1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Register map access API 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/export.h> 12 #include <linux/mutex.h> 13 #include <linux/err.h> 14 #include <linux/property.h> 15 #include <linux/rbtree.h> 16 #include <linux/sched.h> 17 #include <linux/delay.h> 18 #include <linux/log2.h> 19 #include <linux/hwspinlock.h> 20 #include <asm/unaligned.h> 21 22 #define CREATE_TRACE_POINTS 23 #include "trace.h" 24 25 #include "internal.h" 26 27 /* 28 * Sometimes for failures during very early init the trace 29 * infrastructure isn't available early enough to be used. For this 30 * sort of problem defining LOG_DEVICE will add printks for basic 31 * register I/O on a specific device. 32 */ 33 #undef LOG_DEVICE 34 35 #ifdef LOG_DEVICE 36 static inline bool regmap_should_log(struct regmap *map) 37 { 38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0); 39 } 40 #else 41 static inline bool regmap_should_log(struct regmap *map) { return false; } 42 #endif 43 44 45 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 46 unsigned int mask, unsigned int val, 47 bool *change, bool force_write); 48 49 static int _regmap_bus_reg_read(void *context, unsigned int reg, 50 unsigned int *val); 51 static int _regmap_bus_read(void *context, unsigned int reg, 52 unsigned int *val); 53 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 54 unsigned int val); 55 static int _regmap_bus_reg_write(void *context, unsigned int reg, 56 unsigned int val); 57 static int _regmap_bus_raw_write(void *context, unsigned int reg, 58 unsigned int val); 59 60 bool regmap_reg_in_ranges(unsigned int reg, 61 const struct regmap_range *ranges, 62 unsigned int nranges) 63 { 64 const struct regmap_range *r; 65 int i; 66 67 for (i = 0, r = ranges; i < nranges; i++, r++) 68 if (regmap_reg_in_range(reg, r)) 69 return true; 70 return false; 71 } 72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 73 74 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 75 const struct regmap_access_table *table) 76 { 77 /* Check "no ranges" first */ 78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 79 return false; 80 81 /* In case zero "yes ranges" are supplied, any reg is OK */ 82 if (!table->n_yes_ranges) 83 return true; 84 85 return regmap_reg_in_ranges(reg, table->yes_ranges, 86 table->n_yes_ranges); 87 } 88 EXPORT_SYMBOL_GPL(regmap_check_range_table); 89 90 bool regmap_writeable(struct regmap *map, unsigned int reg) 91 { 92 if (map->max_register && reg > map->max_register) 93 return false; 94 95 if (map->writeable_reg) 96 return map->writeable_reg(map->dev, reg); 97 98 if (map->wr_table) 99 return regmap_check_range_table(map, reg, map->wr_table); 100 101 return true; 102 } 103 104 bool regmap_cached(struct regmap *map, unsigned int reg) 105 { 106 int ret; 107 unsigned int val; 108 109 if (map->cache_type == REGCACHE_NONE) 110 return false; 111 112 if (!map->cache_ops) 113 return false; 114 115 if (map->max_register && reg > map->max_register) 116 return false; 117 118 map->lock(map->lock_arg); 119 ret = regcache_read(map, reg, &val); 120 map->unlock(map->lock_arg); 121 if (ret) 122 return false; 123 124 return true; 125 } 126 127 bool regmap_readable(struct regmap *map, unsigned int reg) 128 { 129 if (!map->reg_read) 130 return false; 131 132 if (map->max_register && reg > map->max_register) 133 return false; 134 135 if (map->format.format_write) 136 return false; 137 138 if (map->readable_reg) 139 return map->readable_reg(map->dev, reg); 140 141 if (map->rd_table) 142 return regmap_check_range_table(map, reg, map->rd_table); 143 144 return true; 145 } 146 147 bool regmap_volatile(struct regmap *map, unsigned int reg) 148 { 149 if (!map->format.format_write && !regmap_readable(map, reg)) 150 return false; 151 152 if (map->volatile_reg) 153 return map->volatile_reg(map->dev, reg); 154 155 if (map->volatile_table) 156 return regmap_check_range_table(map, reg, map->volatile_table); 157 158 if (map->cache_ops) 159 return false; 160 else 161 return true; 162 } 163 164 bool regmap_precious(struct regmap *map, unsigned int reg) 165 { 166 if (!regmap_readable(map, reg)) 167 return false; 168 169 if (map->precious_reg) 170 return map->precious_reg(map->dev, reg); 171 172 if (map->precious_table) 173 return regmap_check_range_table(map, reg, map->precious_table); 174 175 return false; 176 } 177 178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg) 179 { 180 if (map->writeable_noinc_reg) 181 return map->writeable_noinc_reg(map->dev, reg); 182 183 if (map->wr_noinc_table) 184 return regmap_check_range_table(map, reg, map->wr_noinc_table); 185 186 return true; 187 } 188 189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg) 190 { 191 if (map->readable_noinc_reg) 192 return map->readable_noinc_reg(map->dev, reg); 193 194 if (map->rd_noinc_table) 195 return regmap_check_range_table(map, reg, map->rd_noinc_table); 196 197 return true; 198 } 199 200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 201 size_t num) 202 { 203 unsigned int i; 204 205 for (i = 0; i < num; i++) 206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i))) 207 return false; 208 209 return true; 210 } 211 212 static void regmap_format_12_20_write(struct regmap *map, 213 unsigned int reg, unsigned int val) 214 { 215 u8 *out = map->work_buf; 216 217 out[0] = reg >> 4; 218 out[1] = (reg << 4) | (val >> 16); 219 out[2] = val >> 8; 220 out[3] = val; 221 } 222 223 224 static void regmap_format_2_6_write(struct regmap *map, 225 unsigned int reg, unsigned int val) 226 { 227 u8 *out = map->work_buf; 228 229 *out = (reg << 6) | val; 230 } 231 232 static void regmap_format_4_12_write(struct regmap *map, 233 unsigned int reg, unsigned int val) 234 { 235 __be16 *out = map->work_buf; 236 *out = cpu_to_be16((reg << 12) | val); 237 } 238 239 static void regmap_format_7_9_write(struct regmap *map, 240 unsigned int reg, unsigned int val) 241 { 242 __be16 *out = map->work_buf; 243 *out = cpu_to_be16((reg << 9) | val); 244 } 245 246 static void regmap_format_7_17_write(struct regmap *map, 247 unsigned int reg, unsigned int val) 248 { 249 u8 *out = map->work_buf; 250 251 out[2] = val; 252 out[1] = val >> 8; 253 out[0] = (val >> 16) | (reg << 1); 254 } 255 256 static void regmap_format_10_14_write(struct regmap *map, 257 unsigned int reg, unsigned int val) 258 { 259 u8 *out = map->work_buf; 260 261 out[2] = val; 262 out[1] = (val >> 8) | (reg << 6); 263 out[0] = reg >> 2; 264 } 265 266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 267 { 268 u8 *b = buf; 269 270 b[0] = val << shift; 271 } 272 273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 274 { 275 put_unaligned_be16(val << shift, buf); 276 } 277 278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) 279 { 280 put_unaligned_le16(val << shift, buf); 281 } 282 283 static void regmap_format_16_native(void *buf, unsigned int val, 284 unsigned int shift) 285 { 286 u16 v = val << shift; 287 288 memcpy(buf, &v, sizeof(v)); 289 } 290 291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift) 292 { 293 put_unaligned_be24(val << shift, buf); 294 } 295 296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 297 { 298 put_unaligned_be32(val << shift, buf); 299 } 300 301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) 302 { 303 put_unaligned_le32(val << shift, buf); 304 } 305 306 static void regmap_format_32_native(void *buf, unsigned int val, 307 unsigned int shift) 308 { 309 u32 v = val << shift; 310 311 memcpy(buf, &v, sizeof(v)); 312 } 313 314 #ifdef CONFIG_64BIT 315 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift) 316 { 317 put_unaligned_be64((u64) val << shift, buf); 318 } 319 320 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift) 321 { 322 put_unaligned_le64((u64) val << shift, buf); 323 } 324 325 static void regmap_format_64_native(void *buf, unsigned int val, 326 unsigned int shift) 327 { 328 u64 v = (u64) val << shift; 329 330 memcpy(buf, &v, sizeof(v)); 331 } 332 #endif 333 334 static void regmap_parse_inplace_noop(void *buf) 335 { 336 } 337 338 static unsigned int regmap_parse_8(const void *buf) 339 { 340 const u8 *b = buf; 341 342 return b[0]; 343 } 344 345 static unsigned int regmap_parse_16_be(const void *buf) 346 { 347 return get_unaligned_be16(buf); 348 } 349 350 static unsigned int regmap_parse_16_le(const void *buf) 351 { 352 return get_unaligned_le16(buf); 353 } 354 355 static void regmap_parse_16_be_inplace(void *buf) 356 { 357 u16 v = get_unaligned_be16(buf); 358 359 memcpy(buf, &v, sizeof(v)); 360 } 361 362 static void regmap_parse_16_le_inplace(void *buf) 363 { 364 u16 v = get_unaligned_le16(buf); 365 366 memcpy(buf, &v, sizeof(v)); 367 } 368 369 static unsigned int regmap_parse_16_native(const void *buf) 370 { 371 u16 v; 372 373 memcpy(&v, buf, sizeof(v)); 374 return v; 375 } 376 377 static unsigned int regmap_parse_24_be(const void *buf) 378 { 379 return get_unaligned_be24(buf); 380 } 381 382 static unsigned int regmap_parse_32_be(const void *buf) 383 { 384 return get_unaligned_be32(buf); 385 } 386 387 static unsigned int regmap_parse_32_le(const void *buf) 388 { 389 return get_unaligned_le32(buf); 390 } 391 392 static void regmap_parse_32_be_inplace(void *buf) 393 { 394 u32 v = get_unaligned_be32(buf); 395 396 memcpy(buf, &v, sizeof(v)); 397 } 398 399 static void regmap_parse_32_le_inplace(void *buf) 400 { 401 u32 v = get_unaligned_le32(buf); 402 403 memcpy(buf, &v, sizeof(v)); 404 } 405 406 static unsigned int regmap_parse_32_native(const void *buf) 407 { 408 u32 v; 409 410 memcpy(&v, buf, sizeof(v)); 411 return v; 412 } 413 414 #ifdef CONFIG_64BIT 415 static unsigned int regmap_parse_64_be(const void *buf) 416 { 417 return get_unaligned_be64(buf); 418 } 419 420 static unsigned int regmap_parse_64_le(const void *buf) 421 { 422 return get_unaligned_le64(buf); 423 } 424 425 static void regmap_parse_64_be_inplace(void *buf) 426 { 427 u64 v = get_unaligned_be64(buf); 428 429 memcpy(buf, &v, sizeof(v)); 430 } 431 432 static void regmap_parse_64_le_inplace(void *buf) 433 { 434 u64 v = get_unaligned_le64(buf); 435 436 memcpy(buf, &v, sizeof(v)); 437 } 438 439 static unsigned int regmap_parse_64_native(const void *buf) 440 { 441 u64 v; 442 443 memcpy(&v, buf, sizeof(v)); 444 return v; 445 } 446 #endif 447 448 static void regmap_lock_hwlock(void *__map) 449 { 450 struct regmap *map = __map; 451 452 hwspin_lock_timeout(map->hwlock, UINT_MAX); 453 } 454 455 static void regmap_lock_hwlock_irq(void *__map) 456 { 457 struct regmap *map = __map; 458 459 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX); 460 } 461 462 static void regmap_lock_hwlock_irqsave(void *__map) 463 { 464 struct regmap *map = __map; 465 466 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX, 467 &map->spinlock_flags); 468 } 469 470 static void regmap_unlock_hwlock(void *__map) 471 { 472 struct regmap *map = __map; 473 474 hwspin_unlock(map->hwlock); 475 } 476 477 static void regmap_unlock_hwlock_irq(void *__map) 478 { 479 struct regmap *map = __map; 480 481 hwspin_unlock_irq(map->hwlock); 482 } 483 484 static void regmap_unlock_hwlock_irqrestore(void *__map) 485 { 486 struct regmap *map = __map; 487 488 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags); 489 } 490 491 static void regmap_lock_unlock_none(void *__map) 492 { 493 494 } 495 496 static void regmap_lock_mutex(void *__map) 497 { 498 struct regmap *map = __map; 499 mutex_lock(&map->mutex); 500 } 501 502 static void regmap_unlock_mutex(void *__map) 503 { 504 struct regmap *map = __map; 505 mutex_unlock(&map->mutex); 506 } 507 508 static void regmap_lock_spinlock(void *__map) 509 __acquires(&map->spinlock) 510 { 511 struct regmap *map = __map; 512 unsigned long flags; 513 514 spin_lock_irqsave(&map->spinlock, flags); 515 map->spinlock_flags = flags; 516 } 517 518 static void regmap_unlock_spinlock(void *__map) 519 __releases(&map->spinlock) 520 { 521 struct regmap *map = __map; 522 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 523 } 524 525 static void regmap_lock_raw_spinlock(void *__map) 526 __acquires(&map->raw_spinlock) 527 { 528 struct regmap *map = __map; 529 unsigned long flags; 530 531 raw_spin_lock_irqsave(&map->raw_spinlock, flags); 532 map->raw_spinlock_flags = flags; 533 } 534 535 static void regmap_unlock_raw_spinlock(void *__map) 536 __releases(&map->raw_spinlock) 537 { 538 struct regmap *map = __map; 539 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags); 540 } 541 542 static void dev_get_regmap_release(struct device *dev, void *res) 543 { 544 /* 545 * We don't actually have anything to do here; the goal here 546 * is not to manage the regmap but to provide a simple way to 547 * get the regmap back given a struct device. 548 */ 549 } 550 551 static bool _regmap_range_add(struct regmap *map, 552 struct regmap_range_node *data) 553 { 554 struct rb_root *root = &map->range_tree; 555 struct rb_node **new = &(root->rb_node), *parent = NULL; 556 557 while (*new) { 558 struct regmap_range_node *this = 559 rb_entry(*new, struct regmap_range_node, node); 560 561 parent = *new; 562 if (data->range_max < this->range_min) 563 new = &((*new)->rb_left); 564 else if (data->range_min > this->range_max) 565 new = &((*new)->rb_right); 566 else 567 return false; 568 } 569 570 rb_link_node(&data->node, parent, new); 571 rb_insert_color(&data->node, root); 572 573 return true; 574 } 575 576 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 577 unsigned int reg) 578 { 579 struct rb_node *node = map->range_tree.rb_node; 580 581 while (node) { 582 struct regmap_range_node *this = 583 rb_entry(node, struct regmap_range_node, node); 584 585 if (reg < this->range_min) 586 node = node->rb_left; 587 else if (reg > this->range_max) 588 node = node->rb_right; 589 else 590 return this; 591 } 592 593 return NULL; 594 } 595 596 static void regmap_range_exit(struct regmap *map) 597 { 598 struct rb_node *next; 599 struct regmap_range_node *range_node; 600 601 next = rb_first(&map->range_tree); 602 while (next) { 603 range_node = rb_entry(next, struct regmap_range_node, node); 604 next = rb_next(&range_node->node); 605 rb_erase(&range_node->node, &map->range_tree); 606 kfree(range_node); 607 } 608 609 kfree(map->selector_work_buf); 610 } 611 612 static int regmap_set_name(struct regmap *map, const struct regmap_config *config) 613 { 614 if (config->name) { 615 const char *name = kstrdup_const(config->name, GFP_KERNEL); 616 617 if (!name) 618 return -ENOMEM; 619 620 kfree_const(map->name); 621 map->name = name; 622 } 623 624 return 0; 625 } 626 627 int regmap_attach_dev(struct device *dev, struct regmap *map, 628 const struct regmap_config *config) 629 { 630 struct regmap **m; 631 int ret; 632 633 map->dev = dev; 634 635 ret = regmap_set_name(map, config); 636 if (ret) 637 return ret; 638 639 regmap_debugfs_exit(map); 640 regmap_debugfs_init(map); 641 642 /* Add a devres resource for dev_get_regmap() */ 643 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 644 if (!m) { 645 regmap_debugfs_exit(map); 646 return -ENOMEM; 647 } 648 *m = map; 649 devres_add(dev, m); 650 651 return 0; 652 } 653 EXPORT_SYMBOL_GPL(regmap_attach_dev); 654 655 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, 656 const struct regmap_config *config) 657 { 658 enum regmap_endian endian; 659 660 /* Retrieve the endianness specification from the regmap config */ 661 endian = config->reg_format_endian; 662 663 /* If the regmap config specified a non-default value, use that */ 664 if (endian != REGMAP_ENDIAN_DEFAULT) 665 return endian; 666 667 /* Retrieve the endianness specification from the bus config */ 668 if (bus && bus->reg_format_endian_default) 669 endian = bus->reg_format_endian_default; 670 671 /* If the bus specified a non-default value, use that */ 672 if (endian != REGMAP_ENDIAN_DEFAULT) 673 return endian; 674 675 /* Use this if no other value was found */ 676 return REGMAP_ENDIAN_BIG; 677 } 678 679 enum regmap_endian regmap_get_val_endian(struct device *dev, 680 const struct regmap_bus *bus, 681 const struct regmap_config *config) 682 { 683 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 684 enum regmap_endian endian; 685 686 /* Retrieve the endianness specification from the regmap config */ 687 endian = config->val_format_endian; 688 689 /* If the regmap config specified a non-default value, use that */ 690 if (endian != REGMAP_ENDIAN_DEFAULT) 691 return endian; 692 693 /* If the firmware node exist try to get endianness from it */ 694 if (fwnode_property_read_bool(fwnode, "big-endian")) 695 endian = REGMAP_ENDIAN_BIG; 696 else if (fwnode_property_read_bool(fwnode, "little-endian")) 697 endian = REGMAP_ENDIAN_LITTLE; 698 else if (fwnode_property_read_bool(fwnode, "native-endian")) 699 endian = REGMAP_ENDIAN_NATIVE; 700 701 /* If the endianness was specified in fwnode, use that */ 702 if (endian != REGMAP_ENDIAN_DEFAULT) 703 return endian; 704 705 /* Retrieve the endianness specification from the bus config */ 706 if (bus && bus->val_format_endian_default) 707 endian = bus->val_format_endian_default; 708 709 /* If the bus specified a non-default value, use that */ 710 if (endian != REGMAP_ENDIAN_DEFAULT) 711 return endian; 712 713 /* Use this if no other value was found */ 714 return REGMAP_ENDIAN_BIG; 715 } 716 EXPORT_SYMBOL_GPL(regmap_get_val_endian); 717 718 struct regmap *__regmap_init(struct device *dev, 719 const struct regmap_bus *bus, 720 void *bus_context, 721 const struct regmap_config *config, 722 struct lock_class_key *lock_key, 723 const char *lock_name) 724 { 725 struct regmap *map; 726 int ret = -EINVAL; 727 enum regmap_endian reg_endian, val_endian; 728 int i, j; 729 730 if (!config) 731 goto err; 732 733 map = kzalloc(sizeof(*map), GFP_KERNEL); 734 if (map == NULL) { 735 ret = -ENOMEM; 736 goto err; 737 } 738 739 ret = regmap_set_name(map, config); 740 if (ret) 741 goto err_map; 742 743 ret = -EINVAL; /* Later error paths rely on this */ 744 745 if (config->disable_locking) { 746 map->lock = map->unlock = regmap_lock_unlock_none; 747 map->can_sleep = config->can_sleep; 748 regmap_debugfs_disable(map); 749 } else if (config->lock && config->unlock) { 750 map->lock = config->lock; 751 map->unlock = config->unlock; 752 map->lock_arg = config->lock_arg; 753 map->can_sleep = config->can_sleep; 754 } else if (config->use_hwlock) { 755 map->hwlock = hwspin_lock_request_specific(config->hwlock_id); 756 if (!map->hwlock) { 757 ret = -ENXIO; 758 goto err_name; 759 } 760 761 switch (config->hwlock_mode) { 762 case HWLOCK_IRQSTATE: 763 map->lock = regmap_lock_hwlock_irqsave; 764 map->unlock = regmap_unlock_hwlock_irqrestore; 765 break; 766 case HWLOCK_IRQ: 767 map->lock = regmap_lock_hwlock_irq; 768 map->unlock = regmap_unlock_hwlock_irq; 769 break; 770 default: 771 map->lock = regmap_lock_hwlock; 772 map->unlock = regmap_unlock_hwlock; 773 break; 774 } 775 776 map->lock_arg = map; 777 } else { 778 if ((bus && bus->fast_io) || 779 config->fast_io) { 780 if (config->use_raw_spinlock) { 781 raw_spin_lock_init(&map->raw_spinlock); 782 map->lock = regmap_lock_raw_spinlock; 783 map->unlock = regmap_unlock_raw_spinlock; 784 lockdep_set_class_and_name(&map->raw_spinlock, 785 lock_key, lock_name); 786 } else { 787 spin_lock_init(&map->spinlock); 788 map->lock = regmap_lock_spinlock; 789 map->unlock = regmap_unlock_spinlock; 790 lockdep_set_class_and_name(&map->spinlock, 791 lock_key, lock_name); 792 } 793 } else { 794 mutex_init(&map->mutex); 795 map->lock = regmap_lock_mutex; 796 map->unlock = regmap_unlock_mutex; 797 map->can_sleep = true; 798 lockdep_set_class_and_name(&map->mutex, 799 lock_key, lock_name); 800 } 801 map->lock_arg = map; 802 } 803 804 /* 805 * When we write in fast-paths with regmap_bulk_write() don't allocate 806 * scratch buffers with sleeping allocations. 807 */ 808 if ((bus && bus->fast_io) || config->fast_io) 809 map->alloc_flags = GFP_ATOMIC; 810 else 811 map->alloc_flags = GFP_KERNEL; 812 813 map->reg_base = config->reg_base; 814 815 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); 816 map->format.pad_bytes = config->pad_bits / 8; 817 map->format.reg_shift = config->reg_shift; 818 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); 819 map->format.buf_size = DIV_ROUND_UP(config->reg_bits + 820 config->val_bits + config->pad_bits, 8); 821 map->reg_shift = config->pad_bits % 8; 822 if (config->reg_stride) 823 map->reg_stride = config->reg_stride; 824 else 825 map->reg_stride = 1; 826 if (is_power_of_2(map->reg_stride)) 827 map->reg_stride_order = ilog2(map->reg_stride); 828 else 829 map->reg_stride_order = -1; 830 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read)); 831 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write)); 832 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write)); 833 if (bus) { 834 map->max_raw_read = bus->max_raw_read; 835 map->max_raw_write = bus->max_raw_write; 836 } else if (config->max_raw_read && config->max_raw_write) { 837 map->max_raw_read = config->max_raw_read; 838 map->max_raw_write = config->max_raw_write; 839 } 840 map->dev = dev; 841 map->bus = bus; 842 map->bus_context = bus_context; 843 map->max_register = config->max_register; 844 map->wr_table = config->wr_table; 845 map->rd_table = config->rd_table; 846 map->volatile_table = config->volatile_table; 847 map->precious_table = config->precious_table; 848 map->wr_noinc_table = config->wr_noinc_table; 849 map->rd_noinc_table = config->rd_noinc_table; 850 map->writeable_reg = config->writeable_reg; 851 map->readable_reg = config->readable_reg; 852 map->volatile_reg = config->volatile_reg; 853 map->precious_reg = config->precious_reg; 854 map->writeable_noinc_reg = config->writeable_noinc_reg; 855 map->readable_noinc_reg = config->readable_noinc_reg; 856 map->cache_type = config->cache_type; 857 858 spin_lock_init(&map->async_lock); 859 INIT_LIST_HEAD(&map->async_list); 860 INIT_LIST_HEAD(&map->async_free); 861 init_waitqueue_head(&map->async_waitq); 862 863 if (config->read_flag_mask || 864 config->write_flag_mask || 865 config->zero_flag_mask) { 866 map->read_flag_mask = config->read_flag_mask; 867 map->write_flag_mask = config->write_flag_mask; 868 } else if (bus) { 869 map->read_flag_mask = bus->read_flag_mask; 870 } 871 872 if (config && config->read && config->write) { 873 map->reg_read = _regmap_bus_read; 874 if (config->reg_update_bits) 875 map->reg_update_bits = config->reg_update_bits; 876 877 /* Bulk read/write */ 878 map->read = config->read; 879 map->write = config->write; 880 881 reg_endian = REGMAP_ENDIAN_NATIVE; 882 val_endian = REGMAP_ENDIAN_NATIVE; 883 } else if (!bus) { 884 map->reg_read = config->reg_read; 885 map->reg_write = config->reg_write; 886 map->reg_update_bits = config->reg_update_bits; 887 888 map->defer_caching = false; 889 goto skip_format_initialization; 890 } else if (!bus->read || !bus->write) { 891 map->reg_read = _regmap_bus_reg_read; 892 map->reg_write = _regmap_bus_reg_write; 893 map->reg_update_bits = bus->reg_update_bits; 894 895 map->defer_caching = false; 896 goto skip_format_initialization; 897 } else { 898 map->reg_read = _regmap_bus_read; 899 map->reg_update_bits = bus->reg_update_bits; 900 /* Bulk read/write */ 901 map->read = bus->read; 902 map->write = bus->write; 903 904 reg_endian = regmap_get_reg_endian(bus, config); 905 val_endian = regmap_get_val_endian(dev, bus, config); 906 } 907 908 switch (config->reg_bits + map->reg_shift) { 909 case 2: 910 switch (config->val_bits) { 911 case 6: 912 map->format.format_write = regmap_format_2_6_write; 913 break; 914 default: 915 goto err_hwlock; 916 } 917 break; 918 919 case 4: 920 switch (config->val_bits) { 921 case 12: 922 map->format.format_write = regmap_format_4_12_write; 923 break; 924 default: 925 goto err_hwlock; 926 } 927 break; 928 929 case 7: 930 switch (config->val_bits) { 931 case 9: 932 map->format.format_write = regmap_format_7_9_write; 933 break; 934 case 17: 935 map->format.format_write = regmap_format_7_17_write; 936 break; 937 default: 938 goto err_hwlock; 939 } 940 break; 941 942 case 10: 943 switch (config->val_bits) { 944 case 14: 945 map->format.format_write = regmap_format_10_14_write; 946 break; 947 default: 948 goto err_hwlock; 949 } 950 break; 951 952 case 12: 953 switch (config->val_bits) { 954 case 20: 955 map->format.format_write = regmap_format_12_20_write; 956 break; 957 default: 958 goto err_hwlock; 959 } 960 break; 961 962 case 8: 963 map->format.format_reg = regmap_format_8; 964 break; 965 966 case 16: 967 switch (reg_endian) { 968 case REGMAP_ENDIAN_BIG: 969 map->format.format_reg = regmap_format_16_be; 970 break; 971 case REGMAP_ENDIAN_LITTLE: 972 map->format.format_reg = regmap_format_16_le; 973 break; 974 case REGMAP_ENDIAN_NATIVE: 975 map->format.format_reg = regmap_format_16_native; 976 break; 977 default: 978 goto err_hwlock; 979 } 980 break; 981 982 case 24: 983 switch (reg_endian) { 984 case REGMAP_ENDIAN_BIG: 985 map->format.format_reg = regmap_format_24_be; 986 break; 987 default: 988 goto err_hwlock; 989 } 990 break; 991 992 case 32: 993 switch (reg_endian) { 994 case REGMAP_ENDIAN_BIG: 995 map->format.format_reg = regmap_format_32_be; 996 break; 997 case REGMAP_ENDIAN_LITTLE: 998 map->format.format_reg = regmap_format_32_le; 999 break; 1000 case REGMAP_ENDIAN_NATIVE: 1001 map->format.format_reg = regmap_format_32_native; 1002 break; 1003 default: 1004 goto err_hwlock; 1005 } 1006 break; 1007 1008 #ifdef CONFIG_64BIT 1009 case 64: 1010 switch (reg_endian) { 1011 case REGMAP_ENDIAN_BIG: 1012 map->format.format_reg = regmap_format_64_be; 1013 break; 1014 case REGMAP_ENDIAN_LITTLE: 1015 map->format.format_reg = regmap_format_64_le; 1016 break; 1017 case REGMAP_ENDIAN_NATIVE: 1018 map->format.format_reg = regmap_format_64_native; 1019 break; 1020 default: 1021 goto err_hwlock; 1022 } 1023 break; 1024 #endif 1025 1026 default: 1027 goto err_hwlock; 1028 } 1029 1030 if (val_endian == REGMAP_ENDIAN_NATIVE) 1031 map->format.parse_inplace = regmap_parse_inplace_noop; 1032 1033 switch (config->val_bits) { 1034 case 8: 1035 map->format.format_val = regmap_format_8; 1036 map->format.parse_val = regmap_parse_8; 1037 map->format.parse_inplace = regmap_parse_inplace_noop; 1038 break; 1039 case 16: 1040 switch (val_endian) { 1041 case REGMAP_ENDIAN_BIG: 1042 map->format.format_val = regmap_format_16_be; 1043 map->format.parse_val = regmap_parse_16_be; 1044 map->format.parse_inplace = regmap_parse_16_be_inplace; 1045 break; 1046 case REGMAP_ENDIAN_LITTLE: 1047 map->format.format_val = regmap_format_16_le; 1048 map->format.parse_val = regmap_parse_16_le; 1049 map->format.parse_inplace = regmap_parse_16_le_inplace; 1050 break; 1051 case REGMAP_ENDIAN_NATIVE: 1052 map->format.format_val = regmap_format_16_native; 1053 map->format.parse_val = regmap_parse_16_native; 1054 break; 1055 default: 1056 goto err_hwlock; 1057 } 1058 break; 1059 case 24: 1060 switch (val_endian) { 1061 case REGMAP_ENDIAN_BIG: 1062 map->format.format_val = regmap_format_24_be; 1063 map->format.parse_val = regmap_parse_24_be; 1064 break; 1065 default: 1066 goto err_hwlock; 1067 } 1068 break; 1069 case 32: 1070 switch (val_endian) { 1071 case REGMAP_ENDIAN_BIG: 1072 map->format.format_val = regmap_format_32_be; 1073 map->format.parse_val = regmap_parse_32_be; 1074 map->format.parse_inplace = regmap_parse_32_be_inplace; 1075 break; 1076 case REGMAP_ENDIAN_LITTLE: 1077 map->format.format_val = regmap_format_32_le; 1078 map->format.parse_val = regmap_parse_32_le; 1079 map->format.parse_inplace = regmap_parse_32_le_inplace; 1080 break; 1081 case REGMAP_ENDIAN_NATIVE: 1082 map->format.format_val = regmap_format_32_native; 1083 map->format.parse_val = regmap_parse_32_native; 1084 break; 1085 default: 1086 goto err_hwlock; 1087 } 1088 break; 1089 #ifdef CONFIG_64BIT 1090 case 64: 1091 switch (val_endian) { 1092 case REGMAP_ENDIAN_BIG: 1093 map->format.format_val = regmap_format_64_be; 1094 map->format.parse_val = regmap_parse_64_be; 1095 map->format.parse_inplace = regmap_parse_64_be_inplace; 1096 break; 1097 case REGMAP_ENDIAN_LITTLE: 1098 map->format.format_val = regmap_format_64_le; 1099 map->format.parse_val = regmap_parse_64_le; 1100 map->format.parse_inplace = regmap_parse_64_le_inplace; 1101 break; 1102 case REGMAP_ENDIAN_NATIVE: 1103 map->format.format_val = regmap_format_64_native; 1104 map->format.parse_val = regmap_parse_64_native; 1105 break; 1106 default: 1107 goto err_hwlock; 1108 } 1109 break; 1110 #endif 1111 } 1112 1113 if (map->format.format_write) { 1114 if ((reg_endian != REGMAP_ENDIAN_BIG) || 1115 (val_endian != REGMAP_ENDIAN_BIG)) 1116 goto err_hwlock; 1117 map->use_single_write = true; 1118 } 1119 1120 if (!map->format.format_write && 1121 !(map->format.format_reg && map->format.format_val)) 1122 goto err_hwlock; 1123 1124 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 1125 if (map->work_buf == NULL) { 1126 ret = -ENOMEM; 1127 goto err_hwlock; 1128 } 1129 1130 if (map->format.format_write) { 1131 map->defer_caching = false; 1132 map->reg_write = _regmap_bus_formatted_write; 1133 } else if (map->format.format_val) { 1134 map->defer_caching = true; 1135 map->reg_write = _regmap_bus_raw_write; 1136 } 1137 1138 skip_format_initialization: 1139 1140 map->range_tree = RB_ROOT; 1141 for (i = 0; i < config->num_ranges; i++) { 1142 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 1143 struct regmap_range_node *new; 1144 1145 /* Sanity check */ 1146 if (range_cfg->range_max < range_cfg->range_min) { 1147 dev_err(map->dev, "Invalid range %d: %d < %d\n", i, 1148 range_cfg->range_max, range_cfg->range_min); 1149 goto err_range; 1150 } 1151 1152 if (range_cfg->range_max > map->max_register) { 1153 dev_err(map->dev, "Invalid range %d: %d > %d\n", i, 1154 range_cfg->range_max, map->max_register); 1155 goto err_range; 1156 } 1157 1158 if (range_cfg->selector_reg > map->max_register) { 1159 dev_err(map->dev, 1160 "Invalid range %d: selector out of map\n", i); 1161 goto err_range; 1162 } 1163 1164 if (range_cfg->window_len == 0) { 1165 dev_err(map->dev, "Invalid range %d: window_len 0\n", 1166 i); 1167 goto err_range; 1168 } 1169 1170 /* Make sure, that this register range has no selector 1171 or data window within its boundary */ 1172 for (j = 0; j < config->num_ranges; j++) { 1173 unsigned int sel_reg = config->ranges[j].selector_reg; 1174 unsigned int win_min = config->ranges[j].window_start; 1175 unsigned int win_max = win_min + 1176 config->ranges[j].window_len - 1; 1177 1178 /* Allow data window inside its own virtual range */ 1179 if (j == i) 1180 continue; 1181 1182 if (range_cfg->range_min <= sel_reg && 1183 sel_reg <= range_cfg->range_max) { 1184 dev_err(map->dev, 1185 "Range %d: selector for %d in window\n", 1186 i, j); 1187 goto err_range; 1188 } 1189 1190 if (!(win_max < range_cfg->range_min || 1191 win_min > range_cfg->range_max)) { 1192 dev_err(map->dev, 1193 "Range %d: window for %d in window\n", 1194 i, j); 1195 goto err_range; 1196 } 1197 } 1198 1199 new = kzalloc(sizeof(*new), GFP_KERNEL); 1200 if (new == NULL) { 1201 ret = -ENOMEM; 1202 goto err_range; 1203 } 1204 1205 new->map = map; 1206 new->name = range_cfg->name; 1207 new->range_min = range_cfg->range_min; 1208 new->range_max = range_cfg->range_max; 1209 new->selector_reg = range_cfg->selector_reg; 1210 new->selector_mask = range_cfg->selector_mask; 1211 new->selector_shift = range_cfg->selector_shift; 1212 new->window_start = range_cfg->window_start; 1213 new->window_len = range_cfg->window_len; 1214 1215 if (!_regmap_range_add(map, new)) { 1216 dev_err(map->dev, "Failed to add range %d\n", i); 1217 kfree(new); 1218 goto err_range; 1219 } 1220 1221 if (map->selector_work_buf == NULL) { 1222 map->selector_work_buf = 1223 kzalloc(map->format.buf_size, GFP_KERNEL); 1224 if (map->selector_work_buf == NULL) { 1225 ret = -ENOMEM; 1226 goto err_range; 1227 } 1228 } 1229 } 1230 1231 ret = regcache_init(map, config); 1232 if (ret != 0) 1233 goto err_range; 1234 1235 if (dev) { 1236 ret = regmap_attach_dev(dev, map, config); 1237 if (ret != 0) 1238 goto err_regcache; 1239 } else { 1240 regmap_debugfs_init(map); 1241 } 1242 1243 return map; 1244 1245 err_regcache: 1246 regcache_exit(map); 1247 err_range: 1248 regmap_range_exit(map); 1249 kfree(map->work_buf); 1250 err_hwlock: 1251 if (map->hwlock) 1252 hwspin_lock_free(map->hwlock); 1253 err_name: 1254 kfree_const(map->name); 1255 err_map: 1256 kfree(map); 1257 err: 1258 return ERR_PTR(ret); 1259 } 1260 EXPORT_SYMBOL_GPL(__regmap_init); 1261 1262 static void devm_regmap_release(struct device *dev, void *res) 1263 { 1264 regmap_exit(*(struct regmap **)res); 1265 } 1266 1267 struct regmap *__devm_regmap_init(struct device *dev, 1268 const struct regmap_bus *bus, 1269 void *bus_context, 1270 const struct regmap_config *config, 1271 struct lock_class_key *lock_key, 1272 const char *lock_name) 1273 { 1274 struct regmap **ptr, *regmap; 1275 1276 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 1277 if (!ptr) 1278 return ERR_PTR(-ENOMEM); 1279 1280 regmap = __regmap_init(dev, bus, bus_context, config, 1281 lock_key, lock_name); 1282 if (!IS_ERR(regmap)) { 1283 *ptr = regmap; 1284 devres_add(dev, ptr); 1285 } else { 1286 devres_free(ptr); 1287 } 1288 1289 return regmap; 1290 } 1291 EXPORT_SYMBOL_GPL(__devm_regmap_init); 1292 1293 static void regmap_field_init(struct regmap_field *rm_field, 1294 struct regmap *regmap, struct reg_field reg_field) 1295 { 1296 rm_field->regmap = regmap; 1297 rm_field->reg = reg_field.reg; 1298 rm_field->shift = reg_field.lsb; 1299 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb); 1300 1301 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n"); 1302 1303 rm_field->id_size = reg_field.id_size; 1304 rm_field->id_offset = reg_field.id_offset; 1305 } 1306 1307 /** 1308 * devm_regmap_field_alloc() - Allocate and initialise a register field. 1309 * 1310 * @dev: Device that will be interacted with 1311 * @regmap: regmap bank in which this register field is located. 1312 * @reg_field: Register field with in the bank. 1313 * 1314 * The return value will be an ERR_PTR() on error or a valid pointer 1315 * to a struct regmap_field. The regmap_field will be automatically freed 1316 * by the device management code. 1317 */ 1318 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 1319 struct regmap *regmap, struct reg_field reg_field) 1320 { 1321 struct regmap_field *rm_field = devm_kzalloc(dev, 1322 sizeof(*rm_field), GFP_KERNEL); 1323 if (!rm_field) 1324 return ERR_PTR(-ENOMEM); 1325 1326 regmap_field_init(rm_field, regmap, reg_field); 1327 1328 return rm_field; 1329 1330 } 1331 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 1332 1333 1334 /** 1335 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field. 1336 * 1337 * @regmap: regmap bank in which this register field is located. 1338 * @rm_field: regmap register fields within the bank. 1339 * @reg_field: Register fields within the bank. 1340 * @num_fields: Number of register fields. 1341 * 1342 * The return value will be an -ENOMEM on error or zero for success. 1343 * Newly allocated regmap_fields should be freed by calling 1344 * regmap_field_bulk_free() 1345 */ 1346 int regmap_field_bulk_alloc(struct regmap *regmap, 1347 struct regmap_field **rm_field, 1348 const struct reg_field *reg_field, 1349 int num_fields) 1350 { 1351 struct regmap_field *rf; 1352 int i; 1353 1354 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL); 1355 if (!rf) 1356 return -ENOMEM; 1357 1358 for (i = 0; i < num_fields; i++) { 1359 regmap_field_init(&rf[i], regmap, reg_field[i]); 1360 rm_field[i] = &rf[i]; 1361 } 1362 1363 return 0; 1364 } 1365 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc); 1366 1367 /** 1368 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register 1369 * fields. 1370 * 1371 * @dev: Device that will be interacted with 1372 * @regmap: regmap bank in which this register field is located. 1373 * @rm_field: regmap register fields within the bank. 1374 * @reg_field: Register fields within the bank. 1375 * @num_fields: Number of register fields. 1376 * 1377 * The return value will be an -ENOMEM on error or zero for success. 1378 * Newly allocated regmap_fields will be automatically freed by the 1379 * device management code. 1380 */ 1381 int devm_regmap_field_bulk_alloc(struct device *dev, 1382 struct regmap *regmap, 1383 struct regmap_field **rm_field, 1384 const struct reg_field *reg_field, 1385 int num_fields) 1386 { 1387 struct regmap_field *rf; 1388 int i; 1389 1390 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL); 1391 if (!rf) 1392 return -ENOMEM; 1393 1394 for (i = 0; i < num_fields; i++) { 1395 regmap_field_init(&rf[i], regmap, reg_field[i]); 1396 rm_field[i] = &rf[i]; 1397 } 1398 1399 return 0; 1400 } 1401 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc); 1402 1403 /** 1404 * regmap_field_bulk_free() - Free register field allocated using 1405 * regmap_field_bulk_alloc. 1406 * 1407 * @field: regmap fields which should be freed. 1408 */ 1409 void regmap_field_bulk_free(struct regmap_field *field) 1410 { 1411 kfree(field); 1412 } 1413 EXPORT_SYMBOL_GPL(regmap_field_bulk_free); 1414 1415 /** 1416 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using 1417 * devm_regmap_field_bulk_alloc. 1418 * 1419 * @dev: Device that will be interacted with 1420 * @field: regmap field which should be freed. 1421 * 1422 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually 1423 * drivers need not call this function, as the memory allocated via devm 1424 * will be freed as per device-driver life-cycle. 1425 */ 1426 void devm_regmap_field_bulk_free(struct device *dev, 1427 struct regmap_field *field) 1428 { 1429 devm_kfree(dev, field); 1430 } 1431 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free); 1432 1433 /** 1434 * devm_regmap_field_free() - Free a register field allocated using 1435 * devm_regmap_field_alloc. 1436 * 1437 * @dev: Device that will be interacted with 1438 * @field: regmap field which should be freed. 1439 * 1440 * Free register field allocated using devm_regmap_field_alloc(). Usually 1441 * drivers need not call this function, as the memory allocated via devm 1442 * will be freed as per device-driver life-cyle. 1443 */ 1444 void devm_regmap_field_free(struct device *dev, 1445 struct regmap_field *field) 1446 { 1447 devm_kfree(dev, field); 1448 } 1449 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 1450 1451 /** 1452 * regmap_field_alloc() - Allocate and initialise a register field. 1453 * 1454 * @regmap: regmap bank in which this register field is located. 1455 * @reg_field: Register field with in the bank. 1456 * 1457 * The return value will be an ERR_PTR() on error or a valid pointer 1458 * to a struct regmap_field. The regmap_field should be freed by the 1459 * user once its finished working with it using regmap_field_free(). 1460 */ 1461 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 1462 struct reg_field reg_field) 1463 { 1464 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 1465 1466 if (!rm_field) 1467 return ERR_PTR(-ENOMEM); 1468 1469 regmap_field_init(rm_field, regmap, reg_field); 1470 1471 return rm_field; 1472 } 1473 EXPORT_SYMBOL_GPL(regmap_field_alloc); 1474 1475 /** 1476 * regmap_field_free() - Free register field allocated using 1477 * regmap_field_alloc. 1478 * 1479 * @field: regmap field which should be freed. 1480 */ 1481 void regmap_field_free(struct regmap_field *field) 1482 { 1483 kfree(field); 1484 } 1485 EXPORT_SYMBOL_GPL(regmap_field_free); 1486 1487 /** 1488 * regmap_reinit_cache() - Reinitialise the current register cache 1489 * 1490 * @map: Register map to operate on. 1491 * @config: New configuration. Only the cache data will be used. 1492 * 1493 * Discard any existing register cache for the map and initialize a 1494 * new cache. This can be used to restore the cache to defaults or to 1495 * update the cache configuration to reflect runtime discovery of the 1496 * hardware. 1497 * 1498 * No explicit locking is done here, the user needs to ensure that 1499 * this function will not race with other calls to regmap. 1500 */ 1501 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 1502 { 1503 int ret; 1504 1505 regcache_exit(map); 1506 regmap_debugfs_exit(map); 1507 1508 map->max_register = config->max_register; 1509 map->writeable_reg = config->writeable_reg; 1510 map->readable_reg = config->readable_reg; 1511 map->volatile_reg = config->volatile_reg; 1512 map->precious_reg = config->precious_reg; 1513 map->writeable_noinc_reg = config->writeable_noinc_reg; 1514 map->readable_noinc_reg = config->readable_noinc_reg; 1515 map->cache_type = config->cache_type; 1516 1517 ret = regmap_set_name(map, config); 1518 if (ret) 1519 return ret; 1520 1521 regmap_debugfs_init(map); 1522 1523 map->cache_bypass = false; 1524 map->cache_only = false; 1525 1526 return regcache_init(map, config); 1527 } 1528 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 1529 1530 /** 1531 * regmap_exit() - Free a previously allocated register map 1532 * 1533 * @map: Register map to operate on. 1534 */ 1535 void regmap_exit(struct regmap *map) 1536 { 1537 struct regmap_async *async; 1538 1539 regcache_exit(map); 1540 regmap_debugfs_exit(map); 1541 regmap_range_exit(map); 1542 if (map->bus && map->bus->free_context) 1543 map->bus->free_context(map->bus_context); 1544 kfree(map->work_buf); 1545 while (!list_empty(&map->async_free)) { 1546 async = list_first_entry_or_null(&map->async_free, 1547 struct regmap_async, 1548 list); 1549 list_del(&async->list); 1550 kfree(async->work_buf); 1551 kfree(async); 1552 } 1553 if (map->hwlock) 1554 hwspin_lock_free(map->hwlock); 1555 if (map->lock == regmap_lock_mutex) 1556 mutex_destroy(&map->mutex); 1557 kfree_const(map->name); 1558 kfree(map->patch); 1559 if (map->bus && map->bus->free_on_exit) 1560 kfree(map->bus); 1561 kfree(map); 1562 } 1563 EXPORT_SYMBOL_GPL(regmap_exit); 1564 1565 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 1566 { 1567 struct regmap **r = res; 1568 if (!r || !*r) { 1569 WARN_ON(!r || !*r); 1570 return 0; 1571 } 1572 1573 /* If the user didn't specify a name match any */ 1574 if (data) 1575 return !strcmp((*r)->name, data); 1576 else 1577 return 1; 1578 } 1579 1580 /** 1581 * dev_get_regmap() - Obtain the regmap (if any) for a device 1582 * 1583 * @dev: Device to retrieve the map for 1584 * @name: Optional name for the register map, usually NULL. 1585 * 1586 * Returns the regmap for the device if one is present, or NULL. If 1587 * name is specified then it must match the name specified when 1588 * registering the device, if it is NULL then the first regmap found 1589 * will be used. Devices with multiple register maps are very rare, 1590 * generic code should normally not need to specify a name. 1591 */ 1592 struct regmap *dev_get_regmap(struct device *dev, const char *name) 1593 { 1594 struct regmap **r = devres_find(dev, dev_get_regmap_release, 1595 dev_get_regmap_match, (void *)name); 1596 1597 if (!r) 1598 return NULL; 1599 return *r; 1600 } 1601 EXPORT_SYMBOL_GPL(dev_get_regmap); 1602 1603 /** 1604 * regmap_get_device() - Obtain the device from a regmap 1605 * 1606 * @map: Register map to operate on. 1607 * 1608 * Returns the underlying device that the regmap has been created for. 1609 */ 1610 struct device *regmap_get_device(struct regmap *map) 1611 { 1612 return map->dev; 1613 } 1614 EXPORT_SYMBOL_GPL(regmap_get_device); 1615 1616 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 1617 struct regmap_range_node *range, 1618 unsigned int val_num) 1619 { 1620 void *orig_work_buf; 1621 unsigned int win_offset; 1622 unsigned int win_page; 1623 bool page_chg; 1624 int ret; 1625 1626 win_offset = (*reg - range->range_min) % range->window_len; 1627 win_page = (*reg - range->range_min) / range->window_len; 1628 1629 if (val_num > 1) { 1630 /* Bulk write shouldn't cross range boundary */ 1631 if (*reg + val_num - 1 > range->range_max) 1632 return -EINVAL; 1633 1634 /* ... or single page boundary */ 1635 if (val_num > range->window_len - win_offset) 1636 return -EINVAL; 1637 } 1638 1639 /* It is possible to have selector register inside data window. 1640 In that case, selector register is located on every page and 1641 it needs no page switching, when accessed alone. */ 1642 if (val_num > 1 || 1643 range->window_start + win_offset != range->selector_reg) { 1644 /* Use separate work_buf during page switching */ 1645 orig_work_buf = map->work_buf; 1646 map->work_buf = map->selector_work_buf; 1647 1648 ret = _regmap_update_bits(map, range->selector_reg, 1649 range->selector_mask, 1650 win_page << range->selector_shift, 1651 &page_chg, false); 1652 1653 map->work_buf = orig_work_buf; 1654 1655 if (ret != 0) 1656 return ret; 1657 } 1658 1659 *reg = range->window_start + win_offset; 1660 1661 return 0; 1662 } 1663 1664 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes, 1665 unsigned long mask) 1666 { 1667 u8 *buf; 1668 int i; 1669 1670 if (!mask || !map->work_buf) 1671 return; 1672 1673 buf = map->work_buf; 1674 1675 for (i = 0; i < max_bytes; i++) 1676 buf[i] |= (mask >> (8 * i)) & 0xff; 1677 } 1678 1679 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg) 1680 { 1681 reg += map->reg_base; 1682 1683 if (map->format.reg_shift > 0) 1684 reg >>= map->format.reg_shift; 1685 else if (map->format.reg_shift < 0) 1686 reg <<= -(map->format.reg_shift); 1687 1688 return reg; 1689 } 1690 1691 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg, 1692 const void *val, size_t val_len, bool noinc) 1693 { 1694 struct regmap_range_node *range; 1695 unsigned long flags; 1696 void *work_val = map->work_buf + map->format.reg_bytes + 1697 map->format.pad_bytes; 1698 void *buf; 1699 int ret = -ENOTSUPP; 1700 size_t len; 1701 int i; 1702 1703 /* Check for unwritable or noinc registers in range 1704 * before we start 1705 */ 1706 if (!regmap_writeable_noinc(map, reg)) { 1707 for (i = 0; i < val_len / map->format.val_bytes; i++) { 1708 unsigned int element = 1709 reg + regmap_get_offset(map, i); 1710 if (!regmap_writeable(map, element) || 1711 regmap_writeable_noinc(map, element)) 1712 return -EINVAL; 1713 } 1714 } 1715 1716 if (!map->cache_bypass && map->format.parse_val) { 1717 unsigned int ival; 1718 int val_bytes = map->format.val_bytes; 1719 for (i = 0; i < val_len / val_bytes; i++) { 1720 ival = map->format.parse_val(val + (i * val_bytes)); 1721 ret = regcache_write(map, 1722 reg + regmap_get_offset(map, i), 1723 ival); 1724 if (ret) { 1725 dev_err(map->dev, 1726 "Error in caching of register: %x ret: %d\n", 1727 reg + regmap_get_offset(map, i), ret); 1728 return ret; 1729 } 1730 } 1731 if (map->cache_only) { 1732 map->cache_dirty = true; 1733 return 0; 1734 } 1735 } 1736 1737 range = _regmap_range_lookup(map, reg); 1738 if (range) { 1739 int val_num = val_len / map->format.val_bytes; 1740 int win_offset = (reg - range->range_min) % range->window_len; 1741 int win_residue = range->window_len - win_offset; 1742 1743 /* If the write goes beyond the end of the window split it */ 1744 while (val_num > win_residue) { 1745 dev_dbg(map->dev, "Writing window %d/%zu\n", 1746 win_residue, val_len / map->format.val_bytes); 1747 ret = _regmap_raw_write_impl(map, reg, val, 1748 win_residue * 1749 map->format.val_bytes, noinc); 1750 if (ret != 0) 1751 return ret; 1752 1753 reg += win_residue; 1754 val_num -= win_residue; 1755 val += win_residue * map->format.val_bytes; 1756 val_len -= win_residue * map->format.val_bytes; 1757 1758 win_offset = (reg - range->range_min) % 1759 range->window_len; 1760 win_residue = range->window_len - win_offset; 1761 } 1762 1763 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num); 1764 if (ret != 0) 1765 return ret; 1766 } 1767 1768 reg = regmap_reg_addr(map, reg); 1769 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1770 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 1771 map->write_flag_mask); 1772 1773 /* 1774 * Essentially all I/O mechanisms will be faster with a single 1775 * buffer to write. Since register syncs often generate raw 1776 * writes of single registers optimise that case. 1777 */ 1778 if (val != work_val && val_len == map->format.val_bytes) { 1779 memcpy(work_val, val, map->format.val_bytes); 1780 val = work_val; 1781 } 1782 1783 if (map->async && map->bus && map->bus->async_write) { 1784 struct regmap_async *async; 1785 1786 trace_regmap_async_write_start(map, reg, val_len); 1787 1788 spin_lock_irqsave(&map->async_lock, flags); 1789 async = list_first_entry_or_null(&map->async_free, 1790 struct regmap_async, 1791 list); 1792 if (async) 1793 list_del(&async->list); 1794 spin_unlock_irqrestore(&map->async_lock, flags); 1795 1796 if (!async) { 1797 async = map->bus->async_alloc(); 1798 if (!async) 1799 return -ENOMEM; 1800 1801 async->work_buf = kzalloc(map->format.buf_size, 1802 GFP_KERNEL | GFP_DMA); 1803 if (!async->work_buf) { 1804 kfree(async); 1805 return -ENOMEM; 1806 } 1807 } 1808 1809 async->map = map; 1810 1811 /* If the caller supplied the value we can use it safely. */ 1812 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1813 map->format.reg_bytes + map->format.val_bytes); 1814 1815 spin_lock_irqsave(&map->async_lock, flags); 1816 list_add_tail(&async->list, &map->async_list); 1817 spin_unlock_irqrestore(&map->async_lock, flags); 1818 1819 if (val != work_val) 1820 ret = map->bus->async_write(map->bus_context, 1821 async->work_buf, 1822 map->format.reg_bytes + 1823 map->format.pad_bytes, 1824 val, val_len, async); 1825 else 1826 ret = map->bus->async_write(map->bus_context, 1827 async->work_buf, 1828 map->format.reg_bytes + 1829 map->format.pad_bytes + 1830 val_len, NULL, 0, async); 1831 1832 if (ret != 0) { 1833 dev_err(map->dev, "Failed to schedule write: %d\n", 1834 ret); 1835 1836 spin_lock_irqsave(&map->async_lock, flags); 1837 list_move(&async->list, &map->async_free); 1838 spin_unlock_irqrestore(&map->async_lock, flags); 1839 } 1840 1841 return ret; 1842 } 1843 1844 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); 1845 1846 /* If we're doing a single register write we can probably just 1847 * send the work_buf directly, otherwise try to do a gather 1848 * write. 1849 */ 1850 if (val == work_val) 1851 ret = map->write(map->bus_context, map->work_buf, 1852 map->format.reg_bytes + 1853 map->format.pad_bytes + 1854 val_len); 1855 else if (map->bus && map->bus->gather_write) 1856 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1857 map->format.reg_bytes + 1858 map->format.pad_bytes, 1859 val, val_len); 1860 else 1861 ret = -ENOTSUPP; 1862 1863 /* If that didn't work fall back on linearising by hand. */ 1864 if (ret == -ENOTSUPP) { 1865 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1866 buf = kzalloc(len, GFP_KERNEL); 1867 if (!buf) 1868 return -ENOMEM; 1869 1870 memcpy(buf, map->work_buf, map->format.reg_bytes); 1871 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1872 val, val_len); 1873 ret = map->write(map->bus_context, buf, len); 1874 1875 kfree(buf); 1876 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) { 1877 /* regcache_drop_region() takes lock that we already have, 1878 * thus call map->cache_ops->drop() directly 1879 */ 1880 if (map->cache_ops && map->cache_ops->drop) 1881 map->cache_ops->drop(map, reg, reg + 1); 1882 } 1883 1884 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); 1885 1886 return ret; 1887 } 1888 1889 /** 1890 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1891 * 1892 * @map: Map to check. 1893 */ 1894 bool regmap_can_raw_write(struct regmap *map) 1895 { 1896 return map->write && map->format.format_val && map->format.format_reg; 1897 } 1898 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1899 1900 /** 1901 * regmap_get_raw_read_max - Get the maximum size we can read 1902 * 1903 * @map: Map to check. 1904 */ 1905 size_t regmap_get_raw_read_max(struct regmap *map) 1906 { 1907 return map->max_raw_read; 1908 } 1909 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max); 1910 1911 /** 1912 * regmap_get_raw_write_max - Get the maximum size we can read 1913 * 1914 * @map: Map to check. 1915 */ 1916 size_t regmap_get_raw_write_max(struct regmap *map) 1917 { 1918 return map->max_raw_write; 1919 } 1920 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max); 1921 1922 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1923 unsigned int val) 1924 { 1925 int ret; 1926 struct regmap_range_node *range; 1927 struct regmap *map = context; 1928 1929 WARN_ON(!map->format.format_write); 1930 1931 range = _regmap_range_lookup(map, reg); 1932 if (range) { 1933 ret = _regmap_select_page(map, ®, range, 1); 1934 if (ret != 0) 1935 return ret; 1936 } 1937 1938 reg = regmap_reg_addr(map, reg); 1939 map->format.format_write(map, reg, val); 1940 1941 trace_regmap_hw_write_start(map, reg, 1); 1942 1943 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size); 1944 1945 trace_regmap_hw_write_done(map, reg, 1); 1946 1947 return ret; 1948 } 1949 1950 static int _regmap_bus_reg_write(void *context, unsigned int reg, 1951 unsigned int val) 1952 { 1953 struct regmap *map = context; 1954 struct regmap_range_node *range; 1955 int ret; 1956 1957 range = _regmap_range_lookup(map, reg); 1958 if (range) { 1959 ret = _regmap_select_page(map, ®, range, 1); 1960 if (ret != 0) 1961 return ret; 1962 } 1963 1964 reg = regmap_reg_addr(map, reg); 1965 return map->bus->reg_write(map->bus_context, reg, val); 1966 } 1967 1968 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1969 unsigned int val) 1970 { 1971 struct regmap *map = context; 1972 1973 WARN_ON(!map->format.format_val); 1974 1975 map->format.format_val(map->work_buf + map->format.reg_bytes 1976 + map->format.pad_bytes, val, 0); 1977 return _regmap_raw_write_impl(map, reg, 1978 map->work_buf + 1979 map->format.reg_bytes + 1980 map->format.pad_bytes, 1981 map->format.val_bytes, 1982 false); 1983 } 1984 1985 static inline void *_regmap_map_get_context(struct regmap *map) 1986 { 1987 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context; 1988 } 1989 1990 int _regmap_write(struct regmap *map, unsigned int reg, 1991 unsigned int val) 1992 { 1993 int ret; 1994 void *context = _regmap_map_get_context(map); 1995 1996 if (!regmap_writeable(map, reg)) 1997 return -EIO; 1998 1999 if (!map->cache_bypass && !map->defer_caching) { 2000 ret = regcache_write(map, reg, val); 2001 if (ret != 0) 2002 return ret; 2003 if (map->cache_only) { 2004 map->cache_dirty = true; 2005 return 0; 2006 } 2007 } 2008 2009 ret = map->reg_write(context, reg, val); 2010 if (ret == 0) { 2011 if (regmap_should_log(map)) 2012 dev_info(map->dev, "%x <= %x\n", reg, val); 2013 2014 trace_regmap_reg_write(map, reg, val); 2015 } 2016 2017 return ret; 2018 } 2019 2020 /** 2021 * regmap_write() - Write a value to a single register 2022 * 2023 * @map: Register map to write to 2024 * @reg: Register to write to 2025 * @val: Value to be written 2026 * 2027 * A value of zero will be returned on success, a negative errno will 2028 * be returned in error cases. 2029 */ 2030 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 2031 { 2032 int ret; 2033 2034 if (!IS_ALIGNED(reg, map->reg_stride)) 2035 return -EINVAL; 2036 2037 map->lock(map->lock_arg); 2038 2039 ret = _regmap_write(map, reg, val); 2040 2041 map->unlock(map->lock_arg); 2042 2043 return ret; 2044 } 2045 EXPORT_SYMBOL_GPL(regmap_write); 2046 2047 /** 2048 * regmap_write_async() - Write a value to a single register asynchronously 2049 * 2050 * @map: Register map to write to 2051 * @reg: Register to write to 2052 * @val: Value to be written 2053 * 2054 * A value of zero will be returned on success, a negative errno will 2055 * be returned in error cases. 2056 */ 2057 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 2058 { 2059 int ret; 2060 2061 if (!IS_ALIGNED(reg, map->reg_stride)) 2062 return -EINVAL; 2063 2064 map->lock(map->lock_arg); 2065 2066 map->async = true; 2067 2068 ret = _regmap_write(map, reg, val); 2069 2070 map->async = false; 2071 2072 map->unlock(map->lock_arg); 2073 2074 return ret; 2075 } 2076 EXPORT_SYMBOL_GPL(regmap_write_async); 2077 2078 int _regmap_raw_write(struct regmap *map, unsigned int reg, 2079 const void *val, size_t val_len, bool noinc) 2080 { 2081 size_t val_bytes = map->format.val_bytes; 2082 size_t val_count = val_len / val_bytes; 2083 size_t chunk_count, chunk_bytes; 2084 size_t chunk_regs = val_count; 2085 size_t max_data = map->max_raw_write - map->format.reg_bytes - 2086 map->format.pad_bytes; 2087 int ret, i; 2088 2089 if (!val_count) 2090 return -EINVAL; 2091 2092 if (map->use_single_write) 2093 chunk_regs = 1; 2094 else if (map->max_raw_write && val_len > max_data) 2095 chunk_regs = max_data / val_bytes; 2096 2097 chunk_count = val_count / chunk_regs; 2098 chunk_bytes = chunk_regs * val_bytes; 2099 2100 /* Write as many bytes as possible with chunk_size */ 2101 for (i = 0; i < chunk_count; i++) { 2102 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc); 2103 if (ret) 2104 return ret; 2105 2106 reg += regmap_get_offset(map, chunk_regs); 2107 val += chunk_bytes; 2108 val_len -= chunk_bytes; 2109 } 2110 2111 /* Write remaining bytes */ 2112 if (val_len) 2113 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc); 2114 2115 return ret; 2116 } 2117 2118 /** 2119 * regmap_raw_write() - Write raw values to one or more registers 2120 * 2121 * @map: Register map to write to 2122 * @reg: Initial register to write to 2123 * @val: Block of data to be written, laid out for direct transmission to the 2124 * device 2125 * @val_len: Length of data pointed to by val. 2126 * 2127 * This function is intended to be used for things like firmware 2128 * download where a large block of data needs to be transferred to the 2129 * device. No formatting will be done on the data provided. 2130 * 2131 * A value of zero will be returned on success, a negative errno will 2132 * be returned in error cases. 2133 */ 2134 int regmap_raw_write(struct regmap *map, unsigned int reg, 2135 const void *val, size_t val_len) 2136 { 2137 int ret; 2138 2139 if (!regmap_can_raw_write(map)) 2140 return -EINVAL; 2141 if (val_len % map->format.val_bytes) 2142 return -EINVAL; 2143 2144 map->lock(map->lock_arg); 2145 2146 ret = _regmap_raw_write(map, reg, val, val_len, false); 2147 2148 map->unlock(map->lock_arg); 2149 2150 return ret; 2151 } 2152 EXPORT_SYMBOL_GPL(regmap_raw_write); 2153 2154 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg, 2155 void *val, unsigned int val_len, bool write) 2156 { 2157 size_t val_bytes = map->format.val_bytes; 2158 size_t val_count = val_len / val_bytes; 2159 unsigned int lastval; 2160 u8 *u8p; 2161 u16 *u16p; 2162 u32 *u32p; 2163 #ifdef CONFIG_64BIT 2164 u64 *u64p; 2165 #endif 2166 int ret; 2167 int i; 2168 2169 switch (val_bytes) { 2170 case 1: 2171 u8p = val; 2172 if (write) 2173 lastval = (unsigned int)u8p[val_count - 1]; 2174 break; 2175 case 2: 2176 u16p = val; 2177 if (write) 2178 lastval = (unsigned int)u16p[val_count - 1]; 2179 break; 2180 case 4: 2181 u32p = val; 2182 if (write) 2183 lastval = (unsigned int)u32p[val_count - 1]; 2184 break; 2185 #ifdef CONFIG_64BIT 2186 case 8: 2187 u64p = val; 2188 if (write) 2189 lastval = (unsigned int)u64p[val_count - 1]; 2190 break; 2191 #endif 2192 default: 2193 return -EINVAL; 2194 } 2195 2196 /* 2197 * Update the cache with the last value we write, the rest is just 2198 * gone down in the hardware FIFO. We can't cache FIFOs. This makes 2199 * sure a single read from the cache will work. 2200 */ 2201 if (write) { 2202 if (!map->cache_bypass && !map->defer_caching) { 2203 ret = regcache_write(map, reg, lastval); 2204 if (ret != 0) 2205 return ret; 2206 if (map->cache_only) { 2207 map->cache_dirty = true; 2208 return 0; 2209 } 2210 } 2211 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count); 2212 } else { 2213 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count); 2214 } 2215 2216 if (!ret && regmap_should_log(map)) { 2217 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>"); 2218 for (i = 0; i < val_count; i++) { 2219 switch (val_bytes) { 2220 case 1: 2221 pr_cont("%x", u8p[i]); 2222 break; 2223 case 2: 2224 pr_cont("%x", u16p[i]); 2225 break; 2226 case 4: 2227 pr_cont("%x", u32p[i]); 2228 break; 2229 #ifdef CONFIG_64BIT 2230 case 8: 2231 pr_cont("%llx", u64p[i]); 2232 break; 2233 #endif 2234 default: 2235 break; 2236 } 2237 if (i == (val_count - 1)) 2238 pr_cont("]\n"); 2239 else 2240 pr_cont(","); 2241 } 2242 } 2243 2244 return 0; 2245 } 2246 2247 /** 2248 * regmap_noinc_write(): Write data from a register without incrementing the 2249 * register number 2250 * 2251 * @map: Register map to write to 2252 * @reg: Register to write to 2253 * @val: Pointer to data buffer 2254 * @val_len: Length of output buffer in bytes. 2255 * 2256 * The regmap API usually assumes that bulk bus write operations will write a 2257 * range of registers. Some devices have certain registers for which a write 2258 * operation can write to an internal FIFO. 2259 * 2260 * The target register must be volatile but registers after it can be 2261 * completely unrelated cacheable registers. 2262 * 2263 * This will attempt multiple writes as required to write val_len bytes. 2264 * 2265 * A value of zero will be returned on success, a negative errno will be 2266 * returned in error cases. 2267 */ 2268 int regmap_noinc_write(struct regmap *map, unsigned int reg, 2269 const void *val, size_t val_len) 2270 { 2271 size_t write_len; 2272 int ret; 2273 2274 if (!map->write && !(map->bus && map->bus->reg_noinc_write)) 2275 return -EINVAL; 2276 if (val_len % map->format.val_bytes) 2277 return -EINVAL; 2278 if (!IS_ALIGNED(reg, map->reg_stride)) 2279 return -EINVAL; 2280 if (val_len == 0) 2281 return -EINVAL; 2282 2283 map->lock(map->lock_arg); 2284 2285 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) { 2286 ret = -EINVAL; 2287 goto out_unlock; 2288 } 2289 2290 /* 2291 * Use the accelerated operation if we can. The val drops the const 2292 * typing in order to facilitate code reuse in regmap_noinc_readwrite(). 2293 */ 2294 if (map->bus->reg_noinc_write) { 2295 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true); 2296 goto out_unlock; 2297 } 2298 2299 while (val_len) { 2300 if (map->max_raw_write && map->max_raw_write < val_len) 2301 write_len = map->max_raw_write; 2302 else 2303 write_len = val_len; 2304 ret = _regmap_raw_write(map, reg, val, write_len, true); 2305 if (ret) 2306 goto out_unlock; 2307 val = ((u8 *)val) + write_len; 2308 val_len -= write_len; 2309 } 2310 2311 out_unlock: 2312 map->unlock(map->lock_arg); 2313 return ret; 2314 } 2315 EXPORT_SYMBOL_GPL(regmap_noinc_write); 2316 2317 /** 2318 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a 2319 * register field. 2320 * 2321 * @field: Register field to write to 2322 * @mask: Bitmask to change 2323 * @val: Value to be written 2324 * @change: Boolean indicating if a write was done 2325 * @async: Boolean indicating asynchronously 2326 * @force: Boolean indicating use force update 2327 * 2328 * Perform a read/modify/write cycle on the register field with change, 2329 * async, force option. 2330 * 2331 * A value of zero will be returned on success, a negative errno will 2332 * be returned in error cases. 2333 */ 2334 int regmap_field_update_bits_base(struct regmap_field *field, 2335 unsigned int mask, unsigned int val, 2336 bool *change, bool async, bool force) 2337 { 2338 mask = (mask << field->shift) & field->mask; 2339 2340 return regmap_update_bits_base(field->regmap, field->reg, 2341 mask, val << field->shift, 2342 change, async, force); 2343 } 2344 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base); 2345 2346 /** 2347 * regmap_field_test_bits() - Check if all specified bits are set in a 2348 * register field. 2349 * 2350 * @field: Register field to operate on 2351 * @bits: Bits to test 2352 * 2353 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the 2354 * tested bits is not set and 1 if all tested bits are set. 2355 */ 2356 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits) 2357 { 2358 unsigned int val, ret; 2359 2360 ret = regmap_field_read(field, &val); 2361 if (ret) 2362 return ret; 2363 2364 return (val & bits) == bits; 2365 } 2366 EXPORT_SYMBOL_GPL(regmap_field_test_bits); 2367 2368 /** 2369 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a 2370 * register field with port ID 2371 * 2372 * @field: Register field to write to 2373 * @id: port ID 2374 * @mask: Bitmask to change 2375 * @val: Value to be written 2376 * @change: Boolean indicating if a write was done 2377 * @async: Boolean indicating asynchronously 2378 * @force: Boolean indicating use force update 2379 * 2380 * A value of zero will be returned on success, a negative errno will 2381 * be returned in error cases. 2382 */ 2383 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id, 2384 unsigned int mask, unsigned int val, 2385 bool *change, bool async, bool force) 2386 { 2387 if (id >= field->id_size) 2388 return -EINVAL; 2389 2390 mask = (mask << field->shift) & field->mask; 2391 2392 return regmap_update_bits_base(field->regmap, 2393 field->reg + (field->id_offset * id), 2394 mask, val << field->shift, 2395 change, async, force); 2396 } 2397 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base); 2398 2399 /** 2400 * regmap_bulk_write() - Write multiple registers to the device 2401 * 2402 * @map: Register map to write to 2403 * @reg: First register to be write from 2404 * @val: Block of data to be written, in native register size for device 2405 * @val_count: Number of registers to write 2406 * 2407 * This function is intended to be used for writing a large block of 2408 * data to the device either in single transfer or multiple transfer. 2409 * 2410 * A value of zero will be returned on success, a negative errno will 2411 * be returned in error cases. 2412 */ 2413 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 2414 size_t val_count) 2415 { 2416 int ret = 0, i; 2417 size_t val_bytes = map->format.val_bytes; 2418 2419 if (!IS_ALIGNED(reg, map->reg_stride)) 2420 return -EINVAL; 2421 2422 /* 2423 * Some devices don't support bulk write, for them we have a series of 2424 * single write operations. 2425 */ 2426 if (!map->write || !map->format.parse_inplace) { 2427 map->lock(map->lock_arg); 2428 for (i = 0; i < val_count; i++) { 2429 unsigned int ival; 2430 2431 switch (val_bytes) { 2432 case 1: 2433 ival = *(u8 *)(val + (i * val_bytes)); 2434 break; 2435 case 2: 2436 ival = *(u16 *)(val + (i * val_bytes)); 2437 break; 2438 case 4: 2439 ival = *(u32 *)(val + (i * val_bytes)); 2440 break; 2441 #ifdef CONFIG_64BIT 2442 case 8: 2443 ival = *(u64 *)(val + (i * val_bytes)); 2444 break; 2445 #endif 2446 default: 2447 ret = -EINVAL; 2448 goto out; 2449 } 2450 2451 ret = _regmap_write(map, 2452 reg + regmap_get_offset(map, i), 2453 ival); 2454 if (ret != 0) 2455 goto out; 2456 } 2457 out: 2458 map->unlock(map->lock_arg); 2459 } else { 2460 void *wval; 2461 2462 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags); 2463 if (!wval) 2464 return -ENOMEM; 2465 2466 for (i = 0; i < val_count * val_bytes; i += val_bytes) 2467 map->format.parse_inplace(wval + i); 2468 2469 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count); 2470 2471 kfree(wval); 2472 } 2473 2474 if (!ret) 2475 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count); 2476 2477 return ret; 2478 } 2479 EXPORT_SYMBOL_GPL(regmap_bulk_write); 2480 2481 /* 2482 * _regmap_raw_multi_reg_write() 2483 * 2484 * the (register,newvalue) pairs in regs have not been formatted, but 2485 * they are all in the same page and have been changed to being page 2486 * relative. The page register has been written if that was necessary. 2487 */ 2488 static int _regmap_raw_multi_reg_write(struct regmap *map, 2489 const struct reg_sequence *regs, 2490 size_t num_regs) 2491 { 2492 int ret; 2493 void *buf; 2494 int i; 2495 u8 *u8; 2496 size_t val_bytes = map->format.val_bytes; 2497 size_t reg_bytes = map->format.reg_bytes; 2498 size_t pad_bytes = map->format.pad_bytes; 2499 size_t pair_size = reg_bytes + pad_bytes + val_bytes; 2500 size_t len = pair_size * num_regs; 2501 2502 if (!len) 2503 return -EINVAL; 2504 2505 buf = kzalloc(len, GFP_KERNEL); 2506 if (!buf) 2507 return -ENOMEM; 2508 2509 /* We have to linearise by hand. */ 2510 2511 u8 = buf; 2512 2513 for (i = 0; i < num_regs; i++) { 2514 unsigned int reg = regs[i].reg; 2515 unsigned int val = regs[i].def; 2516 trace_regmap_hw_write_start(map, reg, 1); 2517 reg = regmap_reg_addr(map, reg); 2518 map->format.format_reg(u8, reg, map->reg_shift); 2519 u8 += reg_bytes + pad_bytes; 2520 map->format.format_val(u8, val, 0); 2521 u8 += val_bytes; 2522 } 2523 u8 = buf; 2524 *u8 |= map->write_flag_mask; 2525 2526 ret = map->write(map->bus_context, buf, len); 2527 2528 kfree(buf); 2529 2530 for (i = 0; i < num_regs; i++) { 2531 int reg = regs[i].reg; 2532 trace_regmap_hw_write_done(map, reg, 1); 2533 } 2534 return ret; 2535 } 2536 2537 static unsigned int _regmap_register_page(struct regmap *map, 2538 unsigned int reg, 2539 struct regmap_range_node *range) 2540 { 2541 unsigned int win_page = (reg - range->range_min) / range->window_len; 2542 2543 return win_page; 2544 } 2545 2546 static int _regmap_range_multi_paged_reg_write(struct regmap *map, 2547 struct reg_sequence *regs, 2548 size_t num_regs) 2549 { 2550 int ret; 2551 int i, n; 2552 struct reg_sequence *base; 2553 unsigned int this_page = 0; 2554 unsigned int page_change = 0; 2555 /* 2556 * the set of registers are not neccessarily in order, but 2557 * since the order of write must be preserved this algorithm 2558 * chops the set each time the page changes. This also applies 2559 * if there is a delay required at any point in the sequence. 2560 */ 2561 base = regs; 2562 for (i = 0, n = 0; i < num_regs; i++, n++) { 2563 unsigned int reg = regs[i].reg; 2564 struct regmap_range_node *range; 2565 2566 range = _regmap_range_lookup(map, reg); 2567 if (range) { 2568 unsigned int win_page = _regmap_register_page(map, reg, 2569 range); 2570 2571 if (i == 0) 2572 this_page = win_page; 2573 if (win_page != this_page) { 2574 this_page = win_page; 2575 page_change = 1; 2576 } 2577 } 2578 2579 /* If we have both a page change and a delay make sure to 2580 * write the regs and apply the delay before we change the 2581 * page. 2582 */ 2583 2584 if (page_change || regs[i].delay_us) { 2585 2586 /* For situations where the first write requires 2587 * a delay we need to make sure we don't call 2588 * raw_multi_reg_write with n=0 2589 * This can't occur with page breaks as we 2590 * never write on the first iteration 2591 */ 2592 if (regs[i].delay_us && i == 0) 2593 n = 1; 2594 2595 ret = _regmap_raw_multi_reg_write(map, base, n); 2596 if (ret != 0) 2597 return ret; 2598 2599 if (regs[i].delay_us) { 2600 if (map->can_sleep) 2601 fsleep(regs[i].delay_us); 2602 else 2603 udelay(regs[i].delay_us); 2604 } 2605 2606 base += n; 2607 n = 0; 2608 2609 if (page_change) { 2610 ret = _regmap_select_page(map, 2611 &base[n].reg, 2612 range, 1); 2613 if (ret != 0) 2614 return ret; 2615 2616 page_change = 0; 2617 } 2618 2619 } 2620 2621 } 2622 if (n > 0) 2623 return _regmap_raw_multi_reg_write(map, base, n); 2624 return 0; 2625 } 2626 2627 static int _regmap_multi_reg_write(struct regmap *map, 2628 const struct reg_sequence *regs, 2629 size_t num_regs) 2630 { 2631 int i; 2632 int ret; 2633 2634 if (!map->can_multi_write) { 2635 for (i = 0; i < num_regs; i++) { 2636 ret = _regmap_write(map, regs[i].reg, regs[i].def); 2637 if (ret != 0) 2638 return ret; 2639 2640 if (regs[i].delay_us) { 2641 if (map->can_sleep) 2642 fsleep(regs[i].delay_us); 2643 else 2644 udelay(regs[i].delay_us); 2645 } 2646 } 2647 return 0; 2648 } 2649 2650 if (!map->format.parse_inplace) 2651 return -EINVAL; 2652 2653 if (map->writeable_reg) 2654 for (i = 0; i < num_regs; i++) { 2655 int reg = regs[i].reg; 2656 if (!map->writeable_reg(map->dev, reg)) 2657 return -EINVAL; 2658 if (!IS_ALIGNED(reg, map->reg_stride)) 2659 return -EINVAL; 2660 } 2661 2662 if (!map->cache_bypass) { 2663 for (i = 0; i < num_regs; i++) { 2664 unsigned int val = regs[i].def; 2665 unsigned int reg = regs[i].reg; 2666 ret = regcache_write(map, reg, val); 2667 if (ret) { 2668 dev_err(map->dev, 2669 "Error in caching of register: %x ret: %d\n", 2670 reg, ret); 2671 return ret; 2672 } 2673 } 2674 if (map->cache_only) { 2675 map->cache_dirty = true; 2676 return 0; 2677 } 2678 } 2679 2680 WARN_ON(!map->bus); 2681 2682 for (i = 0; i < num_regs; i++) { 2683 unsigned int reg = regs[i].reg; 2684 struct regmap_range_node *range; 2685 2686 /* Coalesce all the writes between a page break or a delay 2687 * in a sequence 2688 */ 2689 range = _regmap_range_lookup(map, reg); 2690 if (range || regs[i].delay_us) { 2691 size_t len = sizeof(struct reg_sequence)*num_regs; 2692 struct reg_sequence *base = kmemdup(regs, len, 2693 GFP_KERNEL); 2694 if (!base) 2695 return -ENOMEM; 2696 ret = _regmap_range_multi_paged_reg_write(map, base, 2697 num_regs); 2698 kfree(base); 2699 2700 return ret; 2701 } 2702 } 2703 return _regmap_raw_multi_reg_write(map, regs, num_regs); 2704 } 2705 2706 /** 2707 * regmap_multi_reg_write() - Write multiple registers to the device 2708 * 2709 * @map: Register map to write to 2710 * @regs: Array of structures containing register,value to be written 2711 * @num_regs: Number of registers to write 2712 * 2713 * Write multiple registers to the device where the set of register, value 2714 * pairs are supplied in any order, possibly not all in a single range. 2715 * 2716 * The 'normal' block write mode will send ultimately send data on the 2717 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are 2718 * addressed. However, this alternative block multi write mode will send 2719 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device 2720 * must of course support the mode. 2721 * 2722 * A value of zero will be returned on success, a negative errno will be 2723 * returned in error cases. 2724 */ 2725 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, 2726 int num_regs) 2727 { 2728 int ret; 2729 2730 map->lock(map->lock_arg); 2731 2732 ret = _regmap_multi_reg_write(map, regs, num_regs); 2733 2734 map->unlock(map->lock_arg); 2735 2736 return ret; 2737 } 2738 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 2739 2740 /** 2741 * regmap_multi_reg_write_bypassed() - Write multiple registers to the 2742 * device but not the cache 2743 * 2744 * @map: Register map to write to 2745 * @regs: Array of structures containing register,value to be written 2746 * @num_regs: Number of registers to write 2747 * 2748 * Write multiple registers to the device but not the cache where the set 2749 * of register are supplied in any order. 2750 * 2751 * This function is intended to be used for writing a large block of data 2752 * atomically to the device in single transfer for those I2C client devices 2753 * that implement this alternative block write mode. 2754 * 2755 * A value of zero will be returned on success, a negative errno will 2756 * be returned in error cases. 2757 */ 2758 int regmap_multi_reg_write_bypassed(struct regmap *map, 2759 const struct reg_sequence *regs, 2760 int num_regs) 2761 { 2762 int ret; 2763 bool bypass; 2764 2765 map->lock(map->lock_arg); 2766 2767 bypass = map->cache_bypass; 2768 map->cache_bypass = true; 2769 2770 ret = _regmap_multi_reg_write(map, regs, num_regs); 2771 2772 map->cache_bypass = bypass; 2773 2774 map->unlock(map->lock_arg); 2775 2776 return ret; 2777 } 2778 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); 2779 2780 /** 2781 * regmap_raw_write_async() - Write raw values to one or more registers 2782 * asynchronously 2783 * 2784 * @map: Register map to write to 2785 * @reg: Initial register to write to 2786 * @val: Block of data to be written, laid out for direct transmission to the 2787 * device. Must be valid until regmap_async_complete() is called. 2788 * @val_len: Length of data pointed to by val. 2789 * 2790 * This function is intended to be used for things like firmware 2791 * download where a large block of data needs to be transferred to the 2792 * device. No formatting will be done on the data provided. 2793 * 2794 * If supported by the underlying bus the write will be scheduled 2795 * asynchronously, helping maximise I/O speed on higher speed buses 2796 * like SPI. regmap_async_complete() can be called to ensure that all 2797 * asynchrnous writes have been completed. 2798 * 2799 * A value of zero will be returned on success, a negative errno will 2800 * be returned in error cases. 2801 */ 2802 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 2803 const void *val, size_t val_len) 2804 { 2805 int ret; 2806 2807 if (val_len % map->format.val_bytes) 2808 return -EINVAL; 2809 if (!IS_ALIGNED(reg, map->reg_stride)) 2810 return -EINVAL; 2811 2812 map->lock(map->lock_arg); 2813 2814 map->async = true; 2815 2816 ret = _regmap_raw_write(map, reg, val, val_len, false); 2817 2818 map->async = false; 2819 2820 map->unlock(map->lock_arg); 2821 2822 return ret; 2823 } 2824 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 2825 2826 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2827 unsigned int val_len, bool noinc) 2828 { 2829 struct regmap_range_node *range; 2830 int ret; 2831 2832 if (!map->read) 2833 return -EINVAL; 2834 2835 range = _regmap_range_lookup(map, reg); 2836 if (range) { 2837 ret = _regmap_select_page(map, ®, range, 2838 noinc ? 1 : val_len / map->format.val_bytes); 2839 if (ret != 0) 2840 return ret; 2841 } 2842 2843 reg = regmap_reg_addr(map, reg); 2844 map->format.format_reg(map->work_buf, reg, map->reg_shift); 2845 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 2846 map->read_flag_mask); 2847 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); 2848 2849 ret = map->read(map->bus_context, map->work_buf, 2850 map->format.reg_bytes + map->format.pad_bytes, 2851 val, val_len); 2852 2853 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); 2854 2855 return ret; 2856 } 2857 2858 static int _regmap_bus_reg_read(void *context, unsigned int reg, 2859 unsigned int *val) 2860 { 2861 struct regmap *map = context; 2862 struct regmap_range_node *range; 2863 int ret; 2864 2865 range = _regmap_range_lookup(map, reg); 2866 if (range) { 2867 ret = _regmap_select_page(map, ®, range, 1); 2868 if (ret != 0) 2869 return ret; 2870 } 2871 2872 reg = regmap_reg_addr(map, reg); 2873 return map->bus->reg_read(map->bus_context, reg, val); 2874 } 2875 2876 static int _regmap_bus_read(void *context, unsigned int reg, 2877 unsigned int *val) 2878 { 2879 int ret; 2880 struct regmap *map = context; 2881 void *work_val = map->work_buf + map->format.reg_bytes + 2882 map->format.pad_bytes; 2883 2884 if (!map->format.parse_val) 2885 return -EINVAL; 2886 2887 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false); 2888 if (ret == 0) 2889 *val = map->format.parse_val(work_val); 2890 2891 return ret; 2892 } 2893 2894 static int _regmap_read(struct regmap *map, unsigned int reg, 2895 unsigned int *val) 2896 { 2897 int ret; 2898 void *context = _regmap_map_get_context(map); 2899 2900 if (!map->cache_bypass) { 2901 ret = regcache_read(map, reg, val); 2902 if (ret == 0) 2903 return 0; 2904 } 2905 2906 if (map->cache_only) 2907 return -EBUSY; 2908 2909 if (!regmap_readable(map, reg)) 2910 return -EIO; 2911 2912 ret = map->reg_read(context, reg, val); 2913 if (ret == 0) { 2914 if (regmap_should_log(map)) 2915 dev_info(map->dev, "%x => %x\n", reg, *val); 2916 2917 trace_regmap_reg_read(map, reg, *val); 2918 2919 if (!map->cache_bypass) 2920 regcache_write(map, reg, *val); 2921 } 2922 2923 return ret; 2924 } 2925 2926 /** 2927 * regmap_read() - Read a value from a single register 2928 * 2929 * @map: Register map to read from 2930 * @reg: Register to be read from 2931 * @val: Pointer to store read value 2932 * 2933 * A value of zero will be returned on success, a negative errno will 2934 * be returned in error cases. 2935 */ 2936 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 2937 { 2938 int ret; 2939 2940 if (!IS_ALIGNED(reg, map->reg_stride)) 2941 return -EINVAL; 2942 2943 map->lock(map->lock_arg); 2944 2945 ret = _regmap_read(map, reg, val); 2946 2947 map->unlock(map->lock_arg); 2948 2949 return ret; 2950 } 2951 EXPORT_SYMBOL_GPL(regmap_read); 2952 2953 /** 2954 * regmap_raw_read() - Read raw data from the device 2955 * 2956 * @map: Register map to read from 2957 * @reg: First register to be read from 2958 * @val: Pointer to store read value 2959 * @val_len: Size of data to read 2960 * 2961 * A value of zero will be returned on success, a negative errno will 2962 * be returned in error cases. 2963 */ 2964 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2965 size_t val_len) 2966 { 2967 size_t val_bytes = map->format.val_bytes; 2968 size_t val_count = val_len / val_bytes; 2969 unsigned int v; 2970 int ret, i; 2971 2972 if (val_len % map->format.val_bytes) 2973 return -EINVAL; 2974 if (!IS_ALIGNED(reg, map->reg_stride)) 2975 return -EINVAL; 2976 if (val_count == 0) 2977 return -EINVAL; 2978 2979 map->lock(map->lock_arg); 2980 2981 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 2982 map->cache_type == REGCACHE_NONE) { 2983 size_t chunk_count, chunk_bytes; 2984 size_t chunk_regs = val_count; 2985 2986 if (!map->read) { 2987 ret = -ENOTSUPP; 2988 goto out; 2989 } 2990 2991 if (map->use_single_read) 2992 chunk_regs = 1; 2993 else if (map->max_raw_read && val_len > map->max_raw_read) 2994 chunk_regs = map->max_raw_read / val_bytes; 2995 2996 chunk_count = val_count / chunk_regs; 2997 chunk_bytes = chunk_regs * val_bytes; 2998 2999 /* Read bytes that fit into whole chunks */ 3000 for (i = 0; i < chunk_count; i++) { 3001 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false); 3002 if (ret != 0) 3003 goto out; 3004 3005 reg += regmap_get_offset(map, chunk_regs); 3006 val += chunk_bytes; 3007 val_len -= chunk_bytes; 3008 } 3009 3010 /* Read remaining bytes */ 3011 if (val_len) { 3012 ret = _regmap_raw_read(map, reg, val, val_len, false); 3013 if (ret != 0) 3014 goto out; 3015 } 3016 } else { 3017 /* Otherwise go word by word for the cache; should be low 3018 * cost as we expect to hit the cache. 3019 */ 3020 for (i = 0; i < val_count; i++) { 3021 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 3022 &v); 3023 if (ret != 0) 3024 goto out; 3025 3026 map->format.format_val(val + (i * val_bytes), v, 0); 3027 } 3028 } 3029 3030 out: 3031 map->unlock(map->lock_arg); 3032 3033 return ret; 3034 } 3035 EXPORT_SYMBOL_GPL(regmap_raw_read); 3036 3037 /** 3038 * regmap_noinc_read(): Read data from a register without incrementing the 3039 * register number 3040 * 3041 * @map: Register map to read from 3042 * @reg: Register to read from 3043 * @val: Pointer to data buffer 3044 * @val_len: Length of output buffer in bytes. 3045 * 3046 * The regmap API usually assumes that bulk read operations will read a 3047 * range of registers. Some devices have certain registers for which a read 3048 * operation read will read from an internal FIFO. 3049 * 3050 * The target register must be volatile but registers after it can be 3051 * completely unrelated cacheable registers. 3052 * 3053 * This will attempt multiple reads as required to read val_len bytes. 3054 * 3055 * A value of zero will be returned on success, a negative errno will be 3056 * returned in error cases. 3057 */ 3058 int regmap_noinc_read(struct regmap *map, unsigned int reg, 3059 void *val, size_t val_len) 3060 { 3061 size_t read_len; 3062 int ret; 3063 3064 if (!map->read) 3065 return -ENOTSUPP; 3066 3067 if (val_len % map->format.val_bytes) 3068 return -EINVAL; 3069 if (!IS_ALIGNED(reg, map->reg_stride)) 3070 return -EINVAL; 3071 if (val_len == 0) 3072 return -EINVAL; 3073 3074 map->lock(map->lock_arg); 3075 3076 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) { 3077 ret = -EINVAL; 3078 goto out_unlock; 3079 } 3080 3081 /* Use the accelerated operation if we can */ 3082 if (map->bus->reg_noinc_read) { 3083 /* 3084 * We have not defined the FIFO semantics for cache, as the 3085 * cache is just one value deep. Should we return the last 3086 * written value? Just avoid this by always reading the FIFO 3087 * even when using cache. Cache only will not work. 3088 */ 3089 if (map->cache_only) { 3090 ret = -EBUSY; 3091 goto out_unlock; 3092 } 3093 ret = regmap_noinc_readwrite(map, reg, val, val_len, false); 3094 goto out_unlock; 3095 } 3096 3097 while (val_len) { 3098 if (map->max_raw_read && map->max_raw_read < val_len) 3099 read_len = map->max_raw_read; 3100 else 3101 read_len = val_len; 3102 ret = _regmap_raw_read(map, reg, val, read_len, true); 3103 if (ret) 3104 goto out_unlock; 3105 val = ((u8 *)val) + read_len; 3106 val_len -= read_len; 3107 } 3108 3109 out_unlock: 3110 map->unlock(map->lock_arg); 3111 return ret; 3112 } 3113 EXPORT_SYMBOL_GPL(regmap_noinc_read); 3114 3115 /** 3116 * regmap_field_read(): Read a value to a single register field 3117 * 3118 * @field: Register field to read from 3119 * @val: Pointer to store read value 3120 * 3121 * A value of zero will be returned on success, a negative errno will 3122 * be returned in error cases. 3123 */ 3124 int regmap_field_read(struct regmap_field *field, unsigned int *val) 3125 { 3126 int ret; 3127 unsigned int reg_val; 3128 ret = regmap_read(field->regmap, field->reg, ®_val); 3129 if (ret != 0) 3130 return ret; 3131 3132 reg_val &= field->mask; 3133 reg_val >>= field->shift; 3134 *val = reg_val; 3135 3136 return ret; 3137 } 3138 EXPORT_SYMBOL_GPL(regmap_field_read); 3139 3140 /** 3141 * regmap_fields_read() - Read a value to a single register field with port ID 3142 * 3143 * @field: Register field to read from 3144 * @id: port ID 3145 * @val: Pointer to store read value 3146 * 3147 * A value of zero will be returned on success, a negative errno will 3148 * be returned in error cases. 3149 */ 3150 int regmap_fields_read(struct regmap_field *field, unsigned int id, 3151 unsigned int *val) 3152 { 3153 int ret; 3154 unsigned int reg_val; 3155 3156 if (id >= field->id_size) 3157 return -EINVAL; 3158 3159 ret = regmap_read(field->regmap, 3160 field->reg + (field->id_offset * id), 3161 ®_val); 3162 if (ret != 0) 3163 return ret; 3164 3165 reg_val &= field->mask; 3166 reg_val >>= field->shift; 3167 *val = reg_val; 3168 3169 return ret; 3170 } 3171 EXPORT_SYMBOL_GPL(regmap_fields_read); 3172 3173 /** 3174 * regmap_bulk_read() - Read multiple registers from the device 3175 * 3176 * @map: Register map to read from 3177 * @reg: First register to be read from 3178 * @val: Pointer to store read value, in native register size for device 3179 * @val_count: Number of registers to read 3180 * 3181 * A value of zero will be returned on success, a negative errno will 3182 * be returned in error cases. 3183 */ 3184 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 3185 size_t val_count) 3186 { 3187 int ret, i; 3188 size_t val_bytes = map->format.val_bytes; 3189 bool vol = regmap_volatile_range(map, reg, val_count); 3190 3191 if (!IS_ALIGNED(reg, map->reg_stride)) 3192 return -EINVAL; 3193 if (val_count == 0) 3194 return -EINVAL; 3195 3196 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { 3197 ret = regmap_raw_read(map, reg, val, val_bytes * val_count); 3198 if (ret != 0) 3199 return ret; 3200 3201 for (i = 0; i < val_count * val_bytes; i += val_bytes) 3202 map->format.parse_inplace(val + i); 3203 } else { 3204 #ifdef CONFIG_64BIT 3205 u64 *u64 = val; 3206 #endif 3207 u32 *u32 = val; 3208 u16 *u16 = val; 3209 u8 *u8 = val; 3210 3211 map->lock(map->lock_arg); 3212 3213 for (i = 0; i < val_count; i++) { 3214 unsigned int ival; 3215 3216 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 3217 &ival); 3218 if (ret != 0) 3219 goto out; 3220 3221 switch (map->format.val_bytes) { 3222 #ifdef CONFIG_64BIT 3223 case 8: 3224 u64[i] = ival; 3225 break; 3226 #endif 3227 case 4: 3228 u32[i] = ival; 3229 break; 3230 case 2: 3231 u16[i] = ival; 3232 break; 3233 case 1: 3234 u8[i] = ival; 3235 break; 3236 default: 3237 ret = -EINVAL; 3238 goto out; 3239 } 3240 } 3241 3242 out: 3243 map->unlock(map->lock_arg); 3244 } 3245 3246 if (!ret) 3247 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count); 3248 3249 return ret; 3250 } 3251 EXPORT_SYMBOL_GPL(regmap_bulk_read); 3252 3253 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 3254 unsigned int mask, unsigned int val, 3255 bool *change, bool force_write) 3256 { 3257 int ret; 3258 unsigned int tmp, orig; 3259 3260 if (change) 3261 *change = false; 3262 3263 if (regmap_volatile(map, reg) && map->reg_update_bits) { 3264 reg = regmap_reg_addr(map, reg); 3265 ret = map->reg_update_bits(map->bus_context, reg, mask, val); 3266 if (ret == 0 && change) 3267 *change = true; 3268 } else { 3269 ret = _regmap_read(map, reg, &orig); 3270 if (ret != 0) 3271 return ret; 3272 3273 tmp = orig & ~mask; 3274 tmp |= val & mask; 3275 3276 if (force_write || (tmp != orig)) { 3277 ret = _regmap_write(map, reg, tmp); 3278 if (ret == 0 && change) 3279 *change = true; 3280 } 3281 } 3282 3283 return ret; 3284 } 3285 3286 /** 3287 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register 3288 * 3289 * @map: Register map to update 3290 * @reg: Register to update 3291 * @mask: Bitmask to change 3292 * @val: New value for bitmask 3293 * @change: Boolean indicating if a write was done 3294 * @async: Boolean indicating asynchronously 3295 * @force: Boolean indicating use force update 3296 * 3297 * Perform a read/modify/write cycle on a register map with change, async, force 3298 * options. 3299 * 3300 * If async is true: 3301 * 3302 * With most buses the read must be done synchronously so this is most useful 3303 * for devices with a cache which do not need to interact with the hardware to 3304 * determine the current register value. 3305 * 3306 * Returns zero for success, a negative number on error. 3307 */ 3308 int regmap_update_bits_base(struct regmap *map, unsigned int reg, 3309 unsigned int mask, unsigned int val, 3310 bool *change, bool async, bool force) 3311 { 3312 int ret; 3313 3314 map->lock(map->lock_arg); 3315 3316 map->async = async; 3317 3318 ret = _regmap_update_bits(map, reg, mask, val, change, force); 3319 3320 map->async = false; 3321 3322 map->unlock(map->lock_arg); 3323 3324 return ret; 3325 } 3326 EXPORT_SYMBOL_GPL(regmap_update_bits_base); 3327 3328 /** 3329 * regmap_test_bits() - Check if all specified bits are set in a register. 3330 * 3331 * @map: Register map to operate on 3332 * @reg: Register to read from 3333 * @bits: Bits to test 3334 * 3335 * Returns 0 if at least one of the tested bits is not set, 1 if all tested 3336 * bits are set and a negative error number if the underlying regmap_read() 3337 * fails. 3338 */ 3339 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits) 3340 { 3341 unsigned int val, ret; 3342 3343 ret = regmap_read(map, reg, &val); 3344 if (ret) 3345 return ret; 3346 3347 return (val & bits) == bits; 3348 } 3349 EXPORT_SYMBOL_GPL(regmap_test_bits); 3350 3351 void regmap_async_complete_cb(struct regmap_async *async, int ret) 3352 { 3353 struct regmap *map = async->map; 3354 bool wake; 3355 3356 trace_regmap_async_io_complete(map); 3357 3358 spin_lock(&map->async_lock); 3359 list_move(&async->list, &map->async_free); 3360 wake = list_empty(&map->async_list); 3361 3362 if (ret != 0) 3363 map->async_ret = ret; 3364 3365 spin_unlock(&map->async_lock); 3366 3367 if (wake) 3368 wake_up(&map->async_waitq); 3369 } 3370 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 3371 3372 static int regmap_async_is_done(struct regmap *map) 3373 { 3374 unsigned long flags; 3375 int ret; 3376 3377 spin_lock_irqsave(&map->async_lock, flags); 3378 ret = list_empty(&map->async_list); 3379 spin_unlock_irqrestore(&map->async_lock, flags); 3380 3381 return ret; 3382 } 3383 3384 /** 3385 * regmap_async_complete - Ensure all asynchronous I/O has completed. 3386 * 3387 * @map: Map to operate on. 3388 * 3389 * Blocks until any pending asynchronous I/O has completed. Returns 3390 * an error code for any failed I/O operations. 3391 */ 3392 int regmap_async_complete(struct regmap *map) 3393 { 3394 unsigned long flags; 3395 int ret; 3396 3397 /* Nothing to do with no async support */ 3398 if (!map->bus || !map->bus->async_write) 3399 return 0; 3400 3401 trace_regmap_async_complete_start(map); 3402 3403 wait_event(map->async_waitq, regmap_async_is_done(map)); 3404 3405 spin_lock_irqsave(&map->async_lock, flags); 3406 ret = map->async_ret; 3407 map->async_ret = 0; 3408 spin_unlock_irqrestore(&map->async_lock, flags); 3409 3410 trace_regmap_async_complete_done(map); 3411 3412 return ret; 3413 } 3414 EXPORT_SYMBOL_GPL(regmap_async_complete); 3415 3416 /** 3417 * regmap_register_patch - Register and apply register updates to be applied 3418 * on device initialistion 3419 * 3420 * @map: Register map to apply updates to. 3421 * @regs: Values to update. 3422 * @num_regs: Number of entries in regs. 3423 * 3424 * Register a set of register updates to be applied to the device 3425 * whenever the device registers are synchronised with the cache and 3426 * apply them immediately. Typically this is used to apply 3427 * corrections to be applied to the device defaults on startup, such 3428 * as the updates some vendors provide to undocumented registers. 3429 * 3430 * The caller must ensure that this function cannot be called 3431 * concurrently with either itself or regcache_sync(). 3432 */ 3433 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, 3434 int num_regs) 3435 { 3436 struct reg_sequence *p; 3437 int ret; 3438 bool bypass; 3439 3440 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", 3441 num_regs)) 3442 return 0; 3443 3444 p = krealloc(map->patch, 3445 sizeof(struct reg_sequence) * (map->patch_regs + num_regs), 3446 GFP_KERNEL); 3447 if (p) { 3448 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 3449 map->patch = p; 3450 map->patch_regs += num_regs; 3451 } else { 3452 return -ENOMEM; 3453 } 3454 3455 map->lock(map->lock_arg); 3456 3457 bypass = map->cache_bypass; 3458 3459 map->cache_bypass = true; 3460 map->async = true; 3461 3462 ret = _regmap_multi_reg_write(map, regs, num_regs); 3463 3464 map->async = false; 3465 map->cache_bypass = bypass; 3466 3467 map->unlock(map->lock_arg); 3468 3469 regmap_async_complete(map); 3470 3471 return ret; 3472 } 3473 EXPORT_SYMBOL_GPL(regmap_register_patch); 3474 3475 /** 3476 * regmap_get_val_bytes() - Report the size of a register value 3477 * 3478 * @map: Register map to operate on. 3479 * 3480 * Report the size of a register value, mainly intended to for use by 3481 * generic infrastructure built on top of regmap. 3482 */ 3483 int regmap_get_val_bytes(struct regmap *map) 3484 { 3485 if (map->format.format_write) 3486 return -EINVAL; 3487 3488 return map->format.val_bytes; 3489 } 3490 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 3491 3492 /** 3493 * regmap_get_max_register() - Report the max register value 3494 * 3495 * @map: Register map to operate on. 3496 * 3497 * Report the max register value, mainly intended to for use by 3498 * generic infrastructure built on top of regmap. 3499 */ 3500 int regmap_get_max_register(struct regmap *map) 3501 { 3502 return map->max_register ? map->max_register : -EINVAL; 3503 } 3504 EXPORT_SYMBOL_GPL(regmap_get_max_register); 3505 3506 /** 3507 * regmap_get_reg_stride() - Report the register address stride 3508 * 3509 * @map: Register map to operate on. 3510 * 3511 * Report the register address stride, mainly intended to for use by 3512 * generic infrastructure built on top of regmap. 3513 */ 3514 int regmap_get_reg_stride(struct regmap *map) 3515 { 3516 return map->reg_stride; 3517 } 3518 EXPORT_SYMBOL_GPL(regmap_get_reg_stride); 3519 3520 /** 3521 * regmap_might_sleep() - Returns whether a regmap access might sleep. 3522 * 3523 * @map: Register map to operate on. 3524 * 3525 * Returns true if an access to the register might sleep, else false. 3526 */ 3527 bool regmap_might_sleep(struct regmap *map) 3528 { 3529 return map->can_sleep; 3530 } 3531 EXPORT_SYMBOL_GPL(regmap_might_sleep); 3532 3533 int regmap_parse_val(struct regmap *map, const void *buf, 3534 unsigned int *val) 3535 { 3536 if (!map->format.parse_val) 3537 return -EINVAL; 3538 3539 *val = map->format.parse_val(buf); 3540 3541 return 0; 3542 } 3543 EXPORT_SYMBOL_GPL(regmap_parse_val); 3544 3545 static int __init regmap_initcall(void) 3546 { 3547 regmap_debugfs_initcall(); 3548 3549 return 0; 3550 } 3551 postcore_initcall(regmap_initcall); 3552