1 /* 2 * Register map access API 3 * 4 * Copyright 2011 Wolfson Microelectronics plc 5 * 6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/mutex.h> 17 #include <linux/err.h> 18 #include <linux/rbtree.h> 19 #include <linux/sched.h> 20 21 #define CREATE_TRACE_POINTS 22 #include <trace/events/regmap.h> 23 24 #include "internal.h" 25 26 /* 27 * Sometimes for failures during very early init the trace 28 * infrastructure isn't available early enough to be used. For this 29 * sort of problem defining LOG_DEVICE will add printks for basic 30 * register I/O on a specific device. 31 */ 32 #undef LOG_DEVICE 33 34 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 35 unsigned int mask, unsigned int val, 36 bool *change); 37 38 static int _regmap_bus_read(void *context, unsigned int reg, 39 unsigned int *val); 40 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 41 unsigned int val); 42 static int _regmap_bus_raw_write(void *context, unsigned int reg, 43 unsigned int val); 44 45 bool regmap_reg_in_ranges(unsigned int reg, 46 const struct regmap_range *ranges, 47 unsigned int nranges) 48 { 49 const struct regmap_range *r; 50 int i; 51 52 for (i = 0, r = ranges; i < nranges; i++, r++) 53 if (regmap_reg_in_range(reg, r)) 54 return true; 55 return false; 56 } 57 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 58 59 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 60 const struct regmap_access_table *table) 61 { 62 /* Check "no ranges" first */ 63 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 64 return false; 65 66 /* In case zero "yes ranges" are supplied, any reg is OK */ 67 if (!table->n_yes_ranges) 68 return true; 69 70 return regmap_reg_in_ranges(reg, table->yes_ranges, 71 table->n_yes_ranges); 72 } 73 EXPORT_SYMBOL_GPL(regmap_check_range_table); 74 75 bool regmap_writeable(struct regmap *map, unsigned int reg) 76 { 77 if (map->max_register && reg > map->max_register) 78 return false; 79 80 if (map->writeable_reg) 81 return map->writeable_reg(map->dev, reg); 82 83 if (map->wr_table) 84 return regmap_check_range_table(map, reg, map->wr_table); 85 86 return true; 87 } 88 89 bool regmap_readable(struct regmap *map, unsigned int reg) 90 { 91 if (map->max_register && reg > map->max_register) 92 return false; 93 94 if (map->format.format_write) 95 return false; 96 97 if (map->readable_reg) 98 return map->readable_reg(map->dev, reg); 99 100 if (map->rd_table) 101 return regmap_check_range_table(map, reg, map->rd_table); 102 103 return true; 104 } 105 106 bool regmap_volatile(struct regmap *map, unsigned int reg) 107 { 108 if (!regmap_readable(map, reg)) 109 return false; 110 111 if (map->volatile_reg) 112 return map->volatile_reg(map->dev, reg); 113 114 if (map->volatile_table) 115 return regmap_check_range_table(map, reg, map->volatile_table); 116 117 if (map->cache_ops) 118 return false; 119 else 120 return true; 121 } 122 123 bool regmap_precious(struct regmap *map, unsigned int reg) 124 { 125 if (!regmap_readable(map, reg)) 126 return false; 127 128 if (map->precious_reg) 129 return map->precious_reg(map->dev, reg); 130 131 if (map->precious_table) 132 return regmap_check_range_table(map, reg, map->precious_table); 133 134 return false; 135 } 136 137 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 138 size_t num) 139 { 140 unsigned int i; 141 142 for (i = 0; i < num; i++) 143 if (!regmap_volatile(map, reg + i)) 144 return false; 145 146 return true; 147 } 148 149 static void regmap_format_2_6_write(struct regmap *map, 150 unsigned int reg, unsigned int val) 151 { 152 u8 *out = map->work_buf; 153 154 *out = (reg << 6) | val; 155 } 156 157 static void regmap_format_4_12_write(struct regmap *map, 158 unsigned int reg, unsigned int val) 159 { 160 __be16 *out = map->work_buf; 161 *out = cpu_to_be16((reg << 12) | val); 162 } 163 164 static void regmap_format_7_9_write(struct regmap *map, 165 unsigned int reg, unsigned int val) 166 { 167 __be16 *out = map->work_buf; 168 *out = cpu_to_be16((reg << 9) | val); 169 } 170 171 static void regmap_format_10_14_write(struct regmap *map, 172 unsigned int reg, unsigned int val) 173 { 174 u8 *out = map->work_buf; 175 176 out[2] = val; 177 out[1] = (val >> 8) | (reg << 6); 178 out[0] = reg >> 2; 179 } 180 181 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 182 { 183 u8 *b = buf; 184 185 b[0] = val << shift; 186 } 187 188 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 189 { 190 __be16 *b = buf; 191 192 b[0] = cpu_to_be16(val << shift); 193 } 194 195 static void regmap_format_16_native(void *buf, unsigned int val, 196 unsigned int shift) 197 { 198 *(u16 *)buf = val << shift; 199 } 200 201 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift) 202 { 203 u8 *b = buf; 204 205 val <<= shift; 206 207 b[0] = val >> 16; 208 b[1] = val >> 8; 209 b[2] = val; 210 } 211 212 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 213 { 214 __be32 *b = buf; 215 216 b[0] = cpu_to_be32(val << shift); 217 } 218 219 static void regmap_format_32_native(void *buf, unsigned int val, 220 unsigned int shift) 221 { 222 *(u32 *)buf = val << shift; 223 } 224 225 static void regmap_parse_inplace_noop(void *buf) 226 { 227 } 228 229 static unsigned int regmap_parse_8(const void *buf) 230 { 231 const u8 *b = buf; 232 233 return b[0]; 234 } 235 236 static unsigned int regmap_parse_16_be(const void *buf) 237 { 238 const __be16 *b = buf; 239 240 return be16_to_cpu(b[0]); 241 } 242 243 static void regmap_parse_16_be_inplace(void *buf) 244 { 245 __be16 *b = buf; 246 247 b[0] = be16_to_cpu(b[0]); 248 } 249 250 static unsigned int regmap_parse_16_native(const void *buf) 251 { 252 return *(u16 *)buf; 253 } 254 255 static unsigned int regmap_parse_24(const void *buf) 256 { 257 const u8 *b = buf; 258 unsigned int ret = b[2]; 259 ret |= ((unsigned int)b[1]) << 8; 260 ret |= ((unsigned int)b[0]) << 16; 261 262 return ret; 263 } 264 265 static unsigned int regmap_parse_32_be(const void *buf) 266 { 267 const __be32 *b = buf; 268 269 return be32_to_cpu(b[0]); 270 } 271 272 static void regmap_parse_32_be_inplace(void *buf) 273 { 274 __be32 *b = buf; 275 276 b[0] = be32_to_cpu(b[0]); 277 } 278 279 static unsigned int regmap_parse_32_native(const void *buf) 280 { 281 return *(u32 *)buf; 282 } 283 284 static void regmap_lock_mutex(void *__map) 285 { 286 struct regmap *map = __map; 287 mutex_lock(&map->mutex); 288 } 289 290 static void regmap_unlock_mutex(void *__map) 291 { 292 struct regmap *map = __map; 293 mutex_unlock(&map->mutex); 294 } 295 296 static void regmap_lock_spinlock(void *__map) 297 __acquires(&map->spinlock) 298 { 299 struct regmap *map = __map; 300 unsigned long flags; 301 302 spin_lock_irqsave(&map->spinlock, flags); 303 map->spinlock_flags = flags; 304 } 305 306 static void regmap_unlock_spinlock(void *__map) 307 __releases(&map->spinlock) 308 { 309 struct regmap *map = __map; 310 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 311 } 312 313 static void dev_get_regmap_release(struct device *dev, void *res) 314 { 315 /* 316 * We don't actually have anything to do here; the goal here 317 * is not to manage the regmap but to provide a simple way to 318 * get the regmap back given a struct device. 319 */ 320 } 321 322 static bool _regmap_range_add(struct regmap *map, 323 struct regmap_range_node *data) 324 { 325 struct rb_root *root = &map->range_tree; 326 struct rb_node **new = &(root->rb_node), *parent = NULL; 327 328 while (*new) { 329 struct regmap_range_node *this = 330 container_of(*new, struct regmap_range_node, node); 331 332 parent = *new; 333 if (data->range_max < this->range_min) 334 new = &((*new)->rb_left); 335 else if (data->range_min > this->range_max) 336 new = &((*new)->rb_right); 337 else 338 return false; 339 } 340 341 rb_link_node(&data->node, parent, new); 342 rb_insert_color(&data->node, root); 343 344 return true; 345 } 346 347 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 348 unsigned int reg) 349 { 350 struct rb_node *node = map->range_tree.rb_node; 351 352 while (node) { 353 struct regmap_range_node *this = 354 container_of(node, struct regmap_range_node, node); 355 356 if (reg < this->range_min) 357 node = node->rb_left; 358 else if (reg > this->range_max) 359 node = node->rb_right; 360 else 361 return this; 362 } 363 364 return NULL; 365 } 366 367 static void regmap_range_exit(struct regmap *map) 368 { 369 struct rb_node *next; 370 struct regmap_range_node *range_node; 371 372 next = rb_first(&map->range_tree); 373 while (next) { 374 range_node = rb_entry(next, struct regmap_range_node, node); 375 next = rb_next(&range_node->node); 376 rb_erase(&range_node->node, &map->range_tree); 377 kfree(range_node); 378 } 379 380 kfree(map->selector_work_buf); 381 } 382 383 /** 384 * regmap_init(): Initialise register map 385 * 386 * @dev: Device that will be interacted with 387 * @bus: Bus-specific callbacks to use with device 388 * @bus_context: Data passed to bus-specific callbacks 389 * @config: Configuration for register map 390 * 391 * The return value will be an ERR_PTR() on error or a valid pointer to 392 * a struct regmap. This function should generally not be called 393 * directly, it should be called by bus-specific init functions. 394 */ 395 struct regmap *regmap_init(struct device *dev, 396 const struct regmap_bus *bus, 397 void *bus_context, 398 const struct regmap_config *config) 399 { 400 struct regmap *map, **m; 401 int ret = -EINVAL; 402 enum regmap_endian reg_endian, val_endian; 403 int i, j; 404 405 if (!config) 406 goto err; 407 408 map = kzalloc(sizeof(*map), GFP_KERNEL); 409 if (map == NULL) { 410 ret = -ENOMEM; 411 goto err; 412 } 413 414 if (config->lock && config->unlock) { 415 map->lock = config->lock; 416 map->unlock = config->unlock; 417 map->lock_arg = config->lock_arg; 418 } else { 419 if ((bus && bus->fast_io) || 420 config->fast_io) { 421 spin_lock_init(&map->spinlock); 422 map->lock = regmap_lock_spinlock; 423 map->unlock = regmap_unlock_spinlock; 424 } else { 425 mutex_init(&map->mutex); 426 map->lock = regmap_lock_mutex; 427 map->unlock = regmap_unlock_mutex; 428 } 429 map->lock_arg = map; 430 } 431 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); 432 map->format.pad_bytes = config->pad_bits / 8; 433 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); 434 map->format.buf_size = DIV_ROUND_UP(config->reg_bits + 435 config->val_bits + config->pad_bits, 8); 436 map->reg_shift = config->pad_bits % 8; 437 if (config->reg_stride) 438 map->reg_stride = config->reg_stride; 439 else 440 map->reg_stride = 1; 441 map->use_single_rw = config->use_single_rw; 442 map->dev = dev; 443 map->bus = bus; 444 map->bus_context = bus_context; 445 map->max_register = config->max_register; 446 map->wr_table = config->wr_table; 447 map->rd_table = config->rd_table; 448 map->volatile_table = config->volatile_table; 449 map->precious_table = config->precious_table; 450 map->writeable_reg = config->writeable_reg; 451 map->readable_reg = config->readable_reg; 452 map->volatile_reg = config->volatile_reg; 453 map->precious_reg = config->precious_reg; 454 map->cache_type = config->cache_type; 455 map->name = config->name; 456 457 spin_lock_init(&map->async_lock); 458 INIT_LIST_HEAD(&map->async_list); 459 INIT_LIST_HEAD(&map->async_free); 460 init_waitqueue_head(&map->async_waitq); 461 462 if (config->read_flag_mask || config->write_flag_mask) { 463 map->read_flag_mask = config->read_flag_mask; 464 map->write_flag_mask = config->write_flag_mask; 465 } else if (bus) { 466 map->read_flag_mask = bus->read_flag_mask; 467 } 468 469 if (!bus) { 470 map->reg_read = config->reg_read; 471 map->reg_write = config->reg_write; 472 473 map->defer_caching = false; 474 goto skip_format_initialization; 475 } else { 476 map->reg_read = _regmap_bus_read; 477 } 478 479 reg_endian = config->reg_format_endian; 480 if (reg_endian == REGMAP_ENDIAN_DEFAULT) 481 reg_endian = bus->reg_format_endian_default; 482 if (reg_endian == REGMAP_ENDIAN_DEFAULT) 483 reg_endian = REGMAP_ENDIAN_BIG; 484 485 val_endian = config->val_format_endian; 486 if (val_endian == REGMAP_ENDIAN_DEFAULT) 487 val_endian = bus->val_format_endian_default; 488 if (val_endian == REGMAP_ENDIAN_DEFAULT) 489 val_endian = REGMAP_ENDIAN_BIG; 490 491 switch (config->reg_bits + map->reg_shift) { 492 case 2: 493 switch (config->val_bits) { 494 case 6: 495 map->format.format_write = regmap_format_2_6_write; 496 break; 497 default: 498 goto err_map; 499 } 500 break; 501 502 case 4: 503 switch (config->val_bits) { 504 case 12: 505 map->format.format_write = regmap_format_4_12_write; 506 break; 507 default: 508 goto err_map; 509 } 510 break; 511 512 case 7: 513 switch (config->val_bits) { 514 case 9: 515 map->format.format_write = regmap_format_7_9_write; 516 break; 517 default: 518 goto err_map; 519 } 520 break; 521 522 case 10: 523 switch (config->val_bits) { 524 case 14: 525 map->format.format_write = regmap_format_10_14_write; 526 break; 527 default: 528 goto err_map; 529 } 530 break; 531 532 case 8: 533 map->format.format_reg = regmap_format_8; 534 break; 535 536 case 16: 537 switch (reg_endian) { 538 case REGMAP_ENDIAN_BIG: 539 map->format.format_reg = regmap_format_16_be; 540 break; 541 case REGMAP_ENDIAN_NATIVE: 542 map->format.format_reg = regmap_format_16_native; 543 break; 544 default: 545 goto err_map; 546 } 547 break; 548 549 case 24: 550 if (reg_endian != REGMAP_ENDIAN_BIG) 551 goto err_map; 552 map->format.format_reg = regmap_format_24; 553 break; 554 555 case 32: 556 switch (reg_endian) { 557 case REGMAP_ENDIAN_BIG: 558 map->format.format_reg = regmap_format_32_be; 559 break; 560 case REGMAP_ENDIAN_NATIVE: 561 map->format.format_reg = regmap_format_32_native; 562 break; 563 default: 564 goto err_map; 565 } 566 break; 567 568 default: 569 goto err_map; 570 } 571 572 if (val_endian == REGMAP_ENDIAN_NATIVE) 573 map->format.parse_inplace = regmap_parse_inplace_noop; 574 575 switch (config->val_bits) { 576 case 8: 577 map->format.format_val = regmap_format_8; 578 map->format.parse_val = regmap_parse_8; 579 map->format.parse_inplace = regmap_parse_inplace_noop; 580 break; 581 case 16: 582 switch (val_endian) { 583 case REGMAP_ENDIAN_BIG: 584 map->format.format_val = regmap_format_16_be; 585 map->format.parse_val = regmap_parse_16_be; 586 map->format.parse_inplace = regmap_parse_16_be_inplace; 587 break; 588 case REGMAP_ENDIAN_NATIVE: 589 map->format.format_val = regmap_format_16_native; 590 map->format.parse_val = regmap_parse_16_native; 591 break; 592 default: 593 goto err_map; 594 } 595 break; 596 case 24: 597 if (val_endian != REGMAP_ENDIAN_BIG) 598 goto err_map; 599 map->format.format_val = regmap_format_24; 600 map->format.parse_val = regmap_parse_24; 601 break; 602 case 32: 603 switch (val_endian) { 604 case REGMAP_ENDIAN_BIG: 605 map->format.format_val = regmap_format_32_be; 606 map->format.parse_val = regmap_parse_32_be; 607 map->format.parse_inplace = regmap_parse_32_be_inplace; 608 break; 609 case REGMAP_ENDIAN_NATIVE: 610 map->format.format_val = regmap_format_32_native; 611 map->format.parse_val = regmap_parse_32_native; 612 break; 613 default: 614 goto err_map; 615 } 616 break; 617 } 618 619 if (map->format.format_write) { 620 if ((reg_endian != REGMAP_ENDIAN_BIG) || 621 (val_endian != REGMAP_ENDIAN_BIG)) 622 goto err_map; 623 map->use_single_rw = true; 624 } 625 626 if (!map->format.format_write && 627 !(map->format.format_reg && map->format.format_val)) 628 goto err_map; 629 630 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 631 if (map->work_buf == NULL) { 632 ret = -ENOMEM; 633 goto err_map; 634 } 635 636 if (map->format.format_write) { 637 map->defer_caching = false; 638 map->reg_write = _regmap_bus_formatted_write; 639 } else if (map->format.format_val) { 640 map->defer_caching = true; 641 map->reg_write = _regmap_bus_raw_write; 642 } 643 644 skip_format_initialization: 645 646 map->range_tree = RB_ROOT; 647 for (i = 0; i < config->num_ranges; i++) { 648 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 649 struct regmap_range_node *new; 650 651 /* Sanity check */ 652 if (range_cfg->range_max < range_cfg->range_min) { 653 dev_err(map->dev, "Invalid range %d: %d < %d\n", i, 654 range_cfg->range_max, range_cfg->range_min); 655 goto err_range; 656 } 657 658 if (range_cfg->range_max > map->max_register) { 659 dev_err(map->dev, "Invalid range %d: %d > %d\n", i, 660 range_cfg->range_max, map->max_register); 661 goto err_range; 662 } 663 664 if (range_cfg->selector_reg > map->max_register) { 665 dev_err(map->dev, 666 "Invalid range %d: selector out of map\n", i); 667 goto err_range; 668 } 669 670 if (range_cfg->window_len == 0) { 671 dev_err(map->dev, "Invalid range %d: window_len 0\n", 672 i); 673 goto err_range; 674 } 675 676 /* Make sure, that this register range has no selector 677 or data window within its boundary */ 678 for (j = 0; j < config->num_ranges; j++) { 679 unsigned sel_reg = config->ranges[j].selector_reg; 680 unsigned win_min = config->ranges[j].window_start; 681 unsigned win_max = win_min + 682 config->ranges[j].window_len - 1; 683 684 /* Allow data window inside its own virtual range */ 685 if (j == i) 686 continue; 687 688 if (range_cfg->range_min <= sel_reg && 689 sel_reg <= range_cfg->range_max) { 690 dev_err(map->dev, 691 "Range %d: selector for %d in window\n", 692 i, j); 693 goto err_range; 694 } 695 696 if (!(win_max < range_cfg->range_min || 697 win_min > range_cfg->range_max)) { 698 dev_err(map->dev, 699 "Range %d: window for %d in window\n", 700 i, j); 701 goto err_range; 702 } 703 } 704 705 new = kzalloc(sizeof(*new), GFP_KERNEL); 706 if (new == NULL) { 707 ret = -ENOMEM; 708 goto err_range; 709 } 710 711 new->map = map; 712 new->name = range_cfg->name; 713 new->range_min = range_cfg->range_min; 714 new->range_max = range_cfg->range_max; 715 new->selector_reg = range_cfg->selector_reg; 716 new->selector_mask = range_cfg->selector_mask; 717 new->selector_shift = range_cfg->selector_shift; 718 new->window_start = range_cfg->window_start; 719 new->window_len = range_cfg->window_len; 720 721 if (_regmap_range_add(map, new) == false) { 722 dev_err(map->dev, "Failed to add range %d\n", i); 723 kfree(new); 724 goto err_range; 725 } 726 727 if (map->selector_work_buf == NULL) { 728 map->selector_work_buf = 729 kzalloc(map->format.buf_size, GFP_KERNEL); 730 if (map->selector_work_buf == NULL) { 731 ret = -ENOMEM; 732 goto err_range; 733 } 734 } 735 } 736 737 regmap_debugfs_init(map, config->name); 738 739 ret = regcache_init(map, config); 740 if (ret != 0) 741 goto err_range; 742 743 /* Add a devres resource for dev_get_regmap() */ 744 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 745 if (!m) { 746 ret = -ENOMEM; 747 goto err_debugfs; 748 } 749 *m = map; 750 devres_add(dev, m); 751 752 return map; 753 754 err_debugfs: 755 regmap_debugfs_exit(map); 756 regcache_exit(map); 757 err_range: 758 regmap_range_exit(map); 759 kfree(map->work_buf); 760 err_map: 761 kfree(map); 762 err: 763 return ERR_PTR(ret); 764 } 765 EXPORT_SYMBOL_GPL(regmap_init); 766 767 static void devm_regmap_release(struct device *dev, void *res) 768 { 769 regmap_exit(*(struct regmap **)res); 770 } 771 772 /** 773 * devm_regmap_init(): Initialise managed register map 774 * 775 * @dev: Device that will be interacted with 776 * @bus: Bus-specific callbacks to use with device 777 * @bus_context: Data passed to bus-specific callbacks 778 * @config: Configuration for register map 779 * 780 * The return value will be an ERR_PTR() on error or a valid pointer 781 * to a struct regmap. This function should generally not be called 782 * directly, it should be called by bus-specific init functions. The 783 * map will be automatically freed by the device management code. 784 */ 785 struct regmap *devm_regmap_init(struct device *dev, 786 const struct regmap_bus *bus, 787 void *bus_context, 788 const struct regmap_config *config) 789 { 790 struct regmap **ptr, *regmap; 791 792 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 793 if (!ptr) 794 return ERR_PTR(-ENOMEM); 795 796 regmap = regmap_init(dev, bus, bus_context, config); 797 if (!IS_ERR(regmap)) { 798 *ptr = regmap; 799 devres_add(dev, ptr); 800 } else { 801 devres_free(ptr); 802 } 803 804 return regmap; 805 } 806 EXPORT_SYMBOL_GPL(devm_regmap_init); 807 808 static void regmap_field_init(struct regmap_field *rm_field, 809 struct regmap *regmap, struct reg_field reg_field) 810 { 811 int field_bits = reg_field.msb - reg_field.lsb + 1; 812 rm_field->regmap = regmap; 813 rm_field->reg = reg_field.reg; 814 rm_field->shift = reg_field.lsb; 815 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb); 816 rm_field->id_size = reg_field.id_size; 817 rm_field->id_offset = reg_field.id_offset; 818 } 819 820 /** 821 * devm_regmap_field_alloc(): Allocate and initialise a register field 822 * in a register map. 823 * 824 * @dev: Device that will be interacted with 825 * @regmap: regmap bank in which this register field is located. 826 * @reg_field: Register field with in the bank. 827 * 828 * The return value will be an ERR_PTR() on error or a valid pointer 829 * to a struct regmap_field. The regmap_field will be automatically freed 830 * by the device management code. 831 */ 832 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 833 struct regmap *regmap, struct reg_field reg_field) 834 { 835 struct regmap_field *rm_field = devm_kzalloc(dev, 836 sizeof(*rm_field), GFP_KERNEL); 837 if (!rm_field) 838 return ERR_PTR(-ENOMEM); 839 840 regmap_field_init(rm_field, regmap, reg_field); 841 842 return rm_field; 843 844 } 845 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 846 847 /** 848 * devm_regmap_field_free(): Free register field allocated using 849 * devm_regmap_field_alloc. Usally drivers need not call this function, 850 * as the memory allocated via devm will be freed as per device-driver 851 * life-cyle. 852 * 853 * @dev: Device that will be interacted with 854 * @field: regmap field which should be freed. 855 */ 856 void devm_regmap_field_free(struct device *dev, 857 struct regmap_field *field) 858 { 859 devm_kfree(dev, field); 860 } 861 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 862 863 /** 864 * regmap_field_alloc(): Allocate and initialise a register field 865 * in a register map. 866 * 867 * @regmap: regmap bank in which this register field is located. 868 * @reg_field: Register field with in the bank. 869 * 870 * The return value will be an ERR_PTR() on error or a valid pointer 871 * to a struct regmap_field. The regmap_field should be freed by the 872 * user once its finished working with it using regmap_field_free(). 873 */ 874 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 875 struct reg_field reg_field) 876 { 877 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 878 879 if (!rm_field) 880 return ERR_PTR(-ENOMEM); 881 882 regmap_field_init(rm_field, regmap, reg_field); 883 884 return rm_field; 885 } 886 EXPORT_SYMBOL_GPL(regmap_field_alloc); 887 888 /** 889 * regmap_field_free(): Free register field allocated using regmap_field_alloc 890 * 891 * @field: regmap field which should be freed. 892 */ 893 void regmap_field_free(struct regmap_field *field) 894 { 895 kfree(field); 896 } 897 EXPORT_SYMBOL_GPL(regmap_field_free); 898 899 /** 900 * regmap_reinit_cache(): Reinitialise the current register cache 901 * 902 * @map: Register map to operate on. 903 * @config: New configuration. Only the cache data will be used. 904 * 905 * Discard any existing register cache for the map and initialize a 906 * new cache. This can be used to restore the cache to defaults or to 907 * update the cache configuration to reflect runtime discovery of the 908 * hardware. 909 * 910 * No explicit locking is done here, the user needs to ensure that 911 * this function will not race with other calls to regmap. 912 */ 913 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 914 { 915 regcache_exit(map); 916 regmap_debugfs_exit(map); 917 918 map->max_register = config->max_register; 919 map->writeable_reg = config->writeable_reg; 920 map->readable_reg = config->readable_reg; 921 map->volatile_reg = config->volatile_reg; 922 map->precious_reg = config->precious_reg; 923 map->cache_type = config->cache_type; 924 925 regmap_debugfs_init(map, config->name); 926 927 map->cache_bypass = false; 928 map->cache_only = false; 929 930 return regcache_init(map, config); 931 } 932 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 933 934 /** 935 * regmap_exit(): Free a previously allocated register map 936 */ 937 void regmap_exit(struct regmap *map) 938 { 939 struct regmap_async *async; 940 941 regcache_exit(map); 942 regmap_debugfs_exit(map); 943 regmap_range_exit(map); 944 if (map->bus && map->bus->free_context) 945 map->bus->free_context(map->bus_context); 946 kfree(map->work_buf); 947 while (!list_empty(&map->async_free)) { 948 async = list_first_entry_or_null(&map->async_free, 949 struct regmap_async, 950 list); 951 list_del(&async->list); 952 kfree(async->work_buf); 953 kfree(async); 954 } 955 kfree(map); 956 } 957 EXPORT_SYMBOL_GPL(regmap_exit); 958 959 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 960 { 961 struct regmap **r = res; 962 if (!r || !*r) { 963 WARN_ON(!r || !*r); 964 return 0; 965 } 966 967 /* If the user didn't specify a name match any */ 968 if (data) 969 return (*r)->name == data; 970 else 971 return 1; 972 } 973 974 /** 975 * dev_get_regmap(): Obtain the regmap (if any) for a device 976 * 977 * @dev: Device to retrieve the map for 978 * @name: Optional name for the register map, usually NULL. 979 * 980 * Returns the regmap for the device if one is present, or NULL. If 981 * name is specified then it must match the name specified when 982 * registering the device, if it is NULL then the first regmap found 983 * will be used. Devices with multiple register maps are very rare, 984 * generic code should normally not need to specify a name. 985 */ 986 struct regmap *dev_get_regmap(struct device *dev, const char *name) 987 { 988 struct regmap **r = devres_find(dev, dev_get_regmap_release, 989 dev_get_regmap_match, (void *)name); 990 991 if (!r) 992 return NULL; 993 return *r; 994 } 995 EXPORT_SYMBOL_GPL(dev_get_regmap); 996 997 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 998 struct regmap_range_node *range, 999 unsigned int val_num) 1000 { 1001 void *orig_work_buf; 1002 unsigned int win_offset; 1003 unsigned int win_page; 1004 bool page_chg; 1005 int ret; 1006 1007 win_offset = (*reg - range->range_min) % range->window_len; 1008 win_page = (*reg - range->range_min) / range->window_len; 1009 1010 if (val_num > 1) { 1011 /* Bulk write shouldn't cross range boundary */ 1012 if (*reg + val_num - 1 > range->range_max) 1013 return -EINVAL; 1014 1015 /* ... or single page boundary */ 1016 if (val_num > range->window_len - win_offset) 1017 return -EINVAL; 1018 } 1019 1020 /* It is possible to have selector register inside data window. 1021 In that case, selector register is located on every page and 1022 it needs no page switching, when accessed alone. */ 1023 if (val_num > 1 || 1024 range->window_start + win_offset != range->selector_reg) { 1025 /* Use separate work_buf during page switching */ 1026 orig_work_buf = map->work_buf; 1027 map->work_buf = map->selector_work_buf; 1028 1029 ret = _regmap_update_bits(map, range->selector_reg, 1030 range->selector_mask, 1031 win_page << range->selector_shift, 1032 &page_chg); 1033 1034 map->work_buf = orig_work_buf; 1035 1036 if (ret != 0) 1037 return ret; 1038 } 1039 1040 *reg = range->window_start + win_offset; 1041 1042 return 0; 1043 } 1044 1045 int _regmap_raw_write(struct regmap *map, unsigned int reg, 1046 const void *val, size_t val_len) 1047 { 1048 struct regmap_range_node *range; 1049 unsigned long flags; 1050 u8 *u8 = map->work_buf; 1051 void *work_val = map->work_buf + map->format.reg_bytes + 1052 map->format.pad_bytes; 1053 void *buf; 1054 int ret = -ENOTSUPP; 1055 size_t len; 1056 int i; 1057 1058 WARN_ON(!map->bus); 1059 1060 /* Check for unwritable registers before we start */ 1061 if (map->writeable_reg) 1062 for (i = 0; i < val_len / map->format.val_bytes; i++) 1063 if (!map->writeable_reg(map->dev, 1064 reg + (i * map->reg_stride))) 1065 return -EINVAL; 1066 1067 if (!map->cache_bypass && map->format.parse_val) { 1068 unsigned int ival; 1069 int val_bytes = map->format.val_bytes; 1070 for (i = 0; i < val_len / val_bytes; i++) { 1071 ival = map->format.parse_val(val + (i * val_bytes)); 1072 ret = regcache_write(map, reg + (i * map->reg_stride), 1073 ival); 1074 if (ret) { 1075 dev_err(map->dev, 1076 "Error in caching of register: %x ret: %d\n", 1077 reg + i, ret); 1078 return ret; 1079 } 1080 } 1081 if (map->cache_only) { 1082 map->cache_dirty = true; 1083 return 0; 1084 } 1085 } 1086 1087 range = _regmap_range_lookup(map, reg); 1088 if (range) { 1089 int val_num = val_len / map->format.val_bytes; 1090 int win_offset = (reg - range->range_min) % range->window_len; 1091 int win_residue = range->window_len - win_offset; 1092 1093 /* If the write goes beyond the end of the window split it */ 1094 while (val_num > win_residue) { 1095 dev_dbg(map->dev, "Writing window %d/%zu\n", 1096 win_residue, val_len / map->format.val_bytes); 1097 ret = _regmap_raw_write(map, reg, val, win_residue * 1098 map->format.val_bytes); 1099 if (ret != 0) 1100 return ret; 1101 1102 reg += win_residue; 1103 val_num -= win_residue; 1104 val += win_residue * map->format.val_bytes; 1105 val_len -= win_residue * map->format.val_bytes; 1106 1107 win_offset = (reg - range->range_min) % 1108 range->window_len; 1109 win_residue = range->window_len - win_offset; 1110 } 1111 1112 ret = _regmap_select_page(map, ®, range, val_num); 1113 if (ret != 0) 1114 return ret; 1115 } 1116 1117 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1118 1119 u8[0] |= map->write_flag_mask; 1120 1121 /* 1122 * Essentially all I/O mechanisms will be faster with a single 1123 * buffer to write. Since register syncs often generate raw 1124 * writes of single registers optimise that case. 1125 */ 1126 if (val != work_val && val_len == map->format.val_bytes) { 1127 memcpy(work_val, val, map->format.val_bytes); 1128 val = work_val; 1129 } 1130 1131 if (map->async && map->bus->async_write) { 1132 struct regmap_async *async; 1133 1134 trace_regmap_async_write_start(map->dev, reg, val_len); 1135 1136 spin_lock_irqsave(&map->async_lock, flags); 1137 async = list_first_entry_or_null(&map->async_free, 1138 struct regmap_async, 1139 list); 1140 if (async) 1141 list_del(&async->list); 1142 spin_unlock_irqrestore(&map->async_lock, flags); 1143 1144 if (!async) { 1145 async = map->bus->async_alloc(); 1146 if (!async) 1147 return -ENOMEM; 1148 1149 async->work_buf = kzalloc(map->format.buf_size, 1150 GFP_KERNEL | GFP_DMA); 1151 if (!async->work_buf) { 1152 kfree(async); 1153 return -ENOMEM; 1154 } 1155 } 1156 1157 async->map = map; 1158 1159 /* If the caller supplied the value we can use it safely. */ 1160 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1161 map->format.reg_bytes + map->format.val_bytes); 1162 1163 spin_lock_irqsave(&map->async_lock, flags); 1164 list_add_tail(&async->list, &map->async_list); 1165 spin_unlock_irqrestore(&map->async_lock, flags); 1166 1167 if (val != work_val) 1168 ret = map->bus->async_write(map->bus_context, 1169 async->work_buf, 1170 map->format.reg_bytes + 1171 map->format.pad_bytes, 1172 val, val_len, async); 1173 else 1174 ret = map->bus->async_write(map->bus_context, 1175 async->work_buf, 1176 map->format.reg_bytes + 1177 map->format.pad_bytes + 1178 val_len, NULL, 0, async); 1179 1180 if (ret != 0) { 1181 dev_err(map->dev, "Failed to schedule write: %d\n", 1182 ret); 1183 1184 spin_lock_irqsave(&map->async_lock, flags); 1185 list_move(&async->list, &map->async_free); 1186 spin_unlock_irqrestore(&map->async_lock, flags); 1187 } 1188 1189 return ret; 1190 } 1191 1192 trace_regmap_hw_write_start(map->dev, reg, 1193 val_len / map->format.val_bytes); 1194 1195 /* If we're doing a single register write we can probably just 1196 * send the work_buf directly, otherwise try to do a gather 1197 * write. 1198 */ 1199 if (val == work_val) 1200 ret = map->bus->write(map->bus_context, map->work_buf, 1201 map->format.reg_bytes + 1202 map->format.pad_bytes + 1203 val_len); 1204 else if (map->bus->gather_write) 1205 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1206 map->format.reg_bytes + 1207 map->format.pad_bytes, 1208 val, val_len); 1209 1210 /* If that didn't work fall back on linearising by hand. */ 1211 if (ret == -ENOTSUPP) { 1212 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1213 buf = kzalloc(len, GFP_KERNEL); 1214 if (!buf) 1215 return -ENOMEM; 1216 1217 memcpy(buf, map->work_buf, map->format.reg_bytes); 1218 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1219 val, val_len); 1220 ret = map->bus->write(map->bus_context, buf, len); 1221 1222 kfree(buf); 1223 } 1224 1225 trace_regmap_hw_write_done(map->dev, reg, 1226 val_len / map->format.val_bytes); 1227 1228 return ret; 1229 } 1230 1231 /** 1232 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1233 * 1234 * @map: Map to check. 1235 */ 1236 bool regmap_can_raw_write(struct regmap *map) 1237 { 1238 return map->bus && map->format.format_val && map->format.format_reg; 1239 } 1240 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1241 1242 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1243 unsigned int val) 1244 { 1245 int ret; 1246 struct regmap_range_node *range; 1247 struct regmap *map = context; 1248 1249 WARN_ON(!map->bus || !map->format.format_write); 1250 1251 range = _regmap_range_lookup(map, reg); 1252 if (range) { 1253 ret = _regmap_select_page(map, ®, range, 1); 1254 if (ret != 0) 1255 return ret; 1256 } 1257 1258 map->format.format_write(map, reg, val); 1259 1260 trace_regmap_hw_write_start(map->dev, reg, 1); 1261 1262 ret = map->bus->write(map->bus_context, map->work_buf, 1263 map->format.buf_size); 1264 1265 trace_regmap_hw_write_done(map->dev, reg, 1); 1266 1267 return ret; 1268 } 1269 1270 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1271 unsigned int val) 1272 { 1273 struct regmap *map = context; 1274 1275 WARN_ON(!map->bus || !map->format.format_val); 1276 1277 map->format.format_val(map->work_buf + map->format.reg_bytes 1278 + map->format.pad_bytes, val, 0); 1279 return _regmap_raw_write(map, reg, 1280 map->work_buf + 1281 map->format.reg_bytes + 1282 map->format.pad_bytes, 1283 map->format.val_bytes); 1284 } 1285 1286 static inline void *_regmap_map_get_context(struct regmap *map) 1287 { 1288 return (map->bus) ? map : map->bus_context; 1289 } 1290 1291 int _regmap_write(struct regmap *map, unsigned int reg, 1292 unsigned int val) 1293 { 1294 int ret; 1295 void *context = _regmap_map_get_context(map); 1296 1297 if (!regmap_writeable(map, reg)) 1298 return -EIO; 1299 1300 if (!map->cache_bypass && !map->defer_caching) { 1301 ret = regcache_write(map, reg, val); 1302 if (ret != 0) 1303 return ret; 1304 if (map->cache_only) { 1305 map->cache_dirty = true; 1306 return 0; 1307 } 1308 } 1309 1310 #ifdef LOG_DEVICE 1311 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0) 1312 dev_info(map->dev, "%x <= %x\n", reg, val); 1313 #endif 1314 1315 trace_regmap_reg_write(map->dev, reg, val); 1316 1317 return map->reg_write(context, reg, val); 1318 } 1319 1320 /** 1321 * regmap_write(): Write a value to a single register 1322 * 1323 * @map: Register map to write to 1324 * @reg: Register to write to 1325 * @val: Value to be written 1326 * 1327 * A value of zero will be returned on success, a negative errno will 1328 * be returned in error cases. 1329 */ 1330 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 1331 { 1332 int ret; 1333 1334 if (reg % map->reg_stride) 1335 return -EINVAL; 1336 1337 map->lock(map->lock_arg); 1338 1339 ret = _regmap_write(map, reg, val); 1340 1341 map->unlock(map->lock_arg); 1342 1343 return ret; 1344 } 1345 EXPORT_SYMBOL_GPL(regmap_write); 1346 1347 /** 1348 * regmap_write_async(): Write a value to a single register asynchronously 1349 * 1350 * @map: Register map to write to 1351 * @reg: Register to write to 1352 * @val: Value to be written 1353 * 1354 * A value of zero will be returned on success, a negative errno will 1355 * be returned in error cases. 1356 */ 1357 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 1358 { 1359 int ret; 1360 1361 if (reg % map->reg_stride) 1362 return -EINVAL; 1363 1364 map->lock(map->lock_arg); 1365 1366 map->async = true; 1367 1368 ret = _regmap_write(map, reg, val); 1369 1370 map->async = false; 1371 1372 map->unlock(map->lock_arg); 1373 1374 return ret; 1375 } 1376 EXPORT_SYMBOL_GPL(regmap_write_async); 1377 1378 /** 1379 * regmap_raw_write(): Write raw values to one or more registers 1380 * 1381 * @map: Register map to write to 1382 * @reg: Initial register to write to 1383 * @val: Block of data to be written, laid out for direct transmission to the 1384 * device 1385 * @val_len: Length of data pointed to by val. 1386 * 1387 * This function is intended to be used for things like firmware 1388 * download where a large block of data needs to be transferred to the 1389 * device. No formatting will be done on the data provided. 1390 * 1391 * A value of zero will be returned on success, a negative errno will 1392 * be returned in error cases. 1393 */ 1394 int regmap_raw_write(struct regmap *map, unsigned int reg, 1395 const void *val, size_t val_len) 1396 { 1397 int ret; 1398 1399 if (!regmap_can_raw_write(map)) 1400 return -EINVAL; 1401 if (val_len % map->format.val_bytes) 1402 return -EINVAL; 1403 1404 map->lock(map->lock_arg); 1405 1406 ret = _regmap_raw_write(map, reg, val, val_len); 1407 1408 map->unlock(map->lock_arg); 1409 1410 return ret; 1411 } 1412 EXPORT_SYMBOL_GPL(regmap_raw_write); 1413 1414 /** 1415 * regmap_field_write(): Write a value to a single register field 1416 * 1417 * @field: Register field to write to 1418 * @val: Value to be written 1419 * 1420 * A value of zero will be returned on success, a negative errno will 1421 * be returned in error cases. 1422 */ 1423 int regmap_field_write(struct regmap_field *field, unsigned int val) 1424 { 1425 return regmap_update_bits(field->regmap, field->reg, 1426 field->mask, val << field->shift); 1427 } 1428 EXPORT_SYMBOL_GPL(regmap_field_write); 1429 1430 /** 1431 * regmap_field_update_bits(): Perform a read/modify/write cycle 1432 * on the register field 1433 * 1434 * @field: Register field to write to 1435 * @mask: Bitmask to change 1436 * @val: Value to be written 1437 * 1438 * A value of zero will be returned on success, a negative errno will 1439 * be returned in error cases. 1440 */ 1441 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val) 1442 { 1443 mask = (mask << field->shift) & field->mask; 1444 1445 return regmap_update_bits(field->regmap, field->reg, 1446 mask, val << field->shift); 1447 } 1448 EXPORT_SYMBOL_GPL(regmap_field_update_bits); 1449 1450 /** 1451 * regmap_fields_write(): Write a value to a single register field with port ID 1452 * 1453 * @field: Register field to write to 1454 * @id: port ID 1455 * @val: Value to be written 1456 * 1457 * A value of zero will be returned on success, a negative errno will 1458 * be returned in error cases. 1459 */ 1460 int regmap_fields_write(struct regmap_field *field, unsigned int id, 1461 unsigned int val) 1462 { 1463 if (id >= field->id_size) 1464 return -EINVAL; 1465 1466 return regmap_update_bits(field->regmap, 1467 field->reg + (field->id_offset * id), 1468 field->mask, val << field->shift); 1469 } 1470 EXPORT_SYMBOL_GPL(regmap_fields_write); 1471 1472 /** 1473 * regmap_fields_update_bits(): Perform a read/modify/write cycle 1474 * on the register field 1475 * 1476 * @field: Register field to write to 1477 * @id: port ID 1478 * @mask: Bitmask to change 1479 * @val: Value to be written 1480 * 1481 * A value of zero will be returned on success, a negative errno will 1482 * be returned in error cases. 1483 */ 1484 int regmap_fields_update_bits(struct regmap_field *field, unsigned int id, 1485 unsigned int mask, unsigned int val) 1486 { 1487 if (id >= field->id_size) 1488 return -EINVAL; 1489 1490 mask = (mask << field->shift) & field->mask; 1491 1492 return regmap_update_bits(field->regmap, 1493 field->reg + (field->id_offset * id), 1494 mask, val << field->shift); 1495 } 1496 EXPORT_SYMBOL_GPL(regmap_fields_update_bits); 1497 1498 /* 1499 * regmap_bulk_write(): Write multiple registers to the device 1500 * 1501 * @map: Register map to write to 1502 * @reg: First register to be write from 1503 * @val: Block of data to be written, in native register size for device 1504 * @val_count: Number of registers to write 1505 * 1506 * This function is intended to be used for writing a large block of 1507 * data to the device either in single transfer or multiple transfer. 1508 * 1509 * A value of zero will be returned on success, a negative errno will 1510 * be returned in error cases. 1511 */ 1512 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 1513 size_t val_count) 1514 { 1515 int ret = 0, i; 1516 size_t val_bytes = map->format.val_bytes; 1517 1518 if (map->bus && !map->format.parse_inplace) 1519 return -EINVAL; 1520 if (reg % map->reg_stride) 1521 return -EINVAL; 1522 1523 map->lock(map->lock_arg); 1524 /* 1525 * Some devices don't support bulk write, for 1526 * them we have a series of single write operations. 1527 */ 1528 if (!map->bus || map->use_single_rw) { 1529 for (i = 0; i < val_count; i++) { 1530 unsigned int ival; 1531 1532 switch (val_bytes) { 1533 case 1: 1534 ival = *(u8 *)(val + (i * val_bytes)); 1535 break; 1536 case 2: 1537 ival = *(u16 *)(val + (i * val_bytes)); 1538 break; 1539 case 4: 1540 ival = *(u32 *)(val + (i * val_bytes)); 1541 break; 1542 #ifdef CONFIG_64BIT 1543 case 8: 1544 ival = *(u64 *)(val + (i * val_bytes)); 1545 break; 1546 #endif 1547 default: 1548 ret = -EINVAL; 1549 goto out; 1550 } 1551 1552 ret = _regmap_write(map, reg + (i * map->reg_stride), 1553 ival); 1554 if (ret != 0) 1555 goto out; 1556 } 1557 } else { 1558 void *wval; 1559 1560 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL); 1561 if (!wval) { 1562 ret = -ENOMEM; 1563 dev_err(map->dev, "Error in memory allocation\n"); 1564 goto out; 1565 } 1566 for (i = 0; i < val_count * val_bytes; i += val_bytes) 1567 map->format.parse_inplace(wval + i); 1568 1569 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count); 1570 1571 kfree(wval); 1572 } 1573 out: 1574 map->unlock(map->lock_arg); 1575 return ret; 1576 } 1577 EXPORT_SYMBOL_GPL(regmap_bulk_write); 1578 1579 /* 1580 * regmap_multi_reg_write(): Write multiple registers to the device 1581 * 1582 * where the set of register are supplied in any order 1583 * 1584 * @map: Register map to write to 1585 * @regs: Array of structures containing register,value to be written 1586 * @num_regs: Number of registers to write 1587 * 1588 * This function is intended to be used for writing a large block of data 1589 * atomically to the device in single transfer for those I2C client devices 1590 * that implement this alternative block write mode. 1591 * 1592 * A value of zero will be returned on success, a negative errno will 1593 * be returned in error cases. 1594 */ 1595 int regmap_multi_reg_write(struct regmap *map, struct reg_default *regs, 1596 int num_regs) 1597 { 1598 int ret = 0, i; 1599 1600 for (i = 0; i < num_regs; i++) { 1601 int reg = regs[i].reg; 1602 if (reg % map->reg_stride) 1603 return -EINVAL; 1604 } 1605 1606 map->lock(map->lock_arg); 1607 1608 for (i = 0; i < num_regs; i++) { 1609 ret = _regmap_write(map, regs[i].reg, regs[i].def); 1610 if (ret != 0) 1611 goto out; 1612 } 1613 out: 1614 map->unlock(map->lock_arg); 1615 1616 return ret; 1617 } 1618 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 1619 1620 /** 1621 * regmap_raw_write_async(): Write raw values to one or more registers 1622 * asynchronously 1623 * 1624 * @map: Register map to write to 1625 * @reg: Initial register to write to 1626 * @val: Block of data to be written, laid out for direct transmission to the 1627 * device. Must be valid until regmap_async_complete() is called. 1628 * @val_len: Length of data pointed to by val. 1629 * 1630 * This function is intended to be used for things like firmware 1631 * download where a large block of data needs to be transferred to the 1632 * device. No formatting will be done on the data provided. 1633 * 1634 * If supported by the underlying bus the write will be scheduled 1635 * asynchronously, helping maximise I/O speed on higher speed buses 1636 * like SPI. regmap_async_complete() can be called to ensure that all 1637 * asynchrnous writes have been completed. 1638 * 1639 * A value of zero will be returned on success, a negative errno will 1640 * be returned in error cases. 1641 */ 1642 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 1643 const void *val, size_t val_len) 1644 { 1645 int ret; 1646 1647 if (val_len % map->format.val_bytes) 1648 return -EINVAL; 1649 if (reg % map->reg_stride) 1650 return -EINVAL; 1651 1652 map->lock(map->lock_arg); 1653 1654 map->async = true; 1655 1656 ret = _regmap_raw_write(map, reg, val, val_len); 1657 1658 map->async = false; 1659 1660 map->unlock(map->lock_arg); 1661 1662 return ret; 1663 } 1664 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 1665 1666 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 1667 unsigned int val_len) 1668 { 1669 struct regmap_range_node *range; 1670 u8 *u8 = map->work_buf; 1671 int ret; 1672 1673 WARN_ON(!map->bus); 1674 1675 range = _regmap_range_lookup(map, reg); 1676 if (range) { 1677 ret = _regmap_select_page(map, ®, range, 1678 val_len / map->format.val_bytes); 1679 if (ret != 0) 1680 return ret; 1681 } 1682 1683 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1684 1685 /* 1686 * Some buses or devices flag reads by setting the high bits in the 1687 * register addresss; since it's always the high bits for all 1688 * current formats we can do this here rather than in 1689 * formatting. This may break if we get interesting formats. 1690 */ 1691 u8[0] |= map->read_flag_mask; 1692 1693 trace_regmap_hw_read_start(map->dev, reg, 1694 val_len / map->format.val_bytes); 1695 1696 ret = map->bus->read(map->bus_context, map->work_buf, 1697 map->format.reg_bytes + map->format.pad_bytes, 1698 val, val_len); 1699 1700 trace_regmap_hw_read_done(map->dev, reg, 1701 val_len / map->format.val_bytes); 1702 1703 return ret; 1704 } 1705 1706 static int _regmap_bus_read(void *context, unsigned int reg, 1707 unsigned int *val) 1708 { 1709 int ret; 1710 struct regmap *map = context; 1711 1712 if (!map->format.parse_val) 1713 return -EINVAL; 1714 1715 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes); 1716 if (ret == 0) 1717 *val = map->format.parse_val(map->work_buf); 1718 1719 return ret; 1720 } 1721 1722 static int _regmap_read(struct regmap *map, unsigned int reg, 1723 unsigned int *val) 1724 { 1725 int ret; 1726 void *context = _regmap_map_get_context(map); 1727 1728 WARN_ON(!map->reg_read); 1729 1730 if (!map->cache_bypass) { 1731 ret = regcache_read(map, reg, val); 1732 if (ret == 0) 1733 return 0; 1734 } 1735 1736 if (map->cache_only) 1737 return -EBUSY; 1738 1739 ret = map->reg_read(context, reg, val); 1740 if (ret == 0) { 1741 #ifdef LOG_DEVICE 1742 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0) 1743 dev_info(map->dev, "%x => %x\n", reg, *val); 1744 #endif 1745 1746 trace_regmap_reg_read(map->dev, reg, *val); 1747 1748 if (!map->cache_bypass) 1749 regcache_write(map, reg, *val); 1750 } 1751 1752 return ret; 1753 } 1754 1755 /** 1756 * regmap_read(): Read a value from a single register 1757 * 1758 * @map: Register map to read from 1759 * @reg: Register to be read from 1760 * @val: Pointer to store read value 1761 * 1762 * A value of zero will be returned on success, a negative errno will 1763 * be returned in error cases. 1764 */ 1765 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 1766 { 1767 int ret; 1768 1769 if (reg % map->reg_stride) 1770 return -EINVAL; 1771 1772 map->lock(map->lock_arg); 1773 1774 ret = _regmap_read(map, reg, val); 1775 1776 map->unlock(map->lock_arg); 1777 1778 return ret; 1779 } 1780 EXPORT_SYMBOL_GPL(regmap_read); 1781 1782 /** 1783 * regmap_raw_read(): Read raw data from the device 1784 * 1785 * @map: Register map to read from 1786 * @reg: First register to be read from 1787 * @val: Pointer to store read value 1788 * @val_len: Size of data to read 1789 * 1790 * A value of zero will be returned on success, a negative errno will 1791 * be returned in error cases. 1792 */ 1793 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 1794 size_t val_len) 1795 { 1796 size_t val_bytes = map->format.val_bytes; 1797 size_t val_count = val_len / val_bytes; 1798 unsigned int v; 1799 int ret, i; 1800 1801 if (!map->bus) 1802 return -EINVAL; 1803 if (val_len % map->format.val_bytes) 1804 return -EINVAL; 1805 if (reg % map->reg_stride) 1806 return -EINVAL; 1807 1808 map->lock(map->lock_arg); 1809 1810 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 1811 map->cache_type == REGCACHE_NONE) { 1812 /* Physical block read if there's no cache involved */ 1813 ret = _regmap_raw_read(map, reg, val, val_len); 1814 1815 } else { 1816 /* Otherwise go word by word for the cache; should be low 1817 * cost as we expect to hit the cache. 1818 */ 1819 for (i = 0; i < val_count; i++) { 1820 ret = _regmap_read(map, reg + (i * map->reg_stride), 1821 &v); 1822 if (ret != 0) 1823 goto out; 1824 1825 map->format.format_val(val + (i * val_bytes), v, 0); 1826 } 1827 } 1828 1829 out: 1830 map->unlock(map->lock_arg); 1831 1832 return ret; 1833 } 1834 EXPORT_SYMBOL_GPL(regmap_raw_read); 1835 1836 /** 1837 * regmap_field_read(): Read a value to a single register field 1838 * 1839 * @field: Register field to read from 1840 * @val: Pointer to store read value 1841 * 1842 * A value of zero will be returned on success, a negative errno will 1843 * be returned in error cases. 1844 */ 1845 int regmap_field_read(struct regmap_field *field, unsigned int *val) 1846 { 1847 int ret; 1848 unsigned int reg_val; 1849 ret = regmap_read(field->regmap, field->reg, ®_val); 1850 if (ret != 0) 1851 return ret; 1852 1853 reg_val &= field->mask; 1854 reg_val >>= field->shift; 1855 *val = reg_val; 1856 1857 return ret; 1858 } 1859 EXPORT_SYMBOL_GPL(regmap_field_read); 1860 1861 /** 1862 * regmap_fields_read(): Read a value to a single register field with port ID 1863 * 1864 * @field: Register field to read from 1865 * @id: port ID 1866 * @val: Pointer to store read value 1867 * 1868 * A value of zero will be returned on success, a negative errno will 1869 * be returned in error cases. 1870 */ 1871 int regmap_fields_read(struct regmap_field *field, unsigned int id, 1872 unsigned int *val) 1873 { 1874 int ret; 1875 unsigned int reg_val; 1876 1877 if (id >= field->id_size) 1878 return -EINVAL; 1879 1880 ret = regmap_read(field->regmap, 1881 field->reg + (field->id_offset * id), 1882 ®_val); 1883 if (ret != 0) 1884 return ret; 1885 1886 reg_val &= field->mask; 1887 reg_val >>= field->shift; 1888 *val = reg_val; 1889 1890 return ret; 1891 } 1892 EXPORT_SYMBOL_GPL(regmap_fields_read); 1893 1894 /** 1895 * regmap_bulk_read(): Read multiple registers from the device 1896 * 1897 * @map: Register map to read from 1898 * @reg: First register to be read from 1899 * @val: Pointer to store read value, in native register size for device 1900 * @val_count: Number of registers to read 1901 * 1902 * A value of zero will be returned on success, a negative errno will 1903 * be returned in error cases. 1904 */ 1905 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 1906 size_t val_count) 1907 { 1908 int ret, i; 1909 size_t val_bytes = map->format.val_bytes; 1910 bool vol = regmap_volatile_range(map, reg, val_count); 1911 1912 if (reg % map->reg_stride) 1913 return -EINVAL; 1914 1915 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { 1916 /* 1917 * Some devices does not support bulk read, for 1918 * them we have a series of single read operations. 1919 */ 1920 if (map->use_single_rw) { 1921 for (i = 0; i < val_count; i++) { 1922 ret = regmap_raw_read(map, 1923 reg + (i * map->reg_stride), 1924 val + (i * val_bytes), 1925 val_bytes); 1926 if (ret != 0) 1927 return ret; 1928 } 1929 } else { 1930 ret = regmap_raw_read(map, reg, val, 1931 val_bytes * val_count); 1932 if (ret != 0) 1933 return ret; 1934 } 1935 1936 for (i = 0; i < val_count * val_bytes; i += val_bytes) 1937 map->format.parse_inplace(val + i); 1938 } else { 1939 for (i = 0; i < val_count; i++) { 1940 unsigned int ival; 1941 ret = regmap_read(map, reg + (i * map->reg_stride), 1942 &ival); 1943 if (ret != 0) 1944 return ret; 1945 memcpy(val + (i * val_bytes), &ival, val_bytes); 1946 } 1947 } 1948 1949 return 0; 1950 } 1951 EXPORT_SYMBOL_GPL(regmap_bulk_read); 1952 1953 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 1954 unsigned int mask, unsigned int val, 1955 bool *change) 1956 { 1957 int ret; 1958 unsigned int tmp, orig; 1959 1960 ret = _regmap_read(map, reg, &orig); 1961 if (ret != 0) 1962 return ret; 1963 1964 tmp = orig & ~mask; 1965 tmp |= val & mask; 1966 1967 if (tmp != orig) { 1968 ret = _regmap_write(map, reg, tmp); 1969 *change = true; 1970 } else { 1971 *change = false; 1972 } 1973 1974 return ret; 1975 } 1976 1977 /** 1978 * regmap_update_bits: Perform a read/modify/write cycle on the register map 1979 * 1980 * @map: Register map to update 1981 * @reg: Register to update 1982 * @mask: Bitmask to change 1983 * @val: New value for bitmask 1984 * 1985 * Returns zero for success, a negative number on error. 1986 */ 1987 int regmap_update_bits(struct regmap *map, unsigned int reg, 1988 unsigned int mask, unsigned int val) 1989 { 1990 bool change; 1991 int ret; 1992 1993 map->lock(map->lock_arg); 1994 ret = _regmap_update_bits(map, reg, mask, val, &change); 1995 map->unlock(map->lock_arg); 1996 1997 return ret; 1998 } 1999 EXPORT_SYMBOL_GPL(regmap_update_bits); 2000 2001 /** 2002 * regmap_update_bits_async: Perform a read/modify/write cycle on the register 2003 * map asynchronously 2004 * 2005 * @map: Register map to update 2006 * @reg: Register to update 2007 * @mask: Bitmask to change 2008 * @val: New value for bitmask 2009 * 2010 * With most buses the read must be done synchronously so this is most 2011 * useful for devices with a cache which do not need to interact with 2012 * the hardware to determine the current register value. 2013 * 2014 * Returns zero for success, a negative number on error. 2015 */ 2016 int regmap_update_bits_async(struct regmap *map, unsigned int reg, 2017 unsigned int mask, unsigned int val) 2018 { 2019 bool change; 2020 int ret; 2021 2022 map->lock(map->lock_arg); 2023 2024 map->async = true; 2025 2026 ret = _regmap_update_bits(map, reg, mask, val, &change); 2027 2028 map->async = false; 2029 2030 map->unlock(map->lock_arg); 2031 2032 return ret; 2033 } 2034 EXPORT_SYMBOL_GPL(regmap_update_bits_async); 2035 2036 /** 2037 * regmap_update_bits_check: Perform a read/modify/write cycle on the 2038 * register map and report if updated 2039 * 2040 * @map: Register map to update 2041 * @reg: Register to update 2042 * @mask: Bitmask to change 2043 * @val: New value for bitmask 2044 * @change: Boolean indicating if a write was done 2045 * 2046 * Returns zero for success, a negative number on error. 2047 */ 2048 int regmap_update_bits_check(struct regmap *map, unsigned int reg, 2049 unsigned int mask, unsigned int val, 2050 bool *change) 2051 { 2052 int ret; 2053 2054 map->lock(map->lock_arg); 2055 ret = _regmap_update_bits(map, reg, mask, val, change); 2056 map->unlock(map->lock_arg); 2057 return ret; 2058 } 2059 EXPORT_SYMBOL_GPL(regmap_update_bits_check); 2060 2061 /** 2062 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the 2063 * register map asynchronously and report if 2064 * updated 2065 * 2066 * @map: Register map to update 2067 * @reg: Register to update 2068 * @mask: Bitmask to change 2069 * @val: New value for bitmask 2070 * @change: Boolean indicating if a write was done 2071 * 2072 * With most buses the read must be done synchronously so this is most 2073 * useful for devices with a cache which do not need to interact with 2074 * the hardware to determine the current register value. 2075 * 2076 * Returns zero for success, a negative number on error. 2077 */ 2078 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg, 2079 unsigned int mask, unsigned int val, 2080 bool *change) 2081 { 2082 int ret; 2083 2084 map->lock(map->lock_arg); 2085 2086 map->async = true; 2087 2088 ret = _regmap_update_bits(map, reg, mask, val, change); 2089 2090 map->async = false; 2091 2092 map->unlock(map->lock_arg); 2093 2094 return ret; 2095 } 2096 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async); 2097 2098 void regmap_async_complete_cb(struct regmap_async *async, int ret) 2099 { 2100 struct regmap *map = async->map; 2101 bool wake; 2102 2103 trace_regmap_async_io_complete(map->dev); 2104 2105 spin_lock(&map->async_lock); 2106 list_move(&async->list, &map->async_free); 2107 wake = list_empty(&map->async_list); 2108 2109 if (ret != 0) 2110 map->async_ret = ret; 2111 2112 spin_unlock(&map->async_lock); 2113 2114 if (wake) 2115 wake_up(&map->async_waitq); 2116 } 2117 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 2118 2119 static int regmap_async_is_done(struct regmap *map) 2120 { 2121 unsigned long flags; 2122 int ret; 2123 2124 spin_lock_irqsave(&map->async_lock, flags); 2125 ret = list_empty(&map->async_list); 2126 spin_unlock_irqrestore(&map->async_lock, flags); 2127 2128 return ret; 2129 } 2130 2131 /** 2132 * regmap_async_complete: Ensure all asynchronous I/O has completed. 2133 * 2134 * @map: Map to operate on. 2135 * 2136 * Blocks until any pending asynchronous I/O has completed. Returns 2137 * an error code for any failed I/O operations. 2138 */ 2139 int regmap_async_complete(struct regmap *map) 2140 { 2141 unsigned long flags; 2142 int ret; 2143 2144 /* Nothing to do with no async support */ 2145 if (!map->bus || !map->bus->async_write) 2146 return 0; 2147 2148 trace_regmap_async_complete_start(map->dev); 2149 2150 wait_event(map->async_waitq, regmap_async_is_done(map)); 2151 2152 spin_lock_irqsave(&map->async_lock, flags); 2153 ret = map->async_ret; 2154 map->async_ret = 0; 2155 spin_unlock_irqrestore(&map->async_lock, flags); 2156 2157 trace_regmap_async_complete_done(map->dev); 2158 2159 return ret; 2160 } 2161 EXPORT_SYMBOL_GPL(regmap_async_complete); 2162 2163 /** 2164 * regmap_register_patch: Register and apply register updates to be applied 2165 * on device initialistion 2166 * 2167 * @map: Register map to apply updates to. 2168 * @regs: Values to update. 2169 * @num_regs: Number of entries in regs. 2170 * 2171 * Register a set of register updates to be applied to the device 2172 * whenever the device registers are synchronised with the cache and 2173 * apply them immediately. Typically this is used to apply 2174 * corrections to be applied to the device defaults on startup, such 2175 * as the updates some vendors provide to undocumented registers. 2176 */ 2177 int regmap_register_patch(struct regmap *map, const struct reg_default *regs, 2178 int num_regs) 2179 { 2180 struct reg_default *p; 2181 int i, ret; 2182 bool bypass; 2183 2184 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", 2185 num_regs)) 2186 return 0; 2187 2188 map->lock(map->lock_arg); 2189 2190 bypass = map->cache_bypass; 2191 2192 map->cache_bypass = true; 2193 map->async = true; 2194 2195 /* Write out first; it's useful to apply even if we fail later. */ 2196 for (i = 0; i < num_regs; i++) { 2197 ret = _regmap_write(map, regs[i].reg, regs[i].def); 2198 if (ret != 0) { 2199 dev_err(map->dev, "Failed to write %x = %x: %d\n", 2200 regs[i].reg, regs[i].def, ret); 2201 goto out; 2202 } 2203 } 2204 2205 p = krealloc(map->patch, 2206 sizeof(struct reg_default) * (map->patch_regs + num_regs), 2207 GFP_KERNEL); 2208 if (p) { 2209 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 2210 map->patch = p; 2211 map->patch_regs += num_regs; 2212 } else { 2213 ret = -ENOMEM; 2214 } 2215 2216 out: 2217 map->async = false; 2218 map->cache_bypass = bypass; 2219 2220 map->unlock(map->lock_arg); 2221 2222 regmap_async_complete(map); 2223 2224 return ret; 2225 } 2226 EXPORT_SYMBOL_GPL(regmap_register_patch); 2227 2228 /* 2229 * regmap_get_val_bytes(): Report the size of a register value 2230 * 2231 * Report the size of a register value, mainly intended to for use by 2232 * generic infrastructure built on top of regmap. 2233 */ 2234 int regmap_get_val_bytes(struct regmap *map) 2235 { 2236 if (map->format.format_write) 2237 return -EINVAL; 2238 2239 return map->format.val_bytes; 2240 } 2241 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 2242 2243 static int __init regmap_initcall(void) 2244 { 2245 regmap_debugfs_initcall(); 2246 2247 return 0; 2248 } 2249 postcore_initcall(regmap_initcall); 2250