xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include "trace.h"
27 
28 #include "internal.h"
29 
30 /*
31  * Sometimes for failures during very early init the trace
32  * infrastructure isn't available early enough to be used.  For this
33  * sort of problem defining LOG_DEVICE will add printks for basic
34  * register I/O on a specific device.
35  */
36 #undef LOG_DEVICE
37 
38 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
39 			       unsigned int mask, unsigned int val,
40 			       bool *change, bool force_write);
41 
42 static int _regmap_bus_reg_read(void *context, unsigned int reg,
43 				unsigned int *val);
44 static int _regmap_bus_read(void *context, unsigned int reg,
45 			    unsigned int *val);
46 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
47 				       unsigned int val);
48 static int _regmap_bus_reg_write(void *context, unsigned int reg,
49 				 unsigned int val);
50 static int _regmap_bus_raw_write(void *context, unsigned int reg,
51 				 unsigned int val);
52 
53 bool regmap_reg_in_ranges(unsigned int reg,
54 			  const struct regmap_range *ranges,
55 			  unsigned int nranges)
56 {
57 	const struct regmap_range *r;
58 	int i;
59 
60 	for (i = 0, r = ranges; i < nranges; i++, r++)
61 		if (regmap_reg_in_range(reg, r))
62 			return true;
63 	return false;
64 }
65 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
66 
67 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
68 			      const struct regmap_access_table *table)
69 {
70 	/* Check "no ranges" first */
71 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
72 		return false;
73 
74 	/* In case zero "yes ranges" are supplied, any reg is OK */
75 	if (!table->n_yes_ranges)
76 		return true;
77 
78 	return regmap_reg_in_ranges(reg, table->yes_ranges,
79 				    table->n_yes_ranges);
80 }
81 EXPORT_SYMBOL_GPL(regmap_check_range_table);
82 
83 bool regmap_writeable(struct regmap *map, unsigned int reg)
84 {
85 	if (map->max_register && reg > map->max_register)
86 		return false;
87 
88 	if (map->writeable_reg)
89 		return map->writeable_reg(map->dev, reg);
90 
91 	if (map->wr_table)
92 		return regmap_check_range_table(map, reg, map->wr_table);
93 
94 	return true;
95 }
96 
97 bool regmap_cached(struct regmap *map, unsigned int reg)
98 {
99 	int ret;
100 	unsigned int val;
101 
102 	if (map->cache_type == REGCACHE_NONE)
103 		return false;
104 
105 	if (!map->cache_ops)
106 		return false;
107 
108 	if (map->max_register && reg > map->max_register)
109 		return false;
110 
111 	map->lock(map->lock_arg);
112 	ret = regcache_read(map, reg, &val);
113 	map->unlock(map->lock_arg);
114 	if (ret)
115 		return false;
116 
117 	return true;
118 }
119 
120 bool regmap_readable(struct regmap *map, unsigned int reg)
121 {
122 	if (!map->reg_read)
123 		return false;
124 
125 	if (map->max_register && reg > map->max_register)
126 		return false;
127 
128 	if (map->format.format_write)
129 		return false;
130 
131 	if (map->readable_reg)
132 		return map->readable_reg(map->dev, reg);
133 
134 	if (map->rd_table)
135 		return regmap_check_range_table(map, reg, map->rd_table);
136 
137 	return true;
138 }
139 
140 bool regmap_volatile(struct regmap *map, unsigned int reg)
141 {
142 	if (!map->format.format_write && !regmap_readable(map, reg))
143 		return false;
144 
145 	if (map->volatile_reg)
146 		return map->volatile_reg(map->dev, reg);
147 
148 	if (map->volatile_table)
149 		return regmap_check_range_table(map, reg, map->volatile_table);
150 
151 	if (map->cache_ops)
152 		return false;
153 	else
154 		return true;
155 }
156 
157 bool regmap_precious(struct regmap *map, unsigned int reg)
158 {
159 	if (!regmap_readable(map, reg))
160 		return false;
161 
162 	if (map->precious_reg)
163 		return map->precious_reg(map->dev, reg);
164 
165 	if (map->precious_table)
166 		return regmap_check_range_table(map, reg, map->precious_table);
167 
168 	return false;
169 }
170 
171 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
172 	size_t num)
173 {
174 	unsigned int i;
175 
176 	for (i = 0; i < num; i++)
177 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
178 			return false;
179 
180 	return true;
181 }
182 
183 static void regmap_format_2_6_write(struct regmap *map,
184 				     unsigned int reg, unsigned int val)
185 {
186 	u8 *out = map->work_buf;
187 
188 	*out = (reg << 6) | val;
189 }
190 
191 static void regmap_format_4_12_write(struct regmap *map,
192 				     unsigned int reg, unsigned int val)
193 {
194 	__be16 *out = map->work_buf;
195 	*out = cpu_to_be16((reg << 12) | val);
196 }
197 
198 static void regmap_format_7_9_write(struct regmap *map,
199 				    unsigned int reg, unsigned int val)
200 {
201 	__be16 *out = map->work_buf;
202 	*out = cpu_to_be16((reg << 9) | val);
203 }
204 
205 static void regmap_format_10_14_write(struct regmap *map,
206 				    unsigned int reg, unsigned int val)
207 {
208 	u8 *out = map->work_buf;
209 
210 	out[2] = val;
211 	out[1] = (val >> 8) | (reg << 6);
212 	out[0] = reg >> 2;
213 }
214 
215 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
216 {
217 	u8 *b = buf;
218 
219 	b[0] = val << shift;
220 }
221 
222 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
223 {
224 	__be16 *b = buf;
225 
226 	b[0] = cpu_to_be16(val << shift);
227 }
228 
229 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
230 {
231 	__le16 *b = buf;
232 
233 	b[0] = cpu_to_le16(val << shift);
234 }
235 
236 static void regmap_format_16_native(void *buf, unsigned int val,
237 				    unsigned int shift)
238 {
239 	*(u16 *)buf = val << shift;
240 }
241 
242 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
243 {
244 	u8 *b = buf;
245 
246 	val <<= shift;
247 
248 	b[0] = val >> 16;
249 	b[1] = val >> 8;
250 	b[2] = val;
251 }
252 
253 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
254 {
255 	__be32 *b = buf;
256 
257 	b[0] = cpu_to_be32(val << shift);
258 }
259 
260 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
261 {
262 	__le32 *b = buf;
263 
264 	b[0] = cpu_to_le32(val << shift);
265 }
266 
267 static void regmap_format_32_native(void *buf, unsigned int val,
268 				    unsigned int shift)
269 {
270 	*(u32 *)buf = val << shift;
271 }
272 
273 #ifdef CONFIG_64BIT
274 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
275 {
276 	__be64 *b = buf;
277 
278 	b[0] = cpu_to_be64((u64)val << shift);
279 }
280 
281 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
282 {
283 	__le64 *b = buf;
284 
285 	b[0] = cpu_to_le64((u64)val << shift);
286 }
287 
288 static void regmap_format_64_native(void *buf, unsigned int val,
289 				    unsigned int shift)
290 {
291 	*(u64 *)buf = (u64)val << shift;
292 }
293 #endif
294 
295 static void regmap_parse_inplace_noop(void *buf)
296 {
297 }
298 
299 static unsigned int regmap_parse_8(const void *buf)
300 {
301 	const u8 *b = buf;
302 
303 	return b[0];
304 }
305 
306 static unsigned int regmap_parse_16_be(const void *buf)
307 {
308 	const __be16 *b = buf;
309 
310 	return be16_to_cpu(b[0]);
311 }
312 
313 static unsigned int regmap_parse_16_le(const void *buf)
314 {
315 	const __le16 *b = buf;
316 
317 	return le16_to_cpu(b[0]);
318 }
319 
320 static void regmap_parse_16_be_inplace(void *buf)
321 {
322 	__be16 *b = buf;
323 
324 	b[0] = be16_to_cpu(b[0]);
325 }
326 
327 static void regmap_parse_16_le_inplace(void *buf)
328 {
329 	__le16 *b = buf;
330 
331 	b[0] = le16_to_cpu(b[0]);
332 }
333 
334 static unsigned int regmap_parse_16_native(const void *buf)
335 {
336 	return *(u16 *)buf;
337 }
338 
339 static unsigned int regmap_parse_24(const void *buf)
340 {
341 	const u8 *b = buf;
342 	unsigned int ret = b[2];
343 	ret |= ((unsigned int)b[1]) << 8;
344 	ret |= ((unsigned int)b[0]) << 16;
345 
346 	return ret;
347 }
348 
349 static unsigned int regmap_parse_32_be(const void *buf)
350 {
351 	const __be32 *b = buf;
352 
353 	return be32_to_cpu(b[0]);
354 }
355 
356 static unsigned int regmap_parse_32_le(const void *buf)
357 {
358 	const __le32 *b = buf;
359 
360 	return le32_to_cpu(b[0]);
361 }
362 
363 static void regmap_parse_32_be_inplace(void *buf)
364 {
365 	__be32 *b = buf;
366 
367 	b[0] = be32_to_cpu(b[0]);
368 }
369 
370 static void regmap_parse_32_le_inplace(void *buf)
371 {
372 	__le32 *b = buf;
373 
374 	b[0] = le32_to_cpu(b[0]);
375 }
376 
377 static unsigned int regmap_parse_32_native(const void *buf)
378 {
379 	return *(u32 *)buf;
380 }
381 
382 #ifdef CONFIG_64BIT
383 static unsigned int regmap_parse_64_be(const void *buf)
384 {
385 	const __be64 *b = buf;
386 
387 	return be64_to_cpu(b[0]);
388 }
389 
390 static unsigned int regmap_parse_64_le(const void *buf)
391 {
392 	const __le64 *b = buf;
393 
394 	return le64_to_cpu(b[0]);
395 }
396 
397 static void regmap_parse_64_be_inplace(void *buf)
398 {
399 	__be64 *b = buf;
400 
401 	b[0] = be64_to_cpu(b[0]);
402 }
403 
404 static void regmap_parse_64_le_inplace(void *buf)
405 {
406 	__le64 *b = buf;
407 
408 	b[0] = le64_to_cpu(b[0]);
409 }
410 
411 static unsigned int regmap_parse_64_native(const void *buf)
412 {
413 	return *(u64 *)buf;
414 }
415 #endif
416 
417 static void regmap_lock_hwlock(void *__map)
418 {
419 	struct regmap *map = __map;
420 
421 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
422 }
423 
424 static void regmap_lock_hwlock_irq(void *__map)
425 {
426 	struct regmap *map = __map;
427 
428 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
429 }
430 
431 static void regmap_lock_hwlock_irqsave(void *__map)
432 {
433 	struct regmap *map = __map;
434 
435 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
436 				    &map->spinlock_flags);
437 }
438 
439 static void regmap_unlock_hwlock(void *__map)
440 {
441 	struct regmap *map = __map;
442 
443 	hwspin_unlock(map->hwlock);
444 }
445 
446 static void regmap_unlock_hwlock_irq(void *__map)
447 {
448 	struct regmap *map = __map;
449 
450 	hwspin_unlock_irq(map->hwlock);
451 }
452 
453 static void regmap_unlock_hwlock_irqrestore(void *__map)
454 {
455 	struct regmap *map = __map;
456 
457 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
458 }
459 
460 static void regmap_lock_unlock_none(void *__map)
461 {
462 
463 }
464 
465 static void regmap_lock_mutex(void *__map)
466 {
467 	struct regmap *map = __map;
468 	mutex_lock(&map->mutex);
469 }
470 
471 static void regmap_unlock_mutex(void *__map)
472 {
473 	struct regmap *map = __map;
474 	mutex_unlock(&map->mutex);
475 }
476 
477 static void regmap_lock_spinlock(void *__map)
478 __acquires(&map->spinlock)
479 {
480 	struct regmap *map = __map;
481 	unsigned long flags;
482 
483 	spin_lock_irqsave(&map->spinlock, flags);
484 	map->spinlock_flags = flags;
485 }
486 
487 static void regmap_unlock_spinlock(void *__map)
488 __releases(&map->spinlock)
489 {
490 	struct regmap *map = __map;
491 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
492 }
493 
494 static void dev_get_regmap_release(struct device *dev, void *res)
495 {
496 	/*
497 	 * We don't actually have anything to do here; the goal here
498 	 * is not to manage the regmap but to provide a simple way to
499 	 * get the regmap back given a struct device.
500 	 */
501 }
502 
503 static bool _regmap_range_add(struct regmap *map,
504 			      struct regmap_range_node *data)
505 {
506 	struct rb_root *root = &map->range_tree;
507 	struct rb_node **new = &(root->rb_node), *parent = NULL;
508 
509 	while (*new) {
510 		struct regmap_range_node *this =
511 			rb_entry(*new, struct regmap_range_node, node);
512 
513 		parent = *new;
514 		if (data->range_max < this->range_min)
515 			new = &((*new)->rb_left);
516 		else if (data->range_min > this->range_max)
517 			new = &((*new)->rb_right);
518 		else
519 			return false;
520 	}
521 
522 	rb_link_node(&data->node, parent, new);
523 	rb_insert_color(&data->node, root);
524 
525 	return true;
526 }
527 
528 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
529 						      unsigned int reg)
530 {
531 	struct rb_node *node = map->range_tree.rb_node;
532 
533 	while (node) {
534 		struct regmap_range_node *this =
535 			rb_entry(node, struct regmap_range_node, node);
536 
537 		if (reg < this->range_min)
538 			node = node->rb_left;
539 		else if (reg > this->range_max)
540 			node = node->rb_right;
541 		else
542 			return this;
543 	}
544 
545 	return NULL;
546 }
547 
548 static void regmap_range_exit(struct regmap *map)
549 {
550 	struct rb_node *next;
551 	struct regmap_range_node *range_node;
552 
553 	next = rb_first(&map->range_tree);
554 	while (next) {
555 		range_node = rb_entry(next, struct regmap_range_node, node);
556 		next = rb_next(&range_node->node);
557 		rb_erase(&range_node->node, &map->range_tree);
558 		kfree(range_node);
559 	}
560 
561 	kfree(map->selector_work_buf);
562 }
563 
564 int regmap_attach_dev(struct device *dev, struct regmap *map,
565 		      const struct regmap_config *config)
566 {
567 	struct regmap **m;
568 
569 	map->dev = dev;
570 
571 	regmap_debugfs_init(map, config->name);
572 
573 	/* Add a devres resource for dev_get_regmap() */
574 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
575 	if (!m) {
576 		regmap_debugfs_exit(map);
577 		return -ENOMEM;
578 	}
579 	*m = map;
580 	devres_add(dev, m);
581 
582 	return 0;
583 }
584 EXPORT_SYMBOL_GPL(regmap_attach_dev);
585 
586 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
587 					const struct regmap_config *config)
588 {
589 	enum regmap_endian endian;
590 
591 	/* Retrieve the endianness specification from the regmap config */
592 	endian = config->reg_format_endian;
593 
594 	/* If the regmap config specified a non-default value, use that */
595 	if (endian != REGMAP_ENDIAN_DEFAULT)
596 		return endian;
597 
598 	/* Retrieve the endianness specification from the bus config */
599 	if (bus && bus->reg_format_endian_default)
600 		endian = bus->reg_format_endian_default;
601 
602 	/* If the bus specified a non-default value, use that */
603 	if (endian != REGMAP_ENDIAN_DEFAULT)
604 		return endian;
605 
606 	/* Use this if no other value was found */
607 	return REGMAP_ENDIAN_BIG;
608 }
609 
610 enum regmap_endian regmap_get_val_endian(struct device *dev,
611 					 const struct regmap_bus *bus,
612 					 const struct regmap_config *config)
613 {
614 	struct device_node *np;
615 	enum regmap_endian endian;
616 
617 	/* Retrieve the endianness specification from the regmap config */
618 	endian = config->val_format_endian;
619 
620 	/* If the regmap config specified a non-default value, use that */
621 	if (endian != REGMAP_ENDIAN_DEFAULT)
622 		return endian;
623 
624 	/* If the dev and dev->of_node exist try to get endianness from DT */
625 	if (dev && dev->of_node) {
626 		np = dev->of_node;
627 
628 		/* Parse the device's DT node for an endianness specification */
629 		if (of_property_read_bool(np, "big-endian"))
630 			endian = REGMAP_ENDIAN_BIG;
631 		else if (of_property_read_bool(np, "little-endian"))
632 			endian = REGMAP_ENDIAN_LITTLE;
633 		else if (of_property_read_bool(np, "native-endian"))
634 			endian = REGMAP_ENDIAN_NATIVE;
635 
636 		/* If the endianness was specified in DT, use that */
637 		if (endian != REGMAP_ENDIAN_DEFAULT)
638 			return endian;
639 	}
640 
641 	/* Retrieve the endianness specification from the bus config */
642 	if (bus && bus->val_format_endian_default)
643 		endian = bus->val_format_endian_default;
644 
645 	/* If the bus specified a non-default value, use that */
646 	if (endian != REGMAP_ENDIAN_DEFAULT)
647 		return endian;
648 
649 	/* Use this if no other value was found */
650 	return REGMAP_ENDIAN_BIG;
651 }
652 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
653 
654 struct regmap *__regmap_init(struct device *dev,
655 			     const struct regmap_bus *bus,
656 			     void *bus_context,
657 			     const struct regmap_config *config,
658 			     struct lock_class_key *lock_key,
659 			     const char *lock_name)
660 {
661 	struct regmap *map;
662 	int ret = -EINVAL;
663 	enum regmap_endian reg_endian, val_endian;
664 	int i, j;
665 
666 	if (!config)
667 		goto err;
668 
669 	map = kzalloc(sizeof(*map), GFP_KERNEL);
670 	if (map == NULL) {
671 		ret = -ENOMEM;
672 		goto err;
673 	}
674 
675 	if (config->name) {
676 		map->name = kstrdup_const(config->name, GFP_KERNEL);
677 		if (!map->name) {
678 			ret = -ENOMEM;
679 			goto err_map;
680 		}
681 	}
682 
683 	if (config->disable_locking) {
684 		map->lock = map->unlock = regmap_lock_unlock_none;
685 		regmap_debugfs_disable(map);
686 	} else if (config->lock && config->unlock) {
687 		map->lock = config->lock;
688 		map->unlock = config->unlock;
689 		map->lock_arg = config->lock_arg;
690 	} else if (config->use_hwlock) {
691 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
692 		if (!map->hwlock) {
693 			ret = -ENXIO;
694 			goto err_name;
695 		}
696 
697 		switch (config->hwlock_mode) {
698 		case HWLOCK_IRQSTATE:
699 			map->lock = regmap_lock_hwlock_irqsave;
700 			map->unlock = regmap_unlock_hwlock_irqrestore;
701 			break;
702 		case HWLOCK_IRQ:
703 			map->lock = regmap_lock_hwlock_irq;
704 			map->unlock = regmap_unlock_hwlock_irq;
705 			break;
706 		default:
707 			map->lock = regmap_lock_hwlock;
708 			map->unlock = regmap_unlock_hwlock;
709 			break;
710 		}
711 
712 		map->lock_arg = map;
713 	} else {
714 		if ((bus && bus->fast_io) ||
715 		    config->fast_io) {
716 			spin_lock_init(&map->spinlock);
717 			map->lock = regmap_lock_spinlock;
718 			map->unlock = regmap_unlock_spinlock;
719 			lockdep_set_class_and_name(&map->spinlock,
720 						   lock_key, lock_name);
721 		} else {
722 			mutex_init(&map->mutex);
723 			map->lock = regmap_lock_mutex;
724 			map->unlock = regmap_unlock_mutex;
725 			lockdep_set_class_and_name(&map->mutex,
726 						   lock_key, lock_name);
727 		}
728 		map->lock_arg = map;
729 	}
730 
731 	/*
732 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
733 	 * scratch buffers with sleeping allocations.
734 	 */
735 	if ((bus && bus->fast_io) || config->fast_io)
736 		map->alloc_flags = GFP_ATOMIC;
737 	else
738 		map->alloc_flags = GFP_KERNEL;
739 
740 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
741 	map->format.pad_bytes = config->pad_bits / 8;
742 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
743 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
744 			config->val_bits + config->pad_bits, 8);
745 	map->reg_shift = config->pad_bits % 8;
746 	if (config->reg_stride)
747 		map->reg_stride = config->reg_stride;
748 	else
749 		map->reg_stride = 1;
750 	if (is_power_of_2(map->reg_stride))
751 		map->reg_stride_order = ilog2(map->reg_stride);
752 	else
753 		map->reg_stride_order = -1;
754 	map->use_single_read = config->use_single_rw || !bus || !bus->read;
755 	map->use_single_write = config->use_single_rw || !bus || !bus->write;
756 	map->can_multi_write = config->can_multi_write && bus && bus->write;
757 	if (bus) {
758 		map->max_raw_read = bus->max_raw_read;
759 		map->max_raw_write = bus->max_raw_write;
760 	}
761 	map->dev = dev;
762 	map->bus = bus;
763 	map->bus_context = bus_context;
764 	map->max_register = config->max_register;
765 	map->wr_table = config->wr_table;
766 	map->rd_table = config->rd_table;
767 	map->volatile_table = config->volatile_table;
768 	map->precious_table = config->precious_table;
769 	map->writeable_reg = config->writeable_reg;
770 	map->readable_reg = config->readable_reg;
771 	map->volatile_reg = config->volatile_reg;
772 	map->precious_reg = config->precious_reg;
773 	map->cache_type = config->cache_type;
774 
775 	spin_lock_init(&map->async_lock);
776 	INIT_LIST_HEAD(&map->async_list);
777 	INIT_LIST_HEAD(&map->async_free);
778 	init_waitqueue_head(&map->async_waitq);
779 
780 	if (config->read_flag_mask ||
781 	    config->write_flag_mask ||
782 	    config->zero_flag_mask) {
783 		map->read_flag_mask = config->read_flag_mask;
784 		map->write_flag_mask = config->write_flag_mask;
785 	} else if (bus) {
786 		map->read_flag_mask = bus->read_flag_mask;
787 	}
788 
789 	if (!bus) {
790 		map->reg_read  = config->reg_read;
791 		map->reg_write = config->reg_write;
792 
793 		map->defer_caching = false;
794 		goto skip_format_initialization;
795 	} else if (!bus->read || !bus->write) {
796 		map->reg_read = _regmap_bus_reg_read;
797 		map->reg_write = _regmap_bus_reg_write;
798 
799 		map->defer_caching = false;
800 		goto skip_format_initialization;
801 	} else {
802 		map->reg_read  = _regmap_bus_read;
803 		map->reg_update_bits = bus->reg_update_bits;
804 	}
805 
806 	reg_endian = regmap_get_reg_endian(bus, config);
807 	val_endian = regmap_get_val_endian(dev, bus, config);
808 
809 	switch (config->reg_bits + map->reg_shift) {
810 	case 2:
811 		switch (config->val_bits) {
812 		case 6:
813 			map->format.format_write = regmap_format_2_6_write;
814 			break;
815 		default:
816 			goto err_hwlock;
817 		}
818 		break;
819 
820 	case 4:
821 		switch (config->val_bits) {
822 		case 12:
823 			map->format.format_write = regmap_format_4_12_write;
824 			break;
825 		default:
826 			goto err_hwlock;
827 		}
828 		break;
829 
830 	case 7:
831 		switch (config->val_bits) {
832 		case 9:
833 			map->format.format_write = regmap_format_7_9_write;
834 			break;
835 		default:
836 			goto err_hwlock;
837 		}
838 		break;
839 
840 	case 10:
841 		switch (config->val_bits) {
842 		case 14:
843 			map->format.format_write = regmap_format_10_14_write;
844 			break;
845 		default:
846 			goto err_hwlock;
847 		}
848 		break;
849 
850 	case 8:
851 		map->format.format_reg = regmap_format_8;
852 		break;
853 
854 	case 16:
855 		switch (reg_endian) {
856 		case REGMAP_ENDIAN_BIG:
857 			map->format.format_reg = regmap_format_16_be;
858 			break;
859 		case REGMAP_ENDIAN_LITTLE:
860 			map->format.format_reg = regmap_format_16_le;
861 			break;
862 		case REGMAP_ENDIAN_NATIVE:
863 			map->format.format_reg = regmap_format_16_native;
864 			break;
865 		default:
866 			goto err_hwlock;
867 		}
868 		break;
869 
870 	case 24:
871 		if (reg_endian != REGMAP_ENDIAN_BIG)
872 			goto err_hwlock;
873 		map->format.format_reg = regmap_format_24;
874 		break;
875 
876 	case 32:
877 		switch (reg_endian) {
878 		case REGMAP_ENDIAN_BIG:
879 			map->format.format_reg = regmap_format_32_be;
880 			break;
881 		case REGMAP_ENDIAN_LITTLE:
882 			map->format.format_reg = regmap_format_32_le;
883 			break;
884 		case REGMAP_ENDIAN_NATIVE:
885 			map->format.format_reg = regmap_format_32_native;
886 			break;
887 		default:
888 			goto err_hwlock;
889 		}
890 		break;
891 
892 #ifdef CONFIG_64BIT
893 	case 64:
894 		switch (reg_endian) {
895 		case REGMAP_ENDIAN_BIG:
896 			map->format.format_reg = regmap_format_64_be;
897 			break;
898 		case REGMAP_ENDIAN_LITTLE:
899 			map->format.format_reg = regmap_format_64_le;
900 			break;
901 		case REGMAP_ENDIAN_NATIVE:
902 			map->format.format_reg = regmap_format_64_native;
903 			break;
904 		default:
905 			goto err_hwlock;
906 		}
907 		break;
908 #endif
909 
910 	default:
911 		goto err_hwlock;
912 	}
913 
914 	if (val_endian == REGMAP_ENDIAN_NATIVE)
915 		map->format.parse_inplace = regmap_parse_inplace_noop;
916 
917 	switch (config->val_bits) {
918 	case 8:
919 		map->format.format_val = regmap_format_8;
920 		map->format.parse_val = regmap_parse_8;
921 		map->format.parse_inplace = regmap_parse_inplace_noop;
922 		break;
923 	case 16:
924 		switch (val_endian) {
925 		case REGMAP_ENDIAN_BIG:
926 			map->format.format_val = regmap_format_16_be;
927 			map->format.parse_val = regmap_parse_16_be;
928 			map->format.parse_inplace = regmap_parse_16_be_inplace;
929 			break;
930 		case REGMAP_ENDIAN_LITTLE:
931 			map->format.format_val = regmap_format_16_le;
932 			map->format.parse_val = regmap_parse_16_le;
933 			map->format.parse_inplace = regmap_parse_16_le_inplace;
934 			break;
935 		case REGMAP_ENDIAN_NATIVE:
936 			map->format.format_val = regmap_format_16_native;
937 			map->format.parse_val = regmap_parse_16_native;
938 			break;
939 		default:
940 			goto err_hwlock;
941 		}
942 		break;
943 	case 24:
944 		if (val_endian != REGMAP_ENDIAN_BIG)
945 			goto err_hwlock;
946 		map->format.format_val = regmap_format_24;
947 		map->format.parse_val = regmap_parse_24;
948 		break;
949 	case 32:
950 		switch (val_endian) {
951 		case REGMAP_ENDIAN_BIG:
952 			map->format.format_val = regmap_format_32_be;
953 			map->format.parse_val = regmap_parse_32_be;
954 			map->format.parse_inplace = regmap_parse_32_be_inplace;
955 			break;
956 		case REGMAP_ENDIAN_LITTLE:
957 			map->format.format_val = regmap_format_32_le;
958 			map->format.parse_val = regmap_parse_32_le;
959 			map->format.parse_inplace = regmap_parse_32_le_inplace;
960 			break;
961 		case REGMAP_ENDIAN_NATIVE:
962 			map->format.format_val = regmap_format_32_native;
963 			map->format.parse_val = regmap_parse_32_native;
964 			break;
965 		default:
966 			goto err_hwlock;
967 		}
968 		break;
969 #ifdef CONFIG_64BIT
970 	case 64:
971 		switch (val_endian) {
972 		case REGMAP_ENDIAN_BIG:
973 			map->format.format_val = regmap_format_64_be;
974 			map->format.parse_val = regmap_parse_64_be;
975 			map->format.parse_inplace = regmap_parse_64_be_inplace;
976 			break;
977 		case REGMAP_ENDIAN_LITTLE:
978 			map->format.format_val = regmap_format_64_le;
979 			map->format.parse_val = regmap_parse_64_le;
980 			map->format.parse_inplace = regmap_parse_64_le_inplace;
981 			break;
982 		case REGMAP_ENDIAN_NATIVE:
983 			map->format.format_val = regmap_format_64_native;
984 			map->format.parse_val = regmap_parse_64_native;
985 			break;
986 		default:
987 			goto err_hwlock;
988 		}
989 		break;
990 #endif
991 	}
992 
993 	if (map->format.format_write) {
994 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
995 		    (val_endian != REGMAP_ENDIAN_BIG))
996 			goto err_hwlock;
997 		map->use_single_write = true;
998 	}
999 
1000 	if (!map->format.format_write &&
1001 	    !(map->format.format_reg && map->format.format_val))
1002 		goto err_hwlock;
1003 
1004 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1005 	if (map->work_buf == NULL) {
1006 		ret = -ENOMEM;
1007 		goto err_hwlock;
1008 	}
1009 
1010 	if (map->format.format_write) {
1011 		map->defer_caching = false;
1012 		map->reg_write = _regmap_bus_formatted_write;
1013 	} else if (map->format.format_val) {
1014 		map->defer_caching = true;
1015 		map->reg_write = _regmap_bus_raw_write;
1016 	}
1017 
1018 skip_format_initialization:
1019 
1020 	map->range_tree = RB_ROOT;
1021 	for (i = 0; i < config->num_ranges; i++) {
1022 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1023 		struct regmap_range_node *new;
1024 
1025 		/* Sanity check */
1026 		if (range_cfg->range_max < range_cfg->range_min) {
1027 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1028 				range_cfg->range_max, range_cfg->range_min);
1029 			goto err_range;
1030 		}
1031 
1032 		if (range_cfg->range_max > map->max_register) {
1033 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1034 				range_cfg->range_max, map->max_register);
1035 			goto err_range;
1036 		}
1037 
1038 		if (range_cfg->selector_reg > map->max_register) {
1039 			dev_err(map->dev,
1040 				"Invalid range %d: selector out of map\n", i);
1041 			goto err_range;
1042 		}
1043 
1044 		if (range_cfg->window_len == 0) {
1045 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1046 				i);
1047 			goto err_range;
1048 		}
1049 
1050 		/* Make sure, that this register range has no selector
1051 		   or data window within its boundary */
1052 		for (j = 0; j < config->num_ranges; j++) {
1053 			unsigned sel_reg = config->ranges[j].selector_reg;
1054 			unsigned win_min = config->ranges[j].window_start;
1055 			unsigned win_max = win_min +
1056 					   config->ranges[j].window_len - 1;
1057 
1058 			/* Allow data window inside its own virtual range */
1059 			if (j == i)
1060 				continue;
1061 
1062 			if (range_cfg->range_min <= sel_reg &&
1063 			    sel_reg <= range_cfg->range_max) {
1064 				dev_err(map->dev,
1065 					"Range %d: selector for %d in window\n",
1066 					i, j);
1067 				goto err_range;
1068 			}
1069 
1070 			if (!(win_max < range_cfg->range_min ||
1071 			      win_min > range_cfg->range_max)) {
1072 				dev_err(map->dev,
1073 					"Range %d: window for %d in window\n",
1074 					i, j);
1075 				goto err_range;
1076 			}
1077 		}
1078 
1079 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1080 		if (new == NULL) {
1081 			ret = -ENOMEM;
1082 			goto err_range;
1083 		}
1084 
1085 		new->map = map;
1086 		new->name = range_cfg->name;
1087 		new->range_min = range_cfg->range_min;
1088 		new->range_max = range_cfg->range_max;
1089 		new->selector_reg = range_cfg->selector_reg;
1090 		new->selector_mask = range_cfg->selector_mask;
1091 		new->selector_shift = range_cfg->selector_shift;
1092 		new->window_start = range_cfg->window_start;
1093 		new->window_len = range_cfg->window_len;
1094 
1095 		if (!_regmap_range_add(map, new)) {
1096 			dev_err(map->dev, "Failed to add range %d\n", i);
1097 			kfree(new);
1098 			goto err_range;
1099 		}
1100 
1101 		if (map->selector_work_buf == NULL) {
1102 			map->selector_work_buf =
1103 				kzalloc(map->format.buf_size, GFP_KERNEL);
1104 			if (map->selector_work_buf == NULL) {
1105 				ret = -ENOMEM;
1106 				goto err_range;
1107 			}
1108 		}
1109 	}
1110 
1111 	ret = regcache_init(map, config);
1112 	if (ret != 0)
1113 		goto err_range;
1114 
1115 	if (dev) {
1116 		ret = regmap_attach_dev(dev, map, config);
1117 		if (ret != 0)
1118 			goto err_regcache;
1119 	} else {
1120 		regmap_debugfs_init(map, config->name);
1121 	}
1122 
1123 	return map;
1124 
1125 err_regcache:
1126 	regcache_exit(map);
1127 err_range:
1128 	regmap_range_exit(map);
1129 	kfree(map->work_buf);
1130 err_hwlock:
1131 	if (map->hwlock)
1132 		hwspin_lock_free(map->hwlock);
1133 err_name:
1134 	kfree_const(map->name);
1135 err_map:
1136 	kfree(map);
1137 err:
1138 	return ERR_PTR(ret);
1139 }
1140 EXPORT_SYMBOL_GPL(__regmap_init);
1141 
1142 static void devm_regmap_release(struct device *dev, void *res)
1143 {
1144 	regmap_exit(*(struct regmap **)res);
1145 }
1146 
1147 struct regmap *__devm_regmap_init(struct device *dev,
1148 				  const struct regmap_bus *bus,
1149 				  void *bus_context,
1150 				  const struct regmap_config *config,
1151 				  struct lock_class_key *lock_key,
1152 				  const char *lock_name)
1153 {
1154 	struct regmap **ptr, *regmap;
1155 
1156 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1157 	if (!ptr)
1158 		return ERR_PTR(-ENOMEM);
1159 
1160 	regmap = __regmap_init(dev, bus, bus_context, config,
1161 			       lock_key, lock_name);
1162 	if (!IS_ERR(regmap)) {
1163 		*ptr = regmap;
1164 		devres_add(dev, ptr);
1165 	} else {
1166 		devres_free(ptr);
1167 	}
1168 
1169 	return regmap;
1170 }
1171 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1172 
1173 static void regmap_field_init(struct regmap_field *rm_field,
1174 	struct regmap *regmap, struct reg_field reg_field)
1175 {
1176 	rm_field->regmap = regmap;
1177 	rm_field->reg = reg_field.reg;
1178 	rm_field->shift = reg_field.lsb;
1179 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1180 	rm_field->id_size = reg_field.id_size;
1181 	rm_field->id_offset = reg_field.id_offset;
1182 }
1183 
1184 /**
1185  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1186  *
1187  * @dev: Device that will be interacted with
1188  * @regmap: regmap bank in which this register field is located.
1189  * @reg_field: Register field with in the bank.
1190  *
1191  * The return value will be an ERR_PTR() on error or a valid pointer
1192  * to a struct regmap_field. The regmap_field will be automatically freed
1193  * by the device management code.
1194  */
1195 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1196 		struct regmap *regmap, struct reg_field reg_field)
1197 {
1198 	struct regmap_field *rm_field = devm_kzalloc(dev,
1199 					sizeof(*rm_field), GFP_KERNEL);
1200 	if (!rm_field)
1201 		return ERR_PTR(-ENOMEM);
1202 
1203 	regmap_field_init(rm_field, regmap, reg_field);
1204 
1205 	return rm_field;
1206 
1207 }
1208 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1209 
1210 /**
1211  * devm_regmap_field_free() - Free a register field allocated using
1212  *                            devm_regmap_field_alloc.
1213  *
1214  * @dev: Device that will be interacted with
1215  * @field: regmap field which should be freed.
1216  *
1217  * Free register field allocated using devm_regmap_field_alloc(). Usually
1218  * drivers need not call this function, as the memory allocated via devm
1219  * will be freed as per device-driver life-cyle.
1220  */
1221 void devm_regmap_field_free(struct device *dev,
1222 	struct regmap_field *field)
1223 {
1224 	devm_kfree(dev, field);
1225 }
1226 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1227 
1228 /**
1229  * regmap_field_alloc() - Allocate and initialise a register field.
1230  *
1231  * @regmap: regmap bank in which this register field is located.
1232  * @reg_field: Register field with in the bank.
1233  *
1234  * The return value will be an ERR_PTR() on error or a valid pointer
1235  * to a struct regmap_field. The regmap_field should be freed by the
1236  * user once its finished working with it using regmap_field_free().
1237  */
1238 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1239 		struct reg_field reg_field)
1240 {
1241 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1242 
1243 	if (!rm_field)
1244 		return ERR_PTR(-ENOMEM);
1245 
1246 	regmap_field_init(rm_field, regmap, reg_field);
1247 
1248 	return rm_field;
1249 }
1250 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1251 
1252 /**
1253  * regmap_field_free() - Free register field allocated using
1254  *                       regmap_field_alloc.
1255  *
1256  * @field: regmap field which should be freed.
1257  */
1258 void regmap_field_free(struct regmap_field *field)
1259 {
1260 	kfree(field);
1261 }
1262 EXPORT_SYMBOL_GPL(regmap_field_free);
1263 
1264 /**
1265  * regmap_reinit_cache() - Reinitialise the current register cache
1266  *
1267  * @map: Register map to operate on.
1268  * @config: New configuration.  Only the cache data will be used.
1269  *
1270  * Discard any existing register cache for the map and initialize a
1271  * new cache.  This can be used to restore the cache to defaults or to
1272  * update the cache configuration to reflect runtime discovery of the
1273  * hardware.
1274  *
1275  * No explicit locking is done here, the user needs to ensure that
1276  * this function will not race with other calls to regmap.
1277  */
1278 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1279 {
1280 	regcache_exit(map);
1281 	regmap_debugfs_exit(map);
1282 
1283 	map->max_register = config->max_register;
1284 	map->writeable_reg = config->writeable_reg;
1285 	map->readable_reg = config->readable_reg;
1286 	map->volatile_reg = config->volatile_reg;
1287 	map->precious_reg = config->precious_reg;
1288 	map->cache_type = config->cache_type;
1289 
1290 	regmap_debugfs_init(map, config->name);
1291 
1292 	map->cache_bypass = false;
1293 	map->cache_only = false;
1294 
1295 	return regcache_init(map, config);
1296 }
1297 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1298 
1299 /**
1300  * regmap_exit() - Free a previously allocated register map
1301  *
1302  * @map: Register map to operate on.
1303  */
1304 void regmap_exit(struct regmap *map)
1305 {
1306 	struct regmap_async *async;
1307 
1308 	regcache_exit(map);
1309 	regmap_debugfs_exit(map);
1310 	regmap_range_exit(map);
1311 	if (map->bus && map->bus->free_context)
1312 		map->bus->free_context(map->bus_context);
1313 	kfree(map->work_buf);
1314 	while (!list_empty(&map->async_free)) {
1315 		async = list_first_entry_or_null(&map->async_free,
1316 						 struct regmap_async,
1317 						 list);
1318 		list_del(&async->list);
1319 		kfree(async->work_buf);
1320 		kfree(async);
1321 	}
1322 	if (map->hwlock)
1323 		hwspin_lock_free(map->hwlock);
1324 	kfree_const(map->name);
1325 	kfree(map);
1326 }
1327 EXPORT_SYMBOL_GPL(regmap_exit);
1328 
1329 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1330 {
1331 	struct regmap **r = res;
1332 	if (!r || !*r) {
1333 		WARN_ON(!r || !*r);
1334 		return 0;
1335 	}
1336 
1337 	/* If the user didn't specify a name match any */
1338 	if (data)
1339 		return (*r)->name == data;
1340 	else
1341 		return 1;
1342 }
1343 
1344 /**
1345  * dev_get_regmap() - Obtain the regmap (if any) for a device
1346  *
1347  * @dev: Device to retrieve the map for
1348  * @name: Optional name for the register map, usually NULL.
1349  *
1350  * Returns the regmap for the device if one is present, or NULL.  If
1351  * name is specified then it must match the name specified when
1352  * registering the device, if it is NULL then the first regmap found
1353  * will be used.  Devices with multiple register maps are very rare,
1354  * generic code should normally not need to specify a name.
1355  */
1356 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1357 {
1358 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1359 					dev_get_regmap_match, (void *)name);
1360 
1361 	if (!r)
1362 		return NULL;
1363 	return *r;
1364 }
1365 EXPORT_SYMBOL_GPL(dev_get_regmap);
1366 
1367 /**
1368  * regmap_get_device() - Obtain the device from a regmap
1369  *
1370  * @map: Register map to operate on.
1371  *
1372  * Returns the underlying device that the regmap has been created for.
1373  */
1374 struct device *regmap_get_device(struct regmap *map)
1375 {
1376 	return map->dev;
1377 }
1378 EXPORT_SYMBOL_GPL(regmap_get_device);
1379 
1380 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1381 			       struct regmap_range_node *range,
1382 			       unsigned int val_num)
1383 {
1384 	void *orig_work_buf;
1385 	unsigned int win_offset;
1386 	unsigned int win_page;
1387 	bool page_chg;
1388 	int ret;
1389 
1390 	win_offset = (*reg - range->range_min) % range->window_len;
1391 	win_page = (*reg - range->range_min) / range->window_len;
1392 
1393 	if (val_num > 1) {
1394 		/* Bulk write shouldn't cross range boundary */
1395 		if (*reg + val_num - 1 > range->range_max)
1396 			return -EINVAL;
1397 
1398 		/* ... or single page boundary */
1399 		if (val_num > range->window_len - win_offset)
1400 			return -EINVAL;
1401 	}
1402 
1403 	/* It is possible to have selector register inside data window.
1404 	   In that case, selector register is located on every page and
1405 	   it needs no page switching, when accessed alone. */
1406 	if (val_num > 1 ||
1407 	    range->window_start + win_offset != range->selector_reg) {
1408 		/* Use separate work_buf during page switching */
1409 		orig_work_buf = map->work_buf;
1410 		map->work_buf = map->selector_work_buf;
1411 
1412 		ret = _regmap_update_bits(map, range->selector_reg,
1413 					  range->selector_mask,
1414 					  win_page << range->selector_shift,
1415 					  &page_chg, false);
1416 
1417 		map->work_buf = orig_work_buf;
1418 
1419 		if (ret != 0)
1420 			return ret;
1421 	}
1422 
1423 	*reg = range->window_start + win_offset;
1424 
1425 	return 0;
1426 }
1427 
1428 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1429 					  unsigned long mask)
1430 {
1431 	u8 *buf;
1432 	int i;
1433 
1434 	if (!mask || !map->work_buf)
1435 		return;
1436 
1437 	buf = map->work_buf;
1438 
1439 	for (i = 0; i < max_bytes; i++)
1440 		buf[i] |= (mask >> (8 * i)) & 0xff;
1441 }
1442 
1443 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1444 				  const void *val, size_t val_len)
1445 {
1446 	struct regmap_range_node *range;
1447 	unsigned long flags;
1448 	void *work_val = map->work_buf + map->format.reg_bytes +
1449 		map->format.pad_bytes;
1450 	void *buf;
1451 	int ret = -ENOTSUPP;
1452 	size_t len;
1453 	int i;
1454 
1455 	WARN_ON(!map->bus);
1456 
1457 	/* Check for unwritable registers before we start */
1458 	if (map->writeable_reg)
1459 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1460 			if (!map->writeable_reg(map->dev,
1461 					       reg + regmap_get_offset(map, i)))
1462 				return -EINVAL;
1463 
1464 	if (!map->cache_bypass && map->format.parse_val) {
1465 		unsigned int ival;
1466 		int val_bytes = map->format.val_bytes;
1467 		for (i = 0; i < val_len / val_bytes; i++) {
1468 			ival = map->format.parse_val(val + (i * val_bytes));
1469 			ret = regcache_write(map,
1470 					     reg + regmap_get_offset(map, i),
1471 					     ival);
1472 			if (ret) {
1473 				dev_err(map->dev,
1474 					"Error in caching of register: %x ret: %d\n",
1475 					reg + i, ret);
1476 				return ret;
1477 			}
1478 		}
1479 		if (map->cache_only) {
1480 			map->cache_dirty = true;
1481 			return 0;
1482 		}
1483 	}
1484 
1485 	range = _regmap_range_lookup(map, reg);
1486 	if (range) {
1487 		int val_num = val_len / map->format.val_bytes;
1488 		int win_offset = (reg - range->range_min) % range->window_len;
1489 		int win_residue = range->window_len - win_offset;
1490 
1491 		/* If the write goes beyond the end of the window split it */
1492 		while (val_num > win_residue) {
1493 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1494 				win_residue, val_len / map->format.val_bytes);
1495 			ret = _regmap_raw_write_impl(map, reg, val,
1496 						     win_residue *
1497 						     map->format.val_bytes);
1498 			if (ret != 0)
1499 				return ret;
1500 
1501 			reg += win_residue;
1502 			val_num -= win_residue;
1503 			val += win_residue * map->format.val_bytes;
1504 			val_len -= win_residue * map->format.val_bytes;
1505 
1506 			win_offset = (reg - range->range_min) %
1507 				range->window_len;
1508 			win_residue = range->window_len - win_offset;
1509 		}
1510 
1511 		ret = _regmap_select_page(map, &reg, range, val_num);
1512 		if (ret != 0)
1513 			return ret;
1514 	}
1515 
1516 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1517 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1518 				      map->write_flag_mask);
1519 
1520 	/*
1521 	 * Essentially all I/O mechanisms will be faster with a single
1522 	 * buffer to write.  Since register syncs often generate raw
1523 	 * writes of single registers optimise that case.
1524 	 */
1525 	if (val != work_val && val_len == map->format.val_bytes) {
1526 		memcpy(work_val, val, map->format.val_bytes);
1527 		val = work_val;
1528 	}
1529 
1530 	if (map->async && map->bus->async_write) {
1531 		struct regmap_async *async;
1532 
1533 		trace_regmap_async_write_start(map, reg, val_len);
1534 
1535 		spin_lock_irqsave(&map->async_lock, flags);
1536 		async = list_first_entry_or_null(&map->async_free,
1537 						 struct regmap_async,
1538 						 list);
1539 		if (async)
1540 			list_del(&async->list);
1541 		spin_unlock_irqrestore(&map->async_lock, flags);
1542 
1543 		if (!async) {
1544 			async = map->bus->async_alloc();
1545 			if (!async)
1546 				return -ENOMEM;
1547 
1548 			async->work_buf = kzalloc(map->format.buf_size,
1549 						  GFP_KERNEL | GFP_DMA);
1550 			if (!async->work_buf) {
1551 				kfree(async);
1552 				return -ENOMEM;
1553 			}
1554 		}
1555 
1556 		async->map = map;
1557 
1558 		/* If the caller supplied the value we can use it safely. */
1559 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1560 		       map->format.reg_bytes + map->format.val_bytes);
1561 
1562 		spin_lock_irqsave(&map->async_lock, flags);
1563 		list_add_tail(&async->list, &map->async_list);
1564 		spin_unlock_irqrestore(&map->async_lock, flags);
1565 
1566 		if (val != work_val)
1567 			ret = map->bus->async_write(map->bus_context,
1568 						    async->work_buf,
1569 						    map->format.reg_bytes +
1570 						    map->format.pad_bytes,
1571 						    val, val_len, async);
1572 		else
1573 			ret = map->bus->async_write(map->bus_context,
1574 						    async->work_buf,
1575 						    map->format.reg_bytes +
1576 						    map->format.pad_bytes +
1577 						    val_len, NULL, 0, async);
1578 
1579 		if (ret != 0) {
1580 			dev_err(map->dev, "Failed to schedule write: %d\n",
1581 				ret);
1582 
1583 			spin_lock_irqsave(&map->async_lock, flags);
1584 			list_move(&async->list, &map->async_free);
1585 			spin_unlock_irqrestore(&map->async_lock, flags);
1586 		}
1587 
1588 		return ret;
1589 	}
1590 
1591 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1592 
1593 	/* If we're doing a single register write we can probably just
1594 	 * send the work_buf directly, otherwise try to do a gather
1595 	 * write.
1596 	 */
1597 	if (val == work_val)
1598 		ret = map->bus->write(map->bus_context, map->work_buf,
1599 				      map->format.reg_bytes +
1600 				      map->format.pad_bytes +
1601 				      val_len);
1602 	else if (map->bus->gather_write)
1603 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1604 					     map->format.reg_bytes +
1605 					     map->format.pad_bytes,
1606 					     val, val_len);
1607 
1608 	/* If that didn't work fall back on linearising by hand. */
1609 	if (ret == -ENOTSUPP) {
1610 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1611 		buf = kzalloc(len, GFP_KERNEL);
1612 		if (!buf)
1613 			return -ENOMEM;
1614 
1615 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1616 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1617 		       val, val_len);
1618 		ret = map->bus->write(map->bus_context, buf, len);
1619 
1620 		kfree(buf);
1621 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1622 		/* regcache_drop_region() takes lock that we already have,
1623 		 * thus call map->cache_ops->drop() directly
1624 		 */
1625 		if (map->cache_ops && map->cache_ops->drop)
1626 			map->cache_ops->drop(map, reg, reg + 1);
1627 	}
1628 
1629 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1630 
1631 	return ret;
1632 }
1633 
1634 /**
1635  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1636  *
1637  * @map: Map to check.
1638  */
1639 bool regmap_can_raw_write(struct regmap *map)
1640 {
1641 	return map->bus && map->bus->write && map->format.format_val &&
1642 		map->format.format_reg;
1643 }
1644 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1645 
1646 /**
1647  * regmap_get_raw_read_max - Get the maximum size we can read
1648  *
1649  * @map: Map to check.
1650  */
1651 size_t regmap_get_raw_read_max(struct regmap *map)
1652 {
1653 	return map->max_raw_read;
1654 }
1655 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1656 
1657 /**
1658  * regmap_get_raw_write_max - Get the maximum size we can read
1659  *
1660  * @map: Map to check.
1661  */
1662 size_t regmap_get_raw_write_max(struct regmap *map)
1663 {
1664 	return map->max_raw_write;
1665 }
1666 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1667 
1668 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1669 				       unsigned int val)
1670 {
1671 	int ret;
1672 	struct regmap_range_node *range;
1673 	struct regmap *map = context;
1674 
1675 	WARN_ON(!map->bus || !map->format.format_write);
1676 
1677 	range = _regmap_range_lookup(map, reg);
1678 	if (range) {
1679 		ret = _regmap_select_page(map, &reg, range, 1);
1680 		if (ret != 0)
1681 			return ret;
1682 	}
1683 
1684 	map->format.format_write(map, reg, val);
1685 
1686 	trace_regmap_hw_write_start(map, reg, 1);
1687 
1688 	ret = map->bus->write(map->bus_context, map->work_buf,
1689 			      map->format.buf_size);
1690 
1691 	trace_regmap_hw_write_done(map, reg, 1);
1692 
1693 	return ret;
1694 }
1695 
1696 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1697 				 unsigned int val)
1698 {
1699 	struct regmap *map = context;
1700 
1701 	return map->bus->reg_write(map->bus_context, reg, val);
1702 }
1703 
1704 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1705 				 unsigned int val)
1706 {
1707 	struct regmap *map = context;
1708 
1709 	WARN_ON(!map->bus || !map->format.format_val);
1710 
1711 	map->format.format_val(map->work_buf + map->format.reg_bytes
1712 			       + map->format.pad_bytes, val, 0);
1713 	return _regmap_raw_write_impl(map, reg,
1714 				      map->work_buf +
1715 				      map->format.reg_bytes +
1716 				      map->format.pad_bytes,
1717 				      map->format.val_bytes);
1718 }
1719 
1720 static inline void *_regmap_map_get_context(struct regmap *map)
1721 {
1722 	return (map->bus) ? map : map->bus_context;
1723 }
1724 
1725 int _regmap_write(struct regmap *map, unsigned int reg,
1726 		  unsigned int val)
1727 {
1728 	int ret;
1729 	void *context = _regmap_map_get_context(map);
1730 
1731 	if (!regmap_writeable(map, reg))
1732 		return -EIO;
1733 
1734 	if (!map->cache_bypass && !map->defer_caching) {
1735 		ret = regcache_write(map, reg, val);
1736 		if (ret != 0)
1737 			return ret;
1738 		if (map->cache_only) {
1739 			map->cache_dirty = true;
1740 			return 0;
1741 		}
1742 	}
1743 
1744 #ifdef LOG_DEVICE
1745 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1746 		dev_info(map->dev, "%x <= %x\n", reg, val);
1747 #endif
1748 
1749 	trace_regmap_reg_write(map, reg, val);
1750 
1751 	return map->reg_write(context, reg, val);
1752 }
1753 
1754 /**
1755  * regmap_write() - Write a value to a single register
1756  *
1757  * @map: Register map to write to
1758  * @reg: Register to write to
1759  * @val: Value to be written
1760  *
1761  * A value of zero will be returned on success, a negative errno will
1762  * be returned in error cases.
1763  */
1764 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1765 {
1766 	int ret;
1767 
1768 	if (!IS_ALIGNED(reg, map->reg_stride))
1769 		return -EINVAL;
1770 
1771 	map->lock(map->lock_arg);
1772 
1773 	ret = _regmap_write(map, reg, val);
1774 
1775 	map->unlock(map->lock_arg);
1776 
1777 	return ret;
1778 }
1779 EXPORT_SYMBOL_GPL(regmap_write);
1780 
1781 /**
1782  * regmap_write_async() - Write a value to a single register asynchronously
1783  *
1784  * @map: Register map to write to
1785  * @reg: Register to write to
1786  * @val: Value to be written
1787  *
1788  * A value of zero will be returned on success, a negative errno will
1789  * be returned in error cases.
1790  */
1791 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1792 {
1793 	int ret;
1794 
1795 	if (!IS_ALIGNED(reg, map->reg_stride))
1796 		return -EINVAL;
1797 
1798 	map->lock(map->lock_arg);
1799 
1800 	map->async = true;
1801 
1802 	ret = _regmap_write(map, reg, val);
1803 
1804 	map->async = false;
1805 
1806 	map->unlock(map->lock_arg);
1807 
1808 	return ret;
1809 }
1810 EXPORT_SYMBOL_GPL(regmap_write_async);
1811 
1812 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1813 		      const void *val, size_t val_len)
1814 {
1815 	size_t val_bytes = map->format.val_bytes;
1816 	size_t val_count = val_len / val_bytes;
1817 	size_t chunk_count, chunk_bytes;
1818 	size_t chunk_regs = val_count;
1819 	int ret, i;
1820 
1821 	if (!val_count)
1822 		return -EINVAL;
1823 
1824 	if (map->use_single_write)
1825 		chunk_regs = 1;
1826 	else if (map->max_raw_write && val_len > map->max_raw_write)
1827 		chunk_regs = map->max_raw_write / val_bytes;
1828 
1829 	chunk_count = val_count / chunk_regs;
1830 	chunk_bytes = chunk_regs * val_bytes;
1831 
1832 	/* Write as many bytes as possible with chunk_size */
1833 	for (i = 0; i < chunk_count; i++) {
1834 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1835 		if (ret)
1836 			return ret;
1837 
1838 		reg += regmap_get_offset(map, chunk_regs);
1839 		val += chunk_bytes;
1840 		val_len -= chunk_bytes;
1841 	}
1842 
1843 	/* Write remaining bytes */
1844 	if (val_len)
1845 		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1846 
1847 	return ret;
1848 }
1849 
1850 /**
1851  * regmap_raw_write() - Write raw values to one or more registers
1852  *
1853  * @map: Register map to write to
1854  * @reg: Initial register to write to
1855  * @val: Block of data to be written, laid out for direct transmission to the
1856  *       device
1857  * @val_len: Length of data pointed to by val.
1858  *
1859  * This function is intended to be used for things like firmware
1860  * download where a large block of data needs to be transferred to the
1861  * device.  No formatting will be done on the data provided.
1862  *
1863  * A value of zero will be returned on success, a negative errno will
1864  * be returned in error cases.
1865  */
1866 int regmap_raw_write(struct regmap *map, unsigned int reg,
1867 		     const void *val, size_t val_len)
1868 {
1869 	int ret;
1870 
1871 	if (!regmap_can_raw_write(map))
1872 		return -EINVAL;
1873 	if (val_len % map->format.val_bytes)
1874 		return -EINVAL;
1875 
1876 	map->lock(map->lock_arg);
1877 
1878 	ret = _regmap_raw_write(map, reg, val, val_len);
1879 
1880 	map->unlock(map->lock_arg);
1881 
1882 	return ret;
1883 }
1884 EXPORT_SYMBOL_GPL(regmap_raw_write);
1885 
1886 /**
1887  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1888  *                                   register field.
1889  *
1890  * @field: Register field to write to
1891  * @mask: Bitmask to change
1892  * @val: Value to be written
1893  * @change: Boolean indicating if a write was done
1894  * @async: Boolean indicating asynchronously
1895  * @force: Boolean indicating use force update
1896  *
1897  * Perform a read/modify/write cycle on the register field with change,
1898  * async, force option.
1899  *
1900  * A value of zero will be returned on success, a negative errno will
1901  * be returned in error cases.
1902  */
1903 int regmap_field_update_bits_base(struct regmap_field *field,
1904 				  unsigned int mask, unsigned int val,
1905 				  bool *change, bool async, bool force)
1906 {
1907 	mask = (mask << field->shift) & field->mask;
1908 
1909 	return regmap_update_bits_base(field->regmap, field->reg,
1910 				       mask, val << field->shift,
1911 				       change, async, force);
1912 }
1913 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1914 
1915 /**
1916  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1917  *                                    register field with port ID
1918  *
1919  * @field: Register field to write to
1920  * @id: port ID
1921  * @mask: Bitmask to change
1922  * @val: Value to be written
1923  * @change: Boolean indicating if a write was done
1924  * @async: Boolean indicating asynchronously
1925  * @force: Boolean indicating use force update
1926  *
1927  * A value of zero will be returned on success, a negative errno will
1928  * be returned in error cases.
1929  */
1930 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1931 				   unsigned int mask, unsigned int val,
1932 				   bool *change, bool async, bool force)
1933 {
1934 	if (id >= field->id_size)
1935 		return -EINVAL;
1936 
1937 	mask = (mask << field->shift) & field->mask;
1938 
1939 	return regmap_update_bits_base(field->regmap,
1940 				       field->reg + (field->id_offset * id),
1941 				       mask, val << field->shift,
1942 				       change, async, force);
1943 }
1944 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1945 
1946 /**
1947  * regmap_bulk_write() - Write multiple registers to the device
1948  *
1949  * @map: Register map to write to
1950  * @reg: First register to be write from
1951  * @val: Block of data to be written, in native register size for device
1952  * @val_count: Number of registers to write
1953  *
1954  * This function is intended to be used for writing a large block of
1955  * data to the device either in single transfer or multiple transfer.
1956  *
1957  * A value of zero will be returned on success, a negative errno will
1958  * be returned in error cases.
1959  */
1960 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1961 		     size_t val_count)
1962 {
1963 	int ret = 0, i;
1964 	size_t val_bytes = map->format.val_bytes;
1965 
1966 	if (!IS_ALIGNED(reg, map->reg_stride))
1967 		return -EINVAL;
1968 
1969 	/*
1970 	 * Some devices don't support bulk write, for them we have a series of
1971 	 * single write operations.
1972 	 */
1973 	if (!map->bus || !map->format.parse_inplace) {
1974 		map->lock(map->lock_arg);
1975 		for (i = 0; i < val_count; i++) {
1976 			unsigned int ival;
1977 
1978 			switch (val_bytes) {
1979 			case 1:
1980 				ival = *(u8 *)(val + (i * val_bytes));
1981 				break;
1982 			case 2:
1983 				ival = *(u16 *)(val + (i * val_bytes));
1984 				break;
1985 			case 4:
1986 				ival = *(u32 *)(val + (i * val_bytes));
1987 				break;
1988 #ifdef CONFIG_64BIT
1989 			case 8:
1990 				ival = *(u64 *)(val + (i * val_bytes));
1991 				break;
1992 #endif
1993 			default:
1994 				ret = -EINVAL;
1995 				goto out;
1996 			}
1997 
1998 			ret = _regmap_write(map,
1999 					    reg + regmap_get_offset(map, i),
2000 					    ival);
2001 			if (ret != 0)
2002 				goto out;
2003 		}
2004 out:
2005 		map->unlock(map->lock_arg);
2006 	} else {
2007 		void *wval;
2008 
2009 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2010 		if (!wval)
2011 			return -ENOMEM;
2012 
2013 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2014 			map->format.parse_inplace(wval + i);
2015 
2016 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2017 
2018 		kfree(wval);
2019 	}
2020 	return ret;
2021 }
2022 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2023 
2024 /*
2025  * _regmap_raw_multi_reg_write()
2026  *
2027  * the (register,newvalue) pairs in regs have not been formatted, but
2028  * they are all in the same page and have been changed to being page
2029  * relative. The page register has been written if that was necessary.
2030  */
2031 static int _regmap_raw_multi_reg_write(struct regmap *map,
2032 				       const struct reg_sequence *regs,
2033 				       size_t num_regs)
2034 {
2035 	int ret;
2036 	void *buf;
2037 	int i;
2038 	u8 *u8;
2039 	size_t val_bytes = map->format.val_bytes;
2040 	size_t reg_bytes = map->format.reg_bytes;
2041 	size_t pad_bytes = map->format.pad_bytes;
2042 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2043 	size_t len = pair_size * num_regs;
2044 
2045 	if (!len)
2046 		return -EINVAL;
2047 
2048 	buf = kzalloc(len, GFP_KERNEL);
2049 	if (!buf)
2050 		return -ENOMEM;
2051 
2052 	/* We have to linearise by hand. */
2053 
2054 	u8 = buf;
2055 
2056 	for (i = 0; i < num_regs; i++) {
2057 		unsigned int reg = regs[i].reg;
2058 		unsigned int val = regs[i].def;
2059 		trace_regmap_hw_write_start(map, reg, 1);
2060 		map->format.format_reg(u8, reg, map->reg_shift);
2061 		u8 += reg_bytes + pad_bytes;
2062 		map->format.format_val(u8, val, 0);
2063 		u8 += val_bytes;
2064 	}
2065 	u8 = buf;
2066 	*u8 |= map->write_flag_mask;
2067 
2068 	ret = map->bus->write(map->bus_context, buf, len);
2069 
2070 	kfree(buf);
2071 
2072 	for (i = 0; i < num_regs; i++) {
2073 		int reg = regs[i].reg;
2074 		trace_regmap_hw_write_done(map, reg, 1);
2075 	}
2076 	return ret;
2077 }
2078 
2079 static unsigned int _regmap_register_page(struct regmap *map,
2080 					  unsigned int reg,
2081 					  struct regmap_range_node *range)
2082 {
2083 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2084 
2085 	return win_page;
2086 }
2087 
2088 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2089 					       struct reg_sequence *regs,
2090 					       size_t num_regs)
2091 {
2092 	int ret;
2093 	int i, n;
2094 	struct reg_sequence *base;
2095 	unsigned int this_page = 0;
2096 	unsigned int page_change = 0;
2097 	/*
2098 	 * the set of registers are not neccessarily in order, but
2099 	 * since the order of write must be preserved this algorithm
2100 	 * chops the set each time the page changes. This also applies
2101 	 * if there is a delay required at any point in the sequence.
2102 	 */
2103 	base = regs;
2104 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2105 		unsigned int reg = regs[i].reg;
2106 		struct regmap_range_node *range;
2107 
2108 		range = _regmap_range_lookup(map, reg);
2109 		if (range) {
2110 			unsigned int win_page = _regmap_register_page(map, reg,
2111 								      range);
2112 
2113 			if (i == 0)
2114 				this_page = win_page;
2115 			if (win_page != this_page) {
2116 				this_page = win_page;
2117 				page_change = 1;
2118 			}
2119 		}
2120 
2121 		/* If we have both a page change and a delay make sure to
2122 		 * write the regs and apply the delay before we change the
2123 		 * page.
2124 		 */
2125 
2126 		if (page_change || regs[i].delay_us) {
2127 
2128 				/* For situations where the first write requires
2129 				 * a delay we need to make sure we don't call
2130 				 * raw_multi_reg_write with n=0
2131 				 * This can't occur with page breaks as we
2132 				 * never write on the first iteration
2133 				 */
2134 				if (regs[i].delay_us && i == 0)
2135 					n = 1;
2136 
2137 				ret = _regmap_raw_multi_reg_write(map, base, n);
2138 				if (ret != 0)
2139 					return ret;
2140 
2141 				if (regs[i].delay_us)
2142 					udelay(regs[i].delay_us);
2143 
2144 				base += n;
2145 				n = 0;
2146 
2147 				if (page_change) {
2148 					ret = _regmap_select_page(map,
2149 								  &base[n].reg,
2150 								  range, 1);
2151 					if (ret != 0)
2152 						return ret;
2153 
2154 					page_change = 0;
2155 				}
2156 
2157 		}
2158 
2159 	}
2160 	if (n > 0)
2161 		return _regmap_raw_multi_reg_write(map, base, n);
2162 	return 0;
2163 }
2164 
2165 static int _regmap_multi_reg_write(struct regmap *map,
2166 				   const struct reg_sequence *regs,
2167 				   size_t num_regs)
2168 {
2169 	int i;
2170 	int ret;
2171 
2172 	if (!map->can_multi_write) {
2173 		for (i = 0; i < num_regs; i++) {
2174 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2175 			if (ret != 0)
2176 				return ret;
2177 
2178 			if (regs[i].delay_us)
2179 				udelay(regs[i].delay_us);
2180 		}
2181 		return 0;
2182 	}
2183 
2184 	if (!map->format.parse_inplace)
2185 		return -EINVAL;
2186 
2187 	if (map->writeable_reg)
2188 		for (i = 0; i < num_regs; i++) {
2189 			int reg = regs[i].reg;
2190 			if (!map->writeable_reg(map->dev, reg))
2191 				return -EINVAL;
2192 			if (!IS_ALIGNED(reg, map->reg_stride))
2193 				return -EINVAL;
2194 		}
2195 
2196 	if (!map->cache_bypass) {
2197 		for (i = 0; i < num_regs; i++) {
2198 			unsigned int val = regs[i].def;
2199 			unsigned int reg = regs[i].reg;
2200 			ret = regcache_write(map, reg, val);
2201 			if (ret) {
2202 				dev_err(map->dev,
2203 				"Error in caching of register: %x ret: %d\n",
2204 								reg, ret);
2205 				return ret;
2206 			}
2207 		}
2208 		if (map->cache_only) {
2209 			map->cache_dirty = true;
2210 			return 0;
2211 		}
2212 	}
2213 
2214 	WARN_ON(!map->bus);
2215 
2216 	for (i = 0; i < num_regs; i++) {
2217 		unsigned int reg = regs[i].reg;
2218 		struct regmap_range_node *range;
2219 
2220 		/* Coalesce all the writes between a page break or a delay
2221 		 * in a sequence
2222 		 */
2223 		range = _regmap_range_lookup(map, reg);
2224 		if (range || regs[i].delay_us) {
2225 			size_t len = sizeof(struct reg_sequence)*num_regs;
2226 			struct reg_sequence *base = kmemdup(regs, len,
2227 							   GFP_KERNEL);
2228 			if (!base)
2229 				return -ENOMEM;
2230 			ret = _regmap_range_multi_paged_reg_write(map, base,
2231 								  num_regs);
2232 			kfree(base);
2233 
2234 			return ret;
2235 		}
2236 	}
2237 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2238 }
2239 
2240 /**
2241  * regmap_multi_reg_write() - Write multiple registers to the device
2242  *
2243  * @map: Register map to write to
2244  * @regs: Array of structures containing register,value to be written
2245  * @num_regs: Number of registers to write
2246  *
2247  * Write multiple registers to the device where the set of register, value
2248  * pairs are supplied in any order, possibly not all in a single range.
2249  *
2250  * The 'normal' block write mode will send ultimately send data on the
2251  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2252  * addressed. However, this alternative block multi write mode will send
2253  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2254  * must of course support the mode.
2255  *
2256  * A value of zero will be returned on success, a negative errno will be
2257  * returned in error cases.
2258  */
2259 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2260 			   int num_regs)
2261 {
2262 	int ret;
2263 
2264 	map->lock(map->lock_arg);
2265 
2266 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2267 
2268 	map->unlock(map->lock_arg);
2269 
2270 	return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2273 
2274 /**
2275  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2276  *                                     device but not the cache
2277  *
2278  * @map: Register map to write to
2279  * @regs: Array of structures containing register,value to be written
2280  * @num_regs: Number of registers to write
2281  *
2282  * Write multiple registers to the device but not the cache where the set
2283  * of register are supplied in any order.
2284  *
2285  * This function is intended to be used for writing a large block of data
2286  * atomically to the device in single transfer for those I2C client devices
2287  * that implement this alternative block write mode.
2288  *
2289  * A value of zero will be returned on success, a negative errno will
2290  * be returned in error cases.
2291  */
2292 int regmap_multi_reg_write_bypassed(struct regmap *map,
2293 				    const struct reg_sequence *regs,
2294 				    int num_regs)
2295 {
2296 	int ret;
2297 	bool bypass;
2298 
2299 	map->lock(map->lock_arg);
2300 
2301 	bypass = map->cache_bypass;
2302 	map->cache_bypass = true;
2303 
2304 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2305 
2306 	map->cache_bypass = bypass;
2307 
2308 	map->unlock(map->lock_arg);
2309 
2310 	return ret;
2311 }
2312 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2313 
2314 /**
2315  * regmap_raw_write_async() - Write raw values to one or more registers
2316  *                            asynchronously
2317  *
2318  * @map: Register map to write to
2319  * @reg: Initial register to write to
2320  * @val: Block of data to be written, laid out for direct transmission to the
2321  *       device.  Must be valid until regmap_async_complete() is called.
2322  * @val_len: Length of data pointed to by val.
2323  *
2324  * This function is intended to be used for things like firmware
2325  * download where a large block of data needs to be transferred to the
2326  * device.  No formatting will be done on the data provided.
2327  *
2328  * If supported by the underlying bus the write will be scheduled
2329  * asynchronously, helping maximise I/O speed on higher speed buses
2330  * like SPI.  regmap_async_complete() can be called to ensure that all
2331  * asynchrnous writes have been completed.
2332  *
2333  * A value of zero will be returned on success, a negative errno will
2334  * be returned in error cases.
2335  */
2336 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2337 			   const void *val, size_t val_len)
2338 {
2339 	int ret;
2340 
2341 	if (val_len % map->format.val_bytes)
2342 		return -EINVAL;
2343 	if (!IS_ALIGNED(reg, map->reg_stride))
2344 		return -EINVAL;
2345 
2346 	map->lock(map->lock_arg);
2347 
2348 	map->async = true;
2349 
2350 	ret = _regmap_raw_write(map, reg, val, val_len);
2351 
2352 	map->async = false;
2353 
2354 	map->unlock(map->lock_arg);
2355 
2356 	return ret;
2357 }
2358 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2359 
2360 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2361 			    unsigned int val_len)
2362 {
2363 	struct regmap_range_node *range;
2364 	int ret;
2365 
2366 	WARN_ON(!map->bus);
2367 
2368 	if (!map->bus || !map->bus->read)
2369 		return -EINVAL;
2370 
2371 	range = _regmap_range_lookup(map, reg);
2372 	if (range) {
2373 		ret = _regmap_select_page(map, &reg, range,
2374 					  val_len / map->format.val_bytes);
2375 		if (ret != 0)
2376 			return ret;
2377 	}
2378 
2379 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2380 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2381 				      map->read_flag_mask);
2382 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2383 
2384 	ret = map->bus->read(map->bus_context, map->work_buf,
2385 			     map->format.reg_bytes + map->format.pad_bytes,
2386 			     val, val_len);
2387 
2388 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2389 
2390 	return ret;
2391 }
2392 
2393 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2394 				unsigned int *val)
2395 {
2396 	struct regmap *map = context;
2397 
2398 	return map->bus->reg_read(map->bus_context, reg, val);
2399 }
2400 
2401 static int _regmap_bus_read(void *context, unsigned int reg,
2402 			    unsigned int *val)
2403 {
2404 	int ret;
2405 	struct regmap *map = context;
2406 	void *work_val = map->work_buf + map->format.reg_bytes +
2407 		map->format.pad_bytes;
2408 
2409 	if (!map->format.parse_val)
2410 		return -EINVAL;
2411 
2412 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2413 	if (ret == 0)
2414 		*val = map->format.parse_val(work_val);
2415 
2416 	return ret;
2417 }
2418 
2419 static int _regmap_read(struct regmap *map, unsigned int reg,
2420 			unsigned int *val)
2421 {
2422 	int ret;
2423 	void *context = _regmap_map_get_context(map);
2424 
2425 	if (!map->cache_bypass) {
2426 		ret = regcache_read(map, reg, val);
2427 		if (ret == 0)
2428 			return 0;
2429 	}
2430 
2431 	if (map->cache_only)
2432 		return -EBUSY;
2433 
2434 	if (!regmap_readable(map, reg))
2435 		return -EIO;
2436 
2437 	ret = map->reg_read(context, reg, val);
2438 	if (ret == 0) {
2439 #ifdef LOG_DEVICE
2440 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2441 			dev_info(map->dev, "%x => %x\n", reg, *val);
2442 #endif
2443 
2444 		trace_regmap_reg_read(map, reg, *val);
2445 
2446 		if (!map->cache_bypass)
2447 			regcache_write(map, reg, *val);
2448 	}
2449 
2450 	return ret;
2451 }
2452 
2453 /**
2454  * regmap_read() - Read a value from a single register
2455  *
2456  * @map: Register map to read from
2457  * @reg: Register to be read from
2458  * @val: Pointer to store read value
2459  *
2460  * A value of zero will be returned on success, a negative errno will
2461  * be returned in error cases.
2462  */
2463 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2464 {
2465 	int ret;
2466 
2467 	if (!IS_ALIGNED(reg, map->reg_stride))
2468 		return -EINVAL;
2469 
2470 	map->lock(map->lock_arg);
2471 
2472 	ret = _regmap_read(map, reg, val);
2473 
2474 	map->unlock(map->lock_arg);
2475 
2476 	return ret;
2477 }
2478 EXPORT_SYMBOL_GPL(regmap_read);
2479 
2480 /**
2481  * regmap_raw_read() - Read raw data from the device
2482  *
2483  * @map: Register map to read from
2484  * @reg: First register to be read from
2485  * @val: Pointer to store read value
2486  * @val_len: Size of data to read
2487  *
2488  * A value of zero will be returned on success, a negative errno will
2489  * be returned in error cases.
2490  */
2491 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2492 		    size_t val_len)
2493 {
2494 	size_t val_bytes = map->format.val_bytes;
2495 	size_t val_count = val_len / val_bytes;
2496 	unsigned int v;
2497 	int ret, i;
2498 
2499 	if (!map->bus)
2500 		return -EINVAL;
2501 	if (val_len % map->format.val_bytes)
2502 		return -EINVAL;
2503 	if (!IS_ALIGNED(reg, map->reg_stride))
2504 		return -EINVAL;
2505 	if (val_count == 0)
2506 		return -EINVAL;
2507 
2508 	map->lock(map->lock_arg);
2509 
2510 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2511 	    map->cache_type == REGCACHE_NONE) {
2512 		size_t chunk_count, chunk_bytes;
2513 		size_t chunk_regs = val_count;
2514 
2515 		if (!map->bus->read) {
2516 			ret = -ENOTSUPP;
2517 			goto out;
2518 		}
2519 
2520 		if (map->use_single_read)
2521 			chunk_regs = 1;
2522 		else if (map->max_raw_read && val_len > map->max_raw_read)
2523 			chunk_regs = map->max_raw_read / val_bytes;
2524 
2525 		chunk_count = val_count / chunk_regs;
2526 		chunk_bytes = chunk_regs * val_bytes;
2527 
2528 		/* Read bytes that fit into whole chunks */
2529 		for (i = 0; i < chunk_count; i++) {
2530 			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2531 			if (ret != 0)
2532 				goto out;
2533 
2534 			reg += regmap_get_offset(map, chunk_regs);
2535 			val += chunk_bytes;
2536 			val_len -= chunk_bytes;
2537 		}
2538 
2539 		/* Read remaining bytes */
2540 		if (val_len) {
2541 			ret = _regmap_raw_read(map, reg, val, val_len);
2542 			if (ret != 0)
2543 				goto out;
2544 		}
2545 	} else {
2546 		/* Otherwise go word by word for the cache; should be low
2547 		 * cost as we expect to hit the cache.
2548 		 */
2549 		for (i = 0; i < val_count; i++) {
2550 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2551 					   &v);
2552 			if (ret != 0)
2553 				goto out;
2554 
2555 			map->format.format_val(val + (i * val_bytes), v, 0);
2556 		}
2557 	}
2558 
2559  out:
2560 	map->unlock(map->lock_arg);
2561 
2562 	return ret;
2563 }
2564 EXPORT_SYMBOL_GPL(regmap_raw_read);
2565 
2566 /**
2567  * regmap_field_read() - Read a value to a single register field
2568  *
2569  * @field: Register field to read from
2570  * @val: Pointer to store read value
2571  *
2572  * A value of zero will be returned on success, a negative errno will
2573  * be returned in error cases.
2574  */
2575 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2576 {
2577 	int ret;
2578 	unsigned int reg_val;
2579 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2580 	if (ret != 0)
2581 		return ret;
2582 
2583 	reg_val &= field->mask;
2584 	reg_val >>= field->shift;
2585 	*val = reg_val;
2586 
2587 	return ret;
2588 }
2589 EXPORT_SYMBOL_GPL(regmap_field_read);
2590 
2591 /**
2592  * regmap_fields_read() - Read a value to a single register field with port ID
2593  *
2594  * @field: Register field to read from
2595  * @id: port ID
2596  * @val: Pointer to store read value
2597  *
2598  * A value of zero will be returned on success, a negative errno will
2599  * be returned in error cases.
2600  */
2601 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2602 		       unsigned int *val)
2603 {
2604 	int ret;
2605 	unsigned int reg_val;
2606 
2607 	if (id >= field->id_size)
2608 		return -EINVAL;
2609 
2610 	ret = regmap_read(field->regmap,
2611 			  field->reg + (field->id_offset * id),
2612 			  &reg_val);
2613 	if (ret != 0)
2614 		return ret;
2615 
2616 	reg_val &= field->mask;
2617 	reg_val >>= field->shift;
2618 	*val = reg_val;
2619 
2620 	return ret;
2621 }
2622 EXPORT_SYMBOL_GPL(regmap_fields_read);
2623 
2624 /**
2625  * regmap_bulk_read() - Read multiple registers from the device
2626  *
2627  * @map: Register map to read from
2628  * @reg: First register to be read from
2629  * @val: Pointer to store read value, in native register size for device
2630  * @val_count: Number of registers to read
2631  *
2632  * A value of zero will be returned on success, a negative errno will
2633  * be returned in error cases.
2634  */
2635 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2636 		     size_t val_count)
2637 {
2638 	int ret, i;
2639 	size_t val_bytes = map->format.val_bytes;
2640 	bool vol = regmap_volatile_range(map, reg, val_count);
2641 
2642 	if (!IS_ALIGNED(reg, map->reg_stride))
2643 		return -EINVAL;
2644 	if (val_count == 0)
2645 		return -EINVAL;
2646 
2647 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2648 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2649 		if (ret != 0)
2650 			return ret;
2651 
2652 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2653 			map->format.parse_inplace(val + i);
2654 	} else {
2655 #ifdef CONFIG_64BIT
2656 		u64 *u64 = val;
2657 #endif
2658 		u32 *u32 = val;
2659 		u16 *u16 = val;
2660 		u8 *u8 = val;
2661 
2662 		map->lock(map->lock_arg);
2663 
2664 		for (i = 0; i < val_count; i++) {
2665 			unsigned int ival;
2666 
2667 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2668 					   &ival);
2669 			if (ret != 0)
2670 				goto out;
2671 
2672 			switch (map->format.val_bytes) {
2673 #ifdef CONFIG_64BIT
2674 			case 8:
2675 				u64[i] = ival;
2676 				break;
2677 #endif
2678 			case 4:
2679 				u32[i] = ival;
2680 				break;
2681 			case 2:
2682 				u16[i] = ival;
2683 				break;
2684 			case 1:
2685 				u8[i] = ival;
2686 				break;
2687 			default:
2688 				ret = -EINVAL;
2689 				goto out;
2690 			}
2691 		}
2692 
2693 out:
2694 		map->unlock(map->lock_arg);
2695 	}
2696 
2697 	return ret;
2698 }
2699 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2700 
2701 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2702 			       unsigned int mask, unsigned int val,
2703 			       bool *change, bool force_write)
2704 {
2705 	int ret;
2706 	unsigned int tmp, orig;
2707 
2708 	if (change)
2709 		*change = false;
2710 
2711 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2712 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2713 		if (ret == 0 && change)
2714 			*change = true;
2715 	} else {
2716 		ret = _regmap_read(map, reg, &orig);
2717 		if (ret != 0)
2718 			return ret;
2719 
2720 		tmp = orig & ~mask;
2721 		tmp |= val & mask;
2722 
2723 		if (force_write || (tmp != orig)) {
2724 			ret = _regmap_write(map, reg, tmp);
2725 			if (ret == 0 && change)
2726 				*change = true;
2727 		}
2728 	}
2729 
2730 	return ret;
2731 }
2732 
2733 /**
2734  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2735  *
2736  * @map: Register map to update
2737  * @reg: Register to update
2738  * @mask: Bitmask to change
2739  * @val: New value for bitmask
2740  * @change: Boolean indicating if a write was done
2741  * @async: Boolean indicating asynchronously
2742  * @force: Boolean indicating use force update
2743  *
2744  * Perform a read/modify/write cycle on a register map with change, async, force
2745  * options.
2746  *
2747  * If async is true:
2748  *
2749  * With most buses the read must be done synchronously so this is most useful
2750  * for devices with a cache which do not need to interact with the hardware to
2751  * determine the current register value.
2752  *
2753  * Returns zero for success, a negative number on error.
2754  */
2755 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2756 			    unsigned int mask, unsigned int val,
2757 			    bool *change, bool async, bool force)
2758 {
2759 	int ret;
2760 
2761 	map->lock(map->lock_arg);
2762 
2763 	map->async = async;
2764 
2765 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2766 
2767 	map->async = false;
2768 
2769 	map->unlock(map->lock_arg);
2770 
2771 	return ret;
2772 }
2773 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2774 
2775 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2776 {
2777 	struct regmap *map = async->map;
2778 	bool wake;
2779 
2780 	trace_regmap_async_io_complete(map);
2781 
2782 	spin_lock(&map->async_lock);
2783 	list_move(&async->list, &map->async_free);
2784 	wake = list_empty(&map->async_list);
2785 
2786 	if (ret != 0)
2787 		map->async_ret = ret;
2788 
2789 	spin_unlock(&map->async_lock);
2790 
2791 	if (wake)
2792 		wake_up(&map->async_waitq);
2793 }
2794 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2795 
2796 static int regmap_async_is_done(struct regmap *map)
2797 {
2798 	unsigned long flags;
2799 	int ret;
2800 
2801 	spin_lock_irqsave(&map->async_lock, flags);
2802 	ret = list_empty(&map->async_list);
2803 	spin_unlock_irqrestore(&map->async_lock, flags);
2804 
2805 	return ret;
2806 }
2807 
2808 /**
2809  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2810  *
2811  * @map: Map to operate on.
2812  *
2813  * Blocks until any pending asynchronous I/O has completed.  Returns
2814  * an error code for any failed I/O operations.
2815  */
2816 int regmap_async_complete(struct regmap *map)
2817 {
2818 	unsigned long flags;
2819 	int ret;
2820 
2821 	/* Nothing to do with no async support */
2822 	if (!map->bus || !map->bus->async_write)
2823 		return 0;
2824 
2825 	trace_regmap_async_complete_start(map);
2826 
2827 	wait_event(map->async_waitq, regmap_async_is_done(map));
2828 
2829 	spin_lock_irqsave(&map->async_lock, flags);
2830 	ret = map->async_ret;
2831 	map->async_ret = 0;
2832 	spin_unlock_irqrestore(&map->async_lock, flags);
2833 
2834 	trace_regmap_async_complete_done(map);
2835 
2836 	return ret;
2837 }
2838 EXPORT_SYMBOL_GPL(regmap_async_complete);
2839 
2840 /**
2841  * regmap_register_patch - Register and apply register updates to be applied
2842  *                         on device initialistion
2843  *
2844  * @map: Register map to apply updates to.
2845  * @regs: Values to update.
2846  * @num_regs: Number of entries in regs.
2847  *
2848  * Register a set of register updates to be applied to the device
2849  * whenever the device registers are synchronised with the cache and
2850  * apply them immediately.  Typically this is used to apply
2851  * corrections to be applied to the device defaults on startup, such
2852  * as the updates some vendors provide to undocumented registers.
2853  *
2854  * The caller must ensure that this function cannot be called
2855  * concurrently with either itself or regcache_sync().
2856  */
2857 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2858 			  int num_regs)
2859 {
2860 	struct reg_sequence *p;
2861 	int ret;
2862 	bool bypass;
2863 
2864 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2865 	    num_regs))
2866 		return 0;
2867 
2868 	p = krealloc(map->patch,
2869 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2870 		     GFP_KERNEL);
2871 	if (p) {
2872 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2873 		map->patch = p;
2874 		map->patch_regs += num_regs;
2875 	} else {
2876 		return -ENOMEM;
2877 	}
2878 
2879 	map->lock(map->lock_arg);
2880 
2881 	bypass = map->cache_bypass;
2882 
2883 	map->cache_bypass = true;
2884 	map->async = true;
2885 
2886 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2887 
2888 	map->async = false;
2889 	map->cache_bypass = bypass;
2890 
2891 	map->unlock(map->lock_arg);
2892 
2893 	regmap_async_complete(map);
2894 
2895 	return ret;
2896 }
2897 EXPORT_SYMBOL_GPL(regmap_register_patch);
2898 
2899 /**
2900  * regmap_get_val_bytes() - Report the size of a register value
2901  *
2902  * @map: Register map to operate on.
2903  *
2904  * Report the size of a register value, mainly intended to for use by
2905  * generic infrastructure built on top of regmap.
2906  */
2907 int regmap_get_val_bytes(struct regmap *map)
2908 {
2909 	if (map->format.format_write)
2910 		return -EINVAL;
2911 
2912 	return map->format.val_bytes;
2913 }
2914 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2915 
2916 /**
2917  * regmap_get_max_register() - Report the max register value
2918  *
2919  * @map: Register map to operate on.
2920  *
2921  * Report the max register value, mainly intended to for use by
2922  * generic infrastructure built on top of regmap.
2923  */
2924 int regmap_get_max_register(struct regmap *map)
2925 {
2926 	return map->max_register ? map->max_register : -EINVAL;
2927 }
2928 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2929 
2930 /**
2931  * regmap_get_reg_stride() - Report the register address stride
2932  *
2933  * @map: Register map to operate on.
2934  *
2935  * Report the register address stride, mainly intended to for use by
2936  * generic infrastructure built on top of regmap.
2937  */
2938 int regmap_get_reg_stride(struct regmap *map)
2939 {
2940 	return map->reg_stride;
2941 }
2942 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2943 
2944 int regmap_parse_val(struct regmap *map, const void *buf,
2945 			unsigned int *val)
2946 {
2947 	if (!map->format.parse_val)
2948 		return -EINVAL;
2949 
2950 	*val = map->format.parse_val(buf);
2951 
2952 	return 0;
2953 }
2954 EXPORT_SYMBOL_GPL(regmap_parse_val);
2955 
2956 static int __init regmap_initcall(void)
2957 {
2958 	regmap_debugfs_initcall();
2959 
2960 	return 0;
2961 }
2962 postcore_initcall(regmap_initcall);
2963