xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision e7bae9bb)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_2_6_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	*out = (reg << 6) | val;
218 }
219 
220 static void regmap_format_4_12_write(struct regmap *map,
221 				     unsigned int reg, unsigned int val)
222 {
223 	__be16 *out = map->work_buf;
224 	*out = cpu_to_be16((reg << 12) | val);
225 }
226 
227 static void regmap_format_7_9_write(struct regmap *map,
228 				    unsigned int reg, unsigned int val)
229 {
230 	__be16 *out = map->work_buf;
231 	*out = cpu_to_be16((reg << 9) | val);
232 }
233 
234 static void regmap_format_10_14_write(struct regmap *map,
235 				    unsigned int reg, unsigned int val)
236 {
237 	u8 *out = map->work_buf;
238 
239 	out[2] = val;
240 	out[1] = (val >> 8) | (reg << 6);
241 	out[0] = reg >> 2;
242 }
243 
244 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
245 {
246 	u8 *b = buf;
247 
248 	b[0] = val << shift;
249 }
250 
251 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
252 {
253 	put_unaligned_be16(val << shift, buf);
254 }
255 
256 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
257 {
258 	put_unaligned_le16(val << shift, buf);
259 }
260 
261 static void regmap_format_16_native(void *buf, unsigned int val,
262 				    unsigned int shift)
263 {
264 	u16 v = val << shift;
265 
266 	memcpy(buf, &v, sizeof(v));
267 }
268 
269 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
270 {
271 	u8 *b = buf;
272 
273 	val <<= shift;
274 
275 	b[0] = val >> 16;
276 	b[1] = val >> 8;
277 	b[2] = val;
278 }
279 
280 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
281 {
282 	put_unaligned_be32(val << shift, buf);
283 }
284 
285 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
286 {
287 	put_unaligned_le32(val << shift, buf);
288 }
289 
290 static void regmap_format_32_native(void *buf, unsigned int val,
291 				    unsigned int shift)
292 {
293 	u32 v = val << shift;
294 
295 	memcpy(buf, &v, sizeof(v));
296 }
297 
298 #ifdef CONFIG_64BIT
299 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
300 {
301 	put_unaligned_be64((u64) val << shift, buf);
302 }
303 
304 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
305 {
306 	put_unaligned_le64((u64) val << shift, buf);
307 }
308 
309 static void regmap_format_64_native(void *buf, unsigned int val,
310 				    unsigned int shift)
311 {
312 	u64 v = (u64) val << shift;
313 
314 	memcpy(buf, &v, sizeof(v));
315 }
316 #endif
317 
318 static void regmap_parse_inplace_noop(void *buf)
319 {
320 }
321 
322 static unsigned int regmap_parse_8(const void *buf)
323 {
324 	const u8 *b = buf;
325 
326 	return b[0];
327 }
328 
329 static unsigned int regmap_parse_16_be(const void *buf)
330 {
331 	return get_unaligned_be16(buf);
332 }
333 
334 static unsigned int regmap_parse_16_le(const void *buf)
335 {
336 	return get_unaligned_le16(buf);
337 }
338 
339 static void regmap_parse_16_be_inplace(void *buf)
340 {
341 	u16 v = get_unaligned_be16(buf);
342 
343 	memcpy(buf, &v, sizeof(v));
344 }
345 
346 static void regmap_parse_16_le_inplace(void *buf)
347 {
348 	u16 v = get_unaligned_le16(buf);
349 
350 	memcpy(buf, &v, sizeof(v));
351 }
352 
353 static unsigned int regmap_parse_16_native(const void *buf)
354 {
355 	u16 v;
356 
357 	memcpy(&v, buf, sizeof(v));
358 	return v;
359 }
360 
361 static unsigned int regmap_parse_24(const void *buf)
362 {
363 	const u8 *b = buf;
364 	unsigned int ret = b[2];
365 	ret |= ((unsigned int)b[1]) << 8;
366 	ret |= ((unsigned int)b[0]) << 16;
367 
368 	return ret;
369 }
370 
371 static unsigned int regmap_parse_32_be(const void *buf)
372 {
373 	return get_unaligned_be32(buf);
374 }
375 
376 static unsigned int regmap_parse_32_le(const void *buf)
377 {
378 	return get_unaligned_le32(buf);
379 }
380 
381 static void regmap_parse_32_be_inplace(void *buf)
382 {
383 	u32 v = get_unaligned_be32(buf);
384 
385 	memcpy(buf, &v, sizeof(v));
386 }
387 
388 static void regmap_parse_32_le_inplace(void *buf)
389 {
390 	u32 v = get_unaligned_le32(buf);
391 
392 	memcpy(buf, &v, sizeof(v));
393 }
394 
395 static unsigned int regmap_parse_32_native(const void *buf)
396 {
397 	u32 v;
398 
399 	memcpy(&v, buf, sizeof(v));
400 	return v;
401 }
402 
403 #ifdef CONFIG_64BIT
404 static unsigned int regmap_parse_64_be(const void *buf)
405 {
406 	return get_unaligned_be64(buf);
407 }
408 
409 static unsigned int regmap_parse_64_le(const void *buf)
410 {
411 	return get_unaligned_le64(buf);
412 }
413 
414 static void regmap_parse_64_be_inplace(void *buf)
415 {
416 	u64 v =  get_unaligned_be64(buf);
417 
418 	memcpy(buf, &v, sizeof(v));
419 }
420 
421 static void regmap_parse_64_le_inplace(void *buf)
422 {
423 	u64 v = get_unaligned_le64(buf);
424 
425 	memcpy(buf, &v, sizeof(v));
426 }
427 
428 static unsigned int regmap_parse_64_native(const void *buf)
429 {
430 	u64 v;
431 
432 	memcpy(&v, buf, sizeof(v));
433 	return v;
434 }
435 #endif
436 
437 static void regmap_lock_hwlock(void *__map)
438 {
439 	struct regmap *map = __map;
440 
441 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
442 }
443 
444 static void regmap_lock_hwlock_irq(void *__map)
445 {
446 	struct regmap *map = __map;
447 
448 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
449 }
450 
451 static void regmap_lock_hwlock_irqsave(void *__map)
452 {
453 	struct regmap *map = __map;
454 
455 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
456 				    &map->spinlock_flags);
457 }
458 
459 static void regmap_unlock_hwlock(void *__map)
460 {
461 	struct regmap *map = __map;
462 
463 	hwspin_unlock(map->hwlock);
464 }
465 
466 static void regmap_unlock_hwlock_irq(void *__map)
467 {
468 	struct regmap *map = __map;
469 
470 	hwspin_unlock_irq(map->hwlock);
471 }
472 
473 static void regmap_unlock_hwlock_irqrestore(void *__map)
474 {
475 	struct regmap *map = __map;
476 
477 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
478 }
479 
480 static void regmap_lock_unlock_none(void *__map)
481 {
482 
483 }
484 
485 static void regmap_lock_mutex(void *__map)
486 {
487 	struct regmap *map = __map;
488 	mutex_lock(&map->mutex);
489 }
490 
491 static void regmap_unlock_mutex(void *__map)
492 {
493 	struct regmap *map = __map;
494 	mutex_unlock(&map->mutex);
495 }
496 
497 static void regmap_lock_spinlock(void *__map)
498 __acquires(&map->spinlock)
499 {
500 	struct regmap *map = __map;
501 	unsigned long flags;
502 
503 	spin_lock_irqsave(&map->spinlock, flags);
504 	map->spinlock_flags = flags;
505 }
506 
507 static void regmap_unlock_spinlock(void *__map)
508 __releases(&map->spinlock)
509 {
510 	struct regmap *map = __map;
511 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
512 }
513 
514 static void dev_get_regmap_release(struct device *dev, void *res)
515 {
516 	/*
517 	 * We don't actually have anything to do here; the goal here
518 	 * is not to manage the regmap but to provide a simple way to
519 	 * get the regmap back given a struct device.
520 	 */
521 }
522 
523 static bool _regmap_range_add(struct regmap *map,
524 			      struct regmap_range_node *data)
525 {
526 	struct rb_root *root = &map->range_tree;
527 	struct rb_node **new = &(root->rb_node), *parent = NULL;
528 
529 	while (*new) {
530 		struct regmap_range_node *this =
531 			rb_entry(*new, struct regmap_range_node, node);
532 
533 		parent = *new;
534 		if (data->range_max < this->range_min)
535 			new = &((*new)->rb_left);
536 		else if (data->range_min > this->range_max)
537 			new = &((*new)->rb_right);
538 		else
539 			return false;
540 	}
541 
542 	rb_link_node(&data->node, parent, new);
543 	rb_insert_color(&data->node, root);
544 
545 	return true;
546 }
547 
548 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
549 						      unsigned int reg)
550 {
551 	struct rb_node *node = map->range_tree.rb_node;
552 
553 	while (node) {
554 		struct regmap_range_node *this =
555 			rb_entry(node, struct regmap_range_node, node);
556 
557 		if (reg < this->range_min)
558 			node = node->rb_left;
559 		else if (reg > this->range_max)
560 			node = node->rb_right;
561 		else
562 			return this;
563 	}
564 
565 	return NULL;
566 }
567 
568 static void regmap_range_exit(struct regmap *map)
569 {
570 	struct rb_node *next;
571 	struct regmap_range_node *range_node;
572 
573 	next = rb_first(&map->range_tree);
574 	while (next) {
575 		range_node = rb_entry(next, struct regmap_range_node, node);
576 		next = rb_next(&range_node->node);
577 		rb_erase(&range_node->node, &map->range_tree);
578 		kfree(range_node);
579 	}
580 
581 	kfree(map->selector_work_buf);
582 }
583 
584 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
585 {
586 	if (config->name) {
587 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
588 
589 		if (!name)
590 			return -ENOMEM;
591 
592 		kfree_const(map->name);
593 		map->name = name;
594 	}
595 
596 	return 0;
597 }
598 
599 int regmap_attach_dev(struct device *dev, struct regmap *map,
600 		      const struct regmap_config *config)
601 {
602 	struct regmap **m;
603 	int ret;
604 
605 	map->dev = dev;
606 
607 	ret = regmap_set_name(map, config);
608 	if (ret)
609 		return ret;
610 
611 	regmap_debugfs_init(map);
612 
613 	/* Add a devres resource for dev_get_regmap() */
614 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
615 	if (!m) {
616 		regmap_debugfs_exit(map);
617 		return -ENOMEM;
618 	}
619 	*m = map;
620 	devres_add(dev, m);
621 
622 	return 0;
623 }
624 EXPORT_SYMBOL_GPL(regmap_attach_dev);
625 
626 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
627 					const struct regmap_config *config)
628 {
629 	enum regmap_endian endian;
630 
631 	/* Retrieve the endianness specification from the regmap config */
632 	endian = config->reg_format_endian;
633 
634 	/* If the regmap config specified a non-default value, use that */
635 	if (endian != REGMAP_ENDIAN_DEFAULT)
636 		return endian;
637 
638 	/* Retrieve the endianness specification from the bus config */
639 	if (bus && bus->reg_format_endian_default)
640 		endian = bus->reg_format_endian_default;
641 
642 	/* If the bus specified a non-default value, use that */
643 	if (endian != REGMAP_ENDIAN_DEFAULT)
644 		return endian;
645 
646 	/* Use this if no other value was found */
647 	return REGMAP_ENDIAN_BIG;
648 }
649 
650 enum regmap_endian regmap_get_val_endian(struct device *dev,
651 					 const struct regmap_bus *bus,
652 					 const struct regmap_config *config)
653 {
654 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
655 	enum regmap_endian endian;
656 
657 	/* Retrieve the endianness specification from the regmap config */
658 	endian = config->val_format_endian;
659 
660 	/* If the regmap config specified a non-default value, use that */
661 	if (endian != REGMAP_ENDIAN_DEFAULT)
662 		return endian;
663 
664 	/* If the firmware node exist try to get endianness from it */
665 	if (fwnode_property_read_bool(fwnode, "big-endian"))
666 		endian = REGMAP_ENDIAN_BIG;
667 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
668 		endian = REGMAP_ENDIAN_LITTLE;
669 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
670 		endian = REGMAP_ENDIAN_NATIVE;
671 
672 	/* If the endianness was specified in fwnode, use that */
673 	if (endian != REGMAP_ENDIAN_DEFAULT)
674 		return endian;
675 
676 	/* Retrieve the endianness specification from the bus config */
677 	if (bus && bus->val_format_endian_default)
678 		endian = bus->val_format_endian_default;
679 
680 	/* If the bus specified a non-default value, use that */
681 	if (endian != REGMAP_ENDIAN_DEFAULT)
682 		return endian;
683 
684 	/* Use this if no other value was found */
685 	return REGMAP_ENDIAN_BIG;
686 }
687 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
688 
689 struct regmap *__regmap_init(struct device *dev,
690 			     const struct regmap_bus *bus,
691 			     void *bus_context,
692 			     const struct regmap_config *config,
693 			     struct lock_class_key *lock_key,
694 			     const char *lock_name)
695 {
696 	struct regmap *map;
697 	int ret = -EINVAL;
698 	enum regmap_endian reg_endian, val_endian;
699 	int i, j;
700 
701 	if (!config)
702 		goto err;
703 
704 	map = kzalloc(sizeof(*map), GFP_KERNEL);
705 	if (map == NULL) {
706 		ret = -ENOMEM;
707 		goto err;
708 	}
709 
710 	ret = regmap_set_name(map, config);
711 	if (ret)
712 		goto err_map;
713 
714 	if (config->disable_locking) {
715 		map->lock = map->unlock = regmap_lock_unlock_none;
716 		regmap_debugfs_disable(map);
717 	} else if (config->lock && config->unlock) {
718 		map->lock = config->lock;
719 		map->unlock = config->unlock;
720 		map->lock_arg = config->lock_arg;
721 	} else if (config->use_hwlock) {
722 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
723 		if (!map->hwlock) {
724 			ret = -ENXIO;
725 			goto err_name;
726 		}
727 
728 		switch (config->hwlock_mode) {
729 		case HWLOCK_IRQSTATE:
730 			map->lock = regmap_lock_hwlock_irqsave;
731 			map->unlock = regmap_unlock_hwlock_irqrestore;
732 			break;
733 		case HWLOCK_IRQ:
734 			map->lock = regmap_lock_hwlock_irq;
735 			map->unlock = regmap_unlock_hwlock_irq;
736 			break;
737 		default:
738 			map->lock = regmap_lock_hwlock;
739 			map->unlock = regmap_unlock_hwlock;
740 			break;
741 		}
742 
743 		map->lock_arg = map;
744 	} else {
745 		if ((bus && bus->fast_io) ||
746 		    config->fast_io) {
747 			spin_lock_init(&map->spinlock);
748 			map->lock = regmap_lock_spinlock;
749 			map->unlock = regmap_unlock_spinlock;
750 			lockdep_set_class_and_name(&map->spinlock,
751 						   lock_key, lock_name);
752 		} else {
753 			mutex_init(&map->mutex);
754 			map->lock = regmap_lock_mutex;
755 			map->unlock = regmap_unlock_mutex;
756 			lockdep_set_class_and_name(&map->mutex,
757 						   lock_key, lock_name);
758 		}
759 		map->lock_arg = map;
760 	}
761 
762 	/*
763 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
764 	 * scratch buffers with sleeping allocations.
765 	 */
766 	if ((bus && bus->fast_io) || config->fast_io)
767 		map->alloc_flags = GFP_ATOMIC;
768 	else
769 		map->alloc_flags = GFP_KERNEL;
770 
771 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
772 	map->format.pad_bytes = config->pad_bits / 8;
773 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
774 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
775 			config->val_bits + config->pad_bits, 8);
776 	map->reg_shift = config->pad_bits % 8;
777 	if (config->reg_stride)
778 		map->reg_stride = config->reg_stride;
779 	else
780 		map->reg_stride = 1;
781 	if (is_power_of_2(map->reg_stride))
782 		map->reg_stride_order = ilog2(map->reg_stride);
783 	else
784 		map->reg_stride_order = -1;
785 	map->use_single_read = config->use_single_read || !bus || !bus->read;
786 	map->use_single_write = config->use_single_write || !bus || !bus->write;
787 	map->can_multi_write = config->can_multi_write && bus && bus->write;
788 	if (bus) {
789 		map->max_raw_read = bus->max_raw_read;
790 		map->max_raw_write = bus->max_raw_write;
791 	}
792 	map->dev = dev;
793 	map->bus = bus;
794 	map->bus_context = bus_context;
795 	map->max_register = config->max_register;
796 	map->wr_table = config->wr_table;
797 	map->rd_table = config->rd_table;
798 	map->volatile_table = config->volatile_table;
799 	map->precious_table = config->precious_table;
800 	map->wr_noinc_table = config->wr_noinc_table;
801 	map->rd_noinc_table = config->rd_noinc_table;
802 	map->writeable_reg = config->writeable_reg;
803 	map->readable_reg = config->readable_reg;
804 	map->volatile_reg = config->volatile_reg;
805 	map->precious_reg = config->precious_reg;
806 	map->writeable_noinc_reg = config->writeable_noinc_reg;
807 	map->readable_noinc_reg = config->readable_noinc_reg;
808 	map->cache_type = config->cache_type;
809 
810 	spin_lock_init(&map->async_lock);
811 	INIT_LIST_HEAD(&map->async_list);
812 	INIT_LIST_HEAD(&map->async_free);
813 	init_waitqueue_head(&map->async_waitq);
814 
815 	if (config->read_flag_mask ||
816 	    config->write_flag_mask ||
817 	    config->zero_flag_mask) {
818 		map->read_flag_mask = config->read_flag_mask;
819 		map->write_flag_mask = config->write_flag_mask;
820 	} else if (bus) {
821 		map->read_flag_mask = bus->read_flag_mask;
822 	}
823 
824 	if (!bus) {
825 		map->reg_read  = config->reg_read;
826 		map->reg_write = config->reg_write;
827 
828 		map->defer_caching = false;
829 		goto skip_format_initialization;
830 	} else if (!bus->read || !bus->write) {
831 		map->reg_read = _regmap_bus_reg_read;
832 		map->reg_write = _regmap_bus_reg_write;
833 		map->reg_update_bits = bus->reg_update_bits;
834 
835 		map->defer_caching = false;
836 		goto skip_format_initialization;
837 	} else {
838 		map->reg_read  = _regmap_bus_read;
839 		map->reg_update_bits = bus->reg_update_bits;
840 	}
841 
842 	reg_endian = regmap_get_reg_endian(bus, config);
843 	val_endian = regmap_get_val_endian(dev, bus, config);
844 
845 	switch (config->reg_bits + map->reg_shift) {
846 	case 2:
847 		switch (config->val_bits) {
848 		case 6:
849 			map->format.format_write = regmap_format_2_6_write;
850 			break;
851 		default:
852 			goto err_hwlock;
853 		}
854 		break;
855 
856 	case 4:
857 		switch (config->val_bits) {
858 		case 12:
859 			map->format.format_write = regmap_format_4_12_write;
860 			break;
861 		default:
862 			goto err_hwlock;
863 		}
864 		break;
865 
866 	case 7:
867 		switch (config->val_bits) {
868 		case 9:
869 			map->format.format_write = regmap_format_7_9_write;
870 			break;
871 		default:
872 			goto err_hwlock;
873 		}
874 		break;
875 
876 	case 10:
877 		switch (config->val_bits) {
878 		case 14:
879 			map->format.format_write = regmap_format_10_14_write;
880 			break;
881 		default:
882 			goto err_hwlock;
883 		}
884 		break;
885 
886 	case 8:
887 		map->format.format_reg = regmap_format_8;
888 		break;
889 
890 	case 16:
891 		switch (reg_endian) {
892 		case REGMAP_ENDIAN_BIG:
893 			map->format.format_reg = regmap_format_16_be;
894 			break;
895 		case REGMAP_ENDIAN_LITTLE:
896 			map->format.format_reg = regmap_format_16_le;
897 			break;
898 		case REGMAP_ENDIAN_NATIVE:
899 			map->format.format_reg = regmap_format_16_native;
900 			break;
901 		default:
902 			goto err_hwlock;
903 		}
904 		break;
905 
906 	case 24:
907 		if (reg_endian != REGMAP_ENDIAN_BIG)
908 			goto err_hwlock;
909 		map->format.format_reg = regmap_format_24;
910 		break;
911 
912 	case 32:
913 		switch (reg_endian) {
914 		case REGMAP_ENDIAN_BIG:
915 			map->format.format_reg = regmap_format_32_be;
916 			break;
917 		case REGMAP_ENDIAN_LITTLE:
918 			map->format.format_reg = regmap_format_32_le;
919 			break;
920 		case REGMAP_ENDIAN_NATIVE:
921 			map->format.format_reg = regmap_format_32_native;
922 			break;
923 		default:
924 			goto err_hwlock;
925 		}
926 		break;
927 
928 #ifdef CONFIG_64BIT
929 	case 64:
930 		switch (reg_endian) {
931 		case REGMAP_ENDIAN_BIG:
932 			map->format.format_reg = regmap_format_64_be;
933 			break;
934 		case REGMAP_ENDIAN_LITTLE:
935 			map->format.format_reg = regmap_format_64_le;
936 			break;
937 		case REGMAP_ENDIAN_NATIVE:
938 			map->format.format_reg = regmap_format_64_native;
939 			break;
940 		default:
941 			goto err_hwlock;
942 		}
943 		break;
944 #endif
945 
946 	default:
947 		goto err_hwlock;
948 	}
949 
950 	if (val_endian == REGMAP_ENDIAN_NATIVE)
951 		map->format.parse_inplace = regmap_parse_inplace_noop;
952 
953 	switch (config->val_bits) {
954 	case 8:
955 		map->format.format_val = regmap_format_8;
956 		map->format.parse_val = regmap_parse_8;
957 		map->format.parse_inplace = regmap_parse_inplace_noop;
958 		break;
959 	case 16:
960 		switch (val_endian) {
961 		case REGMAP_ENDIAN_BIG:
962 			map->format.format_val = regmap_format_16_be;
963 			map->format.parse_val = regmap_parse_16_be;
964 			map->format.parse_inplace = regmap_parse_16_be_inplace;
965 			break;
966 		case REGMAP_ENDIAN_LITTLE:
967 			map->format.format_val = regmap_format_16_le;
968 			map->format.parse_val = regmap_parse_16_le;
969 			map->format.parse_inplace = regmap_parse_16_le_inplace;
970 			break;
971 		case REGMAP_ENDIAN_NATIVE:
972 			map->format.format_val = regmap_format_16_native;
973 			map->format.parse_val = regmap_parse_16_native;
974 			break;
975 		default:
976 			goto err_hwlock;
977 		}
978 		break;
979 	case 24:
980 		if (val_endian != REGMAP_ENDIAN_BIG)
981 			goto err_hwlock;
982 		map->format.format_val = regmap_format_24;
983 		map->format.parse_val = regmap_parse_24;
984 		break;
985 	case 32:
986 		switch (val_endian) {
987 		case REGMAP_ENDIAN_BIG:
988 			map->format.format_val = regmap_format_32_be;
989 			map->format.parse_val = regmap_parse_32_be;
990 			map->format.parse_inplace = regmap_parse_32_be_inplace;
991 			break;
992 		case REGMAP_ENDIAN_LITTLE:
993 			map->format.format_val = regmap_format_32_le;
994 			map->format.parse_val = regmap_parse_32_le;
995 			map->format.parse_inplace = regmap_parse_32_le_inplace;
996 			break;
997 		case REGMAP_ENDIAN_NATIVE:
998 			map->format.format_val = regmap_format_32_native;
999 			map->format.parse_val = regmap_parse_32_native;
1000 			break;
1001 		default:
1002 			goto err_hwlock;
1003 		}
1004 		break;
1005 #ifdef CONFIG_64BIT
1006 	case 64:
1007 		switch (val_endian) {
1008 		case REGMAP_ENDIAN_BIG:
1009 			map->format.format_val = regmap_format_64_be;
1010 			map->format.parse_val = regmap_parse_64_be;
1011 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1012 			break;
1013 		case REGMAP_ENDIAN_LITTLE:
1014 			map->format.format_val = regmap_format_64_le;
1015 			map->format.parse_val = regmap_parse_64_le;
1016 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1017 			break;
1018 		case REGMAP_ENDIAN_NATIVE:
1019 			map->format.format_val = regmap_format_64_native;
1020 			map->format.parse_val = regmap_parse_64_native;
1021 			break;
1022 		default:
1023 			goto err_hwlock;
1024 		}
1025 		break;
1026 #endif
1027 	}
1028 
1029 	if (map->format.format_write) {
1030 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1031 		    (val_endian != REGMAP_ENDIAN_BIG))
1032 			goto err_hwlock;
1033 		map->use_single_write = true;
1034 	}
1035 
1036 	if (!map->format.format_write &&
1037 	    !(map->format.format_reg && map->format.format_val))
1038 		goto err_hwlock;
1039 
1040 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1041 	if (map->work_buf == NULL) {
1042 		ret = -ENOMEM;
1043 		goto err_hwlock;
1044 	}
1045 
1046 	if (map->format.format_write) {
1047 		map->defer_caching = false;
1048 		map->reg_write = _regmap_bus_formatted_write;
1049 	} else if (map->format.format_val) {
1050 		map->defer_caching = true;
1051 		map->reg_write = _regmap_bus_raw_write;
1052 	}
1053 
1054 skip_format_initialization:
1055 
1056 	map->range_tree = RB_ROOT;
1057 	for (i = 0; i < config->num_ranges; i++) {
1058 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1059 		struct regmap_range_node *new;
1060 
1061 		/* Sanity check */
1062 		if (range_cfg->range_max < range_cfg->range_min) {
1063 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1064 				range_cfg->range_max, range_cfg->range_min);
1065 			goto err_range;
1066 		}
1067 
1068 		if (range_cfg->range_max > map->max_register) {
1069 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1070 				range_cfg->range_max, map->max_register);
1071 			goto err_range;
1072 		}
1073 
1074 		if (range_cfg->selector_reg > map->max_register) {
1075 			dev_err(map->dev,
1076 				"Invalid range %d: selector out of map\n", i);
1077 			goto err_range;
1078 		}
1079 
1080 		if (range_cfg->window_len == 0) {
1081 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1082 				i);
1083 			goto err_range;
1084 		}
1085 
1086 		/* Make sure, that this register range has no selector
1087 		   or data window within its boundary */
1088 		for (j = 0; j < config->num_ranges; j++) {
1089 			unsigned sel_reg = config->ranges[j].selector_reg;
1090 			unsigned win_min = config->ranges[j].window_start;
1091 			unsigned win_max = win_min +
1092 					   config->ranges[j].window_len - 1;
1093 
1094 			/* Allow data window inside its own virtual range */
1095 			if (j == i)
1096 				continue;
1097 
1098 			if (range_cfg->range_min <= sel_reg &&
1099 			    sel_reg <= range_cfg->range_max) {
1100 				dev_err(map->dev,
1101 					"Range %d: selector for %d in window\n",
1102 					i, j);
1103 				goto err_range;
1104 			}
1105 
1106 			if (!(win_max < range_cfg->range_min ||
1107 			      win_min > range_cfg->range_max)) {
1108 				dev_err(map->dev,
1109 					"Range %d: window for %d in window\n",
1110 					i, j);
1111 				goto err_range;
1112 			}
1113 		}
1114 
1115 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1116 		if (new == NULL) {
1117 			ret = -ENOMEM;
1118 			goto err_range;
1119 		}
1120 
1121 		new->map = map;
1122 		new->name = range_cfg->name;
1123 		new->range_min = range_cfg->range_min;
1124 		new->range_max = range_cfg->range_max;
1125 		new->selector_reg = range_cfg->selector_reg;
1126 		new->selector_mask = range_cfg->selector_mask;
1127 		new->selector_shift = range_cfg->selector_shift;
1128 		new->window_start = range_cfg->window_start;
1129 		new->window_len = range_cfg->window_len;
1130 
1131 		if (!_regmap_range_add(map, new)) {
1132 			dev_err(map->dev, "Failed to add range %d\n", i);
1133 			kfree(new);
1134 			goto err_range;
1135 		}
1136 
1137 		if (map->selector_work_buf == NULL) {
1138 			map->selector_work_buf =
1139 				kzalloc(map->format.buf_size, GFP_KERNEL);
1140 			if (map->selector_work_buf == NULL) {
1141 				ret = -ENOMEM;
1142 				goto err_range;
1143 			}
1144 		}
1145 	}
1146 
1147 	ret = regcache_init(map, config);
1148 	if (ret != 0)
1149 		goto err_range;
1150 
1151 	if (dev) {
1152 		ret = regmap_attach_dev(dev, map, config);
1153 		if (ret != 0)
1154 			goto err_regcache;
1155 	} else {
1156 		regmap_debugfs_init(map);
1157 	}
1158 
1159 	return map;
1160 
1161 err_regcache:
1162 	regcache_exit(map);
1163 err_range:
1164 	regmap_range_exit(map);
1165 	kfree(map->work_buf);
1166 err_hwlock:
1167 	if (map->hwlock)
1168 		hwspin_lock_free(map->hwlock);
1169 err_name:
1170 	kfree_const(map->name);
1171 err_map:
1172 	kfree(map);
1173 err:
1174 	return ERR_PTR(ret);
1175 }
1176 EXPORT_SYMBOL_GPL(__regmap_init);
1177 
1178 static void devm_regmap_release(struct device *dev, void *res)
1179 {
1180 	regmap_exit(*(struct regmap **)res);
1181 }
1182 
1183 struct regmap *__devm_regmap_init(struct device *dev,
1184 				  const struct regmap_bus *bus,
1185 				  void *bus_context,
1186 				  const struct regmap_config *config,
1187 				  struct lock_class_key *lock_key,
1188 				  const char *lock_name)
1189 {
1190 	struct regmap **ptr, *regmap;
1191 
1192 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1193 	if (!ptr)
1194 		return ERR_PTR(-ENOMEM);
1195 
1196 	regmap = __regmap_init(dev, bus, bus_context, config,
1197 			       lock_key, lock_name);
1198 	if (!IS_ERR(regmap)) {
1199 		*ptr = regmap;
1200 		devres_add(dev, ptr);
1201 	} else {
1202 		devres_free(ptr);
1203 	}
1204 
1205 	return regmap;
1206 }
1207 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1208 
1209 static void regmap_field_init(struct regmap_field *rm_field,
1210 	struct regmap *regmap, struct reg_field reg_field)
1211 {
1212 	rm_field->regmap = regmap;
1213 	rm_field->reg = reg_field.reg;
1214 	rm_field->shift = reg_field.lsb;
1215 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1216 	rm_field->id_size = reg_field.id_size;
1217 	rm_field->id_offset = reg_field.id_offset;
1218 }
1219 
1220 /**
1221  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1222  *
1223  * @dev: Device that will be interacted with
1224  * @regmap: regmap bank in which this register field is located.
1225  * @reg_field: Register field with in the bank.
1226  *
1227  * The return value will be an ERR_PTR() on error or a valid pointer
1228  * to a struct regmap_field. The regmap_field will be automatically freed
1229  * by the device management code.
1230  */
1231 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1232 		struct regmap *regmap, struct reg_field reg_field)
1233 {
1234 	struct regmap_field *rm_field = devm_kzalloc(dev,
1235 					sizeof(*rm_field), GFP_KERNEL);
1236 	if (!rm_field)
1237 		return ERR_PTR(-ENOMEM);
1238 
1239 	regmap_field_init(rm_field, regmap, reg_field);
1240 
1241 	return rm_field;
1242 
1243 }
1244 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1245 
1246 /**
1247  * devm_regmap_field_free() - Free a register field allocated using
1248  *                            devm_regmap_field_alloc.
1249  *
1250  * @dev: Device that will be interacted with
1251  * @field: regmap field which should be freed.
1252  *
1253  * Free register field allocated using devm_regmap_field_alloc(). Usually
1254  * drivers need not call this function, as the memory allocated via devm
1255  * will be freed as per device-driver life-cyle.
1256  */
1257 void devm_regmap_field_free(struct device *dev,
1258 	struct regmap_field *field)
1259 {
1260 	devm_kfree(dev, field);
1261 }
1262 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1263 
1264 /**
1265  * regmap_field_alloc() - Allocate and initialise a register field.
1266  *
1267  * @regmap: regmap bank in which this register field is located.
1268  * @reg_field: Register field with in the bank.
1269  *
1270  * The return value will be an ERR_PTR() on error or a valid pointer
1271  * to a struct regmap_field. The regmap_field should be freed by the
1272  * user once its finished working with it using regmap_field_free().
1273  */
1274 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1275 		struct reg_field reg_field)
1276 {
1277 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1278 
1279 	if (!rm_field)
1280 		return ERR_PTR(-ENOMEM);
1281 
1282 	regmap_field_init(rm_field, regmap, reg_field);
1283 
1284 	return rm_field;
1285 }
1286 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1287 
1288 /**
1289  * regmap_field_free() - Free register field allocated using
1290  *                       regmap_field_alloc.
1291  *
1292  * @field: regmap field which should be freed.
1293  */
1294 void regmap_field_free(struct regmap_field *field)
1295 {
1296 	kfree(field);
1297 }
1298 EXPORT_SYMBOL_GPL(regmap_field_free);
1299 
1300 /**
1301  * regmap_reinit_cache() - Reinitialise the current register cache
1302  *
1303  * @map: Register map to operate on.
1304  * @config: New configuration.  Only the cache data will be used.
1305  *
1306  * Discard any existing register cache for the map and initialize a
1307  * new cache.  This can be used to restore the cache to defaults or to
1308  * update the cache configuration to reflect runtime discovery of the
1309  * hardware.
1310  *
1311  * No explicit locking is done here, the user needs to ensure that
1312  * this function will not race with other calls to regmap.
1313  */
1314 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1315 {
1316 	int ret;
1317 
1318 	regcache_exit(map);
1319 	regmap_debugfs_exit(map);
1320 
1321 	map->max_register = config->max_register;
1322 	map->writeable_reg = config->writeable_reg;
1323 	map->readable_reg = config->readable_reg;
1324 	map->volatile_reg = config->volatile_reg;
1325 	map->precious_reg = config->precious_reg;
1326 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1327 	map->readable_noinc_reg = config->readable_noinc_reg;
1328 	map->cache_type = config->cache_type;
1329 
1330 	ret = regmap_set_name(map, config);
1331 	if (ret)
1332 		return ret;
1333 
1334 	regmap_debugfs_init(map);
1335 
1336 	map->cache_bypass = false;
1337 	map->cache_only = false;
1338 
1339 	return regcache_init(map, config);
1340 }
1341 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1342 
1343 /**
1344  * regmap_exit() - Free a previously allocated register map
1345  *
1346  * @map: Register map to operate on.
1347  */
1348 void regmap_exit(struct regmap *map)
1349 {
1350 	struct regmap_async *async;
1351 
1352 	regcache_exit(map);
1353 	regmap_debugfs_exit(map);
1354 	regmap_range_exit(map);
1355 	if (map->bus && map->bus->free_context)
1356 		map->bus->free_context(map->bus_context);
1357 	kfree(map->work_buf);
1358 	while (!list_empty(&map->async_free)) {
1359 		async = list_first_entry_or_null(&map->async_free,
1360 						 struct regmap_async,
1361 						 list);
1362 		list_del(&async->list);
1363 		kfree(async->work_buf);
1364 		kfree(async);
1365 	}
1366 	if (map->hwlock)
1367 		hwspin_lock_free(map->hwlock);
1368 	kfree_const(map->name);
1369 	kfree(map->patch);
1370 	kfree(map);
1371 }
1372 EXPORT_SYMBOL_GPL(regmap_exit);
1373 
1374 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1375 {
1376 	struct regmap **r = res;
1377 	if (!r || !*r) {
1378 		WARN_ON(!r || !*r);
1379 		return 0;
1380 	}
1381 
1382 	/* If the user didn't specify a name match any */
1383 	if (data)
1384 		return !strcmp((*r)->name, data);
1385 	else
1386 		return 1;
1387 }
1388 
1389 /**
1390  * dev_get_regmap() - Obtain the regmap (if any) for a device
1391  *
1392  * @dev: Device to retrieve the map for
1393  * @name: Optional name for the register map, usually NULL.
1394  *
1395  * Returns the regmap for the device if one is present, or NULL.  If
1396  * name is specified then it must match the name specified when
1397  * registering the device, if it is NULL then the first regmap found
1398  * will be used.  Devices with multiple register maps are very rare,
1399  * generic code should normally not need to specify a name.
1400  */
1401 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1402 {
1403 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1404 					dev_get_regmap_match, (void *)name);
1405 
1406 	if (!r)
1407 		return NULL;
1408 	return *r;
1409 }
1410 EXPORT_SYMBOL_GPL(dev_get_regmap);
1411 
1412 /**
1413  * regmap_get_device() - Obtain the device from a regmap
1414  *
1415  * @map: Register map to operate on.
1416  *
1417  * Returns the underlying device that the regmap has been created for.
1418  */
1419 struct device *regmap_get_device(struct regmap *map)
1420 {
1421 	return map->dev;
1422 }
1423 EXPORT_SYMBOL_GPL(regmap_get_device);
1424 
1425 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1426 			       struct regmap_range_node *range,
1427 			       unsigned int val_num)
1428 {
1429 	void *orig_work_buf;
1430 	unsigned int win_offset;
1431 	unsigned int win_page;
1432 	bool page_chg;
1433 	int ret;
1434 
1435 	win_offset = (*reg - range->range_min) % range->window_len;
1436 	win_page = (*reg - range->range_min) / range->window_len;
1437 
1438 	if (val_num > 1) {
1439 		/* Bulk write shouldn't cross range boundary */
1440 		if (*reg + val_num - 1 > range->range_max)
1441 			return -EINVAL;
1442 
1443 		/* ... or single page boundary */
1444 		if (val_num > range->window_len - win_offset)
1445 			return -EINVAL;
1446 	}
1447 
1448 	/* It is possible to have selector register inside data window.
1449 	   In that case, selector register is located on every page and
1450 	   it needs no page switching, when accessed alone. */
1451 	if (val_num > 1 ||
1452 	    range->window_start + win_offset != range->selector_reg) {
1453 		/* Use separate work_buf during page switching */
1454 		orig_work_buf = map->work_buf;
1455 		map->work_buf = map->selector_work_buf;
1456 
1457 		ret = _regmap_update_bits(map, range->selector_reg,
1458 					  range->selector_mask,
1459 					  win_page << range->selector_shift,
1460 					  &page_chg, false);
1461 
1462 		map->work_buf = orig_work_buf;
1463 
1464 		if (ret != 0)
1465 			return ret;
1466 	}
1467 
1468 	*reg = range->window_start + win_offset;
1469 
1470 	return 0;
1471 }
1472 
1473 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1474 					  unsigned long mask)
1475 {
1476 	u8 *buf;
1477 	int i;
1478 
1479 	if (!mask || !map->work_buf)
1480 		return;
1481 
1482 	buf = map->work_buf;
1483 
1484 	for (i = 0; i < max_bytes; i++)
1485 		buf[i] |= (mask >> (8 * i)) & 0xff;
1486 }
1487 
1488 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1489 				  const void *val, size_t val_len, bool noinc)
1490 {
1491 	struct regmap_range_node *range;
1492 	unsigned long flags;
1493 	void *work_val = map->work_buf + map->format.reg_bytes +
1494 		map->format.pad_bytes;
1495 	void *buf;
1496 	int ret = -ENOTSUPP;
1497 	size_t len;
1498 	int i;
1499 
1500 	WARN_ON(!map->bus);
1501 
1502 	/* Check for unwritable or noinc registers in range
1503 	 * before we start
1504 	 */
1505 	if (!regmap_writeable_noinc(map, reg)) {
1506 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1507 			unsigned int element =
1508 				reg + regmap_get_offset(map, i);
1509 			if (!regmap_writeable(map, element) ||
1510 				regmap_writeable_noinc(map, element))
1511 				return -EINVAL;
1512 		}
1513 	}
1514 
1515 	if (!map->cache_bypass && map->format.parse_val) {
1516 		unsigned int ival;
1517 		int val_bytes = map->format.val_bytes;
1518 		for (i = 0; i < val_len / val_bytes; i++) {
1519 			ival = map->format.parse_val(val + (i * val_bytes));
1520 			ret = regcache_write(map,
1521 					     reg + regmap_get_offset(map, i),
1522 					     ival);
1523 			if (ret) {
1524 				dev_err(map->dev,
1525 					"Error in caching of register: %x ret: %d\n",
1526 					reg + i, ret);
1527 				return ret;
1528 			}
1529 		}
1530 		if (map->cache_only) {
1531 			map->cache_dirty = true;
1532 			return 0;
1533 		}
1534 	}
1535 
1536 	range = _regmap_range_lookup(map, reg);
1537 	if (range) {
1538 		int val_num = val_len / map->format.val_bytes;
1539 		int win_offset = (reg - range->range_min) % range->window_len;
1540 		int win_residue = range->window_len - win_offset;
1541 
1542 		/* If the write goes beyond the end of the window split it */
1543 		while (val_num > win_residue) {
1544 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1545 				win_residue, val_len / map->format.val_bytes);
1546 			ret = _regmap_raw_write_impl(map, reg, val,
1547 						     win_residue *
1548 						     map->format.val_bytes, noinc);
1549 			if (ret != 0)
1550 				return ret;
1551 
1552 			reg += win_residue;
1553 			val_num -= win_residue;
1554 			val += win_residue * map->format.val_bytes;
1555 			val_len -= win_residue * map->format.val_bytes;
1556 
1557 			win_offset = (reg - range->range_min) %
1558 				range->window_len;
1559 			win_residue = range->window_len - win_offset;
1560 		}
1561 
1562 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1563 		if (ret != 0)
1564 			return ret;
1565 	}
1566 
1567 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1568 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1569 				      map->write_flag_mask);
1570 
1571 	/*
1572 	 * Essentially all I/O mechanisms will be faster with a single
1573 	 * buffer to write.  Since register syncs often generate raw
1574 	 * writes of single registers optimise that case.
1575 	 */
1576 	if (val != work_val && val_len == map->format.val_bytes) {
1577 		memcpy(work_val, val, map->format.val_bytes);
1578 		val = work_val;
1579 	}
1580 
1581 	if (map->async && map->bus->async_write) {
1582 		struct regmap_async *async;
1583 
1584 		trace_regmap_async_write_start(map, reg, val_len);
1585 
1586 		spin_lock_irqsave(&map->async_lock, flags);
1587 		async = list_first_entry_or_null(&map->async_free,
1588 						 struct regmap_async,
1589 						 list);
1590 		if (async)
1591 			list_del(&async->list);
1592 		spin_unlock_irqrestore(&map->async_lock, flags);
1593 
1594 		if (!async) {
1595 			async = map->bus->async_alloc();
1596 			if (!async)
1597 				return -ENOMEM;
1598 
1599 			async->work_buf = kzalloc(map->format.buf_size,
1600 						  GFP_KERNEL | GFP_DMA);
1601 			if (!async->work_buf) {
1602 				kfree(async);
1603 				return -ENOMEM;
1604 			}
1605 		}
1606 
1607 		async->map = map;
1608 
1609 		/* If the caller supplied the value we can use it safely. */
1610 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1611 		       map->format.reg_bytes + map->format.val_bytes);
1612 
1613 		spin_lock_irqsave(&map->async_lock, flags);
1614 		list_add_tail(&async->list, &map->async_list);
1615 		spin_unlock_irqrestore(&map->async_lock, flags);
1616 
1617 		if (val != work_val)
1618 			ret = map->bus->async_write(map->bus_context,
1619 						    async->work_buf,
1620 						    map->format.reg_bytes +
1621 						    map->format.pad_bytes,
1622 						    val, val_len, async);
1623 		else
1624 			ret = map->bus->async_write(map->bus_context,
1625 						    async->work_buf,
1626 						    map->format.reg_bytes +
1627 						    map->format.pad_bytes +
1628 						    val_len, NULL, 0, async);
1629 
1630 		if (ret != 0) {
1631 			dev_err(map->dev, "Failed to schedule write: %d\n",
1632 				ret);
1633 
1634 			spin_lock_irqsave(&map->async_lock, flags);
1635 			list_move(&async->list, &map->async_free);
1636 			spin_unlock_irqrestore(&map->async_lock, flags);
1637 		}
1638 
1639 		return ret;
1640 	}
1641 
1642 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1643 
1644 	/* If we're doing a single register write we can probably just
1645 	 * send the work_buf directly, otherwise try to do a gather
1646 	 * write.
1647 	 */
1648 	if (val == work_val)
1649 		ret = map->bus->write(map->bus_context, map->work_buf,
1650 				      map->format.reg_bytes +
1651 				      map->format.pad_bytes +
1652 				      val_len);
1653 	else if (map->bus->gather_write)
1654 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1655 					     map->format.reg_bytes +
1656 					     map->format.pad_bytes,
1657 					     val, val_len);
1658 	else
1659 		ret = -ENOTSUPP;
1660 
1661 	/* If that didn't work fall back on linearising by hand. */
1662 	if (ret == -ENOTSUPP) {
1663 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1664 		buf = kzalloc(len, GFP_KERNEL);
1665 		if (!buf)
1666 			return -ENOMEM;
1667 
1668 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1669 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1670 		       val, val_len);
1671 		ret = map->bus->write(map->bus_context, buf, len);
1672 
1673 		kfree(buf);
1674 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1675 		/* regcache_drop_region() takes lock that we already have,
1676 		 * thus call map->cache_ops->drop() directly
1677 		 */
1678 		if (map->cache_ops && map->cache_ops->drop)
1679 			map->cache_ops->drop(map, reg, reg + 1);
1680 	}
1681 
1682 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1683 
1684 	return ret;
1685 }
1686 
1687 /**
1688  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1689  *
1690  * @map: Map to check.
1691  */
1692 bool regmap_can_raw_write(struct regmap *map)
1693 {
1694 	return map->bus && map->bus->write && map->format.format_val &&
1695 		map->format.format_reg;
1696 }
1697 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1698 
1699 /**
1700  * regmap_get_raw_read_max - Get the maximum size we can read
1701  *
1702  * @map: Map to check.
1703  */
1704 size_t regmap_get_raw_read_max(struct regmap *map)
1705 {
1706 	return map->max_raw_read;
1707 }
1708 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1709 
1710 /**
1711  * regmap_get_raw_write_max - Get the maximum size we can read
1712  *
1713  * @map: Map to check.
1714  */
1715 size_t regmap_get_raw_write_max(struct regmap *map)
1716 {
1717 	return map->max_raw_write;
1718 }
1719 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1720 
1721 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1722 				       unsigned int val)
1723 {
1724 	int ret;
1725 	struct regmap_range_node *range;
1726 	struct regmap *map = context;
1727 
1728 	WARN_ON(!map->bus || !map->format.format_write);
1729 
1730 	range = _regmap_range_lookup(map, reg);
1731 	if (range) {
1732 		ret = _regmap_select_page(map, &reg, range, 1);
1733 		if (ret != 0)
1734 			return ret;
1735 	}
1736 
1737 	map->format.format_write(map, reg, val);
1738 
1739 	trace_regmap_hw_write_start(map, reg, 1);
1740 
1741 	ret = map->bus->write(map->bus_context, map->work_buf,
1742 			      map->format.buf_size);
1743 
1744 	trace_regmap_hw_write_done(map, reg, 1);
1745 
1746 	return ret;
1747 }
1748 
1749 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1750 				 unsigned int val)
1751 {
1752 	struct regmap *map = context;
1753 
1754 	return map->bus->reg_write(map->bus_context, reg, val);
1755 }
1756 
1757 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1758 				 unsigned int val)
1759 {
1760 	struct regmap *map = context;
1761 
1762 	WARN_ON(!map->bus || !map->format.format_val);
1763 
1764 	map->format.format_val(map->work_buf + map->format.reg_bytes
1765 			       + map->format.pad_bytes, val, 0);
1766 	return _regmap_raw_write_impl(map, reg,
1767 				      map->work_buf +
1768 				      map->format.reg_bytes +
1769 				      map->format.pad_bytes,
1770 				      map->format.val_bytes,
1771 				      false);
1772 }
1773 
1774 static inline void *_regmap_map_get_context(struct regmap *map)
1775 {
1776 	return (map->bus) ? map : map->bus_context;
1777 }
1778 
1779 int _regmap_write(struct regmap *map, unsigned int reg,
1780 		  unsigned int val)
1781 {
1782 	int ret;
1783 	void *context = _regmap_map_get_context(map);
1784 
1785 	if (!regmap_writeable(map, reg))
1786 		return -EIO;
1787 
1788 	if (!map->cache_bypass && !map->defer_caching) {
1789 		ret = regcache_write(map, reg, val);
1790 		if (ret != 0)
1791 			return ret;
1792 		if (map->cache_only) {
1793 			map->cache_dirty = true;
1794 			return 0;
1795 		}
1796 	}
1797 
1798 	if (regmap_should_log(map))
1799 		dev_info(map->dev, "%x <= %x\n", reg, val);
1800 
1801 	trace_regmap_reg_write(map, reg, val);
1802 
1803 	return map->reg_write(context, reg, val);
1804 }
1805 
1806 /**
1807  * regmap_write() - Write a value to a single register
1808  *
1809  * @map: Register map to write to
1810  * @reg: Register to write to
1811  * @val: Value to be written
1812  *
1813  * A value of zero will be returned on success, a negative errno will
1814  * be returned in error cases.
1815  */
1816 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1817 {
1818 	int ret;
1819 
1820 	if (!IS_ALIGNED(reg, map->reg_stride))
1821 		return -EINVAL;
1822 
1823 	map->lock(map->lock_arg);
1824 
1825 	ret = _regmap_write(map, reg, val);
1826 
1827 	map->unlock(map->lock_arg);
1828 
1829 	return ret;
1830 }
1831 EXPORT_SYMBOL_GPL(regmap_write);
1832 
1833 /**
1834  * regmap_write_async() - Write a value to a single register asynchronously
1835  *
1836  * @map: Register map to write to
1837  * @reg: Register to write to
1838  * @val: Value to be written
1839  *
1840  * A value of zero will be returned on success, a negative errno will
1841  * be returned in error cases.
1842  */
1843 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1844 {
1845 	int ret;
1846 
1847 	if (!IS_ALIGNED(reg, map->reg_stride))
1848 		return -EINVAL;
1849 
1850 	map->lock(map->lock_arg);
1851 
1852 	map->async = true;
1853 
1854 	ret = _regmap_write(map, reg, val);
1855 
1856 	map->async = false;
1857 
1858 	map->unlock(map->lock_arg);
1859 
1860 	return ret;
1861 }
1862 EXPORT_SYMBOL_GPL(regmap_write_async);
1863 
1864 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1865 		      const void *val, size_t val_len, bool noinc)
1866 {
1867 	size_t val_bytes = map->format.val_bytes;
1868 	size_t val_count = val_len / val_bytes;
1869 	size_t chunk_count, chunk_bytes;
1870 	size_t chunk_regs = val_count;
1871 	int ret, i;
1872 
1873 	if (!val_count)
1874 		return -EINVAL;
1875 
1876 	if (map->use_single_write)
1877 		chunk_regs = 1;
1878 	else if (map->max_raw_write && val_len > map->max_raw_write)
1879 		chunk_regs = map->max_raw_write / val_bytes;
1880 
1881 	chunk_count = val_count / chunk_regs;
1882 	chunk_bytes = chunk_regs * val_bytes;
1883 
1884 	/* Write as many bytes as possible with chunk_size */
1885 	for (i = 0; i < chunk_count; i++) {
1886 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
1887 		if (ret)
1888 			return ret;
1889 
1890 		reg += regmap_get_offset(map, chunk_regs);
1891 		val += chunk_bytes;
1892 		val_len -= chunk_bytes;
1893 	}
1894 
1895 	/* Write remaining bytes */
1896 	if (val_len)
1897 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
1898 
1899 	return ret;
1900 }
1901 
1902 /**
1903  * regmap_raw_write() - Write raw values to one or more registers
1904  *
1905  * @map: Register map to write to
1906  * @reg: Initial register to write to
1907  * @val: Block of data to be written, laid out for direct transmission to the
1908  *       device
1909  * @val_len: Length of data pointed to by val.
1910  *
1911  * This function is intended to be used for things like firmware
1912  * download where a large block of data needs to be transferred to the
1913  * device.  No formatting will be done on the data provided.
1914  *
1915  * A value of zero will be returned on success, a negative errno will
1916  * be returned in error cases.
1917  */
1918 int regmap_raw_write(struct regmap *map, unsigned int reg,
1919 		     const void *val, size_t val_len)
1920 {
1921 	int ret;
1922 
1923 	if (!regmap_can_raw_write(map))
1924 		return -EINVAL;
1925 	if (val_len % map->format.val_bytes)
1926 		return -EINVAL;
1927 
1928 	map->lock(map->lock_arg);
1929 
1930 	ret = _regmap_raw_write(map, reg, val, val_len, false);
1931 
1932 	map->unlock(map->lock_arg);
1933 
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(regmap_raw_write);
1937 
1938 /**
1939  * regmap_noinc_write(): Write data from a register without incrementing the
1940  *			register number
1941  *
1942  * @map: Register map to write to
1943  * @reg: Register to write to
1944  * @val: Pointer to data buffer
1945  * @val_len: Length of output buffer in bytes.
1946  *
1947  * The regmap API usually assumes that bulk bus write operations will write a
1948  * range of registers. Some devices have certain registers for which a write
1949  * operation can write to an internal FIFO.
1950  *
1951  * The target register must be volatile but registers after it can be
1952  * completely unrelated cacheable registers.
1953  *
1954  * This will attempt multiple writes as required to write val_len bytes.
1955  *
1956  * A value of zero will be returned on success, a negative errno will be
1957  * returned in error cases.
1958  */
1959 int regmap_noinc_write(struct regmap *map, unsigned int reg,
1960 		      const void *val, size_t val_len)
1961 {
1962 	size_t write_len;
1963 	int ret;
1964 
1965 	if (!map->bus)
1966 		return -EINVAL;
1967 	if (!map->bus->write)
1968 		return -ENOTSUPP;
1969 	if (val_len % map->format.val_bytes)
1970 		return -EINVAL;
1971 	if (!IS_ALIGNED(reg, map->reg_stride))
1972 		return -EINVAL;
1973 	if (val_len == 0)
1974 		return -EINVAL;
1975 
1976 	map->lock(map->lock_arg);
1977 
1978 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1979 		ret = -EINVAL;
1980 		goto out_unlock;
1981 	}
1982 
1983 	while (val_len) {
1984 		if (map->max_raw_write && map->max_raw_write < val_len)
1985 			write_len = map->max_raw_write;
1986 		else
1987 			write_len = val_len;
1988 		ret = _regmap_raw_write(map, reg, val, write_len, true);
1989 		if (ret)
1990 			goto out_unlock;
1991 		val = ((u8 *)val) + write_len;
1992 		val_len -= write_len;
1993 	}
1994 
1995 out_unlock:
1996 	map->unlock(map->lock_arg);
1997 	return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2000 
2001 /**
2002  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2003  *                                   register field.
2004  *
2005  * @field: Register field to write to
2006  * @mask: Bitmask to change
2007  * @val: Value to be written
2008  * @change: Boolean indicating if a write was done
2009  * @async: Boolean indicating asynchronously
2010  * @force: Boolean indicating use force update
2011  *
2012  * Perform a read/modify/write cycle on the register field with change,
2013  * async, force option.
2014  *
2015  * A value of zero will be returned on success, a negative errno will
2016  * be returned in error cases.
2017  */
2018 int regmap_field_update_bits_base(struct regmap_field *field,
2019 				  unsigned int mask, unsigned int val,
2020 				  bool *change, bool async, bool force)
2021 {
2022 	mask = (mask << field->shift) & field->mask;
2023 
2024 	return regmap_update_bits_base(field->regmap, field->reg,
2025 				       mask, val << field->shift,
2026 				       change, async, force);
2027 }
2028 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2029 
2030 /**
2031  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2032  *                                    register field with port ID
2033  *
2034  * @field: Register field to write to
2035  * @id: port ID
2036  * @mask: Bitmask to change
2037  * @val: Value to be written
2038  * @change: Boolean indicating if a write was done
2039  * @async: Boolean indicating asynchronously
2040  * @force: Boolean indicating use force update
2041  *
2042  * A value of zero will be returned on success, a negative errno will
2043  * be returned in error cases.
2044  */
2045 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2046 				   unsigned int mask, unsigned int val,
2047 				   bool *change, bool async, bool force)
2048 {
2049 	if (id >= field->id_size)
2050 		return -EINVAL;
2051 
2052 	mask = (mask << field->shift) & field->mask;
2053 
2054 	return regmap_update_bits_base(field->regmap,
2055 				       field->reg + (field->id_offset * id),
2056 				       mask, val << field->shift,
2057 				       change, async, force);
2058 }
2059 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2060 
2061 /**
2062  * regmap_bulk_write() - Write multiple registers to the device
2063  *
2064  * @map: Register map to write to
2065  * @reg: First register to be write from
2066  * @val: Block of data to be written, in native register size for device
2067  * @val_count: Number of registers to write
2068  *
2069  * This function is intended to be used for writing a large block of
2070  * data to the device either in single transfer or multiple transfer.
2071  *
2072  * A value of zero will be returned on success, a negative errno will
2073  * be returned in error cases.
2074  */
2075 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2076 		     size_t val_count)
2077 {
2078 	int ret = 0, i;
2079 	size_t val_bytes = map->format.val_bytes;
2080 
2081 	if (!IS_ALIGNED(reg, map->reg_stride))
2082 		return -EINVAL;
2083 
2084 	/*
2085 	 * Some devices don't support bulk write, for them we have a series of
2086 	 * single write operations.
2087 	 */
2088 	if (!map->bus || !map->format.parse_inplace) {
2089 		map->lock(map->lock_arg);
2090 		for (i = 0; i < val_count; i++) {
2091 			unsigned int ival;
2092 
2093 			switch (val_bytes) {
2094 			case 1:
2095 				ival = *(u8 *)(val + (i * val_bytes));
2096 				break;
2097 			case 2:
2098 				ival = *(u16 *)(val + (i * val_bytes));
2099 				break;
2100 			case 4:
2101 				ival = *(u32 *)(val + (i * val_bytes));
2102 				break;
2103 #ifdef CONFIG_64BIT
2104 			case 8:
2105 				ival = *(u64 *)(val + (i * val_bytes));
2106 				break;
2107 #endif
2108 			default:
2109 				ret = -EINVAL;
2110 				goto out;
2111 			}
2112 
2113 			ret = _regmap_write(map,
2114 					    reg + regmap_get_offset(map, i),
2115 					    ival);
2116 			if (ret != 0)
2117 				goto out;
2118 		}
2119 out:
2120 		map->unlock(map->lock_arg);
2121 	} else {
2122 		void *wval;
2123 
2124 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2125 		if (!wval)
2126 			return -ENOMEM;
2127 
2128 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2129 			map->format.parse_inplace(wval + i);
2130 
2131 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2132 
2133 		kfree(wval);
2134 	}
2135 	return ret;
2136 }
2137 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2138 
2139 /*
2140  * _regmap_raw_multi_reg_write()
2141  *
2142  * the (register,newvalue) pairs in regs have not been formatted, but
2143  * they are all in the same page and have been changed to being page
2144  * relative. The page register has been written if that was necessary.
2145  */
2146 static int _regmap_raw_multi_reg_write(struct regmap *map,
2147 				       const struct reg_sequence *regs,
2148 				       size_t num_regs)
2149 {
2150 	int ret;
2151 	void *buf;
2152 	int i;
2153 	u8 *u8;
2154 	size_t val_bytes = map->format.val_bytes;
2155 	size_t reg_bytes = map->format.reg_bytes;
2156 	size_t pad_bytes = map->format.pad_bytes;
2157 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2158 	size_t len = pair_size * num_regs;
2159 
2160 	if (!len)
2161 		return -EINVAL;
2162 
2163 	buf = kzalloc(len, GFP_KERNEL);
2164 	if (!buf)
2165 		return -ENOMEM;
2166 
2167 	/* We have to linearise by hand. */
2168 
2169 	u8 = buf;
2170 
2171 	for (i = 0; i < num_regs; i++) {
2172 		unsigned int reg = regs[i].reg;
2173 		unsigned int val = regs[i].def;
2174 		trace_regmap_hw_write_start(map, reg, 1);
2175 		map->format.format_reg(u8, reg, map->reg_shift);
2176 		u8 += reg_bytes + pad_bytes;
2177 		map->format.format_val(u8, val, 0);
2178 		u8 += val_bytes;
2179 	}
2180 	u8 = buf;
2181 	*u8 |= map->write_flag_mask;
2182 
2183 	ret = map->bus->write(map->bus_context, buf, len);
2184 
2185 	kfree(buf);
2186 
2187 	for (i = 0; i < num_regs; i++) {
2188 		int reg = regs[i].reg;
2189 		trace_regmap_hw_write_done(map, reg, 1);
2190 	}
2191 	return ret;
2192 }
2193 
2194 static unsigned int _regmap_register_page(struct regmap *map,
2195 					  unsigned int reg,
2196 					  struct regmap_range_node *range)
2197 {
2198 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2199 
2200 	return win_page;
2201 }
2202 
2203 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2204 					       struct reg_sequence *regs,
2205 					       size_t num_regs)
2206 {
2207 	int ret;
2208 	int i, n;
2209 	struct reg_sequence *base;
2210 	unsigned int this_page = 0;
2211 	unsigned int page_change = 0;
2212 	/*
2213 	 * the set of registers are not neccessarily in order, but
2214 	 * since the order of write must be preserved this algorithm
2215 	 * chops the set each time the page changes. This also applies
2216 	 * if there is a delay required at any point in the sequence.
2217 	 */
2218 	base = regs;
2219 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2220 		unsigned int reg = regs[i].reg;
2221 		struct regmap_range_node *range;
2222 
2223 		range = _regmap_range_lookup(map, reg);
2224 		if (range) {
2225 			unsigned int win_page = _regmap_register_page(map, reg,
2226 								      range);
2227 
2228 			if (i == 0)
2229 				this_page = win_page;
2230 			if (win_page != this_page) {
2231 				this_page = win_page;
2232 				page_change = 1;
2233 			}
2234 		}
2235 
2236 		/* If we have both a page change and a delay make sure to
2237 		 * write the regs and apply the delay before we change the
2238 		 * page.
2239 		 */
2240 
2241 		if (page_change || regs[i].delay_us) {
2242 
2243 				/* For situations where the first write requires
2244 				 * a delay we need to make sure we don't call
2245 				 * raw_multi_reg_write with n=0
2246 				 * This can't occur with page breaks as we
2247 				 * never write on the first iteration
2248 				 */
2249 				if (regs[i].delay_us && i == 0)
2250 					n = 1;
2251 
2252 				ret = _regmap_raw_multi_reg_write(map, base, n);
2253 				if (ret != 0)
2254 					return ret;
2255 
2256 				if (regs[i].delay_us)
2257 					udelay(regs[i].delay_us);
2258 
2259 				base += n;
2260 				n = 0;
2261 
2262 				if (page_change) {
2263 					ret = _regmap_select_page(map,
2264 								  &base[n].reg,
2265 								  range, 1);
2266 					if (ret != 0)
2267 						return ret;
2268 
2269 					page_change = 0;
2270 				}
2271 
2272 		}
2273 
2274 	}
2275 	if (n > 0)
2276 		return _regmap_raw_multi_reg_write(map, base, n);
2277 	return 0;
2278 }
2279 
2280 static int _regmap_multi_reg_write(struct regmap *map,
2281 				   const struct reg_sequence *regs,
2282 				   size_t num_regs)
2283 {
2284 	int i;
2285 	int ret;
2286 
2287 	if (!map->can_multi_write) {
2288 		for (i = 0; i < num_regs; i++) {
2289 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2290 			if (ret != 0)
2291 				return ret;
2292 
2293 			if (regs[i].delay_us)
2294 				udelay(regs[i].delay_us);
2295 		}
2296 		return 0;
2297 	}
2298 
2299 	if (!map->format.parse_inplace)
2300 		return -EINVAL;
2301 
2302 	if (map->writeable_reg)
2303 		for (i = 0; i < num_regs; i++) {
2304 			int reg = regs[i].reg;
2305 			if (!map->writeable_reg(map->dev, reg))
2306 				return -EINVAL;
2307 			if (!IS_ALIGNED(reg, map->reg_stride))
2308 				return -EINVAL;
2309 		}
2310 
2311 	if (!map->cache_bypass) {
2312 		for (i = 0; i < num_regs; i++) {
2313 			unsigned int val = regs[i].def;
2314 			unsigned int reg = regs[i].reg;
2315 			ret = regcache_write(map, reg, val);
2316 			if (ret) {
2317 				dev_err(map->dev,
2318 				"Error in caching of register: %x ret: %d\n",
2319 								reg, ret);
2320 				return ret;
2321 			}
2322 		}
2323 		if (map->cache_only) {
2324 			map->cache_dirty = true;
2325 			return 0;
2326 		}
2327 	}
2328 
2329 	WARN_ON(!map->bus);
2330 
2331 	for (i = 0; i < num_regs; i++) {
2332 		unsigned int reg = regs[i].reg;
2333 		struct regmap_range_node *range;
2334 
2335 		/* Coalesce all the writes between a page break or a delay
2336 		 * in a sequence
2337 		 */
2338 		range = _regmap_range_lookup(map, reg);
2339 		if (range || regs[i].delay_us) {
2340 			size_t len = sizeof(struct reg_sequence)*num_regs;
2341 			struct reg_sequence *base = kmemdup(regs, len,
2342 							   GFP_KERNEL);
2343 			if (!base)
2344 				return -ENOMEM;
2345 			ret = _regmap_range_multi_paged_reg_write(map, base,
2346 								  num_regs);
2347 			kfree(base);
2348 
2349 			return ret;
2350 		}
2351 	}
2352 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2353 }
2354 
2355 /**
2356  * regmap_multi_reg_write() - Write multiple registers to the device
2357  *
2358  * @map: Register map to write to
2359  * @regs: Array of structures containing register,value to be written
2360  * @num_regs: Number of registers to write
2361  *
2362  * Write multiple registers to the device where the set of register, value
2363  * pairs are supplied in any order, possibly not all in a single range.
2364  *
2365  * The 'normal' block write mode will send ultimately send data on the
2366  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2367  * addressed. However, this alternative block multi write mode will send
2368  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2369  * must of course support the mode.
2370  *
2371  * A value of zero will be returned on success, a negative errno will be
2372  * returned in error cases.
2373  */
2374 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2375 			   int num_regs)
2376 {
2377 	int ret;
2378 
2379 	map->lock(map->lock_arg);
2380 
2381 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2382 
2383 	map->unlock(map->lock_arg);
2384 
2385 	return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2388 
2389 /**
2390  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2391  *                                     device but not the cache
2392  *
2393  * @map: Register map to write to
2394  * @regs: Array of structures containing register,value to be written
2395  * @num_regs: Number of registers to write
2396  *
2397  * Write multiple registers to the device but not the cache where the set
2398  * of register are supplied in any order.
2399  *
2400  * This function is intended to be used for writing a large block of data
2401  * atomically to the device in single transfer for those I2C client devices
2402  * that implement this alternative block write mode.
2403  *
2404  * A value of zero will be returned on success, a negative errno will
2405  * be returned in error cases.
2406  */
2407 int regmap_multi_reg_write_bypassed(struct regmap *map,
2408 				    const struct reg_sequence *regs,
2409 				    int num_regs)
2410 {
2411 	int ret;
2412 	bool bypass;
2413 
2414 	map->lock(map->lock_arg);
2415 
2416 	bypass = map->cache_bypass;
2417 	map->cache_bypass = true;
2418 
2419 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2420 
2421 	map->cache_bypass = bypass;
2422 
2423 	map->unlock(map->lock_arg);
2424 
2425 	return ret;
2426 }
2427 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2428 
2429 /**
2430  * regmap_raw_write_async() - Write raw values to one or more registers
2431  *                            asynchronously
2432  *
2433  * @map: Register map to write to
2434  * @reg: Initial register to write to
2435  * @val: Block of data to be written, laid out for direct transmission to the
2436  *       device.  Must be valid until regmap_async_complete() is called.
2437  * @val_len: Length of data pointed to by val.
2438  *
2439  * This function is intended to be used for things like firmware
2440  * download where a large block of data needs to be transferred to the
2441  * device.  No formatting will be done on the data provided.
2442  *
2443  * If supported by the underlying bus the write will be scheduled
2444  * asynchronously, helping maximise I/O speed on higher speed buses
2445  * like SPI.  regmap_async_complete() can be called to ensure that all
2446  * asynchrnous writes have been completed.
2447  *
2448  * A value of zero will be returned on success, a negative errno will
2449  * be returned in error cases.
2450  */
2451 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2452 			   const void *val, size_t val_len)
2453 {
2454 	int ret;
2455 
2456 	if (val_len % map->format.val_bytes)
2457 		return -EINVAL;
2458 	if (!IS_ALIGNED(reg, map->reg_stride))
2459 		return -EINVAL;
2460 
2461 	map->lock(map->lock_arg);
2462 
2463 	map->async = true;
2464 
2465 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2466 
2467 	map->async = false;
2468 
2469 	map->unlock(map->lock_arg);
2470 
2471 	return ret;
2472 }
2473 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2474 
2475 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2476 			    unsigned int val_len, bool noinc)
2477 {
2478 	struct regmap_range_node *range;
2479 	int ret;
2480 
2481 	WARN_ON(!map->bus);
2482 
2483 	if (!map->bus || !map->bus->read)
2484 		return -EINVAL;
2485 
2486 	range = _regmap_range_lookup(map, reg);
2487 	if (range) {
2488 		ret = _regmap_select_page(map, &reg, range,
2489 					  noinc ? 1 : val_len / map->format.val_bytes);
2490 		if (ret != 0)
2491 			return ret;
2492 	}
2493 
2494 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2495 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2496 				      map->read_flag_mask);
2497 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2498 
2499 	ret = map->bus->read(map->bus_context, map->work_buf,
2500 			     map->format.reg_bytes + map->format.pad_bytes,
2501 			     val, val_len);
2502 
2503 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2504 
2505 	return ret;
2506 }
2507 
2508 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2509 				unsigned int *val)
2510 {
2511 	struct regmap *map = context;
2512 
2513 	return map->bus->reg_read(map->bus_context, reg, val);
2514 }
2515 
2516 static int _regmap_bus_read(void *context, unsigned int reg,
2517 			    unsigned int *val)
2518 {
2519 	int ret;
2520 	struct regmap *map = context;
2521 	void *work_val = map->work_buf + map->format.reg_bytes +
2522 		map->format.pad_bytes;
2523 
2524 	if (!map->format.parse_val)
2525 		return -EINVAL;
2526 
2527 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2528 	if (ret == 0)
2529 		*val = map->format.parse_val(work_val);
2530 
2531 	return ret;
2532 }
2533 
2534 static int _regmap_read(struct regmap *map, unsigned int reg,
2535 			unsigned int *val)
2536 {
2537 	int ret;
2538 	void *context = _regmap_map_get_context(map);
2539 
2540 	if (!map->cache_bypass) {
2541 		ret = regcache_read(map, reg, val);
2542 		if (ret == 0)
2543 			return 0;
2544 	}
2545 
2546 	if (map->cache_only)
2547 		return -EBUSY;
2548 
2549 	if (!regmap_readable(map, reg))
2550 		return -EIO;
2551 
2552 	ret = map->reg_read(context, reg, val);
2553 	if (ret == 0) {
2554 		if (regmap_should_log(map))
2555 			dev_info(map->dev, "%x => %x\n", reg, *val);
2556 
2557 		trace_regmap_reg_read(map, reg, *val);
2558 
2559 		if (!map->cache_bypass)
2560 			regcache_write(map, reg, *val);
2561 	}
2562 
2563 	return ret;
2564 }
2565 
2566 /**
2567  * regmap_read() - Read a value from a single register
2568  *
2569  * @map: Register map to read from
2570  * @reg: Register to be read from
2571  * @val: Pointer to store read value
2572  *
2573  * A value of zero will be returned on success, a negative errno will
2574  * be returned in error cases.
2575  */
2576 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2577 {
2578 	int ret;
2579 
2580 	if (!IS_ALIGNED(reg, map->reg_stride))
2581 		return -EINVAL;
2582 
2583 	map->lock(map->lock_arg);
2584 
2585 	ret = _regmap_read(map, reg, val);
2586 
2587 	map->unlock(map->lock_arg);
2588 
2589 	return ret;
2590 }
2591 EXPORT_SYMBOL_GPL(regmap_read);
2592 
2593 /**
2594  * regmap_raw_read() - Read raw data from the device
2595  *
2596  * @map: Register map to read from
2597  * @reg: First register to be read from
2598  * @val: Pointer to store read value
2599  * @val_len: Size of data to read
2600  *
2601  * A value of zero will be returned on success, a negative errno will
2602  * be returned in error cases.
2603  */
2604 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2605 		    size_t val_len)
2606 {
2607 	size_t val_bytes = map->format.val_bytes;
2608 	size_t val_count = val_len / val_bytes;
2609 	unsigned int v;
2610 	int ret, i;
2611 
2612 	if (!map->bus)
2613 		return -EINVAL;
2614 	if (val_len % map->format.val_bytes)
2615 		return -EINVAL;
2616 	if (!IS_ALIGNED(reg, map->reg_stride))
2617 		return -EINVAL;
2618 	if (val_count == 0)
2619 		return -EINVAL;
2620 
2621 	map->lock(map->lock_arg);
2622 
2623 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2624 	    map->cache_type == REGCACHE_NONE) {
2625 		size_t chunk_count, chunk_bytes;
2626 		size_t chunk_regs = val_count;
2627 
2628 		if (!map->bus->read) {
2629 			ret = -ENOTSUPP;
2630 			goto out;
2631 		}
2632 
2633 		if (map->use_single_read)
2634 			chunk_regs = 1;
2635 		else if (map->max_raw_read && val_len > map->max_raw_read)
2636 			chunk_regs = map->max_raw_read / val_bytes;
2637 
2638 		chunk_count = val_count / chunk_regs;
2639 		chunk_bytes = chunk_regs * val_bytes;
2640 
2641 		/* Read bytes that fit into whole chunks */
2642 		for (i = 0; i < chunk_count; i++) {
2643 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2644 			if (ret != 0)
2645 				goto out;
2646 
2647 			reg += regmap_get_offset(map, chunk_regs);
2648 			val += chunk_bytes;
2649 			val_len -= chunk_bytes;
2650 		}
2651 
2652 		/* Read remaining bytes */
2653 		if (val_len) {
2654 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2655 			if (ret != 0)
2656 				goto out;
2657 		}
2658 	} else {
2659 		/* Otherwise go word by word for the cache; should be low
2660 		 * cost as we expect to hit the cache.
2661 		 */
2662 		for (i = 0; i < val_count; i++) {
2663 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2664 					   &v);
2665 			if (ret != 0)
2666 				goto out;
2667 
2668 			map->format.format_val(val + (i * val_bytes), v, 0);
2669 		}
2670 	}
2671 
2672  out:
2673 	map->unlock(map->lock_arg);
2674 
2675 	return ret;
2676 }
2677 EXPORT_SYMBOL_GPL(regmap_raw_read);
2678 
2679 /**
2680  * regmap_noinc_read(): Read data from a register without incrementing the
2681  *			register number
2682  *
2683  * @map: Register map to read from
2684  * @reg: Register to read from
2685  * @val: Pointer to data buffer
2686  * @val_len: Length of output buffer in bytes.
2687  *
2688  * The regmap API usually assumes that bulk bus read operations will read a
2689  * range of registers. Some devices have certain registers for which a read
2690  * operation read will read from an internal FIFO.
2691  *
2692  * The target register must be volatile but registers after it can be
2693  * completely unrelated cacheable registers.
2694  *
2695  * This will attempt multiple reads as required to read val_len bytes.
2696  *
2697  * A value of zero will be returned on success, a negative errno will be
2698  * returned in error cases.
2699  */
2700 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2701 		      void *val, size_t val_len)
2702 {
2703 	size_t read_len;
2704 	int ret;
2705 
2706 	if (!map->bus)
2707 		return -EINVAL;
2708 	if (!map->bus->read)
2709 		return -ENOTSUPP;
2710 	if (val_len % map->format.val_bytes)
2711 		return -EINVAL;
2712 	if (!IS_ALIGNED(reg, map->reg_stride))
2713 		return -EINVAL;
2714 	if (val_len == 0)
2715 		return -EINVAL;
2716 
2717 	map->lock(map->lock_arg);
2718 
2719 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2720 		ret = -EINVAL;
2721 		goto out_unlock;
2722 	}
2723 
2724 	while (val_len) {
2725 		if (map->max_raw_read && map->max_raw_read < val_len)
2726 			read_len = map->max_raw_read;
2727 		else
2728 			read_len = val_len;
2729 		ret = _regmap_raw_read(map, reg, val, read_len, true);
2730 		if (ret)
2731 			goto out_unlock;
2732 		val = ((u8 *)val) + read_len;
2733 		val_len -= read_len;
2734 	}
2735 
2736 out_unlock:
2737 	map->unlock(map->lock_arg);
2738 	return ret;
2739 }
2740 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2741 
2742 /**
2743  * regmap_field_read(): Read a value to a single register field
2744  *
2745  * @field: Register field to read from
2746  * @val: Pointer to store read value
2747  *
2748  * A value of zero will be returned on success, a negative errno will
2749  * be returned in error cases.
2750  */
2751 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2752 {
2753 	int ret;
2754 	unsigned int reg_val;
2755 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2756 	if (ret != 0)
2757 		return ret;
2758 
2759 	reg_val &= field->mask;
2760 	reg_val >>= field->shift;
2761 	*val = reg_val;
2762 
2763 	return ret;
2764 }
2765 EXPORT_SYMBOL_GPL(regmap_field_read);
2766 
2767 /**
2768  * regmap_fields_read() - Read a value to a single register field with port ID
2769  *
2770  * @field: Register field to read from
2771  * @id: port ID
2772  * @val: Pointer to store read value
2773  *
2774  * A value of zero will be returned on success, a negative errno will
2775  * be returned in error cases.
2776  */
2777 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2778 		       unsigned int *val)
2779 {
2780 	int ret;
2781 	unsigned int reg_val;
2782 
2783 	if (id >= field->id_size)
2784 		return -EINVAL;
2785 
2786 	ret = regmap_read(field->regmap,
2787 			  field->reg + (field->id_offset * id),
2788 			  &reg_val);
2789 	if (ret != 0)
2790 		return ret;
2791 
2792 	reg_val &= field->mask;
2793 	reg_val >>= field->shift;
2794 	*val = reg_val;
2795 
2796 	return ret;
2797 }
2798 EXPORT_SYMBOL_GPL(regmap_fields_read);
2799 
2800 /**
2801  * regmap_bulk_read() - Read multiple registers from the device
2802  *
2803  * @map: Register map to read from
2804  * @reg: First register to be read from
2805  * @val: Pointer to store read value, in native register size for device
2806  * @val_count: Number of registers to read
2807  *
2808  * A value of zero will be returned on success, a negative errno will
2809  * be returned in error cases.
2810  */
2811 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2812 		     size_t val_count)
2813 {
2814 	int ret, i;
2815 	size_t val_bytes = map->format.val_bytes;
2816 	bool vol = regmap_volatile_range(map, reg, val_count);
2817 
2818 	if (!IS_ALIGNED(reg, map->reg_stride))
2819 		return -EINVAL;
2820 	if (val_count == 0)
2821 		return -EINVAL;
2822 
2823 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2824 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2825 		if (ret != 0)
2826 			return ret;
2827 
2828 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2829 			map->format.parse_inplace(val + i);
2830 	} else {
2831 #ifdef CONFIG_64BIT
2832 		u64 *u64 = val;
2833 #endif
2834 		u32 *u32 = val;
2835 		u16 *u16 = val;
2836 		u8 *u8 = val;
2837 
2838 		map->lock(map->lock_arg);
2839 
2840 		for (i = 0; i < val_count; i++) {
2841 			unsigned int ival;
2842 
2843 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2844 					   &ival);
2845 			if (ret != 0)
2846 				goto out;
2847 
2848 			switch (map->format.val_bytes) {
2849 #ifdef CONFIG_64BIT
2850 			case 8:
2851 				u64[i] = ival;
2852 				break;
2853 #endif
2854 			case 4:
2855 				u32[i] = ival;
2856 				break;
2857 			case 2:
2858 				u16[i] = ival;
2859 				break;
2860 			case 1:
2861 				u8[i] = ival;
2862 				break;
2863 			default:
2864 				ret = -EINVAL;
2865 				goto out;
2866 			}
2867 		}
2868 
2869 out:
2870 		map->unlock(map->lock_arg);
2871 	}
2872 
2873 	return ret;
2874 }
2875 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2876 
2877 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2878 			       unsigned int mask, unsigned int val,
2879 			       bool *change, bool force_write)
2880 {
2881 	int ret;
2882 	unsigned int tmp, orig;
2883 
2884 	if (change)
2885 		*change = false;
2886 
2887 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2888 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2889 		if (ret == 0 && change)
2890 			*change = true;
2891 	} else {
2892 		ret = _regmap_read(map, reg, &orig);
2893 		if (ret != 0)
2894 			return ret;
2895 
2896 		tmp = orig & ~mask;
2897 		tmp |= val & mask;
2898 
2899 		if (force_write || (tmp != orig)) {
2900 			ret = _regmap_write(map, reg, tmp);
2901 			if (ret == 0 && change)
2902 				*change = true;
2903 		}
2904 	}
2905 
2906 	return ret;
2907 }
2908 
2909 /**
2910  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2911  *
2912  * @map: Register map to update
2913  * @reg: Register to update
2914  * @mask: Bitmask to change
2915  * @val: New value for bitmask
2916  * @change: Boolean indicating if a write was done
2917  * @async: Boolean indicating asynchronously
2918  * @force: Boolean indicating use force update
2919  *
2920  * Perform a read/modify/write cycle on a register map with change, async, force
2921  * options.
2922  *
2923  * If async is true:
2924  *
2925  * With most buses the read must be done synchronously so this is most useful
2926  * for devices with a cache which do not need to interact with the hardware to
2927  * determine the current register value.
2928  *
2929  * Returns zero for success, a negative number on error.
2930  */
2931 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2932 			    unsigned int mask, unsigned int val,
2933 			    bool *change, bool async, bool force)
2934 {
2935 	int ret;
2936 
2937 	map->lock(map->lock_arg);
2938 
2939 	map->async = async;
2940 
2941 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2942 
2943 	map->async = false;
2944 
2945 	map->unlock(map->lock_arg);
2946 
2947 	return ret;
2948 }
2949 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2950 
2951 /**
2952  * regmap_test_bits() - Check if all specified bits are set in a register.
2953  *
2954  * @map: Register map to operate on
2955  * @reg: Register to read from
2956  * @bits: Bits to test
2957  *
2958  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
2959  * bits are set and a negative error number if the underlying regmap_read()
2960  * fails.
2961  */
2962 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
2963 {
2964 	unsigned int val, ret;
2965 
2966 	ret = regmap_read(map, reg, &val);
2967 	if (ret)
2968 		return ret;
2969 
2970 	return (val & bits) == bits;
2971 }
2972 EXPORT_SYMBOL_GPL(regmap_test_bits);
2973 
2974 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2975 {
2976 	struct regmap *map = async->map;
2977 	bool wake;
2978 
2979 	trace_regmap_async_io_complete(map);
2980 
2981 	spin_lock(&map->async_lock);
2982 	list_move(&async->list, &map->async_free);
2983 	wake = list_empty(&map->async_list);
2984 
2985 	if (ret != 0)
2986 		map->async_ret = ret;
2987 
2988 	spin_unlock(&map->async_lock);
2989 
2990 	if (wake)
2991 		wake_up(&map->async_waitq);
2992 }
2993 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2994 
2995 static int regmap_async_is_done(struct regmap *map)
2996 {
2997 	unsigned long flags;
2998 	int ret;
2999 
3000 	spin_lock_irqsave(&map->async_lock, flags);
3001 	ret = list_empty(&map->async_list);
3002 	spin_unlock_irqrestore(&map->async_lock, flags);
3003 
3004 	return ret;
3005 }
3006 
3007 /**
3008  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3009  *
3010  * @map: Map to operate on.
3011  *
3012  * Blocks until any pending asynchronous I/O has completed.  Returns
3013  * an error code for any failed I/O operations.
3014  */
3015 int regmap_async_complete(struct regmap *map)
3016 {
3017 	unsigned long flags;
3018 	int ret;
3019 
3020 	/* Nothing to do with no async support */
3021 	if (!map->bus || !map->bus->async_write)
3022 		return 0;
3023 
3024 	trace_regmap_async_complete_start(map);
3025 
3026 	wait_event(map->async_waitq, regmap_async_is_done(map));
3027 
3028 	spin_lock_irqsave(&map->async_lock, flags);
3029 	ret = map->async_ret;
3030 	map->async_ret = 0;
3031 	spin_unlock_irqrestore(&map->async_lock, flags);
3032 
3033 	trace_regmap_async_complete_done(map);
3034 
3035 	return ret;
3036 }
3037 EXPORT_SYMBOL_GPL(regmap_async_complete);
3038 
3039 /**
3040  * regmap_register_patch - Register and apply register updates to be applied
3041  *                         on device initialistion
3042  *
3043  * @map: Register map to apply updates to.
3044  * @regs: Values to update.
3045  * @num_regs: Number of entries in regs.
3046  *
3047  * Register a set of register updates to be applied to the device
3048  * whenever the device registers are synchronised with the cache and
3049  * apply them immediately.  Typically this is used to apply
3050  * corrections to be applied to the device defaults on startup, such
3051  * as the updates some vendors provide to undocumented registers.
3052  *
3053  * The caller must ensure that this function cannot be called
3054  * concurrently with either itself or regcache_sync().
3055  */
3056 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3057 			  int num_regs)
3058 {
3059 	struct reg_sequence *p;
3060 	int ret;
3061 	bool bypass;
3062 
3063 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3064 	    num_regs))
3065 		return 0;
3066 
3067 	p = krealloc(map->patch,
3068 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3069 		     GFP_KERNEL);
3070 	if (p) {
3071 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3072 		map->patch = p;
3073 		map->patch_regs += num_regs;
3074 	} else {
3075 		return -ENOMEM;
3076 	}
3077 
3078 	map->lock(map->lock_arg);
3079 
3080 	bypass = map->cache_bypass;
3081 
3082 	map->cache_bypass = true;
3083 	map->async = true;
3084 
3085 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3086 
3087 	map->async = false;
3088 	map->cache_bypass = bypass;
3089 
3090 	map->unlock(map->lock_arg);
3091 
3092 	regmap_async_complete(map);
3093 
3094 	return ret;
3095 }
3096 EXPORT_SYMBOL_GPL(regmap_register_patch);
3097 
3098 /**
3099  * regmap_get_val_bytes() - Report the size of a register value
3100  *
3101  * @map: Register map to operate on.
3102  *
3103  * Report the size of a register value, mainly intended to for use by
3104  * generic infrastructure built on top of regmap.
3105  */
3106 int regmap_get_val_bytes(struct regmap *map)
3107 {
3108 	if (map->format.format_write)
3109 		return -EINVAL;
3110 
3111 	return map->format.val_bytes;
3112 }
3113 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3114 
3115 /**
3116  * regmap_get_max_register() - Report the max register value
3117  *
3118  * @map: Register map to operate on.
3119  *
3120  * Report the max register value, mainly intended to for use by
3121  * generic infrastructure built on top of regmap.
3122  */
3123 int regmap_get_max_register(struct regmap *map)
3124 {
3125 	return map->max_register ? map->max_register : -EINVAL;
3126 }
3127 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3128 
3129 /**
3130  * regmap_get_reg_stride() - Report the register address stride
3131  *
3132  * @map: Register map to operate on.
3133  *
3134  * Report the register address stride, mainly intended to for use by
3135  * generic infrastructure built on top of regmap.
3136  */
3137 int regmap_get_reg_stride(struct regmap *map)
3138 {
3139 	return map->reg_stride;
3140 }
3141 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3142 
3143 int regmap_parse_val(struct regmap *map, const void *buf,
3144 			unsigned int *val)
3145 {
3146 	if (!map->format.parse_val)
3147 		return -EINVAL;
3148 
3149 	*val = map->format.parse_val(buf);
3150 
3151 	return 0;
3152 }
3153 EXPORT_SYMBOL_GPL(regmap_parse_val);
3154 
3155 static int __init regmap_initcall(void)
3156 {
3157 	regmap_debugfs_initcall();
3158 
3159 	return 0;
3160 }
3161 postcore_initcall(regmap_initcall);
3162