 		val = ((u8 *)val) + read_len;
2913 		val_len -= read_len;
2914 	}
2915 
2916 out_unlock:
2917 	map->unlock(map->lock_arg);
2918 	return ret;
2919 }
2920 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2921 
2922 /**
2923  * regmap_field_read(): Read a value to a single register field
2924  *
2925  * @field: Register field to read from
2926  * @val: Pointer to store read value
2927  *
2928  * A value of zero will be returned on success, a negative errno will
2929  * be returned in error cases.
2930  */
2931 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2932 {
2933 	int ret;
2934 	unsigned int reg_val;
2935 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2936 	if (ret != 0)
2937 		return ret;
2938 
2939 	reg_val &= field->mask;
2940 	reg_val >>= field->shift;
2941 	*val = reg_val;
2942 
2943 	return ret;
2944 }
2945 EXPORT_SYMBOL_GPL(regmap_field_read);
2946 
2947 /**
2948  * regmap_fields_read() - Read a value to a single register field with port ID
2949  *
2950  * @field: Register field to read from
2951  * @id: port ID
2952  * @val: Pointer to store read value
2953  *
2954  * A value of zero will be returned on success, a negative errno will
2955  * be returned in error cases.
2956  */
2957 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2958 		       unsigned int *val)
2959 {
2960 	int ret;
2961 	unsigned int reg_val;
2962 
2963 	if (id >= field->id_size)
2964 		return -EINVAL;
2965 
2966 	ret = regmap_read(field->regmap,
2967 			  field->reg + (field->id_offset * id),
2968 			  &reg_val);
2969 	if (ret != 0)
2970 		return ret;
2971 
2972 	reg_val &= field->mask;
2973 	reg_val >>= field->shift;
2974 	*val = reg_val;
2975 
2976 	return ret;
2977 }
2978 EXPORT_SYMBOL_GPL(regmap_fields_read);
2979 
2980 /**
2981  * regmap_bulk_read() - Read multiple registers from the device
2982  *
2983  * @map: Register map to read from
2984  * @reg: First register to be read from
2985  * @val: Pointer to store read value, in native register size for device
2986  * @val_count: Number of registers to read
2987  *
2988  * A value of zero will be returned on success, a negative errno will
2989  * be returned in error cases.
2990  */
2991 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2992 		     size_t val_count)
2993 {
2994 	int ret, i;
2995 	size_t val_bytes = map->format.val_bytes;
2996 	bool vol = regmap_volatile_range(map, reg, val_count);
2997 
2998 	if (!IS_ALIGNED(reg, map->reg_stride))
2999 		return -EINVAL;
3000 	if (val_count == 0)
3001 		return -EINVAL;
3002 
3003 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3004 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3005 		if (ret != 0)
3006 			return ret;
3007 
3008 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3009 			map->format.parse_inplace(val + i);
3010 	} else {
3011 #ifdef CONFIG_64BIT
3012 		u64 *u64 = val;
3013 #endif
3014 		u32 *u32 = val;
3015 		u16 *u16 = val;
3016 		u8 *u8 = val;
3017 
3018 		map->lock(map->lock_arg);
3019 
3020 		for (i = 0; i < val_count; i++) {
3021 			unsigned int ival;
3022 
3023 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3024 					   &ival);
3025 			if (ret != 0)
3026 				goto out;
3027 
3028 			switch (map->format.val_bytes) {
3029 #ifdef CONFIG_64BIT
3030 			case 8:
3031 				u64[i] = ival;
3032 				break;
3033 #endif
3034 			case 4:
3035 				u32[i] = ival;
3036 				break;
3037 			case 2:
3038 				u16[i] = ival;
3039 				break;
3040 			case 1:
3041 				u8[i] = ival;
3042 				break;
3043 			default:
3044 				ret = -EINVAL;
3045 				goto out;
3046 			}
3047 		}
3048 
3049 out:
3050 		map->unlock(map->lock_arg);
3051 	}
3052 
3053 	return ret;
3054 }
3055 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3056 
3057 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3058 			       unsigned int mask, unsigned int val,
3059 			       bool *change, bool force_write)
3060 {
3061 	int ret;
3062 	unsigned int tmp, orig;
3063 
3064 	if (change)
3065 		*change = false;
3066 
3067 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3068 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3069 		if (ret == 0 && change)
3070 			*change = true;
3071 	} else {
3072 		ret = _regmap_read(map, reg, &orig);
3073 		if (ret != 0)
3074 			return ret;
3075 
3076 		tmp = orig & ~mask;
3077 		tmp |= val & mask;
3078 
3079 		if (force_write || (tmp != orig)) {
3080 			ret = _regmap_write(map, reg, tmp);
3081 			if (ret == 0 && change)
3082 				*change = true;
3083 		}
3084 	}
3085 
3086 	return ret;
3087 }
3088 
3089 /**
3090  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3091  *
3092  * @map: Register map to update
3093  * @reg: Register to update
3094  * @mask: Bitmask to change
3095  * @val: New value for bitmask
3096  * @change: Boolean indicating if a write was done
3097  * @async: Boolean indicating asynchronously
3098  * @force: Boolean indicating use force update
3099  *
3100  * Perform a read/modify/write cycle on a register map with change, async, force
3101  * options.
3102  *
3103  * If async is true:
3104  *
3105  * With most buses the read must be done synchronously so this is most useful
3106  * for devices with a cache which do not need to interact with the hardware to
3107  * determine the current register value.
3108  *
3109  * Returns zero for success, a negative number on error.
3110  */
3111 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3112 			    unsigned int mask, unsigned int val,
3113 			    bool *change, bool async, bool force)
3114 {
3115 	int ret;
3116 
3117 	map->lock(map->lock_arg);
3118 
3119 	map->async = async;
3120 
3121 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3122 
3123 	map->async = false;
3124 
3125 	map->unlock(map->lock_arg);
3126 
3127 	return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3130 
3131 /**
3132  * regmap_test_bits() - Check if all specified bits are set in a register.
3133  *
3134  * @map: Register map to operate on
3135  * @reg: Register to read from
3136  * @bits: Bits to test
3137  *
3138  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3139  * bits are set and a negative error number if the underlying regmap_read()
3140  * fails.
3141  */
3142 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3143 {
3144 	unsigned int val, ret;
3145 
3146 	ret = regmap_read(map, reg, &val);
3147 	if (ret)
3148 		return ret;
3149 
3150 	return (val & bits) == bits;
3151 }
3152 EXPORT_SYMBOL_GPL(regmap_test_bits);
3153 
3154 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3155 {
3156 	struct regmap *map = async->map;
3157 	bool wake;
3158 
3159 	trace_regmap_async_io_complete(map);
3160 
3161 	spin_lock(&map->async_lock);
3162 	list_move(&async->list, &map->async_free);
3163 	wake = list_empty(&map->async_list);
3164 
3165 	if (ret != 0)
3166 		map->async_ret = ret;
3167 
3168 	spin_unlock(&map->async_lock);
3169 
3170 	if (wake)
3171 		wake_up(&map->async_waitq);
3172 }
3173 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3174 
3175 static int regmap_async_is_done(struct regmap *map)
3176 {
3177 	unsigned long flags;
3178 	int ret;
3179 
3180 	spin_lock_irqsave(&map->async_lock, flags);
3181 	ret = list_empty(&map->async_list);
3182 	spin_unlock_irqrestore(&map->async_lock, flags);
3183 
3184 	return ret;
3185 }
3186 
3187 /**
3188  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3189  *
3190  * @map: Map to operate on.
3191  *
3192  * Blocks until any pending asynchronous I/O has completed.  Returns
3193  * an error code for any failed I/O operations.
3194  */
3195 int regmap_async_complete(struct regmap *map)
3196 {
3197 	unsigned long flags;
3198 	int ret;
3199 
3200 	/* Nothing to do with no async support */
3201 	if (!map->bus || !map->bus->async_write)
3202 		return 0;
3203 
3204 	trace_regmap_async_complete_start(map);
3205 
3206 	wait_event(map->async_waitq, regmap_async_is_done(map));
3207 
3208 	spin_lock_irqsave(&map->async_lock, flags);
3209 	ret = map->async_ret;
3210 	map->async_ret = 0;
3211 	spin_unlock_irqrestore(&map->async_lock, flags);
3212 
3213 	trace_regmap_async_complete_done(map);
3214 
3215 	return ret;
3216 }
3217 EXPORT_SYMBOL_GPL(regmap_async_complete);
3218 
3219 /**
3220  * regmap_register_patch - Register and apply register updates to be applied
3221  *                         on device initialistion
3222  *
3223  * @map: Register map to apply updates to.
3224  * @regs: Values to update.
3225  * @num_regs: Number of entries in regs.
3226  *
3227  * Register a set of register updates to be applied to the device
3228  * whenever the device registers are synchronised with the cache and
3229  * apply them immediately.  Typically this is used to apply
3230  * corrections to be applied to the device defaults on startup, such
3231  * as the updates some vendors provide to undocumented registers.
3232  *
3233  * The caller must ensure that this function cannot be called
3234  * concurrently with either itself or regcache_sync().
3235  */
3236 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3237 			  int num_regs)
3238 {
3239 	struct reg_sequence *p;
3240 	int ret;
3241 	bool bypass;
3242 
3243 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3244 	    num_regs))
3245 		return 0;
3246 
3247 	p = krealloc(map->patch,
3248 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3249 		     GFP_KERNEL);
3250 	if (p) {
3251 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3252 		map->patch = p;
3253 		map->patch_regs += num_regs;
3254 	} else {
3255 		return -ENOMEM;
3256 	}
3257 
3258 	map->lock(map->lock_arg);
3259 
3260 	bypass = map->cache_bypass;
3261 
3262 	map->cache_bypass = true;
3263 	map->async = true;
3264 
3265 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3266 
3267 	map->async = false;
3268 	map->cache_bypass = bypass;
3269 
3270 	map->unlock(map->lock_arg);
3271 
3272 	regmap_async_complete(map);
3273 
3274 	return ret;
3275 }
3276 EXPORT_SYMBOL_GPL(regmap_register_patch);
3277 
3278 /**
3279  * regmap_get_val_bytes() - Report the size of a register value
3280  *
3281  * @map: Register map to operate on.
3282  *
3283  * Report the size of a register value, mainly intended to for use by
3284  * generic infrastructure built on top of regmap.
3285  */
3286 int regmap_get_val_bytes(struct regmap *map)
3287 {
3288 	if (map->format.format_write)
3289 		return -EINVAL;
3290 
3291 	return map->format.val_bytes;
3292 }
3293 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3294 
3295 /**
3296  * regmap_get_max_register() - Report the max register value
3297  *
3298  * @map: Register map to operate on.
3299  *
3300  * Report the max register value, mainly intended to for use by
3301  * generic infrastructure built on top of regmap.
3302  */
3303 int regmap_get_max_register(struct regmap *map)
3304 {
3305 	return map->max_register ? map->max_register : -EINVAL;
3306 }
3307 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3308 
3309 /**
3310  * regmap_get_reg_stride() - Report the register address stride
3311  *
3312  * @map: Register map to operate on.
3313  *
3314  * Report the register address stride, mainly intended to for use by
3315  * generic infrastructure built on top of regmap.
3316  */
3317 int regmap_get_reg_stride(struct regmap *map)
3318 {
3319 	return map->reg_stride;
3320 }
3321 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3322 
3323 int regmap_parse_val(struct regmap *map, const void *buf,
3324 			unsigned int *val)
3325 {
3326 	if (!map->format.parse_val)
3327 		return -EINVAL;
3328 
3329 	*val = map->format.parse_val(buf);
3330 
3331 	return 0;
3332 }
3333 EXPORT_SYMBOL_GPL(regmap_parse_val);
3334 
3335 static int __init regmap_initcall(void)
3336 {
3337 	regmap_debugfs_initcall();
3338 
3339 	return 0;
3340 }
3341 postcore_initcall(regmap_initcall);
3342