xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision b34081f1)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23 
24 #include "internal.h"
25 
26 /*
27  * Sometimes for failures during very early init the trace
28  * infrastructure isn't available early enough to be used.  For this
29  * sort of problem defining LOG_DEVICE will add printks for basic
30  * register I/O on a specific device.
31  */
32 #undef LOG_DEVICE
33 
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 			       unsigned int mask, unsigned int val,
36 			       bool *change);
37 
38 static int _regmap_bus_read(void *context, unsigned int reg,
39 			    unsigned int *val);
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 				       unsigned int val);
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 				 unsigned int val);
44 
45 static void async_cleanup(struct work_struct *work)
46 {
47 	struct regmap_async *async = container_of(work, struct regmap_async,
48 						  cleanup);
49 
50 	kfree(async->work_buf);
51 	kfree(async);
52 }
53 
54 bool regmap_reg_in_ranges(unsigned int reg,
55 			  const struct regmap_range *ranges,
56 			  unsigned int nranges)
57 {
58 	const struct regmap_range *r;
59 	int i;
60 
61 	for (i = 0, r = ranges; i < nranges; i++, r++)
62 		if (regmap_reg_in_range(reg, r))
63 			return true;
64 	return false;
65 }
66 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
67 
68 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
69 			      const struct regmap_access_table *table)
70 {
71 	/* Check "no ranges" first */
72 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
73 		return false;
74 
75 	/* In case zero "yes ranges" are supplied, any reg is OK */
76 	if (!table->n_yes_ranges)
77 		return true;
78 
79 	return regmap_reg_in_ranges(reg, table->yes_ranges,
80 				    table->n_yes_ranges);
81 }
82 EXPORT_SYMBOL_GPL(regmap_check_range_table);
83 
84 bool regmap_writeable(struct regmap *map, unsigned int reg)
85 {
86 	if (map->max_register && reg > map->max_register)
87 		return false;
88 
89 	if (map->writeable_reg)
90 		return map->writeable_reg(map->dev, reg);
91 
92 	if (map->wr_table)
93 		return regmap_check_range_table(map, reg, map->wr_table);
94 
95 	return true;
96 }
97 
98 bool regmap_readable(struct regmap *map, unsigned int reg)
99 {
100 	if (map->max_register && reg > map->max_register)
101 		return false;
102 
103 	if (map->format.format_write)
104 		return false;
105 
106 	if (map->readable_reg)
107 		return map->readable_reg(map->dev, reg);
108 
109 	if (map->rd_table)
110 		return regmap_check_range_table(map, reg, map->rd_table);
111 
112 	return true;
113 }
114 
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117 	if (!regmap_readable(map, reg))
118 		return false;
119 
120 	if (map->volatile_reg)
121 		return map->volatile_reg(map->dev, reg);
122 
123 	if (map->volatile_table)
124 		return regmap_check_range_table(map, reg, map->volatile_table);
125 
126 	if (map->cache_ops)
127 		return false;
128 	else
129 		return true;
130 }
131 
132 bool regmap_precious(struct regmap *map, unsigned int reg)
133 {
134 	if (!regmap_readable(map, reg))
135 		return false;
136 
137 	if (map->precious_reg)
138 		return map->precious_reg(map->dev, reg);
139 
140 	if (map->precious_table)
141 		return regmap_check_range_table(map, reg, map->precious_table);
142 
143 	return false;
144 }
145 
146 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
147 	size_t num)
148 {
149 	unsigned int i;
150 
151 	for (i = 0; i < num; i++)
152 		if (!regmap_volatile(map, reg + i))
153 			return false;
154 
155 	return true;
156 }
157 
158 static void regmap_format_2_6_write(struct regmap *map,
159 				     unsigned int reg, unsigned int val)
160 {
161 	u8 *out = map->work_buf;
162 
163 	*out = (reg << 6) | val;
164 }
165 
166 static void regmap_format_4_12_write(struct regmap *map,
167 				     unsigned int reg, unsigned int val)
168 {
169 	__be16 *out = map->work_buf;
170 	*out = cpu_to_be16((reg << 12) | val);
171 }
172 
173 static void regmap_format_7_9_write(struct regmap *map,
174 				    unsigned int reg, unsigned int val)
175 {
176 	__be16 *out = map->work_buf;
177 	*out = cpu_to_be16((reg << 9) | val);
178 }
179 
180 static void regmap_format_10_14_write(struct regmap *map,
181 				    unsigned int reg, unsigned int val)
182 {
183 	u8 *out = map->work_buf;
184 
185 	out[2] = val;
186 	out[1] = (val >> 8) | (reg << 6);
187 	out[0] = reg >> 2;
188 }
189 
190 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 {
192 	u8 *b = buf;
193 
194 	b[0] = val << shift;
195 }
196 
197 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 {
199 	__be16 *b = buf;
200 
201 	b[0] = cpu_to_be16(val << shift);
202 }
203 
204 static void regmap_format_16_native(void *buf, unsigned int val,
205 				    unsigned int shift)
206 {
207 	*(u16 *)buf = val << shift;
208 }
209 
210 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
211 {
212 	u8 *b = buf;
213 
214 	val <<= shift;
215 
216 	b[0] = val >> 16;
217 	b[1] = val >> 8;
218 	b[2] = val;
219 }
220 
221 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
222 {
223 	__be32 *b = buf;
224 
225 	b[0] = cpu_to_be32(val << shift);
226 }
227 
228 static void regmap_format_32_native(void *buf, unsigned int val,
229 				    unsigned int shift)
230 {
231 	*(u32 *)buf = val << shift;
232 }
233 
234 static void regmap_parse_inplace_noop(void *buf)
235 {
236 }
237 
238 static unsigned int regmap_parse_8(const void *buf)
239 {
240 	const u8 *b = buf;
241 
242 	return b[0];
243 }
244 
245 static unsigned int regmap_parse_16_be(const void *buf)
246 {
247 	const __be16 *b = buf;
248 
249 	return be16_to_cpu(b[0]);
250 }
251 
252 static void regmap_parse_16_be_inplace(void *buf)
253 {
254 	__be16 *b = buf;
255 
256 	b[0] = be16_to_cpu(b[0]);
257 }
258 
259 static unsigned int regmap_parse_16_native(const void *buf)
260 {
261 	return *(u16 *)buf;
262 }
263 
264 static unsigned int regmap_parse_24(const void *buf)
265 {
266 	const u8 *b = buf;
267 	unsigned int ret = b[2];
268 	ret |= ((unsigned int)b[1]) << 8;
269 	ret |= ((unsigned int)b[0]) << 16;
270 
271 	return ret;
272 }
273 
274 static unsigned int regmap_parse_32_be(const void *buf)
275 {
276 	const __be32 *b = buf;
277 
278 	return be32_to_cpu(b[0]);
279 }
280 
281 static void regmap_parse_32_be_inplace(void *buf)
282 {
283 	__be32 *b = buf;
284 
285 	b[0] = be32_to_cpu(b[0]);
286 }
287 
288 static unsigned int regmap_parse_32_native(const void *buf)
289 {
290 	return *(u32 *)buf;
291 }
292 
293 static void regmap_lock_mutex(void *__map)
294 {
295 	struct regmap *map = __map;
296 	mutex_lock(&map->mutex);
297 }
298 
299 static void regmap_unlock_mutex(void *__map)
300 {
301 	struct regmap *map = __map;
302 	mutex_unlock(&map->mutex);
303 }
304 
305 static void regmap_lock_spinlock(void *__map)
306 __acquires(&map->spinlock)
307 {
308 	struct regmap *map = __map;
309 	unsigned long flags;
310 
311 	spin_lock_irqsave(&map->spinlock, flags);
312 	map->spinlock_flags = flags;
313 }
314 
315 static void regmap_unlock_spinlock(void *__map)
316 __releases(&map->spinlock)
317 {
318 	struct regmap *map = __map;
319 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
320 }
321 
322 static void dev_get_regmap_release(struct device *dev, void *res)
323 {
324 	/*
325 	 * We don't actually have anything to do here; the goal here
326 	 * is not to manage the regmap but to provide a simple way to
327 	 * get the regmap back given a struct device.
328 	 */
329 }
330 
331 static bool _regmap_range_add(struct regmap *map,
332 			      struct regmap_range_node *data)
333 {
334 	struct rb_root *root = &map->range_tree;
335 	struct rb_node **new = &(root->rb_node), *parent = NULL;
336 
337 	while (*new) {
338 		struct regmap_range_node *this =
339 			container_of(*new, struct regmap_range_node, node);
340 
341 		parent = *new;
342 		if (data->range_max < this->range_min)
343 			new = &((*new)->rb_left);
344 		else if (data->range_min > this->range_max)
345 			new = &((*new)->rb_right);
346 		else
347 			return false;
348 	}
349 
350 	rb_link_node(&data->node, parent, new);
351 	rb_insert_color(&data->node, root);
352 
353 	return true;
354 }
355 
356 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
357 						      unsigned int reg)
358 {
359 	struct rb_node *node = map->range_tree.rb_node;
360 
361 	while (node) {
362 		struct regmap_range_node *this =
363 			container_of(node, struct regmap_range_node, node);
364 
365 		if (reg < this->range_min)
366 			node = node->rb_left;
367 		else if (reg > this->range_max)
368 			node = node->rb_right;
369 		else
370 			return this;
371 	}
372 
373 	return NULL;
374 }
375 
376 static void regmap_range_exit(struct regmap *map)
377 {
378 	struct rb_node *next;
379 	struct regmap_range_node *range_node;
380 
381 	next = rb_first(&map->range_tree);
382 	while (next) {
383 		range_node = rb_entry(next, struct regmap_range_node, node);
384 		next = rb_next(&range_node->node);
385 		rb_erase(&range_node->node, &map->range_tree);
386 		kfree(range_node);
387 	}
388 
389 	kfree(map->selector_work_buf);
390 }
391 
392 /**
393  * regmap_init(): Initialise register map
394  *
395  * @dev: Device that will be interacted with
396  * @bus: Bus-specific callbacks to use with device
397  * @bus_context: Data passed to bus-specific callbacks
398  * @config: Configuration for register map
399  *
400  * The return value will be an ERR_PTR() on error or a valid pointer to
401  * a struct regmap.  This function should generally not be called
402  * directly, it should be called by bus-specific init functions.
403  */
404 struct regmap *regmap_init(struct device *dev,
405 			   const struct regmap_bus *bus,
406 			   void *bus_context,
407 			   const struct regmap_config *config)
408 {
409 	struct regmap *map, **m;
410 	int ret = -EINVAL;
411 	enum regmap_endian reg_endian, val_endian;
412 	int i, j;
413 
414 	if (!config)
415 		goto err;
416 
417 	map = kzalloc(sizeof(*map), GFP_KERNEL);
418 	if (map == NULL) {
419 		ret = -ENOMEM;
420 		goto err;
421 	}
422 
423 	if (config->lock && config->unlock) {
424 		map->lock = config->lock;
425 		map->unlock = config->unlock;
426 		map->lock_arg = config->lock_arg;
427 	} else {
428 		if ((bus && bus->fast_io) ||
429 		    config->fast_io) {
430 			spin_lock_init(&map->spinlock);
431 			map->lock = regmap_lock_spinlock;
432 			map->unlock = regmap_unlock_spinlock;
433 		} else {
434 			mutex_init(&map->mutex);
435 			map->lock = regmap_lock_mutex;
436 			map->unlock = regmap_unlock_mutex;
437 		}
438 		map->lock_arg = map;
439 	}
440 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
441 	map->format.pad_bytes = config->pad_bits / 8;
442 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
443 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
444 			config->val_bits + config->pad_bits, 8);
445 	map->reg_shift = config->pad_bits % 8;
446 	if (config->reg_stride)
447 		map->reg_stride = config->reg_stride;
448 	else
449 		map->reg_stride = 1;
450 	map->use_single_rw = config->use_single_rw;
451 	map->dev = dev;
452 	map->bus = bus;
453 	map->bus_context = bus_context;
454 	map->max_register = config->max_register;
455 	map->wr_table = config->wr_table;
456 	map->rd_table = config->rd_table;
457 	map->volatile_table = config->volatile_table;
458 	map->precious_table = config->precious_table;
459 	map->writeable_reg = config->writeable_reg;
460 	map->readable_reg = config->readable_reg;
461 	map->volatile_reg = config->volatile_reg;
462 	map->precious_reg = config->precious_reg;
463 	map->cache_type = config->cache_type;
464 	map->name = config->name;
465 
466 	spin_lock_init(&map->async_lock);
467 	INIT_LIST_HEAD(&map->async_list);
468 	init_waitqueue_head(&map->async_waitq);
469 
470 	if (config->read_flag_mask || config->write_flag_mask) {
471 		map->read_flag_mask = config->read_flag_mask;
472 		map->write_flag_mask = config->write_flag_mask;
473 	} else if (bus) {
474 		map->read_flag_mask = bus->read_flag_mask;
475 	}
476 
477 	if (!bus) {
478 		map->reg_read  = config->reg_read;
479 		map->reg_write = config->reg_write;
480 
481 		map->defer_caching = false;
482 		goto skip_format_initialization;
483 	} else {
484 		map->reg_read  = _regmap_bus_read;
485 	}
486 
487 	reg_endian = config->reg_format_endian;
488 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
489 		reg_endian = bus->reg_format_endian_default;
490 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
491 		reg_endian = REGMAP_ENDIAN_BIG;
492 
493 	val_endian = config->val_format_endian;
494 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
495 		val_endian = bus->val_format_endian_default;
496 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
497 		val_endian = REGMAP_ENDIAN_BIG;
498 
499 	switch (config->reg_bits + map->reg_shift) {
500 	case 2:
501 		switch (config->val_bits) {
502 		case 6:
503 			map->format.format_write = regmap_format_2_6_write;
504 			break;
505 		default:
506 			goto err_map;
507 		}
508 		break;
509 
510 	case 4:
511 		switch (config->val_bits) {
512 		case 12:
513 			map->format.format_write = regmap_format_4_12_write;
514 			break;
515 		default:
516 			goto err_map;
517 		}
518 		break;
519 
520 	case 7:
521 		switch (config->val_bits) {
522 		case 9:
523 			map->format.format_write = regmap_format_7_9_write;
524 			break;
525 		default:
526 			goto err_map;
527 		}
528 		break;
529 
530 	case 10:
531 		switch (config->val_bits) {
532 		case 14:
533 			map->format.format_write = regmap_format_10_14_write;
534 			break;
535 		default:
536 			goto err_map;
537 		}
538 		break;
539 
540 	case 8:
541 		map->format.format_reg = regmap_format_8;
542 		break;
543 
544 	case 16:
545 		switch (reg_endian) {
546 		case REGMAP_ENDIAN_BIG:
547 			map->format.format_reg = regmap_format_16_be;
548 			break;
549 		case REGMAP_ENDIAN_NATIVE:
550 			map->format.format_reg = regmap_format_16_native;
551 			break;
552 		default:
553 			goto err_map;
554 		}
555 		break;
556 
557 	case 24:
558 		if (reg_endian != REGMAP_ENDIAN_BIG)
559 			goto err_map;
560 		map->format.format_reg = regmap_format_24;
561 		break;
562 
563 	case 32:
564 		switch (reg_endian) {
565 		case REGMAP_ENDIAN_BIG:
566 			map->format.format_reg = regmap_format_32_be;
567 			break;
568 		case REGMAP_ENDIAN_NATIVE:
569 			map->format.format_reg = regmap_format_32_native;
570 			break;
571 		default:
572 			goto err_map;
573 		}
574 		break;
575 
576 	default:
577 		goto err_map;
578 	}
579 
580 	if (val_endian == REGMAP_ENDIAN_NATIVE)
581 		map->format.parse_inplace = regmap_parse_inplace_noop;
582 
583 	switch (config->val_bits) {
584 	case 8:
585 		map->format.format_val = regmap_format_8;
586 		map->format.parse_val = regmap_parse_8;
587 		map->format.parse_inplace = regmap_parse_inplace_noop;
588 		break;
589 	case 16:
590 		switch (val_endian) {
591 		case REGMAP_ENDIAN_BIG:
592 			map->format.format_val = regmap_format_16_be;
593 			map->format.parse_val = regmap_parse_16_be;
594 			map->format.parse_inplace = regmap_parse_16_be_inplace;
595 			break;
596 		case REGMAP_ENDIAN_NATIVE:
597 			map->format.format_val = regmap_format_16_native;
598 			map->format.parse_val = regmap_parse_16_native;
599 			break;
600 		default:
601 			goto err_map;
602 		}
603 		break;
604 	case 24:
605 		if (val_endian != REGMAP_ENDIAN_BIG)
606 			goto err_map;
607 		map->format.format_val = regmap_format_24;
608 		map->format.parse_val = regmap_parse_24;
609 		break;
610 	case 32:
611 		switch (val_endian) {
612 		case REGMAP_ENDIAN_BIG:
613 			map->format.format_val = regmap_format_32_be;
614 			map->format.parse_val = regmap_parse_32_be;
615 			map->format.parse_inplace = regmap_parse_32_be_inplace;
616 			break;
617 		case REGMAP_ENDIAN_NATIVE:
618 			map->format.format_val = regmap_format_32_native;
619 			map->format.parse_val = regmap_parse_32_native;
620 			break;
621 		default:
622 			goto err_map;
623 		}
624 		break;
625 	}
626 
627 	if (map->format.format_write) {
628 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
629 		    (val_endian != REGMAP_ENDIAN_BIG))
630 			goto err_map;
631 		map->use_single_rw = true;
632 	}
633 
634 	if (!map->format.format_write &&
635 	    !(map->format.format_reg && map->format.format_val))
636 		goto err_map;
637 
638 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
639 	if (map->work_buf == NULL) {
640 		ret = -ENOMEM;
641 		goto err_map;
642 	}
643 
644 	if (map->format.format_write) {
645 		map->defer_caching = false;
646 		map->reg_write = _regmap_bus_formatted_write;
647 	} else if (map->format.format_val) {
648 		map->defer_caching = true;
649 		map->reg_write = _regmap_bus_raw_write;
650 	}
651 
652 skip_format_initialization:
653 
654 	map->range_tree = RB_ROOT;
655 	for (i = 0; i < config->num_ranges; i++) {
656 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
657 		struct regmap_range_node *new;
658 
659 		/* Sanity check */
660 		if (range_cfg->range_max < range_cfg->range_min) {
661 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
662 				range_cfg->range_max, range_cfg->range_min);
663 			goto err_range;
664 		}
665 
666 		if (range_cfg->range_max > map->max_register) {
667 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
668 				range_cfg->range_max, map->max_register);
669 			goto err_range;
670 		}
671 
672 		if (range_cfg->selector_reg > map->max_register) {
673 			dev_err(map->dev,
674 				"Invalid range %d: selector out of map\n", i);
675 			goto err_range;
676 		}
677 
678 		if (range_cfg->window_len == 0) {
679 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
680 				i);
681 			goto err_range;
682 		}
683 
684 		/* Make sure, that this register range has no selector
685 		   or data window within its boundary */
686 		for (j = 0; j < config->num_ranges; j++) {
687 			unsigned sel_reg = config->ranges[j].selector_reg;
688 			unsigned win_min = config->ranges[j].window_start;
689 			unsigned win_max = win_min +
690 					   config->ranges[j].window_len - 1;
691 
692 			/* Allow data window inside its own virtual range */
693 			if (j == i)
694 				continue;
695 
696 			if (range_cfg->range_min <= sel_reg &&
697 			    sel_reg <= range_cfg->range_max) {
698 				dev_err(map->dev,
699 					"Range %d: selector for %d in window\n",
700 					i, j);
701 				goto err_range;
702 			}
703 
704 			if (!(win_max < range_cfg->range_min ||
705 			      win_min > range_cfg->range_max)) {
706 				dev_err(map->dev,
707 					"Range %d: window for %d in window\n",
708 					i, j);
709 				goto err_range;
710 			}
711 		}
712 
713 		new = kzalloc(sizeof(*new), GFP_KERNEL);
714 		if (new == NULL) {
715 			ret = -ENOMEM;
716 			goto err_range;
717 		}
718 
719 		new->map = map;
720 		new->name = range_cfg->name;
721 		new->range_min = range_cfg->range_min;
722 		new->range_max = range_cfg->range_max;
723 		new->selector_reg = range_cfg->selector_reg;
724 		new->selector_mask = range_cfg->selector_mask;
725 		new->selector_shift = range_cfg->selector_shift;
726 		new->window_start = range_cfg->window_start;
727 		new->window_len = range_cfg->window_len;
728 
729 		if (_regmap_range_add(map, new) == false) {
730 			dev_err(map->dev, "Failed to add range %d\n", i);
731 			kfree(new);
732 			goto err_range;
733 		}
734 
735 		if (map->selector_work_buf == NULL) {
736 			map->selector_work_buf =
737 				kzalloc(map->format.buf_size, GFP_KERNEL);
738 			if (map->selector_work_buf == NULL) {
739 				ret = -ENOMEM;
740 				goto err_range;
741 			}
742 		}
743 	}
744 
745 	regmap_debugfs_init(map, config->name);
746 
747 	ret = regcache_init(map, config);
748 	if (ret != 0)
749 		goto err_range;
750 
751 	/* Add a devres resource for dev_get_regmap() */
752 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
753 	if (!m) {
754 		ret = -ENOMEM;
755 		goto err_debugfs;
756 	}
757 	*m = map;
758 	devres_add(dev, m);
759 
760 	return map;
761 
762 err_debugfs:
763 	regmap_debugfs_exit(map);
764 	regcache_exit(map);
765 err_range:
766 	regmap_range_exit(map);
767 	kfree(map->work_buf);
768 err_map:
769 	kfree(map);
770 err:
771 	return ERR_PTR(ret);
772 }
773 EXPORT_SYMBOL_GPL(regmap_init);
774 
775 static void devm_regmap_release(struct device *dev, void *res)
776 {
777 	regmap_exit(*(struct regmap **)res);
778 }
779 
780 /**
781  * devm_regmap_init(): Initialise managed register map
782  *
783  * @dev: Device that will be interacted with
784  * @bus: Bus-specific callbacks to use with device
785  * @bus_context: Data passed to bus-specific callbacks
786  * @config: Configuration for register map
787  *
788  * The return value will be an ERR_PTR() on error or a valid pointer
789  * to a struct regmap.  This function should generally not be called
790  * directly, it should be called by bus-specific init functions.  The
791  * map will be automatically freed by the device management code.
792  */
793 struct regmap *devm_regmap_init(struct device *dev,
794 				const struct regmap_bus *bus,
795 				void *bus_context,
796 				const struct regmap_config *config)
797 {
798 	struct regmap **ptr, *regmap;
799 
800 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
801 	if (!ptr)
802 		return ERR_PTR(-ENOMEM);
803 
804 	regmap = regmap_init(dev, bus, bus_context, config);
805 	if (!IS_ERR(regmap)) {
806 		*ptr = regmap;
807 		devres_add(dev, ptr);
808 	} else {
809 		devres_free(ptr);
810 	}
811 
812 	return regmap;
813 }
814 EXPORT_SYMBOL_GPL(devm_regmap_init);
815 
816 static void regmap_field_init(struct regmap_field *rm_field,
817 	struct regmap *regmap, struct reg_field reg_field)
818 {
819 	int field_bits = reg_field.msb - reg_field.lsb + 1;
820 	rm_field->regmap = regmap;
821 	rm_field->reg = reg_field.reg;
822 	rm_field->shift = reg_field.lsb;
823 	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
824 }
825 
826 /**
827  * devm_regmap_field_alloc(): Allocate and initialise a register field
828  * in a register map.
829  *
830  * @dev: Device that will be interacted with
831  * @regmap: regmap bank in which this register field is located.
832  * @reg_field: Register field with in the bank.
833  *
834  * The return value will be an ERR_PTR() on error or a valid pointer
835  * to a struct regmap_field. The regmap_field will be automatically freed
836  * by the device management code.
837  */
838 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
839 		struct regmap *regmap, struct reg_field reg_field)
840 {
841 	struct regmap_field *rm_field = devm_kzalloc(dev,
842 					sizeof(*rm_field), GFP_KERNEL);
843 	if (!rm_field)
844 		return ERR_PTR(-ENOMEM);
845 
846 	regmap_field_init(rm_field, regmap, reg_field);
847 
848 	return rm_field;
849 
850 }
851 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
852 
853 /**
854  * devm_regmap_field_free(): Free register field allocated using
855  * devm_regmap_field_alloc. Usally drivers need not call this function,
856  * as the memory allocated via devm will be freed as per device-driver
857  * life-cyle.
858  *
859  * @dev: Device that will be interacted with
860  * @field: regmap field which should be freed.
861  */
862 void devm_regmap_field_free(struct device *dev,
863 	struct regmap_field *field)
864 {
865 	devm_kfree(dev, field);
866 }
867 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
868 
869 /**
870  * regmap_field_alloc(): Allocate and initialise a register field
871  * in a register map.
872  *
873  * @regmap: regmap bank in which this register field is located.
874  * @reg_field: Register field with in the bank.
875  *
876  * The return value will be an ERR_PTR() on error or a valid pointer
877  * to a struct regmap_field. The regmap_field should be freed by the
878  * user once its finished working with it using regmap_field_free().
879  */
880 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
881 		struct reg_field reg_field)
882 {
883 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
884 
885 	if (!rm_field)
886 		return ERR_PTR(-ENOMEM);
887 
888 	regmap_field_init(rm_field, regmap, reg_field);
889 
890 	return rm_field;
891 }
892 EXPORT_SYMBOL_GPL(regmap_field_alloc);
893 
894 /**
895  * regmap_field_free(): Free register field allocated using regmap_field_alloc
896  *
897  * @field: regmap field which should be freed.
898  */
899 void regmap_field_free(struct regmap_field *field)
900 {
901 	kfree(field);
902 }
903 EXPORT_SYMBOL_GPL(regmap_field_free);
904 
905 /**
906  * regmap_reinit_cache(): Reinitialise the current register cache
907  *
908  * @map: Register map to operate on.
909  * @config: New configuration.  Only the cache data will be used.
910  *
911  * Discard any existing register cache for the map and initialize a
912  * new cache.  This can be used to restore the cache to defaults or to
913  * update the cache configuration to reflect runtime discovery of the
914  * hardware.
915  *
916  * No explicit locking is done here, the user needs to ensure that
917  * this function will not race with other calls to regmap.
918  */
919 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
920 {
921 	regcache_exit(map);
922 	regmap_debugfs_exit(map);
923 
924 	map->max_register = config->max_register;
925 	map->writeable_reg = config->writeable_reg;
926 	map->readable_reg = config->readable_reg;
927 	map->volatile_reg = config->volatile_reg;
928 	map->precious_reg = config->precious_reg;
929 	map->cache_type = config->cache_type;
930 
931 	regmap_debugfs_init(map, config->name);
932 
933 	map->cache_bypass = false;
934 	map->cache_only = false;
935 
936 	return regcache_init(map, config);
937 }
938 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
939 
940 /**
941  * regmap_exit(): Free a previously allocated register map
942  */
943 void regmap_exit(struct regmap *map)
944 {
945 	regcache_exit(map);
946 	regmap_debugfs_exit(map);
947 	regmap_range_exit(map);
948 	if (map->bus && map->bus->free_context)
949 		map->bus->free_context(map->bus_context);
950 	kfree(map->work_buf);
951 	kfree(map);
952 }
953 EXPORT_SYMBOL_GPL(regmap_exit);
954 
955 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
956 {
957 	struct regmap **r = res;
958 	if (!r || !*r) {
959 		WARN_ON(!r || !*r);
960 		return 0;
961 	}
962 
963 	/* If the user didn't specify a name match any */
964 	if (data)
965 		return (*r)->name == data;
966 	else
967 		return 1;
968 }
969 
970 /**
971  * dev_get_regmap(): Obtain the regmap (if any) for a device
972  *
973  * @dev: Device to retrieve the map for
974  * @name: Optional name for the register map, usually NULL.
975  *
976  * Returns the regmap for the device if one is present, or NULL.  If
977  * name is specified then it must match the name specified when
978  * registering the device, if it is NULL then the first regmap found
979  * will be used.  Devices with multiple register maps are very rare,
980  * generic code should normally not need to specify a name.
981  */
982 struct regmap *dev_get_regmap(struct device *dev, const char *name)
983 {
984 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
985 					dev_get_regmap_match, (void *)name);
986 
987 	if (!r)
988 		return NULL;
989 	return *r;
990 }
991 EXPORT_SYMBOL_GPL(dev_get_regmap);
992 
993 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
994 			       struct regmap_range_node *range,
995 			       unsigned int val_num)
996 {
997 	void *orig_work_buf;
998 	unsigned int win_offset;
999 	unsigned int win_page;
1000 	bool page_chg;
1001 	int ret;
1002 
1003 	win_offset = (*reg - range->range_min) % range->window_len;
1004 	win_page = (*reg - range->range_min) / range->window_len;
1005 
1006 	if (val_num > 1) {
1007 		/* Bulk write shouldn't cross range boundary */
1008 		if (*reg + val_num - 1 > range->range_max)
1009 			return -EINVAL;
1010 
1011 		/* ... or single page boundary */
1012 		if (val_num > range->window_len - win_offset)
1013 			return -EINVAL;
1014 	}
1015 
1016 	/* It is possible to have selector register inside data window.
1017 	   In that case, selector register is located on every page and
1018 	   it needs no page switching, when accessed alone. */
1019 	if (val_num > 1 ||
1020 	    range->window_start + win_offset != range->selector_reg) {
1021 		/* Use separate work_buf during page switching */
1022 		orig_work_buf = map->work_buf;
1023 		map->work_buf = map->selector_work_buf;
1024 
1025 		ret = _regmap_update_bits(map, range->selector_reg,
1026 					  range->selector_mask,
1027 					  win_page << range->selector_shift,
1028 					  &page_chg);
1029 
1030 		map->work_buf = orig_work_buf;
1031 
1032 		if (ret != 0)
1033 			return ret;
1034 	}
1035 
1036 	*reg = range->window_start + win_offset;
1037 
1038 	return 0;
1039 }
1040 
1041 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1042 		      const void *val, size_t val_len, bool async)
1043 {
1044 	struct regmap_range_node *range;
1045 	unsigned long flags;
1046 	u8 *u8 = map->work_buf;
1047 	void *work_val = map->work_buf + map->format.reg_bytes +
1048 		map->format.pad_bytes;
1049 	void *buf;
1050 	int ret = -ENOTSUPP;
1051 	size_t len;
1052 	int i;
1053 
1054 	WARN_ON(!map->bus);
1055 
1056 	/* Check for unwritable registers before we start */
1057 	if (map->writeable_reg)
1058 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1059 			if (!map->writeable_reg(map->dev,
1060 						reg + (i * map->reg_stride)))
1061 				return -EINVAL;
1062 
1063 	if (!map->cache_bypass && map->format.parse_val) {
1064 		unsigned int ival;
1065 		int val_bytes = map->format.val_bytes;
1066 		for (i = 0; i < val_len / val_bytes; i++) {
1067 			ival = map->format.parse_val(val + (i * val_bytes));
1068 			ret = regcache_write(map, reg + (i * map->reg_stride),
1069 					     ival);
1070 			if (ret) {
1071 				dev_err(map->dev,
1072 					"Error in caching of register: %x ret: %d\n",
1073 					reg + i, ret);
1074 				return ret;
1075 			}
1076 		}
1077 		if (map->cache_only) {
1078 			map->cache_dirty = true;
1079 			return 0;
1080 		}
1081 	}
1082 
1083 	range = _regmap_range_lookup(map, reg);
1084 	if (range) {
1085 		int val_num = val_len / map->format.val_bytes;
1086 		int win_offset = (reg - range->range_min) % range->window_len;
1087 		int win_residue = range->window_len - win_offset;
1088 
1089 		/* If the write goes beyond the end of the window split it */
1090 		while (val_num > win_residue) {
1091 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1092 				win_residue, val_len / map->format.val_bytes);
1093 			ret = _regmap_raw_write(map, reg, val, win_residue *
1094 						map->format.val_bytes, async);
1095 			if (ret != 0)
1096 				return ret;
1097 
1098 			reg += win_residue;
1099 			val_num -= win_residue;
1100 			val += win_residue * map->format.val_bytes;
1101 			val_len -= win_residue * map->format.val_bytes;
1102 
1103 			win_offset = (reg - range->range_min) %
1104 				range->window_len;
1105 			win_residue = range->window_len - win_offset;
1106 		}
1107 
1108 		ret = _regmap_select_page(map, &reg, range, val_num);
1109 		if (ret != 0)
1110 			return ret;
1111 	}
1112 
1113 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1114 
1115 	u8[0] |= map->write_flag_mask;
1116 
1117 	if (async && map->bus->async_write) {
1118 		struct regmap_async *async = map->bus->async_alloc();
1119 		if (!async)
1120 			return -ENOMEM;
1121 
1122 		trace_regmap_async_write_start(map->dev, reg, val_len);
1123 
1124 		async->work_buf = kzalloc(map->format.buf_size,
1125 					  GFP_KERNEL | GFP_DMA);
1126 		if (!async->work_buf) {
1127 			kfree(async);
1128 			return -ENOMEM;
1129 		}
1130 
1131 		INIT_WORK(&async->cleanup, async_cleanup);
1132 		async->map = map;
1133 
1134 		/* If the caller supplied the value we can use it safely. */
1135 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1136 		       map->format.reg_bytes + map->format.val_bytes);
1137 		if (val == work_val)
1138 			val = async->work_buf + map->format.pad_bytes +
1139 				map->format.reg_bytes;
1140 
1141 		spin_lock_irqsave(&map->async_lock, flags);
1142 		list_add_tail(&async->list, &map->async_list);
1143 		spin_unlock_irqrestore(&map->async_lock, flags);
1144 
1145 		ret = map->bus->async_write(map->bus_context, async->work_buf,
1146 					    map->format.reg_bytes +
1147 					    map->format.pad_bytes,
1148 					    val, val_len, async);
1149 
1150 		if (ret != 0) {
1151 			dev_err(map->dev, "Failed to schedule write: %d\n",
1152 				ret);
1153 
1154 			spin_lock_irqsave(&map->async_lock, flags);
1155 			list_del(&async->list);
1156 			spin_unlock_irqrestore(&map->async_lock, flags);
1157 
1158 			kfree(async->work_buf);
1159 			kfree(async);
1160 		}
1161 
1162 		return ret;
1163 	}
1164 
1165 	trace_regmap_hw_write_start(map->dev, reg,
1166 				    val_len / map->format.val_bytes);
1167 
1168 	/* If we're doing a single register write we can probably just
1169 	 * send the work_buf directly, otherwise try to do a gather
1170 	 * write.
1171 	 */
1172 	if (val == work_val)
1173 		ret = map->bus->write(map->bus_context, map->work_buf,
1174 				      map->format.reg_bytes +
1175 				      map->format.pad_bytes +
1176 				      val_len);
1177 	else if (map->bus->gather_write)
1178 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1179 					     map->format.reg_bytes +
1180 					     map->format.pad_bytes,
1181 					     val, val_len);
1182 
1183 	/* If that didn't work fall back on linearising by hand. */
1184 	if (ret == -ENOTSUPP) {
1185 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1186 		buf = kzalloc(len, GFP_KERNEL);
1187 		if (!buf)
1188 			return -ENOMEM;
1189 
1190 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1191 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1192 		       val, val_len);
1193 		ret = map->bus->write(map->bus_context, buf, len);
1194 
1195 		kfree(buf);
1196 	}
1197 
1198 	trace_regmap_hw_write_done(map->dev, reg,
1199 				   val_len / map->format.val_bytes);
1200 
1201 	return ret;
1202 }
1203 
1204 /**
1205  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1206  *
1207  * @map: Map to check.
1208  */
1209 bool regmap_can_raw_write(struct regmap *map)
1210 {
1211 	return map->bus && map->format.format_val && map->format.format_reg;
1212 }
1213 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1214 
1215 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1216 				       unsigned int val)
1217 {
1218 	int ret;
1219 	struct regmap_range_node *range;
1220 	struct regmap *map = context;
1221 
1222 	WARN_ON(!map->bus || !map->format.format_write);
1223 
1224 	range = _regmap_range_lookup(map, reg);
1225 	if (range) {
1226 		ret = _regmap_select_page(map, &reg, range, 1);
1227 		if (ret != 0)
1228 			return ret;
1229 	}
1230 
1231 	map->format.format_write(map, reg, val);
1232 
1233 	trace_regmap_hw_write_start(map->dev, reg, 1);
1234 
1235 	ret = map->bus->write(map->bus_context, map->work_buf,
1236 			      map->format.buf_size);
1237 
1238 	trace_regmap_hw_write_done(map->dev, reg, 1);
1239 
1240 	return ret;
1241 }
1242 
1243 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1244 				 unsigned int val)
1245 {
1246 	struct regmap *map = context;
1247 
1248 	WARN_ON(!map->bus || !map->format.format_val);
1249 
1250 	map->format.format_val(map->work_buf + map->format.reg_bytes
1251 			       + map->format.pad_bytes, val, 0);
1252 	return _regmap_raw_write(map, reg,
1253 				 map->work_buf +
1254 				 map->format.reg_bytes +
1255 				 map->format.pad_bytes,
1256 				 map->format.val_bytes, false);
1257 }
1258 
1259 static inline void *_regmap_map_get_context(struct regmap *map)
1260 {
1261 	return (map->bus) ? map : map->bus_context;
1262 }
1263 
1264 int _regmap_write(struct regmap *map, unsigned int reg,
1265 		  unsigned int val)
1266 {
1267 	int ret;
1268 	void *context = _regmap_map_get_context(map);
1269 
1270 	if (!regmap_writeable(map, reg))
1271 		return -EIO;
1272 
1273 	if (!map->cache_bypass && !map->defer_caching) {
1274 		ret = regcache_write(map, reg, val);
1275 		if (ret != 0)
1276 			return ret;
1277 		if (map->cache_only) {
1278 			map->cache_dirty = true;
1279 			return 0;
1280 		}
1281 	}
1282 
1283 #ifdef LOG_DEVICE
1284 	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1285 		dev_info(map->dev, "%x <= %x\n", reg, val);
1286 #endif
1287 
1288 	trace_regmap_reg_write(map->dev, reg, val);
1289 
1290 	return map->reg_write(context, reg, val);
1291 }
1292 
1293 /**
1294  * regmap_write(): Write a value to a single register
1295  *
1296  * @map: Register map to write to
1297  * @reg: Register to write to
1298  * @val: Value to be written
1299  *
1300  * A value of zero will be returned on success, a negative errno will
1301  * be returned in error cases.
1302  */
1303 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1304 {
1305 	int ret;
1306 
1307 	if (reg % map->reg_stride)
1308 		return -EINVAL;
1309 
1310 	map->lock(map->lock_arg);
1311 
1312 	ret = _regmap_write(map, reg, val);
1313 
1314 	map->unlock(map->lock_arg);
1315 
1316 	return ret;
1317 }
1318 EXPORT_SYMBOL_GPL(regmap_write);
1319 
1320 /**
1321  * regmap_raw_write(): Write raw values to one or more registers
1322  *
1323  * @map: Register map to write to
1324  * @reg: Initial register to write to
1325  * @val: Block of data to be written, laid out for direct transmission to the
1326  *       device
1327  * @val_len: Length of data pointed to by val.
1328  *
1329  * This function is intended to be used for things like firmware
1330  * download where a large block of data needs to be transferred to the
1331  * device.  No formatting will be done on the data provided.
1332  *
1333  * A value of zero will be returned on success, a negative errno will
1334  * be returned in error cases.
1335  */
1336 int regmap_raw_write(struct regmap *map, unsigned int reg,
1337 		     const void *val, size_t val_len)
1338 {
1339 	int ret;
1340 
1341 	if (!regmap_can_raw_write(map))
1342 		return -EINVAL;
1343 	if (val_len % map->format.val_bytes)
1344 		return -EINVAL;
1345 
1346 	map->lock(map->lock_arg);
1347 
1348 	ret = _regmap_raw_write(map, reg, val, val_len, false);
1349 
1350 	map->unlock(map->lock_arg);
1351 
1352 	return ret;
1353 }
1354 EXPORT_SYMBOL_GPL(regmap_raw_write);
1355 
1356 /**
1357  * regmap_field_write(): Write a value to a single register field
1358  *
1359  * @field: Register field to write to
1360  * @val: Value to be written
1361  *
1362  * A value of zero will be returned on success, a negative errno will
1363  * be returned in error cases.
1364  */
1365 int regmap_field_write(struct regmap_field *field, unsigned int val)
1366 {
1367 	return regmap_update_bits(field->regmap, field->reg,
1368 				field->mask, val << field->shift);
1369 }
1370 EXPORT_SYMBOL_GPL(regmap_field_write);
1371 
1372 /*
1373  * regmap_bulk_write(): Write multiple registers to the device
1374  *
1375  * @map: Register map to write to
1376  * @reg: First register to be write from
1377  * @val: Block of data to be written, in native register size for device
1378  * @val_count: Number of registers to write
1379  *
1380  * This function is intended to be used for writing a large block of
1381  * data to the device either in single transfer or multiple transfer.
1382  *
1383  * A value of zero will be returned on success, a negative errno will
1384  * be returned in error cases.
1385  */
1386 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1387 		     size_t val_count)
1388 {
1389 	int ret = 0, i;
1390 	size_t val_bytes = map->format.val_bytes;
1391 	void *wval;
1392 
1393 	if (!map->bus)
1394 		return -EINVAL;
1395 	if (!map->format.parse_inplace)
1396 		return -EINVAL;
1397 	if (reg % map->reg_stride)
1398 		return -EINVAL;
1399 
1400 	map->lock(map->lock_arg);
1401 
1402 	/* No formatting is require if val_byte is 1 */
1403 	if (val_bytes == 1) {
1404 		wval = (void *)val;
1405 	} else {
1406 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1407 		if (!wval) {
1408 			ret = -ENOMEM;
1409 			dev_err(map->dev, "Error in memory allocation\n");
1410 			goto out;
1411 		}
1412 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1413 			map->format.parse_inplace(wval + i);
1414 	}
1415 	/*
1416 	 * Some devices does not support bulk write, for
1417 	 * them we have a series of single write operations.
1418 	 */
1419 	if (map->use_single_rw) {
1420 		for (i = 0; i < val_count; i++) {
1421 			ret = regmap_raw_write(map,
1422 					       reg + (i * map->reg_stride),
1423 					       val + (i * val_bytes),
1424 					       val_bytes);
1425 			if (ret != 0)
1426 				return ret;
1427 		}
1428 	} else {
1429 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count,
1430 					false);
1431 	}
1432 
1433 	if (val_bytes != 1)
1434 		kfree(wval);
1435 
1436 out:
1437 	map->unlock(map->lock_arg);
1438 	return ret;
1439 }
1440 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1441 
1442 /**
1443  * regmap_raw_write_async(): Write raw values to one or more registers
1444  *                           asynchronously
1445  *
1446  * @map: Register map to write to
1447  * @reg: Initial register to write to
1448  * @val: Block of data to be written, laid out for direct transmission to the
1449  *       device.  Must be valid until regmap_async_complete() is called.
1450  * @val_len: Length of data pointed to by val.
1451  *
1452  * This function is intended to be used for things like firmware
1453  * download where a large block of data needs to be transferred to the
1454  * device.  No formatting will be done on the data provided.
1455  *
1456  * If supported by the underlying bus the write will be scheduled
1457  * asynchronously, helping maximise I/O speed on higher speed buses
1458  * like SPI.  regmap_async_complete() can be called to ensure that all
1459  * asynchrnous writes have been completed.
1460  *
1461  * A value of zero will be returned on success, a negative errno will
1462  * be returned in error cases.
1463  */
1464 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1465 			   const void *val, size_t val_len)
1466 {
1467 	int ret;
1468 
1469 	if (val_len % map->format.val_bytes)
1470 		return -EINVAL;
1471 	if (reg % map->reg_stride)
1472 		return -EINVAL;
1473 
1474 	map->lock(map->lock_arg);
1475 
1476 	ret = _regmap_raw_write(map, reg, val, val_len, true);
1477 
1478 	map->unlock(map->lock_arg);
1479 
1480 	return ret;
1481 }
1482 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1483 
1484 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1485 			    unsigned int val_len)
1486 {
1487 	struct regmap_range_node *range;
1488 	u8 *u8 = map->work_buf;
1489 	int ret;
1490 
1491 	WARN_ON(!map->bus);
1492 
1493 	range = _regmap_range_lookup(map, reg);
1494 	if (range) {
1495 		ret = _regmap_select_page(map, &reg, range,
1496 					  val_len / map->format.val_bytes);
1497 		if (ret != 0)
1498 			return ret;
1499 	}
1500 
1501 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1502 
1503 	/*
1504 	 * Some buses or devices flag reads by setting the high bits in the
1505 	 * register addresss; since it's always the high bits for all
1506 	 * current formats we can do this here rather than in
1507 	 * formatting.  This may break if we get interesting formats.
1508 	 */
1509 	u8[0] |= map->read_flag_mask;
1510 
1511 	trace_regmap_hw_read_start(map->dev, reg,
1512 				   val_len / map->format.val_bytes);
1513 
1514 	ret = map->bus->read(map->bus_context, map->work_buf,
1515 			     map->format.reg_bytes + map->format.pad_bytes,
1516 			     val, val_len);
1517 
1518 	trace_regmap_hw_read_done(map->dev, reg,
1519 				  val_len / map->format.val_bytes);
1520 
1521 	return ret;
1522 }
1523 
1524 static int _regmap_bus_read(void *context, unsigned int reg,
1525 			    unsigned int *val)
1526 {
1527 	int ret;
1528 	struct regmap *map = context;
1529 
1530 	if (!map->format.parse_val)
1531 		return -EINVAL;
1532 
1533 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1534 	if (ret == 0)
1535 		*val = map->format.parse_val(map->work_buf);
1536 
1537 	return ret;
1538 }
1539 
1540 static int _regmap_read(struct regmap *map, unsigned int reg,
1541 			unsigned int *val)
1542 {
1543 	int ret;
1544 	void *context = _regmap_map_get_context(map);
1545 
1546 	WARN_ON(!map->reg_read);
1547 
1548 	if (!map->cache_bypass) {
1549 		ret = regcache_read(map, reg, val);
1550 		if (ret == 0)
1551 			return 0;
1552 	}
1553 
1554 	if (map->cache_only)
1555 		return -EBUSY;
1556 
1557 	ret = map->reg_read(context, reg, val);
1558 	if (ret == 0) {
1559 #ifdef LOG_DEVICE
1560 		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1561 			dev_info(map->dev, "%x => %x\n", reg, *val);
1562 #endif
1563 
1564 		trace_regmap_reg_read(map->dev, reg, *val);
1565 
1566 		if (!map->cache_bypass)
1567 			regcache_write(map, reg, *val);
1568 	}
1569 
1570 	return ret;
1571 }
1572 
1573 /**
1574  * regmap_read(): Read a value from a single register
1575  *
1576  * @map: Register map to write to
1577  * @reg: Register to be read from
1578  * @val: Pointer to store read value
1579  *
1580  * A value of zero will be returned on success, a negative errno will
1581  * be returned in error cases.
1582  */
1583 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1584 {
1585 	int ret;
1586 
1587 	if (reg % map->reg_stride)
1588 		return -EINVAL;
1589 
1590 	map->lock(map->lock_arg);
1591 
1592 	ret = _regmap_read(map, reg, val);
1593 
1594 	map->unlock(map->lock_arg);
1595 
1596 	return ret;
1597 }
1598 EXPORT_SYMBOL_GPL(regmap_read);
1599 
1600 /**
1601  * regmap_raw_read(): Read raw data from the device
1602  *
1603  * @map: Register map to write to
1604  * @reg: First register to be read from
1605  * @val: Pointer to store read value
1606  * @val_len: Size of data to read
1607  *
1608  * A value of zero will be returned on success, a negative errno will
1609  * be returned in error cases.
1610  */
1611 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1612 		    size_t val_len)
1613 {
1614 	size_t val_bytes = map->format.val_bytes;
1615 	size_t val_count = val_len / val_bytes;
1616 	unsigned int v;
1617 	int ret, i;
1618 
1619 	if (!map->bus)
1620 		return -EINVAL;
1621 	if (val_len % map->format.val_bytes)
1622 		return -EINVAL;
1623 	if (reg % map->reg_stride)
1624 		return -EINVAL;
1625 
1626 	map->lock(map->lock_arg);
1627 
1628 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1629 	    map->cache_type == REGCACHE_NONE) {
1630 		/* Physical block read if there's no cache involved */
1631 		ret = _regmap_raw_read(map, reg, val, val_len);
1632 
1633 	} else {
1634 		/* Otherwise go word by word for the cache; should be low
1635 		 * cost as we expect to hit the cache.
1636 		 */
1637 		for (i = 0; i < val_count; i++) {
1638 			ret = _regmap_read(map, reg + (i * map->reg_stride),
1639 					   &v);
1640 			if (ret != 0)
1641 				goto out;
1642 
1643 			map->format.format_val(val + (i * val_bytes), v, 0);
1644 		}
1645 	}
1646 
1647  out:
1648 	map->unlock(map->lock_arg);
1649 
1650 	return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(regmap_raw_read);
1653 
1654 /**
1655  * regmap_field_read(): Read a value to a single register field
1656  *
1657  * @field: Register field to read from
1658  * @val: Pointer to store read value
1659  *
1660  * A value of zero will be returned on success, a negative errno will
1661  * be returned in error cases.
1662  */
1663 int regmap_field_read(struct regmap_field *field, unsigned int *val)
1664 {
1665 	int ret;
1666 	unsigned int reg_val;
1667 	ret = regmap_read(field->regmap, field->reg, &reg_val);
1668 	if (ret != 0)
1669 		return ret;
1670 
1671 	reg_val &= field->mask;
1672 	reg_val >>= field->shift;
1673 	*val = reg_val;
1674 
1675 	return ret;
1676 }
1677 EXPORT_SYMBOL_GPL(regmap_field_read);
1678 
1679 /**
1680  * regmap_bulk_read(): Read multiple registers from the device
1681  *
1682  * @map: Register map to write to
1683  * @reg: First register to be read from
1684  * @val: Pointer to store read value, in native register size for device
1685  * @val_count: Number of registers to read
1686  *
1687  * A value of zero will be returned on success, a negative errno will
1688  * be returned in error cases.
1689  */
1690 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1691 		     size_t val_count)
1692 {
1693 	int ret, i;
1694 	size_t val_bytes = map->format.val_bytes;
1695 	bool vol = regmap_volatile_range(map, reg, val_count);
1696 
1697 	if (!map->bus)
1698 		return -EINVAL;
1699 	if (!map->format.parse_inplace)
1700 		return -EINVAL;
1701 	if (reg % map->reg_stride)
1702 		return -EINVAL;
1703 
1704 	if (vol || map->cache_type == REGCACHE_NONE) {
1705 		/*
1706 		 * Some devices does not support bulk read, for
1707 		 * them we have a series of single read operations.
1708 		 */
1709 		if (map->use_single_rw) {
1710 			for (i = 0; i < val_count; i++) {
1711 				ret = regmap_raw_read(map,
1712 						reg + (i * map->reg_stride),
1713 						val + (i * val_bytes),
1714 						val_bytes);
1715 				if (ret != 0)
1716 					return ret;
1717 			}
1718 		} else {
1719 			ret = regmap_raw_read(map, reg, val,
1720 					      val_bytes * val_count);
1721 			if (ret != 0)
1722 				return ret;
1723 		}
1724 
1725 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1726 			map->format.parse_inplace(val + i);
1727 	} else {
1728 		for (i = 0; i < val_count; i++) {
1729 			unsigned int ival;
1730 			ret = regmap_read(map, reg + (i * map->reg_stride),
1731 					  &ival);
1732 			if (ret != 0)
1733 				return ret;
1734 			memcpy(val + (i * val_bytes), &ival, val_bytes);
1735 		}
1736 	}
1737 
1738 	return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1741 
1742 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1743 			       unsigned int mask, unsigned int val,
1744 			       bool *change)
1745 {
1746 	int ret;
1747 	unsigned int tmp, orig;
1748 
1749 	ret = _regmap_read(map, reg, &orig);
1750 	if (ret != 0)
1751 		return ret;
1752 
1753 	tmp = orig & ~mask;
1754 	tmp |= val & mask;
1755 
1756 	if (tmp != orig) {
1757 		ret = _regmap_write(map, reg, tmp);
1758 		*change = true;
1759 	} else {
1760 		*change = false;
1761 	}
1762 
1763 	return ret;
1764 }
1765 
1766 /**
1767  * regmap_update_bits: Perform a read/modify/write cycle on the register map
1768  *
1769  * @map: Register map to update
1770  * @reg: Register to update
1771  * @mask: Bitmask to change
1772  * @val: New value for bitmask
1773  *
1774  * Returns zero for success, a negative number on error.
1775  */
1776 int regmap_update_bits(struct regmap *map, unsigned int reg,
1777 		       unsigned int mask, unsigned int val)
1778 {
1779 	bool change;
1780 	int ret;
1781 
1782 	map->lock(map->lock_arg);
1783 	ret = _regmap_update_bits(map, reg, mask, val, &change);
1784 	map->unlock(map->lock_arg);
1785 
1786 	return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(regmap_update_bits);
1789 
1790 /**
1791  * regmap_update_bits_check: Perform a read/modify/write cycle on the
1792  *                           register map and report if updated
1793  *
1794  * @map: Register map to update
1795  * @reg: Register to update
1796  * @mask: Bitmask to change
1797  * @val: New value for bitmask
1798  * @change: Boolean indicating if a write was done
1799  *
1800  * Returns zero for success, a negative number on error.
1801  */
1802 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1803 			     unsigned int mask, unsigned int val,
1804 			     bool *change)
1805 {
1806 	int ret;
1807 
1808 	map->lock(map->lock_arg);
1809 	ret = _regmap_update_bits(map, reg, mask, val, change);
1810 	map->unlock(map->lock_arg);
1811 	return ret;
1812 }
1813 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1814 
1815 void regmap_async_complete_cb(struct regmap_async *async, int ret)
1816 {
1817 	struct regmap *map = async->map;
1818 	bool wake;
1819 
1820 	trace_regmap_async_io_complete(map->dev);
1821 
1822 	spin_lock(&map->async_lock);
1823 
1824 	list_del(&async->list);
1825 	wake = list_empty(&map->async_list);
1826 
1827 	if (ret != 0)
1828 		map->async_ret = ret;
1829 
1830 	spin_unlock(&map->async_lock);
1831 
1832 	schedule_work(&async->cleanup);
1833 
1834 	if (wake)
1835 		wake_up(&map->async_waitq);
1836 }
1837 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
1838 
1839 static int regmap_async_is_done(struct regmap *map)
1840 {
1841 	unsigned long flags;
1842 	int ret;
1843 
1844 	spin_lock_irqsave(&map->async_lock, flags);
1845 	ret = list_empty(&map->async_list);
1846 	spin_unlock_irqrestore(&map->async_lock, flags);
1847 
1848 	return ret;
1849 }
1850 
1851 /**
1852  * regmap_async_complete: Ensure all asynchronous I/O has completed.
1853  *
1854  * @map: Map to operate on.
1855  *
1856  * Blocks until any pending asynchronous I/O has completed.  Returns
1857  * an error code for any failed I/O operations.
1858  */
1859 int regmap_async_complete(struct regmap *map)
1860 {
1861 	unsigned long flags;
1862 	int ret;
1863 
1864 	/* Nothing to do with no async support */
1865 	if (!map->bus || !map->bus->async_write)
1866 		return 0;
1867 
1868 	trace_regmap_async_complete_start(map->dev);
1869 
1870 	wait_event(map->async_waitq, regmap_async_is_done(map));
1871 
1872 	spin_lock_irqsave(&map->async_lock, flags);
1873 	ret = map->async_ret;
1874 	map->async_ret = 0;
1875 	spin_unlock_irqrestore(&map->async_lock, flags);
1876 
1877 	trace_regmap_async_complete_done(map->dev);
1878 
1879 	return ret;
1880 }
1881 EXPORT_SYMBOL_GPL(regmap_async_complete);
1882 
1883 /**
1884  * regmap_register_patch: Register and apply register updates to be applied
1885  *                        on device initialistion
1886  *
1887  * @map: Register map to apply updates to.
1888  * @regs: Values to update.
1889  * @num_regs: Number of entries in regs.
1890  *
1891  * Register a set of register updates to be applied to the device
1892  * whenever the device registers are synchronised with the cache and
1893  * apply them immediately.  Typically this is used to apply
1894  * corrections to be applied to the device defaults on startup, such
1895  * as the updates some vendors provide to undocumented registers.
1896  */
1897 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1898 			  int num_regs)
1899 {
1900 	struct reg_default *p;
1901 	int i, ret;
1902 	bool bypass;
1903 
1904 	map->lock(map->lock_arg);
1905 
1906 	bypass = map->cache_bypass;
1907 
1908 	map->cache_bypass = true;
1909 
1910 	/* Write out first; it's useful to apply even if we fail later. */
1911 	for (i = 0; i < num_regs; i++) {
1912 		ret = _regmap_write(map, regs[i].reg, regs[i].def);
1913 		if (ret != 0) {
1914 			dev_err(map->dev, "Failed to write %x = %x: %d\n",
1915 				regs[i].reg, regs[i].def, ret);
1916 			goto out;
1917 		}
1918 	}
1919 
1920 	p = krealloc(map->patch,
1921 		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
1922 		     GFP_KERNEL);
1923 	if (p) {
1924 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
1925 		map->patch = p;
1926 		map->patch_regs += num_regs;
1927 	} else {
1928 		ret = -ENOMEM;
1929 	}
1930 
1931 out:
1932 	map->cache_bypass = bypass;
1933 
1934 	map->unlock(map->lock_arg);
1935 
1936 	return ret;
1937 }
1938 EXPORT_SYMBOL_GPL(regmap_register_patch);
1939 
1940 /*
1941  * regmap_get_val_bytes(): Report the size of a register value
1942  *
1943  * Report the size of a register value, mainly intended to for use by
1944  * generic infrastructure built on top of regmap.
1945  */
1946 int regmap_get_val_bytes(struct regmap *map)
1947 {
1948 	if (map->format.format_write)
1949 		return -EINVAL;
1950 
1951 	return map->format.val_bytes;
1952 }
1953 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1954 
1955 static int __init regmap_initcall(void)
1956 {
1957 	regmap_debugfs_initcall();
1958 
1959 	return 0;
1960 }
1961 postcore_initcall(regmap_initcall);
1962