xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision db181ce0)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23 
24 #include "internal.h"
25 
26 /*
27  * Sometimes for failures during very early init the trace
28  * infrastructure isn't available early enough to be used.  For this
29  * sort of problem defining LOG_DEVICE will add printks for basic
30  * register I/O on a specific device.
31  */
32 #undef LOG_DEVICE
33 
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 			       unsigned int mask, unsigned int val,
36 			       bool *change);
37 
38 static int _regmap_bus_reg_read(void *context, unsigned int reg,
39 				unsigned int *val);
40 static int _regmap_bus_read(void *context, unsigned int reg,
41 			    unsigned int *val);
42 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
43 				       unsigned int val);
44 static int _regmap_bus_reg_write(void *context, unsigned int reg,
45 				 unsigned int val);
46 static int _regmap_bus_raw_write(void *context, unsigned int reg,
47 				 unsigned int val);
48 
49 bool regmap_reg_in_ranges(unsigned int reg,
50 			  const struct regmap_range *ranges,
51 			  unsigned int nranges)
52 {
53 	const struct regmap_range *r;
54 	int i;
55 
56 	for (i = 0, r = ranges; i < nranges; i++, r++)
57 		if (regmap_reg_in_range(reg, r))
58 			return true;
59 	return false;
60 }
61 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
62 
63 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
64 			      const struct regmap_access_table *table)
65 {
66 	/* Check "no ranges" first */
67 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
68 		return false;
69 
70 	/* In case zero "yes ranges" are supplied, any reg is OK */
71 	if (!table->n_yes_ranges)
72 		return true;
73 
74 	return regmap_reg_in_ranges(reg, table->yes_ranges,
75 				    table->n_yes_ranges);
76 }
77 EXPORT_SYMBOL_GPL(regmap_check_range_table);
78 
79 bool regmap_writeable(struct regmap *map, unsigned int reg)
80 {
81 	if (map->max_register && reg > map->max_register)
82 		return false;
83 
84 	if (map->writeable_reg)
85 		return map->writeable_reg(map->dev, reg);
86 
87 	if (map->wr_table)
88 		return regmap_check_range_table(map, reg, map->wr_table);
89 
90 	return true;
91 }
92 
93 bool regmap_readable(struct regmap *map, unsigned int reg)
94 {
95 	if (map->max_register && reg > map->max_register)
96 		return false;
97 
98 	if (map->format.format_write)
99 		return false;
100 
101 	if (map->readable_reg)
102 		return map->readable_reg(map->dev, reg);
103 
104 	if (map->rd_table)
105 		return regmap_check_range_table(map, reg, map->rd_table);
106 
107 	return true;
108 }
109 
110 bool regmap_volatile(struct regmap *map, unsigned int reg)
111 {
112 	if (!regmap_readable(map, reg))
113 		return false;
114 
115 	if (map->volatile_reg)
116 		return map->volatile_reg(map->dev, reg);
117 
118 	if (map->volatile_table)
119 		return regmap_check_range_table(map, reg, map->volatile_table);
120 
121 	if (map->cache_ops)
122 		return false;
123 	else
124 		return true;
125 }
126 
127 bool regmap_precious(struct regmap *map, unsigned int reg)
128 {
129 	if (!regmap_readable(map, reg))
130 		return false;
131 
132 	if (map->precious_reg)
133 		return map->precious_reg(map->dev, reg);
134 
135 	if (map->precious_table)
136 		return regmap_check_range_table(map, reg, map->precious_table);
137 
138 	return false;
139 }
140 
141 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
142 	size_t num)
143 {
144 	unsigned int i;
145 
146 	for (i = 0; i < num; i++)
147 		if (!regmap_volatile(map, reg + i))
148 			return false;
149 
150 	return true;
151 }
152 
153 static void regmap_format_2_6_write(struct regmap *map,
154 				     unsigned int reg, unsigned int val)
155 {
156 	u8 *out = map->work_buf;
157 
158 	*out = (reg << 6) | val;
159 }
160 
161 static void regmap_format_4_12_write(struct regmap *map,
162 				     unsigned int reg, unsigned int val)
163 {
164 	__be16 *out = map->work_buf;
165 	*out = cpu_to_be16((reg << 12) | val);
166 }
167 
168 static void regmap_format_7_9_write(struct regmap *map,
169 				    unsigned int reg, unsigned int val)
170 {
171 	__be16 *out = map->work_buf;
172 	*out = cpu_to_be16((reg << 9) | val);
173 }
174 
175 static void regmap_format_10_14_write(struct regmap *map,
176 				    unsigned int reg, unsigned int val)
177 {
178 	u8 *out = map->work_buf;
179 
180 	out[2] = val;
181 	out[1] = (val >> 8) | (reg << 6);
182 	out[0] = reg >> 2;
183 }
184 
185 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
186 {
187 	u8 *b = buf;
188 
189 	b[0] = val << shift;
190 }
191 
192 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
193 {
194 	__be16 *b = buf;
195 
196 	b[0] = cpu_to_be16(val << shift);
197 }
198 
199 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
200 {
201 	__le16 *b = buf;
202 
203 	b[0] = cpu_to_le16(val << shift);
204 }
205 
206 static void regmap_format_16_native(void *buf, unsigned int val,
207 				    unsigned int shift)
208 {
209 	*(u16 *)buf = val << shift;
210 }
211 
212 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
213 {
214 	u8 *b = buf;
215 
216 	val <<= shift;
217 
218 	b[0] = val >> 16;
219 	b[1] = val >> 8;
220 	b[2] = val;
221 }
222 
223 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
224 {
225 	__be32 *b = buf;
226 
227 	b[0] = cpu_to_be32(val << shift);
228 }
229 
230 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
231 {
232 	__le32 *b = buf;
233 
234 	b[0] = cpu_to_le32(val << shift);
235 }
236 
237 static void regmap_format_32_native(void *buf, unsigned int val,
238 				    unsigned int shift)
239 {
240 	*(u32 *)buf = val << shift;
241 }
242 
243 static void regmap_parse_inplace_noop(void *buf)
244 {
245 }
246 
247 static unsigned int regmap_parse_8(const void *buf)
248 {
249 	const u8 *b = buf;
250 
251 	return b[0];
252 }
253 
254 static unsigned int regmap_parse_16_be(const void *buf)
255 {
256 	const __be16 *b = buf;
257 
258 	return be16_to_cpu(b[0]);
259 }
260 
261 static unsigned int regmap_parse_16_le(const void *buf)
262 {
263 	const __le16 *b = buf;
264 
265 	return le16_to_cpu(b[0]);
266 }
267 
268 static void regmap_parse_16_be_inplace(void *buf)
269 {
270 	__be16 *b = buf;
271 
272 	b[0] = be16_to_cpu(b[0]);
273 }
274 
275 static void regmap_parse_16_le_inplace(void *buf)
276 {
277 	__le16 *b = buf;
278 
279 	b[0] = le16_to_cpu(b[0]);
280 }
281 
282 static unsigned int regmap_parse_16_native(const void *buf)
283 {
284 	return *(u16 *)buf;
285 }
286 
287 static unsigned int regmap_parse_24(const void *buf)
288 {
289 	const u8 *b = buf;
290 	unsigned int ret = b[2];
291 	ret |= ((unsigned int)b[1]) << 8;
292 	ret |= ((unsigned int)b[0]) << 16;
293 
294 	return ret;
295 }
296 
297 static unsigned int regmap_parse_32_be(const void *buf)
298 {
299 	const __be32 *b = buf;
300 
301 	return be32_to_cpu(b[0]);
302 }
303 
304 static unsigned int regmap_parse_32_le(const void *buf)
305 {
306 	const __le32 *b = buf;
307 
308 	return le32_to_cpu(b[0]);
309 }
310 
311 static void regmap_parse_32_be_inplace(void *buf)
312 {
313 	__be32 *b = buf;
314 
315 	b[0] = be32_to_cpu(b[0]);
316 }
317 
318 static void regmap_parse_32_le_inplace(void *buf)
319 {
320 	__le32 *b = buf;
321 
322 	b[0] = le32_to_cpu(b[0]);
323 }
324 
325 static unsigned int regmap_parse_32_native(const void *buf)
326 {
327 	return *(u32 *)buf;
328 }
329 
330 static void regmap_lock_mutex(void *__map)
331 {
332 	struct regmap *map = __map;
333 	mutex_lock(&map->mutex);
334 }
335 
336 static void regmap_unlock_mutex(void *__map)
337 {
338 	struct regmap *map = __map;
339 	mutex_unlock(&map->mutex);
340 }
341 
342 static void regmap_lock_spinlock(void *__map)
343 __acquires(&map->spinlock)
344 {
345 	struct regmap *map = __map;
346 	unsigned long flags;
347 
348 	spin_lock_irqsave(&map->spinlock, flags);
349 	map->spinlock_flags = flags;
350 }
351 
352 static void regmap_unlock_spinlock(void *__map)
353 __releases(&map->spinlock)
354 {
355 	struct regmap *map = __map;
356 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
357 }
358 
359 static void dev_get_regmap_release(struct device *dev, void *res)
360 {
361 	/*
362 	 * We don't actually have anything to do here; the goal here
363 	 * is not to manage the regmap but to provide a simple way to
364 	 * get the regmap back given a struct device.
365 	 */
366 }
367 
368 static bool _regmap_range_add(struct regmap *map,
369 			      struct regmap_range_node *data)
370 {
371 	struct rb_root *root = &map->range_tree;
372 	struct rb_node **new = &(root->rb_node), *parent = NULL;
373 
374 	while (*new) {
375 		struct regmap_range_node *this =
376 			container_of(*new, struct regmap_range_node, node);
377 
378 		parent = *new;
379 		if (data->range_max < this->range_min)
380 			new = &((*new)->rb_left);
381 		else if (data->range_min > this->range_max)
382 			new = &((*new)->rb_right);
383 		else
384 			return false;
385 	}
386 
387 	rb_link_node(&data->node, parent, new);
388 	rb_insert_color(&data->node, root);
389 
390 	return true;
391 }
392 
393 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
394 						      unsigned int reg)
395 {
396 	struct rb_node *node = map->range_tree.rb_node;
397 
398 	while (node) {
399 		struct regmap_range_node *this =
400 			container_of(node, struct regmap_range_node, node);
401 
402 		if (reg < this->range_min)
403 			node = node->rb_left;
404 		else if (reg > this->range_max)
405 			node = node->rb_right;
406 		else
407 			return this;
408 	}
409 
410 	return NULL;
411 }
412 
413 static void regmap_range_exit(struct regmap *map)
414 {
415 	struct rb_node *next;
416 	struct regmap_range_node *range_node;
417 
418 	next = rb_first(&map->range_tree);
419 	while (next) {
420 		range_node = rb_entry(next, struct regmap_range_node, node);
421 		next = rb_next(&range_node->node);
422 		rb_erase(&range_node->node, &map->range_tree);
423 		kfree(range_node);
424 	}
425 
426 	kfree(map->selector_work_buf);
427 }
428 
429 int regmap_attach_dev(struct device *dev, struct regmap *map,
430 		      const struct regmap_config *config)
431 {
432 	struct regmap **m;
433 
434 	map->dev = dev;
435 
436 	regmap_debugfs_init(map, config->name);
437 
438 	/* Add a devres resource for dev_get_regmap() */
439 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
440 	if (!m) {
441 		regmap_debugfs_exit(map);
442 		return -ENOMEM;
443 	}
444 	*m = map;
445 	devres_add(dev, m);
446 
447 	return 0;
448 }
449 EXPORT_SYMBOL_GPL(regmap_attach_dev);
450 
451 /**
452  * regmap_init(): Initialise register map
453  *
454  * @dev: Device that will be interacted with
455  * @bus: Bus-specific callbacks to use with device
456  * @bus_context: Data passed to bus-specific callbacks
457  * @config: Configuration for register map
458  *
459  * The return value will be an ERR_PTR() on error or a valid pointer to
460  * a struct regmap.  This function should generally not be called
461  * directly, it should be called by bus-specific init functions.
462  */
463 struct regmap *regmap_init(struct device *dev,
464 			   const struct regmap_bus *bus,
465 			   void *bus_context,
466 			   const struct regmap_config *config)
467 {
468 	struct regmap *map;
469 	int ret = -EINVAL;
470 	enum regmap_endian reg_endian, val_endian;
471 	int i, j;
472 
473 	if (!config)
474 		goto err;
475 
476 	map = kzalloc(sizeof(*map), GFP_KERNEL);
477 	if (map == NULL) {
478 		ret = -ENOMEM;
479 		goto err;
480 	}
481 
482 	if (config->lock && config->unlock) {
483 		map->lock = config->lock;
484 		map->unlock = config->unlock;
485 		map->lock_arg = config->lock_arg;
486 	} else {
487 		if ((bus && bus->fast_io) ||
488 		    config->fast_io) {
489 			spin_lock_init(&map->spinlock);
490 			map->lock = regmap_lock_spinlock;
491 			map->unlock = regmap_unlock_spinlock;
492 		} else {
493 			mutex_init(&map->mutex);
494 			map->lock = regmap_lock_mutex;
495 			map->unlock = regmap_unlock_mutex;
496 		}
497 		map->lock_arg = map;
498 	}
499 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
500 	map->format.pad_bytes = config->pad_bits / 8;
501 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
502 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
503 			config->val_bits + config->pad_bits, 8);
504 	map->reg_shift = config->pad_bits % 8;
505 	if (config->reg_stride)
506 		map->reg_stride = config->reg_stride;
507 	else
508 		map->reg_stride = 1;
509 	map->use_single_rw = config->use_single_rw;
510 	map->can_multi_write = config->can_multi_write;
511 	map->dev = dev;
512 	map->bus = bus;
513 	map->bus_context = bus_context;
514 	map->max_register = config->max_register;
515 	map->wr_table = config->wr_table;
516 	map->rd_table = config->rd_table;
517 	map->volatile_table = config->volatile_table;
518 	map->precious_table = config->precious_table;
519 	map->writeable_reg = config->writeable_reg;
520 	map->readable_reg = config->readable_reg;
521 	map->volatile_reg = config->volatile_reg;
522 	map->precious_reg = config->precious_reg;
523 	map->cache_type = config->cache_type;
524 	map->name = config->name;
525 
526 	spin_lock_init(&map->async_lock);
527 	INIT_LIST_HEAD(&map->async_list);
528 	INIT_LIST_HEAD(&map->async_free);
529 	init_waitqueue_head(&map->async_waitq);
530 
531 	if (config->read_flag_mask || config->write_flag_mask) {
532 		map->read_flag_mask = config->read_flag_mask;
533 		map->write_flag_mask = config->write_flag_mask;
534 	} else if (bus) {
535 		map->read_flag_mask = bus->read_flag_mask;
536 	}
537 
538 	if (!bus) {
539 		map->reg_read  = config->reg_read;
540 		map->reg_write = config->reg_write;
541 
542 		map->defer_caching = false;
543 		goto skip_format_initialization;
544 	} else if (!bus->read || !bus->write) {
545 		map->reg_read = _regmap_bus_reg_read;
546 		map->reg_write = _regmap_bus_reg_write;
547 
548 		map->defer_caching = false;
549 		goto skip_format_initialization;
550 	} else {
551 		map->reg_read  = _regmap_bus_read;
552 	}
553 
554 	reg_endian = config->reg_format_endian;
555 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
556 		reg_endian = bus->reg_format_endian_default;
557 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
558 		reg_endian = REGMAP_ENDIAN_BIG;
559 
560 	val_endian = config->val_format_endian;
561 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
562 		val_endian = bus->val_format_endian_default;
563 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
564 		val_endian = REGMAP_ENDIAN_BIG;
565 
566 	switch (config->reg_bits + map->reg_shift) {
567 	case 2:
568 		switch (config->val_bits) {
569 		case 6:
570 			map->format.format_write = regmap_format_2_6_write;
571 			break;
572 		default:
573 			goto err_map;
574 		}
575 		break;
576 
577 	case 4:
578 		switch (config->val_bits) {
579 		case 12:
580 			map->format.format_write = regmap_format_4_12_write;
581 			break;
582 		default:
583 			goto err_map;
584 		}
585 		break;
586 
587 	case 7:
588 		switch (config->val_bits) {
589 		case 9:
590 			map->format.format_write = regmap_format_7_9_write;
591 			break;
592 		default:
593 			goto err_map;
594 		}
595 		break;
596 
597 	case 10:
598 		switch (config->val_bits) {
599 		case 14:
600 			map->format.format_write = regmap_format_10_14_write;
601 			break;
602 		default:
603 			goto err_map;
604 		}
605 		break;
606 
607 	case 8:
608 		map->format.format_reg = regmap_format_8;
609 		break;
610 
611 	case 16:
612 		switch (reg_endian) {
613 		case REGMAP_ENDIAN_BIG:
614 			map->format.format_reg = regmap_format_16_be;
615 			break;
616 		case REGMAP_ENDIAN_NATIVE:
617 			map->format.format_reg = regmap_format_16_native;
618 			break;
619 		default:
620 			goto err_map;
621 		}
622 		break;
623 
624 	case 24:
625 		if (reg_endian != REGMAP_ENDIAN_BIG)
626 			goto err_map;
627 		map->format.format_reg = regmap_format_24;
628 		break;
629 
630 	case 32:
631 		switch (reg_endian) {
632 		case REGMAP_ENDIAN_BIG:
633 			map->format.format_reg = regmap_format_32_be;
634 			break;
635 		case REGMAP_ENDIAN_NATIVE:
636 			map->format.format_reg = regmap_format_32_native;
637 			break;
638 		default:
639 			goto err_map;
640 		}
641 		break;
642 
643 	default:
644 		goto err_map;
645 	}
646 
647 	if (val_endian == REGMAP_ENDIAN_NATIVE)
648 		map->format.parse_inplace = regmap_parse_inplace_noop;
649 
650 	switch (config->val_bits) {
651 	case 8:
652 		map->format.format_val = regmap_format_8;
653 		map->format.parse_val = regmap_parse_8;
654 		map->format.parse_inplace = regmap_parse_inplace_noop;
655 		break;
656 	case 16:
657 		switch (val_endian) {
658 		case REGMAP_ENDIAN_BIG:
659 			map->format.format_val = regmap_format_16_be;
660 			map->format.parse_val = regmap_parse_16_be;
661 			map->format.parse_inplace = regmap_parse_16_be_inplace;
662 			break;
663 		case REGMAP_ENDIAN_LITTLE:
664 			map->format.format_val = regmap_format_16_le;
665 			map->format.parse_val = regmap_parse_16_le;
666 			map->format.parse_inplace = regmap_parse_16_le_inplace;
667 			break;
668 		case REGMAP_ENDIAN_NATIVE:
669 			map->format.format_val = regmap_format_16_native;
670 			map->format.parse_val = regmap_parse_16_native;
671 			break;
672 		default:
673 			goto err_map;
674 		}
675 		break;
676 	case 24:
677 		if (val_endian != REGMAP_ENDIAN_BIG)
678 			goto err_map;
679 		map->format.format_val = regmap_format_24;
680 		map->format.parse_val = regmap_parse_24;
681 		break;
682 	case 32:
683 		switch (val_endian) {
684 		case REGMAP_ENDIAN_BIG:
685 			map->format.format_val = regmap_format_32_be;
686 			map->format.parse_val = regmap_parse_32_be;
687 			map->format.parse_inplace = regmap_parse_32_be_inplace;
688 			break;
689 		case REGMAP_ENDIAN_LITTLE:
690 			map->format.format_val = regmap_format_32_le;
691 			map->format.parse_val = regmap_parse_32_le;
692 			map->format.parse_inplace = regmap_parse_32_le_inplace;
693 			break;
694 		case REGMAP_ENDIAN_NATIVE:
695 			map->format.format_val = regmap_format_32_native;
696 			map->format.parse_val = regmap_parse_32_native;
697 			break;
698 		default:
699 			goto err_map;
700 		}
701 		break;
702 	}
703 
704 	if (map->format.format_write) {
705 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
706 		    (val_endian != REGMAP_ENDIAN_BIG))
707 			goto err_map;
708 		map->use_single_rw = true;
709 	}
710 
711 	if (!map->format.format_write &&
712 	    !(map->format.format_reg && map->format.format_val))
713 		goto err_map;
714 
715 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
716 	if (map->work_buf == NULL) {
717 		ret = -ENOMEM;
718 		goto err_map;
719 	}
720 
721 	if (map->format.format_write) {
722 		map->defer_caching = false;
723 		map->reg_write = _regmap_bus_formatted_write;
724 	} else if (map->format.format_val) {
725 		map->defer_caching = true;
726 		map->reg_write = _regmap_bus_raw_write;
727 	}
728 
729 skip_format_initialization:
730 
731 	map->range_tree = RB_ROOT;
732 	for (i = 0; i < config->num_ranges; i++) {
733 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
734 		struct regmap_range_node *new;
735 
736 		/* Sanity check */
737 		if (range_cfg->range_max < range_cfg->range_min) {
738 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
739 				range_cfg->range_max, range_cfg->range_min);
740 			goto err_range;
741 		}
742 
743 		if (range_cfg->range_max > map->max_register) {
744 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
745 				range_cfg->range_max, map->max_register);
746 			goto err_range;
747 		}
748 
749 		if (range_cfg->selector_reg > map->max_register) {
750 			dev_err(map->dev,
751 				"Invalid range %d: selector out of map\n", i);
752 			goto err_range;
753 		}
754 
755 		if (range_cfg->window_len == 0) {
756 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
757 				i);
758 			goto err_range;
759 		}
760 
761 		/* Make sure, that this register range has no selector
762 		   or data window within its boundary */
763 		for (j = 0; j < config->num_ranges; j++) {
764 			unsigned sel_reg = config->ranges[j].selector_reg;
765 			unsigned win_min = config->ranges[j].window_start;
766 			unsigned win_max = win_min +
767 					   config->ranges[j].window_len - 1;
768 
769 			/* Allow data window inside its own virtual range */
770 			if (j == i)
771 				continue;
772 
773 			if (range_cfg->range_min <= sel_reg &&
774 			    sel_reg <= range_cfg->range_max) {
775 				dev_err(map->dev,
776 					"Range %d: selector for %d in window\n",
777 					i, j);
778 				goto err_range;
779 			}
780 
781 			if (!(win_max < range_cfg->range_min ||
782 			      win_min > range_cfg->range_max)) {
783 				dev_err(map->dev,
784 					"Range %d: window for %d in window\n",
785 					i, j);
786 				goto err_range;
787 			}
788 		}
789 
790 		new = kzalloc(sizeof(*new), GFP_KERNEL);
791 		if (new == NULL) {
792 			ret = -ENOMEM;
793 			goto err_range;
794 		}
795 
796 		new->map = map;
797 		new->name = range_cfg->name;
798 		new->range_min = range_cfg->range_min;
799 		new->range_max = range_cfg->range_max;
800 		new->selector_reg = range_cfg->selector_reg;
801 		new->selector_mask = range_cfg->selector_mask;
802 		new->selector_shift = range_cfg->selector_shift;
803 		new->window_start = range_cfg->window_start;
804 		new->window_len = range_cfg->window_len;
805 
806 		if (!_regmap_range_add(map, new)) {
807 			dev_err(map->dev, "Failed to add range %d\n", i);
808 			kfree(new);
809 			goto err_range;
810 		}
811 
812 		if (map->selector_work_buf == NULL) {
813 			map->selector_work_buf =
814 				kzalloc(map->format.buf_size, GFP_KERNEL);
815 			if (map->selector_work_buf == NULL) {
816 				ret = -ENOMEM;
817 				goto err_range;
818 			}
819 		}
820 	}
821 
822 	ret = regcache_init(map, config);
823 	if (ret != 0)
824 		goto err_range;
825 
826 	if (dev) {
827 		ret = regmap_attach_dev(dev, map, config);
828 		if (ret != 0)
829 			goto err_regcache;
830 	}
831 
832 	return map;
833 
834 err_regcache:
835 	regcache_exit(map);
836 err_range:
837 	regmap_range_exit(map);
838 	kfree(map->work_buf);
839 err_map:
840 	kfree(map);
841 err:
842 	return ERR_PTR(ret);
843 }
844 EXPORT_SYMBOL_GPL(regmap_init);
845 
846 static void devm_regmap_release(struct device *dev, void *res)
847 {
848 	regmap_exit(*(struct regmap **)res);
849 }
850 
851 /**
852  * devm_regmap_init(): Initialise managed register map
853  *
854  * @dev: Device that will be interacted with
855  * @bus: Bus-specific callbacks to use with device
856  * @bus_context: Data passed to bus-specific callbacks
857  * @config: Configuration for register map
858  *
859  * The return value will be an ERR_PTR() on error or a valid pointer
860  * to a struct regmap.  This function should generally not be called
861  * directly, it should be called by bus-specific init functions.  The
862  * map will be automatically freed by the device management code.
863  */
864 struct regmap *devm_regmap_init(struct device *dev,
865 				const struct regmap_bus *bus,
866 				void *bus_context,
867 				const struct regmap_config *config)
868 {
869 	struct regmap **ptr, *regmap;
870 
871 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
872 	if (!ptr)
873 		return ERR_PTR(-ENOMEM);
874 
875 	regmap = regmap_init(dev, bus, bus_context, config);
876 	if (!IS_ERR(regmap)) {
877 		*ptr = regmap;
878 		devres_add(dev, ptr);
879 	} else {
880 		devres_free(ptr);
881 	}
882 
883 	return regmap;
884 }
885 EXPORT_SYMBOL_GPL(devm_regmap_init);
886 
887 static void regmap_field_init(struct regmap_field *rm_field,
888 	struct regmap *regmap, struct reg_field reg_field)
889 {
890 	int field_bits = reg_field.msb - reg_field.lsb + 1;
891 	rm_field->regmap = regmap;
892 	rm_field->reg = reg_field.reg;
893 	rm_field->shift = reg_field.lsb;
894 	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
895 	rm_field->id_size = reg_field.id_size;
896 	rm_field->id_offset = reg_field.id_offset;
897 }
898 
899 /**
900  * devm_regmap_field_alloc(): Allocate and initialise a register field
901  * in a register map.
902  *
903  * @dev: Device that will be interacted with
904  * @regmap: regmap bank in which this register field is located.
905  * @reg_field: Register field with in the bank.
906  *
907  * The return value will be an ERR_PTR() on error or a valid pointer
908  * to a struct regmap_field. The regmap_field will be automatically freed
909  * by the device management code.
910  */
911 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
912 		struct regmap *regmap, struct reg_field reg_field)
913 {
914 	struct regmap_field *rm_field = devm_kzalloc(dev,
915 					sizeof(*rm_field), GFP_KERNEL);
916 	if (!rm_field)
917 		return ERR_PTR(-ENOMEM);
918 
919 	regmap_field_init(rm_field, regmap, reg_field);
920 
921 	return rm_field;
922 
923 }
924 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
925 
926 /**
927  * devm_regmap_field_free(): Free register field allocated using
928  * devm_regmap_field_alloc. Usally drivers need not call this function,
929  * as the memory allocated via devm will be freed as per device-driver
930  * life-cyle.
931  *
932  * @dev: Device that will be interacted with
933  * @field: regmap field which should be freed.
934  */
935 void devm_regmap_field_free(struct device *dev,
936 	struct regmap_field *field)
937 {
938 	devm_kfree(dev, field);
939 }
940 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
941 
942 /**
943  * regmap_field_alloc(): Allocate and initialise a register field
944  * in a register map.
945  *
946  * @regmap: regmap bank in which this register field is located.
947  * @reg_field: Register field with in the bank.
948  *
949  * The return value will be an ERR_PTR() on error or a valid pointer
950  * to a struct regmap_field. The regmap_field should be freed by the
951  * user once its finished working with it using regmap_field_free().
952  */
953 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
954 		struct reg_field reg_field)
955 {
956 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
957 
958 	if (!rm_field)
959 		return ERR_PTR(-ENOMEM);
960 
961 	regmap_field_init(rm_field, regmap, reg_field);
962 
963 	return rm_field;
964 }
965 EXPORT_SYMBOL_GPL(regmap_field_alloc);
966 
967 /**
968  * regmap_field_free(): Free register field allocated using regmap_field_alloc
969  *
970  * @field: regmap field which should be freed.
971  */
972 void regmap_field_free(struct regmap_field *field)
973 {
974 	kfree(field);
975 }
976 EXPORT_SYMBOL_GPL(regmap_field_free);
977 
978 /**
979  * regmap_reinit_cache(): Reinitialise the current register cache
980  *
981  * @map: Register map to operate on.
982  * @config: New configuration.  Only the cache data will be used.
983  *
984  * Discard any existing register cache for the map and initialize a
985  * new cache.  This can be used to restore the cache to defaults or to
986  * update the cache configuration to reflect runtime discovery of the
987  * hardware.
988  *
989  * No explicit locking is done here, the user needs to ensure that
990  * this function will not race with other calls to regmap.
991  */
992 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
993 {
994 	regcache_exit(map);
995 	regmap_debugfs_exit(map);
996 
997 	map->max_register = config->max_register;
998 	map->writeable_reg = config->writeable_reg;
999 	map->readable_reg = config->readable_reg;
1000 	map->volatile_reg = config->volatile_reg;
1001 	map->precious_reg = config->precious_reg;
1002 	map->cache_type = config->cache_type;
1003 
1004 	regmap_debugfs_init(map, config->name);
1005 
1006 	map->cache_bypass = false;
1007 	map->cache_only = false;
1008 
1009 	return regcache_init(map, config);
1010 }
1011 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1012 
1013 /**
1014  * regmap_exit(): Free a previously allocated register map
1015  */
1016 void regmap_exit(struct regmap *map)
1017 {
1018 	struct regmap_async *async;
1019 
1020 	regcache_exit(map);
1021 	regmap_debugfs_exit(map);
1022 	regmap_range_exit(map);
1023 	if (map->bus && map->bus->free_context)
1024 		map->bus->free_context(map->bus_context);
1025 	kfree(map->work_buf);
1026 	while (!list_empty(&map->async_free)) {
1027 		async = list_first_entry_or_null(&map->async_free,
1028 						 struct regmap_async,
1029 						 list);
1030 		list_del(&async->list);
1031 		kfree(async->work_buf);
1032 		kfree(async);
1033 	}
1034 	kfree(map);
1035 }
1036 EXPORT_SYMBOL_GPL(regmap_exit);
1037 
1038 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1039 {
1040 	struct regmap **r = res;
1041 	if (!r || !*r) {
1042 		WARN_ON(!r || !*r);
1043 		return 0;
1044 	}
1045 
1046 	/* If the user didn't specify a name match any */
1047 	if (data)
1048 		return (*r)->name == data;
1049 	else
1050 		return 1;
1051 }
1052 
1053 /**
1054  * dev_get_regmap(): Obtain the regmap (if any) for a device
1055  *
1056  * @dev: Device to retrieve the map for
1057  * @name: Optional name for the register map, usually NULL.
1058  *
1059  * Returns the regmap for the device if one is present, or NULL.  If
1060  * name is specified then it must match the name specified when
1061  * registering the device, if it is NULL then the first regmap found
1062  * will be used.  Devices with multiple register maps are very rare,
1063  * generic code should normally not need to specify a name.
1064  */
1065 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1066 {
1067 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1068 					dev_get_regmap_match, (void *)name);
1069 
1070 	if (!r)
1071 		return NULL;
1072 	return *r;
1073 }
1074 EXPORT_SYMBOL_GPL(dev_get_regmap);
1075 
1076 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1077 			       struct regmap_range_node *range,
1078 			       unsigned int val_num)
1079 {
1080 	void *orig_work_buf;
1081 	unsigned int win_offset;
1082 	unsigned int win_page;
1083 	bool page_chg;
1084 	int ret;
1085 
1086 	win_offset = (*reg - range->range_min) % range->window_len;
1087 	win_page = (*reg - range->range_min) / range->window_len;
1088 
1089 	if (val_num > 1) {
1090 		/* Bulk write shouldn't cross range boundary */
1091 		if (*reg + val_num - 1 > range->range_max)
1092 			return -EINVAL;
1093 
1094 		/* ... or single page boundary */
1095 		if (val_num > range->window_len - win_offset)
1096 			return -EINVAL;
1097 	}
1098 
1099 	/* It is possible to have selector register inside data window.
1100 	   In that case, selector register is located on every page and
1101 	   it needs no page switching, when accessed alone. */
1102 	if (val_num > 1 ||
1103 	    range->window_start + win_offset != range->selector_reg) {
1104 		/* Use separate work_buf during page switching */
1105 		orig_work_buf = map->work_buf;
1106 		map->work_buf = map->selector_work_buf;
1107 
1108 		ret = _regmap_update_bits(map, range->selector_reg,
1109 					  range->selector_mask,
1110 					  win_page << range->selector_shift,
1111 					  &page_chg);
1112 
1113 		map->work_buf = orig_work_buf;
1114 
1115 		if (ret != 0)
1116 			return ret;
1117 	}
1118 
1119 	*reg = range->window_start + win_offset;
1120 
1121 	return 0;
1122 }
1123 
1124 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1125 		      const void *val, size_t val_len)
1126 {
1127 	struct regmap_range_node *range;
1128 	unsigned long flags;
1129 	u8 *u8 = map->work_buf;
1130 	void *work_val = map->work_buf + map->format.reg_bytes +
1131 		map->format.pad_bytes;
1132 	void *buf;
1133 	int ret = -ENOTSUPP;
1134 	size_t len;
1135 	int i;
1136 
1137 	WARN_ON(!map->bus);
1138 
1139 	/* Check for unwritable registers before we start */
1140 	if (map->writeable_reg)
1141 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1142 			if (!map->writeable_reg(map->dev,
1143 						reg + (i * map->reg_stride)))
1144 				return -EINVAL;
1145 
1146 	if (!map->cache_bypass && map->format.parse_val) {
1147 		unsigned int ival;
1148 		int val_bytes = map->format.val_bytes;
1149 		for (i = 0; i < val_len / val_bytes; i++) {
1150 			ival = map->format.parse_val(val + (i * val_bytes));
1151 			ret = regcache_write(map, reg + (i * map->reg_stride),
1152 					     ival);
1153 			if (ret) {
1154 				dev_err(map->dev,
1155 					"Error in caching of register: %x ret: %d\n",
1156 					reg + i, ret);
1157 				return ret;
1158 			}
1159 		}
1160 		if (map->cache_only) {
1161 			map->cache_dirty = true;
1162 			return 0;
1163 		}
1164 	}
1165 
1166 	range = _regmap_range_lookup(map, reg);
1167 	if (range) {
1168 		int val_num = val_len / map->format.val_bytes;
1169 		int win_offset = (reg - range->range_min) % range->window_len;
1170 		int win_residue = range->window_len - win_offset;
1171 
1172 		/* If the write goes beyond the end of the window split it */
1173 		while (val_num > win_residue) {
1174 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1175 				win_residue, val_len / map->format.val_bytes);
1176 			ret = _regmap_raw_write(map, reg, val, win_residue *
1177 						map->format.val_bytes);
1178 			if (ret != 0)
1179 				return ret;
1180 
1181 			reg += win_residue;
1182 			val_num -= win_residue;
1183 			val += win_residue * map->format.val_bytes;
1184 			val_len -= win_residue * map->format.val_bytes;
1185 
1186 			win_offset = (reg - range->range_min) %
1187 				range->window_len;
1188 			win_residue = range->window_len - win_offset;
1189 		}
1190 
1191 		ret = _regmap_select_page(map, &reg, range, val_num);
1192 		if (ret != 0)
1193 			return ret;
1194 	}
1195 
1196 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1197 
1198 	u8[0] |= map->write_flag_mask;
1199 
1200 	/*
1201 	 * Essentially all I/O mechanisms will be faster with a single
1202 	 * buffer to write.  Since register syncs often generate raw
1203 	 * writes of single registers optimise that case.
1204 	 */
1205 	if (val != work_val && val_len == map->format.val_bytes) {
1206 		memcpy(work_val, val, map->format.val_bytes);
1207 		val = work_val;
1208 	}
1209 
1210 	if (map->async && map->bus->async_write) {
1211 		struct regmap_async *async;
1212 
1213 		trace_regmap_async_write_start(map->dev, reg, val_len);
1214 
1215 		spin_lock_irqsave(&map->async_lock, flags);
1216 		async = list_first_entry_or_null(&map->async_free,
1217 						 struct regmap_async,
1218 						 list);
1219 		if (async)
1220 			list_del(&async->list);
1221 		spin_unlock_irqrestore(&map->async_lock, flags);
1222 
1223 		if (!async) {
1224 			async = map->bus->async_alloc();
1225 			if (!async)
1226 				return -ENOMEM;
1227 
1228 			async->work_buf = kzalloc(map->format.buf_size,
1229 						  GFP_KERNEL | GFP_DMA);
1230 			if (!async->work_buf) {
1231 				kfree(async);
1232 				return -ENOMEM;
1233 			}
1234 		}
1235 
1236 		async->map = map;
1237 
1238 		/* If the caller supplied the value we can use it safely. */
1239 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1240 		       map->format.reg_bytes + map->format.val_bytes);
1241 
1242 		spin_lock_irqsave(&map->async_lock, flags);
1243 		list_add_tail(&async->list, &map->async_list);
1244 		spin_unlock_irqrestore(&map->async_lock, flags);
1245 
1246 		if (val != work_val)
1247 			ret = map->bus->async_write(map->bus_context,
1248 						    async->work_buf,
1249 						    map->format.reg_bytes +
1250 						    map->format.pad_bytes,
1251 						    val, val_len, async);
1252 		else
1253 			ret = map->bus->async_write(map->bus_context,
1254 						    async->work_buf,
1255 						    map->format.reg_bytes +
1256 						    map->format.pad_bytes +
1257 						    val_len, NULL, 0, async);
1258 
1259 		if (ret != 0) {
1260 			dev_err(map->dev, "Failed to schedule write: %d\n",
1261 				ret);
1262 
1263 			spin_lock_irqsave(&map->async_lock, flags);
1264 			list_move(&async->list, &map->async_free);
1265 			spin_unlock_irqrestore(&map->async_lock, flags);
1266 		}
1267 
1268 		return ret;
1269 	}
1270 
1271 	trace_regmap_hw_write_start(map->dev, reg,
1272 				    val_len / map->format.val_bytes);
1273 
1274 	/* If we're doing a single register write we can probably just
1275 	 * send the work_buf directly, otherwise try to do a gather
1276 	 * write.
1277 	 */
1278 	if (val == work_val)
1279 		ret = map->bus->write(map->bus_context, map->work_buf,
1280 				      map->format.reg_bytes +
1281 				      map->format.pad_bytes +
1282 				      val_len);
1283 	else if (map->bus->gather_write)
1284 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1285 					     map->format.reg_bytes +
1286 					     map->format.pad_bytes,
1287 					     val, val_len);
1288 
1289 	/* If that didn't work fall back on linearising by hand. */
1290 	if (ret == -ENOTSUPP) {
1291 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1292 		buf = kzalloc(len, GFP_KERNEL);
1293 		if (!buf)
1294 			return -ENOMEM;
1295 
1296 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1297 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1298 		       val, val_len);
1299 		ret = map->bus->write(map->bus_context, buf, len);
1300 
1301 		kfree(buf);
1302 	}
1303 
1304 	trace_regmap_hw_write_done(map->dev, reg,
1305 				   val_len / map->format.val_bytes);
1306 
1307 	return ret;
1308 }
1309 
1310 /**
1311  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1312  *
1313  * @map: Map to check.
1314  */
1315 bool regmap_can_raw_write(struct regmap *map)
1316 {
1317 	return map->bus && map->format.format_val && map->format.format_reg;
1318 }
1319 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1320 
1321 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1322 				       unsigned int val)
1323 {
1324 	int ret;
1325 	struct regmap_range_node *range;
1326 	struct regmap *map = context;
1327 
1328 	WARN_ON(!map->bus || !map->format.format_write);
1329 
1330 	range = _regmap_range_lookup(map, reg);
1331 	if (range) {
1332 		ret = _regmap_select_page(map, &reg, range, 1);
1333 		if (ret != 0)
1334 			return ret;
1335 	}
1336 
1337 	map->format.format_write(map, reg, val);
1338 
1339 	trace_regmap_hw_write_start(map->dev, reg, 1);
1340 
1341 	ret = map->bus->write(map->bus_context, map->work_buf,
1342 			      map->format.buf_size);
1343 
1344 	trace_regmap_hw_write_done(map->dev, reg, 1);
1345 
1346 	return ret;
1347 }
1348 
1349 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1350 				 unsigned int val)
1351 {
1352 	struct regmap *map = context;
1353 
1354 	return map->bus->reg_write(map->bus_context, reg, val);
1355 }
1356 
1357 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1358 				 unsigned int val)
1359 {
1360 	struct regmap *map = context;
1361 
1362 	WARN_ON(!map->bus || !map->format.format_val);
1363 
1364 	map->format.format_val(map->work_buf + map->format.reg_bytes
1365 			       + map->format.pad_bytes, val, 0);
1366 	return _regmap_raw_write(map, reg,
1367 				 map->work_buf +
1368 				 map->format.reg_bytes +
1369 				 map->format.pad_bytes,
1370 				 map->format.val_bytes);
1371 }
1372 
1373 static inline void *_regmap_map_get_context(struct regmap *map)
1374 {
1375 	return (map->bus) ? map : map->bus_context;
1376 }
1377 
1378 int _regmap_write(struct regmap *map, unsigned int reg,
1379 		  unsigned int val)
1380 {
1381 	int ret;
1382 	void *context = _regmap_map_get_context(map);
1383 
1384 	if (!regmap_writeable(map, reg))
1385 		return -EIO;
1386 
1387 	if (!map->cache_bypass && !map->defer_caching) {
1388 		ret = regcache_write(map, reg, val);
1389 		if (ret != 0)
1390 			return ret;
1391 		if (map->cache_only) {
1392 			map->cache_dirty = true;
1393 			return 0;
1394 		}
1395 	}
1396 
1397 #ifdef LOG_DEVICE
1398 	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1399 		dev_info(map->dev, "%x <= %x\n", reg, val);
1400 #endif
1401 
1402 	trace_regmap_reg_write(map->dev, reg, val);
1403 
1404 	return map->reg_write(context, reg, val);
1405 }
1406 
1407 /**
1408  * regmap_write(): Write a value to a single register
1409  *
1410  * @map: Register map to write to
1411  * @reg: Register to write to
1412  * @val: Value to be written
1413  *
1414  * A value of zero will be returned on success, a negative errno will
1415  * be returned in error cases.
1416  */
1417 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1418 {
1419 	int ret;
1420 
1421 	if (reg % map->reg_stride)
1422 		return -EINVAL;
1423 
1424 	map->lock(map->lock_arg);
1425 
1426 	ret = _regmap_write(map, reg, val);
1427 
1428 	map->unlock(map->lock_arg);
1429 
1430 	return ret;
1431 }
1432 EXPORT_SYMBOL_GPL(regmap_write);
1433 
1434 /**
1435  * regmap_write_async(): Write a value to a single register asynchronously
1436  *
1437  * @map: Register map to write to
1438  * @reg: Register to write to
1439  * @val: Value to be written
1440  *
1441  * A value of zero will be returned on success, a negative errno will
1442  * be returned in error cases.
1443  */
1444 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1445 {
1446 	int ret;
1447 
1448 	if (reg % map->reg_stride)
1449 		return -EINVAL;
1450 
1451 	map->lock(map->lock_arg);
1452 
1453 	map->async = true;
1454 
1455 	ret = _regmap_write(map, reg, val);
1456 
1457 	map->async = false;
1458 
1459 	map->unlock(map->lock_arg);
1460 
1461 	return ret;
1462 }
1463 EXPORT_SYMBOL_GPL(regmap_write_async);
1464 
1465 /**
1466  * regmap_raw_write(): Write raw values to one or more registers
1467  *
1468  * @map: Register map to write to
1469  * @reg: Initial register to write to
1470  * @val: Block of data to be written, laid out for direct transmission to the
1471  *       device
1472  * @val_len: Length of data pointed to by val.
1473  *
1474  * This function is intended to be used for things like firmware
1475  * download where a large block of data needs to be transferred to the
1476  * device.  No formatting will be done on the data provided.
1477  *
1478  * A value of zero will be returned on success, a negative errno will
1479  * be returned in error cases.
1480  */
1481 int regmap_raw_write(struct regmap *map, unsigned int reg,
1482 		     const void *val, size_t val_len)
1483 {
1484 	int ret;
1485 
1486 	if (!regmap_can_raw_write(map))
1487 		return -EINVAL;
1488 	if (val_len % map->format.val_bytes)
1489 		return -EINVAL;
1490 
1491 	map->lock(map->lock_arg);
1492 
1493 	ret = _regmap_raw_write(map, reg, val, val_len);
1494 
1495 	map->unlock(map->lock_arg);
1496 
1497 	return ret;
1498 }
1499 EXPORT_SYMBOL_GPL(regmap_raw_write);
1500 
1501 /**
1502  * regmap_field_write(): Write a value to a single register field
1503  *
1504  * @field: Register field to write to
1505  * @val: Value to be written
1506  *
1507  * A value of zero will be returned on success, a negative errno will
1508  * be returned in error cases.
1509  */
1510 int regmap_field_write(struct regmap_field *field, unsigned int val)
1511 {
1512 	return regmap_update_bits(field->regmap, field->reg,
1513 				field->mask, val << field->shift);
1514 }
1515 EXPORT_SYMBOL_GPL(regmap_field_write);
1516 
1517 /**
1518  * regmap_field_update_bits():	Perform a read/modify/write cycle
1519  *                              on the register field
1520  *
1521  * @field: Register field to write to
1522  * @mask: Bitmask to change
1523  * @val: Value to be written
1524  *
1525  * A value of zero will be returned on success, a negative errno will
1526  * be returned in error cases.
1527  */
1528 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1529 {
1530 	mask = (mask << field->shift) & field->mask;
1531 
1532 	return regmap_update_bits(field->regmap, field->reg,
1533 				  mask, val << field->shift);
1534 }
1535 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1536 
1537 /**
1538  * regmap_fields_write(): Write a value to a single register field with port ID
1539  *
1540  * @field: Register field to write to
1541  * @id: port ID
1542  * @val: Value to be written
1543  *
1544  * A value of zero will be returned on success, a negative errno will
1545  * be returned in error cases.
1546  */
1547 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1548 			unsigned int val)
1549 {
1550 	if (id >= field->id_size)
1551 		return -EINVAL;
1552 
1553 	return regmap_update_bits(field->regmap,
1554 				  field->reg + (field->id_offset * id),
1555 				  field->mask, val << field->shift);
1556 }
1557 EXPORT_SYMBOL_GPL(regmap_fields_write);
1558 
1559 /**
1560  * regmap_fields_update_bits():	Perform a read/modify/write cycle
1561  *                              on the register field
1562  *
1563  * @field: Register field to write to
1564  * @id: port ID
1565  * @mask: Bitmask to change
1566  * @val: Value to be written
1567  *
1568  * A value of zero will be returned on success, a negative errno will
1569  * be returned in error cases.
1570  */
1571 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1572 			      unsigned int mask, unsigned int val)
1573 {
1574 	if (id >= field->id_size)
1575 		return -EINVAL;
1576 
1577 	mask = (mask << field->shift) & field->mask;
1578 
1579 	return regmap_update_bits(field->regmap,
1580 				  field->reg + (field->id_offset * id),
1581 				  mask, val << field->shift);
1582 }
1583 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1584 
1585 /*
1586  * regmap_bulk_write(): Write multiple registers to the device
1587  *
1588  * @map: Register map to write to
1589  * @reg: First register to be write from
1590  * @val: Block of data to be written, in native register size for device
1591  * @val_count: Number of registers to write
1592  *
1593  * This function is intended to be used for writing a large block of
1594  * data to the device either in single transfer or multiple transfer.
1595  *
1596  * A value of zero will be returned on success, a negative errno will
1597  * be returned in error cases.
1598  */
1599 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1600 		     size_t val_count)
1601 {
1602 	int ret = 0, i;
1603 	size_t val_bytes = map->format.val_bytes;
1604 
1605 	if (map->bus && !map->format.parse_inplace)
1606 		return -EINVAL;
1607 	if (reg % map->reg_stride)
1608 		return -EINVAL;
1609 
1610 	/*
1611 	 * Some devices don't support bulk write, for
1612 	 * them we have a series of single write operations.
1613 	 */
1614 	if (!map->bus || map->use_single_rw) {
1615 		map->lock(map->lock_arg);
1616 		for (i = 0; i < val_count; i++) {
1617 			unsigned int ival;
1618 
1619 			switch (val_bytes) {
1620 			case 1:
1621 				ival = *(u8 *)(val + (i * val_bytes));
1622 				break;
1623 			case 2:
1624 				ival = *(u16 *)(val + (i * val_bytes));
1625 				break;
1626 			case 4:
1627 				ival = *(u32 *)(val + (i * val_bytes));
1628 				break;
1629 #ifdef CONFIG_64BIT
1630 			case 8:
1631 				ival = *(u64 *)(val + (i * val_bytes));
1632 				break;
1633 #endif
1634 			default:
1635 				ret = -EINVAL;
1636 				goto out;
1637 			}
1638 
1639 			ret = _regmap_write(map, reg + (i * map->reg_stride),
1640 					ival);
1641 			if (ret != 0)
1642 				goto out;
1643 		}
1644 out:
1645 		map->unlock(map->lock_arg);
1646 	} else {
1647 		void *wval;
1648 
1649 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1650 		if (!wval) {
1651 			dev_err(map->dev, "Error in memory allocation\n");
1652 			return -ENOMEM;
1653 		}
1654 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1655 			map->format.parse_inplace(wval + i);
1656 
1657 		map->lock(map->lock_arg);
1658 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1659 		map->unlock(map->lock_arg);
1660 
1661 		kfree(wval);
1662 	}
1663 	return ret;
1664 }
1665 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1666 
1667 /*
1668  * _regmap_raw_multi_reg_write()
1669  *
1670  * the (register,newvalue) pairs in regs have not been formatted, but
1671  * they are all in the same page and have been changed to being page
1672  * relative. The page register has been written if that was neccessary.
1673  */
1674 static int _regmap_raw_multi_reg_write(struct regmap *map,
1675 				       const struct reg_default *regs,
1676 				       size_t num_regs)
1677 {
1678 	int ret;
1679 	void *buf;
1680 	int i;
1681 	u8 *u8;
1682 	size_t val_bytes = map->format.val_bytes;
1683 	size_t reg_bytes = map->format.reg_bytes;
1684 	size_t pad_bytes = map->format.pad_bytes;
1685 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1686 	size_t len = pair_size * num_regs;
1687 
1688 	if (!len)
1689 		return -EINVAL;
1690 
1691 	buf = kzalloc(len, GFP_KERNEL);
1692 	if (!buf)
1693 		return -ENOMEM;
1694 
1695 	/* We have to linearise by hand. */
1696 
1697 	u8 = buf;
1698 
1699 	for (i = 0; i < num_regs; i++) {
1700 		int reg = regs[i].reg;
1701 		int val = regs[i].def;
1702 		trace_regmap_hw_write_start(map->dev, reg, 1);
1703 		map->format.format_reg(u8, reg, map->reg_shift);
1704 		u8 += reg_bytes + pad_bytes;
1705 		map->format.format_val(u8, val, 0);
1706 		u8 += val_bytes;
1707 	}
1708 	u8 = buf;
1709 	*u8 |= map->write_flag_mask;
1710 
1711 	ret = map->bus->write(map->bus_context, buf, len);
1712 
1713 	kfree(buf);
1714 
1715 	for (i = 0; i < num_regs; i++) {
1716 		int reg = regs[i].reg;
1717 		trace_regmap_hw_write_done(map->dev, reg, 1);
1718 	}
1719 	return ret;
1720 }
1721 
1722 static unsigned int _regmap_register_page(struct regmap *map,
1723 					  unsigned int reg,
1724 					  struct regmap_range_node *range)
1725 {
1726 	unsigned int win_page = (reg - range->range_min) / range->window_len;
1727 
1728 	return win_page;
1729 }
1730 
1731 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1732 					       struct reg_default *regs,
1733 					       size_t num_regs)
1734 {
1735 	int ret;
1736 	int i, n;
1737 	struct reg_default *base;
1738 	unsigned int this_page = 0;
1739 	/*
1740 	 * the set of registers are not neccessarily in order, but
1741 	 * since the order of write must be preserved this algorithm
1742 	 * chops the set each time the page changes
1743 	 */
1744 	base = regs;
1745 	for (i = 0, n = 0; i < num_regs; i++, n++) {
1746 		unsigned int reg = regs[i].reg;
1747 		struct regmap_range_node *range;
1748 
1749 		range = _regmap_range_lookup(map, reg);
1750 		if (range) {
1751 			unsigned int win_page = _regmap_register_page(map, reg,
1752 								      range);
1753 
1754 			if (i == 0)
1755 				this_page = win_page;
1756 			if (win_page != this_page) {
1757 				this_page = win_page;
1758 				ret = _regmap_raw_multi_reg_write(map, base, n);
1759 				if (ret != 0)
1760 					return ret;
1761 				base += n;
1762 				n = 0;
1763 			}
1764 			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1765 			if (ret != 0)
1766 				return ret;
1767 		}
1768 	}
1769 	if (n > 0)
1770 		return _regmap_raw_multi_reg_write(map, base, n);
1771 	return 0;
1772 }
1773 
1774 static int _regmap_multi_reg_write(struct regmap *map,
1775 				   const struct reg_default *regs,
1776 				   size_t num_regs)
1777 {
1778 	int i;
1779 	int ret;
1780 
1781 	if (!map->can_multi_write) {
1782 		for (i = 0; i < num_regs; i++) {
1783 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1784 			if (ret != 0)
1785 				return ret;
1786 		}
1787 		return 0;
1788 	}
1789 
1790 	if (!map->format.parse_inplace)
1791 		return -EINVAL;
1792 
1793 	if (map->writeable_reg)
1794 		for (i = 0; i < num_regs; i++) {
1795 			int reg = regs[i].reg;
1796 			if (!map->writeable_reg(map->dev, reg))
1797 				return -EINVAL;
1798 			if (reg % map->reg_stride)
1799 				return -EINVAL;
1800 		}
1801 
1802 	if (!map->cache_bypass) {
1803 		for (i = 0; i < num_regs; i++) {
1804 			unsigned int val = regs[i].def;
1805 			unsigned int reg = regs[i].reg;
1806 			ret = regcache_write(map, reg, val);
1807 			if (ret) {
1808 				dev_err(map->dev,
1809 				"Error in caching of register: %x ret: %d\n",
1810 								reg, ret);
1811 				return ret;
1812 			}
1813 		}
1814 		if (map->cache_only) {
1815 			map->cache_dirty = true;
1816 			return 0;
1817 		}
1818 	}
1819 
1820 	WARN_ON(!map->bus);
1821 
1822 	for (i = 0; i < num_regs; i++) {
1823 		unsigned int reg = regs[i].reg;
1824 		struct regmap_range_node *range;
1825 		range = _regmap_range_lookup(map, reg);
1826 		if (range) {
1827 			size_t len = sizeof(struct reg_default)*num_regs;
1828 			struct reg_default *base = kmemdup(regs, len,
1829 							   GFP_KERNEL);
1830 			if (!base)
1831 				return -ENOMEM;
1832 			ret = _regmap_range_multi_paged_reg_write(map, base,
1833 								  num_regs);
1834 			kfree(base);
1835 
1836 			return ret;
1837 		}
1838 	}
1839 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1840 }
1841 
1842 /*
1843  * regmap_multi_reg_write(): Write multiple registers to the device
1844  *
1845  * where the set of register,value pairs are supplied in any order,
1846  * possibly not all in a single range.
1847  *
1848  * @map: Register map to write to
1849  * @regs: Array of structures containing register,value to be written
1850  * @num_regs: Number of registers to write
1851  *
1852  * The 'normal' block write mode will send ultimately send data on the
1853  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1854  * addressed. However, this alternative block multi write mode will send
1855  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1856  * must of course support the mode.
1857  *
1858  * A value of zero will be returned on success, a negative errno will be
1859  * returned in error cases.
1860  */
1861 int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1862 			   int num_regs)
1863 {
1864 	int ret;
1865 
1866 	map->lock(map->lock_arg);
1867 
1868 	ret = _regmap_multi_reg_write(map, regs, num_regs);
1869 
1870 	map->unlock(map->lock_arg);
1871 
1872 	return ret;
1873 }
1874 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1875 
1876 /*
1877  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1878  *                                    device but not the cache
1879  *
1880  * where the set of register are supplied in any order
1881  *
1882  * @map: Register map to write to
1883  * @regs: Array of structures containing register,value to be written
1884  * @num_regs: Number of registers to write
1885  *
1886  * This function is intended to be used for writing a large block of data
1887  * atomically to the device in single transfer for those I2C client devices
1888  * that implement this alternative block write mode.
1889  *
1890  * A value of zero will be returned on success, a negative errno will
1891  * be returned in error cases.
1892  */
1893 int regmap_multi_reg_write_bypassed(struct regmap *map,
1894 				    const struct reg_default *regs,
1895 				    int num_regs)
1896 {
1897 	int ret;
1898 	bool bypass;
1899 
1900 	map->lock(map->lock_arg);
1901 
1902 	bypass = map->cache_bypass;
1903 	map->cache_bypass = true;
1904 
1905 	ret = _regmap_multi_reg_write(map, regs, num_regs);
1906 
1907 	map->cache_bypass = bypass;
1908 
1909 	map->unlock(map->lock_arg);
1910 
1911 	return ret;
1912 }
1913 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1914 
1915 /**
1916  * regmap_raw_write_async(): Write raw values to one or more registers
1917  *                           asynchronously
1918  *
1919  * @map: Register map to write to
1920  * @reg: Initial register to write to
1921  * @val: Block of data to be written, laid out for direct transmission to the
1922  *       device.  Must be valid until regmap_async_complete() is called.
1923  * @val_len: Length of data pointed to by val.
1924  *
1925  * This function is intended to be used for things like firmware
1926  * download where a large block of data needs to be transferred to the
1927  * device.  No formatting will be done on the data provided.
1928  *
1929  * If supported by the underlying bus the write will be scheduled
1930  * asynchronously, helping maximise I/O speed on higher speed buses
1931  * like SPI.  regmap_async_complete() can be called to ensure that all
1932  * asynchrnous writes have been completed.
1933  *
1934  * A value of zero will be returned on success, a negative errno will
1935  * be returned in error cases.
1936  */
1937 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1938 			   const void *val, size_t val_len)
1939 {
1940 	int ret;
1941 
1942 	if (val_len % map->format.val_bytes)
1943 		return -EINVAL;
1944 	if (reg % map->reg_stride)
1945 		return -EINVAL;
1946 
1947 	map->lock(map->lock_arg);
1948 
1949 	map->async = true;
1950 
1951 	ret = _regmap_raw_write(map, reg, val, val_len);
1952 
1953 	map->async = false;
1954 
1955 	map->unlock(map->lock_arg);
1956 
1957 	return ret;
1958 }
1959 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1960 
1961 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1962 			    unsigned int val_len)
1963 {
1964 	struct regmap_range_node *range;
1965 	u8 *u8 = map->work_buf;
1966 	int ret;
1967 
1968 	WARN_ON(!map->bus);
1969 
1970 	range = _regmap_range_lookup(map, reg);
1971 	if (range) {
1972 		ret = _regmap_select_page(map, &reg, range,
1973 					  val_len / map->format.val_bytes);
1974 		if (ret != 0)
1975 			return ret;
1976 	}
1977 
1978 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1979 
1980 	/*
1981 	 * Some buses or devices flag reads by setting the high bits in the
1982 	 * register addresss; since it's always the high bits for all
1983 	 * current formats we can do this here rather than in
1984 	 * formatting.  This may break if we get interesting formats.
1985 	 */
1986 	u8[0] |= map->read_flag_mask;
1987 
1988 	trace_regmap_hw_read_start(map->dev, reg,
1989 				   val_len / map->format.val_bytes);
1990 
1991 	ret = map->bus->read(map->bus_context, map->work_buf,
1992 			     map->format.reg_bytes + map->format.pad_bytes,
1993 			     val, val_len);
1994 
1995 	trace_regmap_hw_read_done(map->dev, reg,
1996 				  val_len / map->format.val_bytes);
1997 
1998 	return ret;
1999 }
2000 
2001 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2002 				unsigned int *val)
2003 {
2004 	struct regmap *map = context;
2005 
2006 	return map->bus->reg_read(map->bus_context, reg, val);
2007 }
2008 
2009 static int _regmap_bus_read(void *context, unsigned int reg,
2010 			    unsigned int *val)
2011 {
2012 	int ret;
2013 	struct regmap *map = context;
2014 
2015 	if (!map->format.parse_val)
2016 		return -EINVAL;
2017 
2018 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2019 	if (ret == 0)
2020 		*val = map->format.parse_val(map->work_buf);
2021 
2022 	return ret;
2023 }
2024 
2025 static int _regmap_read(struct regmap *map, unsigned int reg,
2026 			unsigned int *val)
2027 {
2028 	int ret;
2029 	void *context = _regmap_map_get_context(map);
2030 
2031 	WARN_ON(!map->reg_read);
2032 
2033 	if (!map->cache_bypass) {
2034 		ret = regcache_read(map, reg, val);
2035 		if (ret == 0)
2036 			return 0;
2037 	}
2038 
2039 	if (map->cache_only)
2040 		return -EBUSY;
2041 
2042 	if (!regmap_readable(map, reg))
2043 		return -EIO;
2044 
2045 	ret = map->reg_read(context, reg, val);
2046 	if (ret == 0) {
2047 #ifdef LOG_DEVICE
2048 		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2049 			dev_info(map->dev, "%x => %x\n", reg, *val);
2050 #endif
2051 
2052 		trace_regmap_reg_read(map->dev, reg, *val);
2053 
2054 		if (!map->cache_bypass)
2055 			regcache_write(map, reg, *val);
2056 	}
2057 
2058 	return ret;
2059 }
2060 
2061 /**
2062  * regmap_read(): Read a value from a single register
2063  *
2064  * @map: Register map to read from
2065  * @reg: Register to be read from
2066  * @val: Pointer to store read value
2067  *
2068  * A value of zero will be returned on success, a negative errno will
2069  * be returned in error cases.
2070  */
2071 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2072 {
2073 	int ret;
2074 
2075 	if (reg % map->reg_stride)
2076 		return -EINVAL;
2077 
2078 	map->lock(map->lock_arg);
2079 
2080 	ret = _regmap_read(map, reg, val);
2081 
2082 	map->unlock(map->lock_arg);
2083 
2084 	return ret;
2085 }
2086 EXPORT_SYMBOL_GPL(regmap_read);
2087 
2088 /**
2089  * regmap_raw_read(): Read raw data from the device
2090  *
2091  * @map: Register map to read from
2092  * @reg: First register to be read from
2093  * @val: Pointer to store read value
2094  * @val_len: Size of data to read
2095  *
2096  * A value of zero will be returned on success, a negative errno will
2097  * be returned in error cases.
2098  */
2099 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2100 		    size_t val_len)
2101 {
2102 	size_t val_bytes = map->format.val_bytes;
2103 	size_t val_count = val_len / val_bytes;
2104 	unsigned int v;
2105 	int ret, i;
2106 
2107 	if (!map->bus)
2108 		return -EINVAL;
2109 	if (val_len % map->format.val_bytes)
2110 		return -EINVAL;
2111 	if (reg % map->reg_stride)
2112 		return -EINVAL;
2113 
2114 	map->lock(map->lock_arg);
2115 
2116 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2117 	    map->cache_type == REGCACHE_NONE) {
2118 		/* Physical block read if there's no cache involved */
2119 		ret = _regmap_raw_read(map, reg, val, val_len);
2120 
2121 	} else {
2122 		/* Otherwise go word by word for the cache; should be low
2123 		 * cost as we expect to hit the cache.
2124 		 */
2125 		for (i = 0; i < val_count; i++) {
2126 			ret = _regmap_read(map, reg + (i * map->reg_stride),
2127 					   &v);
2128 			if (ret != 0)
2129 				goto out;
2130 
2131 			map->format.format_val(val + (i * val_bytes), v, 0);
2132 		}
2133 	}
2134 
2135  out:
2136 	map->unlock(map->lock_arg);
2137 
2138 	return ret;
2139 }
2140 EXPORT_SYMBOL_GPL(regmap_raw_read);
2141 
2142 /**
2143  * regmap_field_read(): Read a value to a single register field
2144  *
2145  * @field: Register field to read from
2146  * @val: Pointer to store read value
2147  *
2148  * A value of zero will be returned on success, a negative errno will
2149  * be returned in error cases.
2150  */
2151 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2152 {
2153 	int ret;
2154 	unsigned int reg_val;
2155 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2156 	if (ret != 0)
2157 		return ret;
2158 
2159 	reg_val &= field->mask;
2160 	reg_val >>= field->shift;
2161 	*val = reg_val;
2162 
2163 	return ret;
2164 }
2165 EXPORT_SYMBOL_GPL(regmap_field_read);
2166 
2167 /**
2168  * regmap_fields_read(): Read a value to a single register field with port ID
2169  *
2170  * @field: Register field to read from
2171  * @id: port ID
2172  * @val: Pointer to store read value
2173  *
2174  * A value of zero will be returned on success, a negative errno will
2175  * be returned in error cases.
2176  */
2177 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2178 		       unsigned int *val)
2179 {
2180 	int ret;
2181 	unsigned int reg_val;
2182 
2183 	if (id >= field->id_size)
2184 		return -EINVAL;
2185 
2186 	ret = regmap_read(field->regmap,
2187 			  field->reg + (field->id_offset * id),
2188 			  &reg_val);
2189 	if (ret != 0)
2190 		return ret;
2191 
2192 	reg_val &= field->mask;
2193 	reg_val >>= field->shift;
2194 	*val = reg_val;
2195 
2196 	return ret;
2197 }
2198 EXPORT_SYMBOL_GPL(regmap_fields_read);
2199 
2200 /**
2201  * regmap_bulk_read(): Read multiple registers from the device
2202  *
2203  * @map: Register map to read from
2204  * @reg: First register to be read from
2205  * @val: Pointer to store read value, in native register size for device
2206  * @val_count: Number of registers to read
2207  *
2208  * A value of zero will be returned on success, a negative errno will
2209  * be returned in error cases.
2210  */
2211 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2212 		     size_t val_count)
2213 {
2214 	int ret, i;
2215 	size_t val_bytes = map->format.val_bytes;
2216 	bool vol = regmap_volatile_range(map, reg, val_count);
2217 
2218 	if (reg % map->reg_stride)
2219 		return -EINVAL;
2220 
2221 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2222 		/*
2223 		 * Some devices does not support bulk read, for
2224 		 * them we have a series of single read operations.
2225 		 */
2226 		if (map->use_single_rw) {
2227 			for (i = 0; i < val_count; i++) {
2228 				ret = regmap_raw_read(map,
2229 						reg + (i * map->reg_stride),
2230 						val + (i * val_bytes),
2231 						val_bytes);
2232 				if (ret != 0)
2233 					return ret;
2234 			}
2235 		} else {
2236 			ret = regmap_raw_read(map, reg, val,
2237 					      val_bytes * val_count);
2238 			if (ret != 0)
2239 				return ret;
2240 		}
2241 
2242 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2243 			map->format.parse_inplace(val + i);
2244 	} else {
2245 		for (i = 0; i < val_count; i++) {
2246 			unsigned int ival;
2247 			ret = regmap_read(map, reg + (i * map->reg_stride),
2248 					  &ival);
2249 			if (ret != 0)
2250 				return ret;
2251 			memcpy(val + (i * val_bytes), &ival, val_bytes);
2252 		}
2253 	}
2254 
2255 	return 0;
2256 }
2257 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2258 
2259 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2260 			       unsigned int mask, unsigned int val,
2261 			       bool *change)
2262 {
2263 	int ret;
2264 	unsigned int tmp, orig;
2265 
2266 	ret = _regmap_read(map, reg, &orig);
2267 	if (ret != 0)
2268 		return ret;
2269 
2270 	tmp = orig & ~mask;
2271 	tmp |= val & mask;
2272 
2273 	if (tmp != orig) {
2274 		ret = _regmap_write(map, reg, tmp);
2275 		if (change)
2276 			*change = true;
2277 	} else {
2278 		if (change)
2279 			*change = false;
2280 	}
2281 
2282 	return ret;
2283 }
2284 
2285 /**
2286  * regmap_update_bits: Perform a read/modify/write cycle on the register map
2287  *
2288  * @map: Register map to update
2289  * @reg: Register to update
2290  * @mask: Bitmask to change
2291  * @val: New value for bitmask
2292  *
2293  * Returns zero for success, a negative number on error.
2294  */
2295 int regmap_update_bits(struct regmap *map, unsigned int reg,
2296 		       unsigned int mask, unsigned int val)
2297 {
2298 	int ret;
2299 
2300 	map->lock(map->lock_arg);
2301 	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2302 	map->unlock(map->lock_arg);
2303 
2304 	return ret;
2305 }
2306 EXPORT_SYMBOL_GPL(regmap_update_bits);
2307 
2308 /**
2309  * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2310  *                           map asynchronously
2311  *
2312  * @map: Register map to update
2313  * @reg: Register to update
2314  * @mask: Bitmask to change
2315  * @val: New value for bitmask
2316  *
2317  * With most buses the read must be done synchronously so this is most
2318  * useful for devices with a cache which do not need to interact with
2319  * the hardware to determine the current register value.
2320  *
2321  * Returns zero for success, a negative number on error.
2322  */
2323 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2324 			     unsigned int mask, unsigned int val)
2325 {
2326 	int ret;
2327 
2328 	map->lock(map->lock_arg);
2329 
2330 	map->async = true;
2331 
2332 	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2333 
2334 	map->async = false;
2335 
2336 	map->unlock(map->lock_arg);
2337 
2338 	return ret;
2339 }
2340 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2341 
2342 /**
2343  * regmap_update_bits_check: Perform a read/modify/write cycle on the
2344  *                           register map and report if updated
2345  *
2346  * @map: Register map to update
2347  * @reg: Register to update
2348  * @mask: Bitmask to change
2349  * @val: New value for bitmask
2350  * @change: Boolean indicating if a write was done
2351  *
2352  * Returns zero for success, a negative number on error.
2353  */
2354 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2355 			     unsigned int mask, unsigned int val,
2356 			     bool *change)
2357 {
2358 	int ret;
2359 
2360 	map->lock(map->lock_arg);
2361 	ret = _regmap_update_bits(map, reg, mask, val, change);
2362 	map->unlock(map->lock_arg);
2363 	return ret;
2364 }
2365 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2366 
2367 /**
2368  * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2369  *                                 register map asynchronously and report if
2370  *                                 updated
2371  *
2372  * @map: Register map to update
2373  * @reg: Register to update
2374  * @mask: Bitmask to change
2375  * @val: New value for bitmask
2376  * @change: Boolean indicating if a write was done
2377  *
2378  * With most buses the read must be done synchronously so this is most
2379  * useful for devices with a cache which do not need to interact with
2380  * the hardware to determine the current register value.
2381  *
2382  * Returns zero for success, a negative number on error.
2383  */
2384 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2385 				   unsigned int mask, unsigned int val,
2386 				   bool *change)
2387 {
2388 	int ret;
2389 
2390 	map->lock(map->lock_arg);
2391 
2392 	map->async = true;
2393 
2394 	ret = _regmap_update_bits(map, reg, mask, val, change);
2395 
2396 	map->async = false;
2397 
2398 	map->unlock(map->lock_arg);
2399 
2400 	return ret;
2401 }
2402 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2403 
2404 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2405 {
2406 	struct regmap *map = async->map;
2407 	bool wake;
2408 
2409 	trace_regmap_async_io_complete(map->dev);
2410 
2411 	spin_lock(&map->async_lock);
2412 	list_move(&async->list, &map->async_free);
2413 	wake = list_empty(&map->async_list);
2414 
2415 	if (ret != 0)
2416 		map->async_ret = ret;
2417 
2418 	spin_unlock(&map->async_lock);
2419 
2420 	if (wake)
2421 		wake_up(&map->async_waitq);
2422 }
2423 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2424 
2425 static int regmap_async_is_done(struct regmap *map)
2426 {
2427 	unsigned long flags;
2428 	int ret;
2429 
2430 	spin_lock_irqsave(&map->async_lock, flags);
2431 	ret = list_empty(&map->async_list);
2432 	spin_unlock_irqrestore(&map->async_lock, flags);
2433 
2434 	return ret;
2435 }
2436 
2437 /**
2438  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2439  *
2440  * @map: Map to operate on.
2441  *
2442  * Blocks until any pending asynchronous I/O has completed.  Returns
2443  * an error code for any failed I/O operations.
2444  */
2445 int regmap_async_complete(struct regmap *map)
2446 {
2447 	unsigned long flags;
2448 	int ret;
2449 
2450 	/* Nothing to do with no async support */
2451 	if (!map->bus || !map->bus->async_write)
2452 		return 0;
2453 
2454 	trace_regmap_async_complete_start(map->dev);
2455 
2456 	wait_event(map->async_waitq, regmap_async_is_done(map));
2457 
2458 	spin_lock_irqsave(&map->async_lock, flags);
2459 	ret = map->async_ret;
2460 	map->async_ret = 0;
2461 	spin_unlock_irqrestore(&map->async_lock, flags);
2462 
2463 	trace_regmap_async_complete_done(map->dev);
2464 
2465 	return ret;
2466 }
2467 EXPORT_SYMBOL_GPL(regmap_async_complete);
2468 
2469 /**
2470  * regmap_register_patch: Register and apply register updates to be applied
2471  *                        on device initialistion
2472  *
2473  * @map: Register map to apply updates to.
2474  * @regs: Values to update.
2475  * @num_regs: Number of entries in regs.
2476  *
2477  * Register a set of register updates to be applied to the device
2478  * whenever the device registers are synchronised with the cache and
2479  * apply them immediately.  Typically this is used to apply
2480  * corrections to be applied to the device defaults on startup, such
2481  * as the updates some vendors provide to undocumented registers.
2482  *
2483  * The caller must ensure that this function cannot be called
2484  * concurrently with either itself or regcache_sync().
2485  */
2486 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2487 			  int num_regs)
2488 {
2489 	struct reg_default *p;
2490 	int ret;
2491 	bool bypass;
2492 
2493 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2494 	    num_regs))
2495 		return 0;
2496 
2497 	p = krealloc(map->patch,
2498 		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2499 		     GFP_KERNEL);
2500 	if (p) {
2501 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2502 		map->patch = p;
2503 		map->patch_regs += num_regs;
2504 	} else {
2505 		return -ENOMEM;
2506 	}
2507 
2508 	map->lock(map->lock_arg);
2509 
2510 	bypass = map->cache_bypass;
2511 
2512 	map->cache_bypass = true;
2513 	map->async = true;
2514 
2515 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2516 	if (ret != 0)
2517 		goto out;
2518 
2519 out:
2520 	map->async = false;
2521 	map->cache_bypass = bypass;
2522 
2523 	map->unlock(map->lock_arg);
2524 
2525 	regmap_async_complete(map);
2526 
2527 	return ret;
2528 }
2529 EXPORT_SYMBOL_GPL(regmap_register_patch);
2530 
2531 /*
2532  * regmap_get_val_bytes(): Report the size of a register value
2533  *
2534  * Report the size of a register value, mainly intended to for use by
2535  * generic infrastructure built on top of regmap.
2536  */
2537 int regmap_get_val_bytes(struct regmap *map)
2538 {
2539 	if (map->format.format_write)
2540 		return -EINVAL;
2541 
2542 	return map->format.val_bytes;
2543 }
2544 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2545 
2546 int regmap_parse_val(struct regmap *map, const void *buf,
2547 			unsigned int *val)
2548 {
2549 	if (!map->format.parse_val)
2550 		return -EINVAL;
2551 
2552 	*val = map->format.parse_val(buf);
2553 
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL_GPL(regmap_parse_val);
2557 
2558 static int __init regmap_initcall(void)
2559 {
2560 	regmap_debugfs_initcall();
2561 
2562 	return 0;
2563 }
2564 postcore_initcall(regmap_initcall);
2565