xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision abfbd895)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25 
26 #include "internal.h"
27 
28 /*
29  * Sometimes for failures during very early init the trace
30  * infrastructure isn't available early enough to be used.  For this
31  * sort of problem defining LOG_DEVICE will add printks for basic
32  * register I/O on a specific device.
33  */
34 #undef LOG_DEVICE
35 
36 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
37 			       unsigned int mask, unsigned int val,
38 			       bool *change, bool force_write);
39 
40 static int _regmap_bus_reg_read(void *context, unsigned int reg,
41 				unsigned int *val);
42 static int _regmap_bus_read(void *context, unsigned int reg,
43 			    unsigned int *val);
44 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
45 				       unsigned int val);
46 static int _regmap_bus_reg_write(void *context, unsigned int reg,
47 				 unsigned int val);
48 static int _regmap_bus_raw_write(void *context, unsigned int reg,
49 				 unsigned int val);
50 
51 bool regmap_reg_in_ranges(unsigned int reg,
52 			  const struct regmap_range *ranges,
53 			  unsigned int nranges)
54 {
55 	const struct regmap_range *r;
56 	int i;
57 
58 	for (i = 0, r = ranges; i < nranges; i++, r++)
59 		if (regmap_reg_in_range(reg, r))
60 			return true;
61 	return false;
62 }
63 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
64 
65 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
66 			      const struct regmap_access_table *table)
67 {
68 	/* Check "no ranges" first */
69 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
70 		return false;
71 
72 	/* In case zero "yes ranges" are supplied, any reg is OK */
73 	if (!table->n_yes_ranges)
74 		return true;
75 
76 	return regmap_reg_in_ranges(reg, table->yes_ranges,
77 				    table->n_yes_ranges);
78 }
79 EXPORT_SYMBOL_GPL(regmap_check_range_table);
80 
81 bool regmap_writeable(struct regmap *map, unsigned int reg)
82 {
83 	if (map->max_register && reg > map->max_register)
84 		return false;
85 
86 	if (map->writeable_reg)
87 		return map->writeable_reg(map->dev, reg);
88 
89 	if (map->wr_table)
90 		return regmap_check_range_table(map, reg, map->wr_table);
91 
92 	return true;
93 }
94 
95 bool regmap_readable(struct regmap *map, unsigned int reg)
96 {
97 	if (!map->reg_read)
98 		return false;
99 
100 	if (map->max_register && reg > map->max_register)
101 		return false;
102 
103 	if (map->format.format_write)
104 		return false;
105 
106 	if (map->readable_reg)
107 		return map->readable_reg(map->dev, reg);
108 
109 	if (map->rd_table)
110 		return regmap_check_range_table(map, reg, map->rd_table);
111 
112 	return true;
113 }
114 
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117 	if (!map->format.format_write && !regmap_readable(map, reg))
118 		return false;
119 
120 	if (map->volatile_reg)
121 		return map->volatile_reg(map->dev, reg);
122 
123 	if (map->volatile_table)
124 		return regmap_check_range_table(map, reg, map->volatile_table);
125 
126 	if (map->cache_ops)
127 		return false;
128 	else
129 		return true;
130 }
131 
132 bool regmap_precious(struct regmap *map, unsigned int reg)
133 {
134 	if (!regmap_readable(map, reg))
135 		return false;
136 
137 	if (map->precious_reg)
138 		return map->precious_reg(map->dev, reg);
139 
140 	if (map->precious_table)
141 		return regmap_check_range_table(map, reg, map->precious_table);
142 
143 	return false;
144 }
145 
146 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
147 	size_t num)
148 {
149 	unsigned int i;
150 
151 	for (i = 0; i < num; i++)
152 		if (!regmap_volatile(map, reg + i))
153 			return false;
154 
155 	return true;
156 }
157 
158 static void regmap_format_2_6_write(struct regmap *map,
159 				     unsigned int reg, unsigned int val)
160 {
161 	u8 *out = map->work_buf;
162 
163 	*out = (reg << 6) | val;
164 }
165 
166 static void regmap_format_4_12_write(struct regmap *map,
167 				     unsigned int reg, unsigned int val)
168 {
169 	__be16 *out = map->work_buf;
170 	*out = cpu_to_be16((reg << 12) | val);
171 }
172 
173 static void regmap_format_7_9_write(struct regmap *map,
174 				    unsigned int reg, unsigned int val)
175 {
176 	__be16 *out = map->work_buf;
177 	*out = cpu_to_be16((reg << 9) | val);
178 }
179 
180 static void regmap_format_10_14_write(struct regmap *map,
181 				    unsigned int reg, unsigned int val)
182 {
183 	u8 *out = map->work_buf;
184 
185 	out[2] = val;
186 	out[1] = (val >> 8) | (reg << 6);
187 	out[0] = reg >> 2;
188 }
189 
190 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 {
192 	u8 *b = buf;
193 
194 	b[0] = val << shift;
195 }
196 
197 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 {
199 	__be16 *b = buf;
200 
201 	b[0] = cpu_to_be16(val << shift);
202 }
203 
204 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
205 {
206 	__le16 *b = buf;
207 
208 	b[0] = cpu_to_le16(val << shift);
209 }
210 
211 static void regmap_format_16_native(void *buf, unsigned int val,
212 				    unsigned int shift)
213 {
214 	*(u16 *)buf = val << shift;
215 }
216 
217 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
218 {
219 	u8 *b = buf;
220 
221 	val <<= shift;
222 
223 	b[0] = val >> 16;
224 	b[1] = val >> 8;
225 	b[2] = val;
226 }
227 
228 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
229 {
230 	__be32 *b = buf;
231 
232 	b[0] = cpu_to_be32(val << shift);
233 }
234 
235 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
236 {
237 	__le32 *b = buf;
238 
239 	b[0] = cpu_to_le32(val << shift);
240 }
241 
242 static void regmap_format_32_native(void *buf, unsigned int val,
243 				    unsigned int shift)
244 {
245 	*(u32 *)buf = val << shift;
246 }
247 
248 static void regmap_parse_inplace_noop(void *buf)
249 {
250 }
251 
252 static unsigned int regmap_parse_8(const void *buf)
253 {
254 	const u8 *b = buf;
255 
256 	return b[0];
257 }
258 
259 static unsigned int regmap_parse_16_be(const void *buf)
260 {
261 	const __be16 *b = buf;
262 
263 	return be16_to_cpu(b[0]);
264 }
265 
266 static unsigned int regmap_parse_16_le(const void *buf)
267 {
268 	const __le16 *b = buf;
269 
270 	return le16_to_cpu(b[0]);
271 }
272 
273 static void regmap_parse_16_be_inplace(void *buf)
274 {
275 	__be16 *b = buf;
276 
277 	b[0] = be16_to_cpu(b[0]);
278 }
279 
280 static void regmap_parse_16_le_inplace(void *buf)
281 {
282 	__le16 *b = buf;
283 
284 	b[0] = le16_to_cpu(b[0]);
285 }
286 
287 static unsigned int regmap_parse_16_native(const void *buf)
288 {
289 	return *(u16 *)buf;
290 }
291 
292 static unsigned int regmap_parse_24(const void *buf)
293 {
294 	const u8 *b = buf;
295 	unsigned int ret = b[2];
296 	ret |= ((unsigned int)b[1]) << 8;
297 	ret |= ((unsigned int)b[0]) << 16;
298 
299 	return ret;
300 }
301 
302 static unsigned int regmap_parse_32_be(const void *buf)
303 {
304 	const __be32 *b = buf;
305 
306 	return be32_to_cpu(b[0]);
307 }
308 
309 static unsigned int regmap_parse_32_le(const void *buf)
310 {
311 	const __le32 *b = buf;
312 
313 	return le32_to_cpu(b[0]);
314 }
315 
316 static void regmap_parse_32_be_inplace(void *buf)
317 {
318 	__be32 *b = buf;
319 
320 	b[0] = be32_to_cpu(b[0]);
321 }
322 
323 static void regmap_parse_32_le_inplace(void *buf)
324 {
325 	__le32 *b = buf;
326 
327 	b[0] = le32_to_cpu(b[0]);
328 }
329 
330 static unsigned int regmap_parse_32_native(const void *buf)
331 {
332 	return *(u32 *)buf;
333 }
334 
335 static void regmap_lock_mutex(void *__map)
336 {
337 	struct regmap *map = __map;
338 	mutex_lock(&map->mutex);
339 }
340 
341 static void regmap_unlock_mutex(void *__map)
342 {
343 	struct regmap *map = __map;
344 	mutex_unlock(&map->mutex);
345 }
346 
347 static void regmap_lock_spinlock(void *__map)
348 __acquires(&map->spinlock)
349 {
350 	struct regmap *map = __map;
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(&map->spinlock, flags);
354 	map->spinlock_flags = flags;
355 }
356 
357 static void regmap_unlock_spinlock(void *__map)
358 __releases(&map->spinlock)
359 {
360 	struct regmap *map = __map;
361 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
362 }
363 
364 static void dev_get_regmap_release(struct device *dev, void *res)
365 {
366 	/*
367 	 * We don't actually have anything to do here; the goal here
368 	 * is not to manage the regmap but to provide a simple way to
369 	 * get the regmap back given a struct device.
370 	 */
371 }
372 
373 static bool _regmap_range_add(struct regmap *map,
374 			      struct regmap_range_node *data)
375 {
376 	struct rb_root *root = &map->range_tree;
377 	struct rb_node **new = &(root->rb_node), *parent = NULL;
378 
379 	while (*new) {
380 		struct regmap_range_node *this =
381 			container_of(*new, struct regmap_range_node, node);
382 
383 		parent = *new;
384 		if (data->range_max < this->range_min)
385 			new = &((*new)->rb_left);
386 		else if (data->range_min > this->range_max)
387 			new = &((*new)->rb_right);
388 		else
389 			return false;
390 	}
391 
392 	rb_link_node(&data->node, parent, new);
393 	rb_insert_color(&data->node, root);
394 
395 	return true;
396 }
397 
398 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
399 						      unsigned int reg)
400 {
401 	struct rb_node *node = map->range_tree.rb_node;
402 
403 	while (node) {
404 		struct regmap_range_node *this =
405 			container_of(node, struct regmap_range_node, node);
406 
407 		if (reg < this->range_min)
408 			node = node->rb_left;
409 		else if (reg > this->range_max)
410 			node = node->rb_right;
411 		else
412 			return this;
413 	}
414 
415 	return NULL;
416 }
417 
418 static void regmap_range_exit(struct regmap *map)
419 {
420 	struct rb_node *next;
421 	struct regmap_range_node *range_node;
422 
423 	next = rb_first(&map->range_tree);
424 	while (next) {
425 		range_node = rb_entry(next, struct regmap_range_node, node);
426 		next = rb_next(&range_node->node);
427 		rb_erase(&range_node->node, &map->range_tree);
428 		kfree(range_node);
429 	}
430 
431 	kfree(map->selector_work_buf);
432 }
433 
434 int regmap_attach_dev(struct device *dev, struct regmap *map,
435 		      const struct regmap_config *config)
436 {
437 	struct regmap **m;
438 
439 	map->dev = dev;
440 
441 	regmap_debugfs_init(map, config->name);
442 
443 	/* Add a devres resource for dev_get_regmap() */
444 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
445 	if (!m) {
446 		regmap_debugfs_exit(map);
447 		return -ENOMEM;
448 	}
449 	*m = map;
450 	devres_add(dev, m);
451 
452 	return 0;
453 }
454 EXPORT_SYMBOL_GPL(regmap_attach_dev);
455 
456 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
457 					const struct regmap_config *config)
458 {
459 	enum regmap_endian endian;
460 
461 	/* Retrieve the endianness specification from the regmap config */
462 	endian = config->reg_format_endian;
463 
464 	/* If the regmap config specified a non-default value, use that */
465 	if (endian != REGMAP_ENDIAN_DEFAULT)
466 		return endian;
467 
468 	/* Retrieve the endianness specification from the bus config */
469 	if (bus && bus->reg_format_endian_default)
470 		endian = bus->reg_format_endian_default;
471 
472 	/* If the bus specified a non-default value, use that */
473 	if (endian != REGMAP_ENDIAN_DEFAULT)
474 		return endian;
475 
476 	/* Use this if no other value was found */
477 	return REGMAP_ENDIAN_BIG;
478 }
479 
480 enum regmap_endian regmap_get_val_endian(struct device *dev,
481 					 const struct regmap_bus *bus,
482 					 const struct regmap_config *config)
483 {
484 	struct device_node *np;
485 	enum regmap_endian endian;
486 
487 	/* Retrieve the endianness specification from the regmap config */
488 	endian = config->val_format_endian;
489 
490 	/* If the regmap config specified a non-default value, use that */
491 	if (endian != REGMAP_ENDIAN_DEFAULT)
492 		return endian;
493 
494 	/* If the dev and dev->of_node exist try to get endianness from DT */
495 	if (dev && dev->of_node) {
496 		np = dev->of_node;
497 
498 		/* Parse the device's DT node for an endianness specification */
499 		if (of_property_read_bool(np, "big-endian"))
500 			endian = REGMAP_ENDIAN_BIG;
501 		else if (of_property_read_bool(np, "little-endian"))
502 			endian = REGMAP_ENDIAN_LITTLE;
503 
504 		/* If the endianness was specified in DT, use that */
505 		if (endian != REGMAP_ENDIAN_DEFAULT)
506 			return endian;
507 	}
508 
509 	/* Retrieve the endianness specification from the bus config */
510 	if (bus && bus->val_format_endian_default)
511 		endian = bus->val_format_endian_default;
512 
513 	/* If the bus specified a non-default value, use that */
514 	if (endian != REGMAP_ENDIAN_DEFAULT)
515 		return endian;
516 
517 	/* Use this if no other value was found */
518 	return REGMAP_ENDIAN_BIG;
519 }
520 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
521 
522 struct regmap *__regmap_init(struct device *dev,
523 			     const struct regmap_bus *bus,
524 			     void *bus_context,
525 			     const struct regmap_config *config,
526 			     struct lock_class_key *lock_key,
527 			     const char *lock_name)
528 {
529 	struct regmap *map;
530 	int ret = -EINVAL;
531 	enum regmap_endian reg_endian, val_endian;
532 	int i, j;
533 
534 	if (!config)
535 		goto err;
536 
537 	map = kzalloc(sizeof(*map), GFP_KERNEL);
538 	if (map == NULL) {
539 		ret = -ENOMEM;
540 		goto err;
541 	}
542 
543 	if (config->lock && config->unlock) {
544 		map->lock = config->lock;
545 		map->unlock = config->unlock;
546 		map->lock_arg = config->lock_arg;
547 	} else {
548 		if ((bus && bus->fast_io) ||
549 		    config->fast_io) {
550 			spin_lock_init(&map->spinlock);
551 			map->lock = regmap_lock_spinlock;
552 			map->unlock = regmap_unlock_spinlock;
553 			lockdep_set_class_and_name(&map->spinlock,
554 						   lock_key, lock_name);
555 		} else {
556 			mutex_init(&map->mutex);
557 			map->lock = regmap_lock_mutex;
558 			map->unlock = regmap_unlock_mutex;
559 			lockdep_set_class_and_name(&map->mutex,
560 						   lock_key, lock_name);
561 		}
562 		map->lock_arg = map;
563 	}
564 
565 	/*
566 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
567 	 * scratch buffers with sleeping allocations.
568 	 */
569 	if ((bus && bus->fast_io) || config->fast_io)
570 		map->alloc_flags = GFP_ATOMIC;
571 	else
572 		map->alloc_flags = GFP_KERNEL;
573 
574 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
575 	map->format.pad_bytes = config->pad_bits / 8;
576 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
577 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
578 			config->val_bits + config->pad_bits, 8);
579 	map->reg_shift = config->pad_bits % 8;
580 	if (config->reg_stride)
581 		map->reg_stride = config->reg_stride;
582 	else
583 		map->reg_stride = 1;
584 	map->use_single_read = config->use_single_rw || !bus || !bus->read;
585 	map->use_single_write = config->use_single_rw || !bus || !bus->write;
586 	map->can_multi_write = config->can_multi_write && bus && bus->write;
587 	if (bus) {
588 		map->max_raw_read = bus->max_raw_read;
589 		map->max_raw_write = bus->max_raw_write;
590 	}
591 	map->dev = dev;
592 	map->bus = bus;
593 	map->bus_context = bus_context;
594 	map->max_register = config->max_register;
595 	map->wr_table = config->wr_table;
596 	map->rd_table = config->rd_table;
597 	map->volatile_table = config->volatile_table;
598 	map->precious_table = config->precious_table;
599 	map->writeable_reg = config->writeable_reg;
600 	map->readable_reg = config->readable_reg;
601 	map->volatile_reg = config->volatile_reg;
602 	map->precious_reg = config->precious_reg;
603 	map->cache_type = config->cache_type;
604 	map->name = config->name;
605 
606 	spin_lock_init(&map->async_lock);
607 	INIT_LIST_HEAD(&map->async_list);
608 	INIT_LIST_HEAD(&map->async_free);
609 	init_waitqueue_head(&map->async_waitq);
610 
611 	if (config->read_flag_mask || config->write_flag_mask) {
612 		map->read_flag_mask = config->read_flag_mask;
613 		map->write_flag_mask = config->write_flag_mask;
614 	} else if (bus) {
615 		map->read_flag_mask = bus->read_flag_mask;
616 	}
617 
618 	if (!bus) {
619 		map->reg_read  = config->reg_read;
620 		map->reg_write = config->reg_write;
621 
622 		map->defer_caching = false;
623 		goto skip_format_initialization;
624 	} else if (!bus->read || !bus->write) {
625 		map->reg_read = _regmap_bus_reg_read;
626 		map->reg_write = _regmap_bus_reg_write;
627 
628 		map->defer_caching = false;
629 		goto skip_format_initialization;
630 	} else {
631 		map->reg_read  = _regmap_bus_read;
632 		map->reg_update_bits = bus->reg_update_bits;
633 	}
634 
635 	reg_endian = regmap_get_reg_endian(bus, config);
636 	val_endian = regmap_get_val_endian(dev, bus, config);
637 
638 	switch (config->reg_bits + map->reg_shift) {
639 	case 2:
640 		switch (config->val_bits) {
641 		case 6:
642 			map->format.format_write = regmap_format_2_6_write;
643 			break;
644 		default:
645 			goto err_map;
646 		}
647 		break;
648 
649 	case 4:
650 		switch (config->val_bits) {
651 		case 12:
652 			map->format.format_write = regmap_format_4_12_write;
653 			break;
654 		default:
655 			goto err_map;
656 		}
657 		break;
658 
659 	case 7:
660 		switch (config->val_bits) {
661 		case 9:
662 			map->format.format_write = regmap_format_7_9_write;
663 			break;
664 		default:
665 			goto err_map;
666 		}
667 		break;
668 
669 	case 10:
670 		switch (config->val_bits) {
671 		case 14:
672 			map->format.format_write = regmap_format_10_14_write;
673 			break;
674 		default:
675 			goto err_map;
676 		}
677 		break;
678 
679 	case 8:
680 		map->format.format_reg = regmap_format_8;
681 		break;
682 
683 	case 16:
684 		switch (reg_endian) {
685 		case REGMAP_ENDIAN_BIG:
686 			map->format.format_reg = regmap_format_16_be;
687 			break;
688 		case REGMAP_ENDIAN_NATIVE:
689 			map->format.format_reg = regmap_format_16_native;
690 			break;
691 		default:
692 			goto err_map;
693 		}
694 		break;
695 
696 	case 24:
697 		if (reg_endian != REGMAP_ENDIAN_BIG)
698 			goto err_map;
699 		map->format.format_reg = regmap_format_24;
700 		break;
701 
702 	case 32:
703 		switch (reg_endian) {
704 		case REGMAP_ENDIAN_BIG:
705 			map->format.format_reg = regmap_format_32_be;
706 			break;
707 		case REGMAP_ENDIAN_NATIVE:
708 			map->format.format_reg = regmap_format_32_native;
709 			break;
710 		default:
711 			goto err_map;
712 		}
713 		break;
714 
715 	default:
716 		goto err_map;
717 	}
718 
719 	if (val_endian == REGMAP_ENDIAN_NATIVE)
720 		map->format.parse_inplace = regmap_parse_inplace_noop;
721 
722 	switch (config->val_bits) {
723 	case 8:
724 		map->format.format_val = regmap_format_8;
725 		map->format.parse_val = regmap_parse_8;
726 		map->format.parse_inplace = regmap_parse_inplace_noop;
727 		break;
728 	case 16:
729 		switch (val_endian) {
730 		case REGMAP_ENDIAN_BIG:
731 			map->format.format_val = regmap_format_16_be;
732 			map->format.parse_val = regmap_parse_16_be;
733 			map->format.parse_inplace = regmap_parse_16_be_inplace;
734 			break;
735 		case REGMAP_ENDIAN_LITTLE:
736 			map->format.format_val = regmap_format_16_le;
737 			map->format.parse_val = regmap_parse_16_le;
738 			map->format.parse_inplace = regmap_parse_16_le_inplace;
739 			break;
740 		case REGMAP_ENDIAN_NATIVE:
741 			map->format.format_val = regmap_format_16_native;
742 			map->format.parse_val = regmap_parse_16_native;
743 			break;
744 		default:
745 			goto err_map;
746 		}
747 		break;
748 	case 24:
749 		if (val_endian != REGMAP_ENDIAN_BIG)
750 			goto err_map;
751 		map->format.format_val = regmap_format_24;
752 		map->format.parse_val = regmap_parse_24;
753 		break;
754 	case 32:
755 		switch (val_endian) {
756 		case REGMAP_ENDIAN_BIG:
757 			map->format.format_val = regmap_format_32_be;
758 			map->format.parse_val = regmap_parse_32_be;
759 			map->format.parse_inplace = regmap_parse_32_be_inplace;
760 			break;
761 		case REGMAP_ENDIAN_LITTLE:
762 			map->format.format_val = regmap_format_32_le;
763 			map->format.parse_val = regmap_parse_32_le;
764 			map->format.parse_inplace = regmap_parse_32_le_inplace;
765 			break;
766 		case REGMAP_ENDIAN_NATIVE:
767 			map->format.format_val = regmap_format_32_native;
768 			map->format.parse_val = regmap_parse_32_native;
769 			break;
770 		default:
771 			goto err_map;
772 		}
773 		break;
774 	}
775 
776 	if (map->format.format_write) {
777 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
778 		    (val_endian != REGMAP_ENDIAN_BIG))
779 			goto err_map;
780 		map->use_single_write = true;
781 	}
782 
783 	if (!map->format.format_write &&
784 	    !(map->format.format_reg && map->format.format_val))
785 		goto err_map;
786 
787 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
788 	if (map->work_buf == NULL) {
789 		ret = -ENOMEM;
790 		goto err_map;
791 	}
792 
793 	if (map->format.format_write) {
794 		map->defer_caching = false;
795 		map->reg_write = _regmap_bus_formatted_write;
796 	} else if (map->format.format_val) {
797 		map->defer_caching = true;
798 		map->reg_write = _regmap_bus_raw_write;
799 	}
800 
801 skip_format_initialization:
802 
803 	map->range_tree = RB_ROOT;
804 	for (i = 0; i < config->num_ranges; i++) {
805 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
806 		struct regmap_range_node *new;
807 
808 		/* Sanity check */
809 		if (range_cfg->range_max < range_cfg->range_min) {
810 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
811 				range_cfg->range_max, range_cfg->range_min);
812 			goto err_range;
813 		}
814 
815 		if (range_cfg->range_max > map->max_register) {
816 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
817 				range_cfg->range_max, map->max_register);
818 			goto err_range;
819 		}
820 
821 		if (range_cfg->selector_reg > map->max_register) {
822 			dev_err(map->dev,
823 				"Invalid range %d: selector out of map\n", i);
824 			goto err_range;
825 		}
826 
827 		if (range_cfg->window_len == 0) {
828 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
829 				i);
830 			goto err_range;
831 		}
832 
833 		/* Make sure, that this register range has no selector
834 		   or data window within its boundary */
835 		for (j = 0; j < config->num_ranges; j++) {
836 			unsigned sel_reg = config->ranges[j].selector_reg;
837 			unsigned win_min = config->ranges[j].window_start;
838 			unsigned win_max = win_min +
839 					   config->ranges[j].window_len - 1;
840 
841 			/* Allow data window inside its own virtual range */
842 			if (j == i)
843 				continue;
844 
845 			if (range_cfg->range_min <= sel_reg &&
846 			    sel_reg <= range_cfg->range_max) {
847 				dev_err(map->dev,
848 					"Range %d: selector for %d in window\n",
849 					i, j);
850 				goto err_range;
851 			}
852 
853 			if (!(win_max < range_cfg->range_min ||
854 			      win_min > range_cfg->range_max)) {
855 				dev_err(map->dev,
856 					"Range %d: window for %d in window\n",
857 					i, j);
858 				goto err_range;
859 			}
860 		}
861 
862 		new = kzalloc(sizeof(*new), GFP_KERNEL);
863 		if (new == NULL) {
864 			ret = -ENOMEM;
865 			goto err_range;
866 		}
867 
868 		new->map = map;
869 		new->name = range_cfg->name;
870 		new->range_min = range_cfg->range_min;
871 		new->range_max = range_cfg->range_max;
872 		new->selector_reg = range_cfg->selector_reg;
873 		new->selector_mask = range_cfg->selector_mask;
874 		new->selector_shift = range_cfg->selector_shift;
875 		new->window_start = range_cfg->window_start;
876 		new->window_len = range_cfg->window_len;
877 
878 		if (!_regmap_range_add(map, new)) {
879 			dev_err(map->dev, "Failed to add range %d\n", i);
880 			kfree(new);
881 			goto err_range;
882 		}
883 
884 		if (map->selector_work_buf == NULL) {
885 			map->selector_work_buf =
886 				kzalloc(map->format.buf_size, GFP_KERNEL);
887 			if (map->selector_work_buf == NULL) {
888 				ret = -ENOMEM;
889 				goto err_range;
890 			}
891 		}
892 	}
893 
894 	ret = regcache_init(map, config);
895 	if (ret != 0)
896 		goto err_range;
897 
898 	if (dev) {
899 		ret = regmap_attach_dev(dev, map, config);
900 		if (ret != 0)
901 			goto err_regcache;
902 	}
903 
904 	return map;
905 
906 err_regcache:
907 	regcache_exit(map);
908 err_range:
909 	regmap_range_exit(map);
910 	kfree(map->work_buf);
911 err_map:
912 	kfree(map);
913 err:
914 	return ERR_PTR(ret);
915 }
916 EXPORT_SYMBOL_GPL(__regmap_init);
917 
918 static void devm_regmap_release(struct device *dev, void *res)
919 {
920 	regmap_exit(*(struct regmap **)res);
921 }
922 
923 struct regmap *__devm_regmap_init(struct device *dev,
924 				  const struct regmap_bus *bus,
925 				  void *bus_context,
926 				  const struct regmap_config *config,
927 				  struct lock_class_key *lock_key,
928 				  const char *lock_name)
929 {
930 	struct regmap **ptr, *regmap;
931 
932 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
933 	if (!ptr)
934 		return ERR_PTR(-ENOMEM);
935 
936 	regmap = __regmap_init(dev, bus, bus_context, config,
937 			       lock_key, lock_name);
938 	if (!IS_ERR(regmap)) {
939 		*ptr = regmap;
940 		devres_add(dev, ptr);
941 	} else {
942 		devres_free(ptr);
943 	}
944 
945 	return regmap;
946 }
947 EXPORT_SYMBOL_GPL(__devm_regmap_init);
948 
949 static void regmap_field_init(struct regmap_field *rm_field,
950 	struct regmap *regmap, struct reg_field reg_field)
951 {
952 	rm_field->regmap = regmap;
953 	rm_field->reg = reg_field.reg;
954 	rm_field->shift = reg_field.lsb;
955 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
956 	rm_field->id_size = reg_field.id_size;
957 	rm_field->id_offset = reg_field.id_offset;
958 }
959 
960 /**
961  * devm_regmap_field_alloc(): Allocate and initialise a register field
962  * in a register map.
963  *
964  * @dev: Device that will be interacted with
965  * @regmap: regmap bank in which this register field is located.
966  * @reg_field: Register field with in the bank.
967  *
968  * The return value will be an ERR_PTR() on error or a valid pointer
969  * to a struct regmap_field. The regmap_field will be automatically freed
970  * by the device management code.
971  */
972 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
973 		struct regmap *regmap, struct reg_field reg_field)
974 {
975 	struct regmap_field *rm_field = devm_kzalloc(dev,
976 					sizeof(*rm_field), GFP_KERNEL);
977 	if (!rm_field)
978 		return ERR_PTR(-ENOMEM);
979 
980 	regmap_field_init(rm_field, regmap, reg_field);
981 
982 	return rm_field;
983 
984 }
985 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
986 
987 /**
988  * devm_regmap_field_free(): Free register field allocated using
989  * devm_regmap_field_alloc. Usally drivers need not call this function,
990  * as the memory allocated via devm will be freed as per device-driver
991  * life-cyle.
992  *
993  * @dev: Device that will be interacted with
994  * @field: regmap field which should be freed.
995  */
996 void devm_regmap_field_free(struct device *dev,
997 	struct regmap_field *field)
998 {
999 	devm_kfree(dev, field);
1000 }
1001 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1002 
1003 /**
1004  * regmap_field_alloc(): Allocate and initialise a register field
1005  * in a register map.
1006  *
1007  * @regmap: regmap bank in which this register field is located.
1008  * @reg_field: Register field with in the bank.
1009  *
1010  * The return value will be an ERR_PTR() on error or a valid pointer
1011  * to a struct regmap_field. The regmap_field should be freed by the
1012  * user once its finished working with it using regmap_field_free().
1013  */
1014 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1015 		struct reg_field reg_field)
1016 {
1017 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1018 
1019 	if (!rm_field)
1020 		return ERR_PTR(-ENOMEM);
1021 
1022 	regmap_field_init(rm_field, regmap, reg_field);
1023 
1024 	return rm_field;
1025 }
1026 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1027 
1028 /**
1029  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1030  *
1031  * @field: regmap field which should be freed.
1032  */
1033 void regmap_field_free(struct regmap_field *field)
1034 {
1035 	kfree(field);
1036 }
1037 EXPORT_SYMBOL_GPL(regmap_field_free);
1038 
1039 /**
1040  * regmap_reinit_cache(): Reinitialise the current register cache
1041  *
1042  * @map: Register map to operate on.
1043  * @config: New configuration.  Only the cache data will be used.
1044  *
1045  * Discard any existing register cache for the map and initialize a
1046  * new cache.  This can be used to restore the cache to defaults or to
1047  * update the cache configuration to reflect runtime discovery of the
1048  * hardware.
1049  *
1050  * No explicit locking is done here, the user needs to ensure that
1051  * this function will not race with other calls to regmap.
1052  */
1053 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1054 {
1055 	regcache_exit(map);
1056 	regmap_debugfs_exit(map);
1057 
1058 	map->max_register = config->max_register;
1059 	map->writeable_reg = config->writeable_reg;
1060 	map->readable_reg = config->readable_reg;
1061 	map->volatile_reg = config->volatile_reg;
1062 	map->precious_reg = config->precious_reg;
1063 	map->cache_type = config->cache_type;
1064 
1065 	regmap_debugfs_init(map, config->name);
1066 
1067 	map->cache_bypass = false;
1068 	map->cache_only = false;
1069 
1070 	return regcache_init(map, config);
1071 }
1072 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1073 
1074 /**
1075  * regmap_exit(): Free a previously allocated register map
1076  */
1077 void regmap_exit(struct regmap *map)
1078 {
1079 	struct regmap_async *async;
1080 
1081 	regcache_exit(map);
1082 	regmap_debugfs_exit(map);
1083 	regmap_range_exit(map);
1084 	if (map->bus && map->bus->free_context)
1085 		map->bus->free_context(map->bus_context);
1086 	kfree(map->work_buf);
1087 	while (!list_empty(&map->async_free)) {
1088 		async = list_first_entry_or_null(&map->async_free,
1089 						 struct regmap_async,
1090 						 list);
1091 		list_del(&async->list);
1092 		kfree(async->work_buf);
1093 		kfree(async);
1094 	}
1095 	kfree(map);
1096 }
1097 EXPORT_SYMBOL_GPL(regmap_exit);
1098 
1099 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1100 {
1101 	struct regmap **r = res;
1102 	if (!r || !*r) {
1103 		WARN_ON(!r || !*r);
1104 		return 0;
1105 	}
1106 
1107 	/* If the user didn't specify a name match any */
1108 	if (data)
1109 		return (*r)->name == data;
1110 	else
1111 		return 1;
1112 }
1113 
1114 /**
1115  * dev_get_regmap(): Obtain the regmap (if any) for a device
1116  *
1117  * @dev: Device to retrieve the map for
1118  * @name: Optional name for the register map, usually NULL.
1119  *
1120  * Returns the regmap for the device if one is present, or NULL.  If
1121  * name is specified then it must match the name specified when
1122  * registering the device, if it is NULL then the first regmap found
1123  * will be used.  Devices with multiple register maps are very rare,
1124  * generic code should normally not need to specify a name.
1125  */
1126 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1127 {
1128 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1129 					dev_get_regmap_match, (void *)name);
1130 
1131 	if (!r)
1132 		return NULL;
1133 	return *r;
1134 }
1135 EXPORT_SYMBOL_GPL(dev_get_regmap);
1136 
1137 /**
1138  * regmap_get_device(): Obtain the device from a regmap
1139  *
1140  * @map: Register map to operate on.
1141  *
1142  * Returns the underlying device that the regmap has been created for.
1143  */
1144 struct device *regmap_get_device(struct regmap *map)
1145 {
1146 	return map->dev;
1147 }
1148 EXPORT_SYMBOL_GPL(regmap_get_device);
1149 
1150 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1151 			       struct regmap_range_node *range,
1152 			       unsigned int val_num)
1153 {
1154 	void *orig_work_buf;
1155 	unsigned int win_offset;
1156 	unsigned int win_page;
1157 	bool page_chg;
1158 	int ret;
1159 
1160 	win_offset = (*reg - range->range_min) % range->window_len;
1161 	win_page = (*reg - range->range_min) / range->window_len;
1162 
1163 	if (val_num > 1) {
1164 		/* Bulk write shouldn't cross range boundary */
1165 		if (*reg + val_num - 1 > range->range_max)
1166 			return -EINVAL;
1167 
1168 		/* ... or single page boundary */
1169 		if (val_num > range->window_len - win_offset)
1170 			return -EINVAL;
1171 	}
1172 
1173 	/* It is possible to have selector register inside data window.
1174 	   In that case, selector register is located on every page and
1175 	   it needs no page switching, when accessed alone. */
1176 	if (val_num > 1 ||
1177 	    range->window_start + win_offset != range->selector_reg) {
1178 		/* Use separate work_buf during page switching */
1179 		orig_work_buf = map->work_buf;
1180 		map->work_buf = map->selector_work_buf;
1181 
1182 		ret = _regmap_update_bits(map, range->selector_reg,
1183 					  range->selector_mask,
1184 					  win_page << range->selector_shift,
1185 					  &page_chg, false);
1186 
1187 		map->work_buf = orig_work_buf;
1188 
1189 		if (ret != 0)
1190 			return ret;
1191 	}
1192 
1193 	*reg = range->window_start + win_offset;
1194 
1195 	return 0;
1196 }
1197 
1198 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1199 		      const void *val, size_t val_len)
1200 {
1201 	struct regmap_range_node *range;
1202 	unsigned long flags;
1203 	u8 *u8 = map->work_buf;
1204 	void *work_val = map->work_buf + map->format.reg_bytes +
1205 		map->format.pad_bytes;
1206 	void *buf;
1207 	int ret = -ENOTSUPP;
1208 	size_t len;
1209 	int i;
1210 
1211 	WARN_ON(!map->bus);
1212 
1213 	/* Check for unwritable registers before we start */
1214 	if (map->writeable_reg)
1215 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1216 			if (!map->writeable_reg(map->dev,
1217 						reg + (i * map->reg_stride)))
1218 				return -EINVAL;
1219 
1220 	if (!map->cache_bypass && map->format.parse_val) {
1221 		unsigned int ival;
1222 		int val_bytes = map->format.val_bytes;
1223 		for (i = 0; i < val_len / val_bytes; i++) {
1224 			ival = map->format.parse_val(val + (i * val_bytes));
1225 			ret = regcache_write(map, reg + (i * map->reg_stride),
1226 					     ival);
1227 			if (ret) {
1228 				dev_err(map->dev,
1229 					"Error in caching of register: %x ret: %d\n",
1230 					reg + i, ret);
1231 				return ret;
1232 			}
1233 		}
1234 		if (map->cache_only) {
1235 			map->cache_dirty = true;
1236 			return 0;
1237 		}
1238 	}
1239 
1240 	range = _regmap_range_lookup(map, reg);
1241 	if (range) {
1242 		int val_num = val_len / map->format.val_bytes;
1243 		int win_offset = (reg - range->range_min) % range->window_len;
1244 		int win_residue = range->window_len - win_offset;
1245 
1246 		/* If the write goes beyond the end of the window split it */
1247 		while (val_num > win_residue) {
1248 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1249 				win_residue, val_len / map->format.val_bytes);
1250 			ret = _regmap_raw_write(map, reg, val, win_residue *
1251 						map->format.val_bytes);
1252 			if (ret != 0)
1253 				return ret;
1254 
1255 			reg += win_residue;
1256 			val_num -= win_residue;
1257 			val += win_residue * map->format.val_bytes;
1258 			val_len -= win_residue * map->format.val_bytes;
1259 
1260 			win_offset = (reg - range->range_min) %
1261 				range->window_len;
1262 			win_residue = range->window_len - win_offset;
1263 		}
1264 
1265 		ret = _regmap_select_page(map, &reg, range, val_num);
1266 		if (ret != 0)
1267 			return ret;
1268 	}
1269 
1270 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1271 
1272 	u8[0] |= map->write_flag_mask;
1273 
1274 	/*
1275 	 * Essentially all I/O mechanisms will be faster with a single
1276 	 * buffer to write.  Since register syncs often generate raw
1277 	 * writes of single registers optimise that case.
1278 	 */
1279 	if (val != work_val && val_len == map->format.val_bytes) {
1280 		memcpy(work_val, val, map->format.val_bytes);
1281 		val = work_val;
1282 	}
1283 
1284 	if (map->async && map->bus->async_write) {
1285 		struct regmap_async *async;
1286 
1287 		trace_regmap_async_write_start(map, reg, val_len);
1288 
1289 		spin_lock_irqsave(&map->async_lock, flags);
1290 		async = list_first_entry_or_null(&map->async_free,
1291 						 struct regmap_async,
1292 						 list);
1293 		if (async)
1294 			list_del(&async->list);
1295 		spin_unlock_irqrestore(&map->async_lock, flags);
1296 
1297 		if (!async) {
1298 			async = map->bus->async_alloc();
1299 			if (!async)
1300 				return -ENOMEM;
1301 
1302 			async->work_buf = kzalloc(map->format.buf_size,
1303 						  GFP_KERNEL | GFP_DMA);
1304 			if (!async->work_buf) {
1305 				kfree(async);
1306 				return -ENOMEM;
1307 			}
1308 		}
1309 
1310 		async->map = map;
1311 
1312 		/* If the caller supplied the value we can use it safely. */
1313 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1314 		       map->format.reg_bytes + map->format.val_bytes);
1315 
1316 		spin_lock_irqsave(&map->async_lock, flags);
1317 		list_add_tail(&async->list, &map->async_list);
1318 		spin_unlock_irqrestore(&map->async_lock, flags);
1319 
1320 		if (val != work_val)
1321 			ret = map->bus->async_write(map->bus_context,
1322 						    async->work_buf,
1323 						    map->format.reg_bytes +
1324 						    map->format.pad_bytes,
1325 						    val, val_len, async);
1326 		else
1327 			ret = map->bus->async_write(map->bus_context,
1328 						    async->work_buf,
1329 						    map->format.reg_bytes +
1330 						    map->format.pad_bytes +
1331 						    val_len, NULL, 0, async);
1332 
1333 		if (ret != 0) {
1334 			dev_err(map->dev, "Failed to schedule write: %d\n",
1335 				ret);
1336 
1337 			spin_lock_irqsave(&map->async_lock, flags);
1338 			list_move(&async->list, &map->async_free);
1339 			spin_unlock_irqrestore(&map->async_lock, flags);
1340 		}
1341 
1342 		return ret;
1343 	}
1344 
1345 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1346 
1347 	/* If we're doing a single register write we can probably just
1348 	 * send the work_buf directly, otherwise try to do a gather
1349 	 * write.
1350 	 */
1351 	if (val == work_val)
1352 		ret = map->bus->write(map->bus_context, map->work_buf,
1353 				      map->format.reg_bytes +
1354 				      map->format.pad_bytes +
1355 				      val_len);
1356 	else if (map->bus->gather_write)
1357 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1358 					     map->format.reg_bytes +
1359 					     map->format.pad_bytes,
1360 					     val, val_len);
1361 
1362 	/* If that didn't work fall back on linearising by hand. */
1363 	if (ret == -ENOTSUPP) {
1364 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1365 		buf = kzalloc(len, GFP_KERNEL);
1366 		if (!buf)
1367 			return -ENOMEM;
1368 
1369 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1370 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1371 		       val, val_len);
1372 		ret = map->bus->write(map->bus_context, buf, len);
1373 
1374 		kfree(buf);
1375 	}
1376 
1377 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1378 
1379 	return ret;
1380 }
1381 
1382 /**
1383  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1384  *
1385  * @map: Map to check.
1386  */
1387 bool regmap_can_raw_write(struct regmap *map)
1388 {
1389 	return map->bus && map->bus->write && map->format.format_val &&
1390 		map->format.format_reg;
1391 }
1392 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1393 
1394 /**
1395  * regmap_get_raw_read_max - Get the maximum size we can read
1396  *
1397  * @map: Map to check.
1398  */
1399 size_t regmap_get_raw_read_max(struct regmap *map)
1400 {
1401 	return map->max_raw_read;
1402 }
1403 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1404 
1405 /**
1406  * regmap_get_raw_write_max - Get the maximum size we can read
1407  *
1408  * @map: Map to check.
1409  */
1410 size_t regmap_get_raw_write_max(struct regmap *map)
1411 {
1412 	return map->max_raw_write;
1413 }
1414 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1415 
1416 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1417 				       unsigned int val)
1418 {
1419 	int ret;
1420 	struct regmap_range_node *range;
1421 	struct regmap *map = context;
1422 
1423 	WARN_ON(!map->bus || !map->format.format_write);
1424 
1425 	range = _regmap_range_lookup(map, reg);
1426 	if (range) {
1427 		ret = _regmap_select_page(map, &reg, range, 1);
1428 		if (ret != 0)
1429 			return ret;
1430 	}
1431 
1432 	map->format.format_write(map, reg, val);
1433 
1434 	trace_regmap_hw_write_start(map, reg, 1);
1435 
1436 	ret = map->bus->write(map->bus_context, map->work_buf,
1437 			      map->format.buf_size);
1438 
1439 	trace_regmap_hw_write_done(map, reg, 1);
1440 
1441 	return ret;
1442 }
1443 
1444 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1445 				 unsigned int val)
1446 {
1447 	struct regmap *map = context;
1448 
1449 	return map->bus->reg_write(map->bus_context, reg, val);
1450 }
1451 
1452 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1453 				 unsigned int val)
1454 {
1455 	struct regmap *map = context;
1456 
1457 	WARN_ON(!map->bus || !map->format.format_val);
1458 
1459 	map->format.format_val(map->work_buf + map->format.reg_bytes
1460 			       + map->format.pad_bytes, val, 0);
1461 	return _regmap_raw_write(map, reg,
1462 				 map->work_buf +
1463 				 map->format.reg_bytes +
1464 				 map->format.pad_bytes,
1465 				 map->format.val_bytes);
1466 }
1467 
1468 static inline void *_regmap_map_get_context(struct regmap *map)
1469 {
1470 	return (map->bus) ? map : map->bus_context;
1471 }
1472 
1473 int _regmap_write(struct regmap *map, unsigned int reg,
1474 		  unsigned int val)
1475 {
1476 	int ret;
1477 	void *context = _regmap_map_get_context(map);
1478 
1479 	if (!regmap_writeable(map, reg))
1480 		return -EIO;
1481 
1482 	if (!map->cache_bypass && !map->defer_caching) {
1483 		ret = regcache_write(map, reg, val);
1484 		if (ret != 0)
1485 			return ret;
1486 		if (map->cache_only) {
1487 			map->cache_dirty = true;
1488 			return 0;
1489 		}
1490 	}
1491 
1492 #ifdef LOG_DEVICE
1493 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1494 		dev_info(map->dev, "%x <= %x\n", reg, val);
1495 #endif
1496 
1497 	trace_regmap_reg_write(map, reg, val);
1498 
1499 	return map->reg_write(context, reg, val);
1500 }
1501 
1502 /**
1503  * regmap_write(): Write a value to a single register
1504  *
1505  * @map: Register map to write to
1506  * @reg: Register to write to
1507  * @val: Value to be written
1508  *
1509  * A value of zero will be returned on success, a negative errno will
1510  * be returned in error cases.
1511  */
1512 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1513 {
1514 	int ret;
1515 
1516 	if (reg % map->reg_stride)
1517 		return -EINVAL;
1518 
1519 	map->lock(map->lock_arg);
1520 
1521 	ret = _regmap_write(map, reg, val);
1522 
1523 	map->unlock(map->lock_arg);
1524 
1525 	return ret;
1526 }
1527 EXPORT_SYMBOL_GPL(regmap_write);
1528 
1529 /**
1530  * regmap_write_async(): Write a value to a single register asynchronously
1531  *
1532  * @map: Register map to write to
1533  * @reg: Register to write to
1534  * @val: Value to be written
1535  *
1536  * A value of zero will be returned on success, a negative errno will
1537  * be returned in error cases.
1538  */
1539 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1540 {
1541 	int ret;
1542 
1543 	if (reg % map->reg_stride)
1544 		return -EINVAL;
1545 
1546 	map->lock(map->lock_arg);
1547 
1548 	map->async = true;
1549 
1550 	ret = _regmap_write(map, reg, val);
1551 
1552 	map->async = false;
1553 
1554 	map->unlock(map->lock_arg);
1555 
1556 	return ret;
1557 }
1558 EXPORT_SYMBOL_GPL(regmap_write_async);
1559 
1560 /**
1561  * regmap_raw_write(): Write raw values to one or more registers
1562  *
1563  * @map: Register map to write to
1564  * @reg: Initial register to write to
1565  * @val: Block of data to be written, laid out for direct transmission to the
1566  *       device
1567  * @val_len: Length of data pointed to by val.
1568  *
1569  * This function is intended to be used for things like firmware
1570  * download where a large block of data needs to be transferred to the
1571  * device.  No formatting will be done on the data provided.
1572  *
1573  * A value of zero will be returned on success, a negative errno will
1574  * be returned in error cases.
1575  */
1576 int regmap_raw_write(struct regmap *map, unsigned int reg,
1577 		     const void *val, size_t val_len)
1578 {
1579 	int ret;
1580 
1581 	if (!regmap_can_raw_write(map))
1582 		return -EINVAL;
1583 	if (val_len % map->format.val_bytes)
1584 		return -EINVAL;
1585 	if (map->max_raw_write && map->max_raw_write > val_len)
1586 		return -E2BIG;
1587 
1588 	map->lock(map->lock_arg);
1589 
1590 	ret = _regmap_raw_write(map, reg, val, val_len);
1591 
1592 	map->unlock(map->lock_arg);
1593 
1594 	return ret;
1595 }
1596 EXPORT_SYMBOL_GPL(regmap_raw_write);
1597 
1598 /**
1599  * regmap_field_write(): Write a value to a single register field
1600  *
1601  * @field: Register field to write to
1602  * @val: Value to be written
1603  *
1604  * A value of zero will be returned on success, a negative errno will
1605  * be returned in error cases.
1606  */
1607 int regmap_field_write(struct regmap_field *field, unsigned int val)
1608 {
1609 	return regmap_update_bits(field->regmap, field->reg,
1610 				field->mask, val << field->shift);
1611 }
1612 EXPORT_SYMBOL_GPL(regmap_field_write);
1613 
1614 /**
1615  * regmap_field_update_bits():	Perform a read/modify/write cycle
1616  *                              on the register field
1617  *
1618  * @field: Register field to write to
1619  * @mask: Bitmask to change
1620  * @val: Value to be written
1621  *
1622  * A value of zero will be returned on success, a negative errno will
1623  * be returned in error cases.
1624  */
1625 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1626 {
1627 	mask = (mask << field->shift) & field->mask;
1628 
1629 	return regmap_update_bits(field->regmap, field->reg,
1630 				  mask, val << field->shift);
1631 }
1632 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1633 
1634 /**
1635  * regmap_fields_write(): Write a value to a single register field with port ID
1636  *
1637  * @field: Register field to write to
1638  * @id: port ID
1639  * @val: Value to be written
1640  *
1641  * A value of zero will be returned on success, a negative errno will
1642  * be returned in error cases.
1643  */
1644 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1645 			unsigned int val)
1646 {
1647 	if (id >= field->id_size)
1648 		return -EINVAL;
1649 
1650 	return regmap_update_bits(field->regmap,
1651 				  field->reg + (field->id_offset * id),
1652 				  field->mask, val << field->shift);
1653 }
1654 EXPORT_SYMBOL_GPL(regmap_fields_write);
1655 
1656 int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
1657 			unsigned int val)
1658 {
1659 	if (id >= field->id_size)
1660 		return -EINVAL;
1661 
1662 	return regmap_write_bits(field->regmap,
1663 				  field->reg + (field->id_offset * id),
1664 				  field->mask, val << field->shift);
1665 }
1666 EXPORT_SYMBOL_GPL(regmap_fields_force_write);
1667 
1668 /**
1669  * regmap_fields_update_bits():	Perform a read/modify/write cycle
1670  *                              on the register field
1671  *
1672  * @field: Register field to write to
1673  * @id: port ID
1674  * @mask: Bitmask to change
1675  * @val: Value to be written
1676  *
1677  * A value of zero will be returned on success, a negative errno will
1678  * be returned in error cases.
1679  */
1680 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1681 			      unsigned int mask, unsigned int val)
1682 {
1683 	if (id >= field->id_size)
1684 		return -EINVAL;
1685 
1686 	mask = (mask << field->shift) & field->mask;
1687 
1688 	return regmap_update_bits(field->regmap,
1689 				  field->reg + (field->id_offset * id),
1690 				  mask, val << field->shift);
1691 }
1692 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1693 
1694 /*
1695  * regmap_bulk_write(): Write multiple registers to the device
1696  *
1697  * @map: Register map to write to
1698  * @reg: First register to be write from
1699  * @val: Block of data to be written, in native register size for device
1700  * @val_count: Number of registers to write
1701  *
1702  * This function is intended to be used for writing a large block of
1703  * data to the device either in single transfer or multiple transfer.
1704  *
1705  * A value of zero will be returned on success, a negative errno will
1706  * be returned in error cases.
1707  */
1708 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1709 		     size_t val_count)
1710 {
1711 	int ret = 0, i;
1712 	size_t val_bytes = map->format.val_bytes;
1713 	size_t total_size = val_bytes * val_count;
1714 
1715 	if (map->bus && !map->format.parse_inplace)
1716 		return -EINVAL;
1717 	if (reg % map->reg_stride)
1718 		return -EINVAL;
1719 
1720 	/*
1721 	 * Some devices don't support bulk write, for
1722 	 * them we have a series of single write operations in the first two if
1723 	 * blocks.
1724 	 *
1725 	 * The first if block is used for memory mapped io. It does not allow
1726 	 * val_bytes of 3 for example.
1727 	 * The second one is used for busses which do not have this limitation
1728 	 * and can write arbitrary value lengths.
1729 	 */
1730 	if (!map->bus) {
1731 		map->lock(map->lock_arg);
1732 		for (i = 0; i < val_count; i++) {
1733 			unsigned int ival;
1734 
1735 			switch (val_bytes) {
1736 			case 1:
1737 				ival = *(u8 *)(val + (i * val_bytes));
1738 				break;
1739 			case 2:
1740 				ival = *(u16 *)(val + (i * val_bytes));
1741 				break;
1742 			case 4:
1743 				ival = *(u32 *)(val + (i * val_bytes));
1744 				break;
1745 #ifdef CONFIG_64BIT
1746 			case 8:
1747 				ival = *(u64 *)(val + (i * val_bytes));
1748 				break;
1749 #endif
1750 			default:
1751 				ret = -EINVAL;
1752 				goto out;
1753 			}
1754 
1755 			ret = _regmap_write(map, reg + (i * map->reg_stride),
1756 					ival);
1757 			if (ret != 0)
1758 				goto out;
1759 		}
1760 out:
1761 		map->unlock(map->lock_arg);
1762 	} else if (map->use_single_write ||
1763 		   (map->max_raw_write && map->max_raw_write < total_size)) {
1764 		int chunk_stride = map->reg_stride;
1765 		size_t chunk_size = val_bytes;
1766 		size_t chunk_count = val_count;
1767 
1768 		if (!map->use_single_write) {
1769 			chunk_size = map->max_raw_write;
1770 			if (chunk_size % val_bytes)
1771 				chunk_size -= chunk_size % val_bytes;
1772 			chunk_count = total_size / chunk_size;
1773 			chunk_stride *= chunk_size / val_bytes;
1774 		}
1775 
1776 		map->lock(map->lock_arg);
1777 		/* Write as many bytes as possible with chunk_size */
1778 		for (i = 0; i < chunk_count; i++) {
1779 			ret = _regmap_raw_write(map,
1780 						reg + (i * chunk_stride),
1781 						val + (i * chunk_size),
1782 						chunk_size);
1783 			if (ret)
1784 				break;
1785 		}
1786 
1787 		/* Write remaining bytes */
1788 		if (!ret && chunk_size * i < total_size) {
1789 			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1790 						val + (i * chunk_size),
1791 						total_size - i * chunk_size);
1792 		}
1793 		map->unlock(map->lock_arg);
1794 	} else {
1795 		void *wval;
1796 
1797 		if (!val_count)
1798 			return -EINVAL;
1799 
1800 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1801 		if (!wval) {
1802 			dev_err(map->dev, "Error in memory allocation\n");
1803 			return -ENOMEM;
1804 		}
1805 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1806 			map->format.parse_inplace(wval + i);
1807 
1808 		map->lock(map->lock_arg);
1809 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1810 		map->unlock(map->lock_arg);
1811 
1812 		kfree(wval);
1813 	}
1814 	return ret;
1815 }
1816 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1817 
1818 /*
1819  * _regmap_raw_multi_reg_write()
1820  *
1821  * the (register,newvalue) pairs in regs have not been formatted, but
1822  * they are all in the same page and have been changed to being page
1823  * relative. The page register has been written if that was necessary.
1824  */
1825 static int _regmap_raw_multi_reg_write(struct regmap *map,
1826 				       const struct reg_sequence *regs,
1827 				       size_t num_regs)
1828 {
1829 	int ret;
1830 	void *buf;
1831 	int i;
1832 	u8 *u8;
1833 	size_t val_bytes = map->format.val_bytes;
1834 	size_t reg_bytes = map->format.reg_bytes;
1835 	size_t pad_bytes = map->format.pad_bytes;
1836 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1837 	size_t len = pair_size * num_regs;
1838 
1839 	if (!len)
1840 		return -EINVAL;
1841 
1842 	buf = kzalloc(len, GFP_KERNEL);
1843 	if (!buf)
1844 		return -ENOMEM;
1845 
1846 	/* We have to linearise by hand. */
1847 
1848 	u8 = buf;
1849 
1850 	for (i = 0; i < num_regs; i++) {
1851 		unsigned int reg = regs[i].reg;
1852 		unsigned int val = regs[i].def;
1853 		trace_regmap_hw_write_start(map, reg, 1);
1854 		map->format.format_reg(u8, reg, map->reg_shift);
1855 		u8 += reg_bytes + pad_bytes;
1856 		map->format.format_val(u8, val, 0);
1857 		u8 += val_bytes;
1858 	}
1859 	u8 = buf;
1860 	*u8 |= map->write_flag_mask;
1861 
1862 	ret = map->bus->write(map->bus_context, buf, len);
1863 
1864 	kfree(buf);
1865 
1866 	for (i = 0; i < num_regs; i++) {
1867 		int reg = regs[i].reg;
1868 		trace_regmap_hw_write_done(map, reg, 1);
1869 	}
1870 	return ret;
1871 }
1872 
1873 static unsigned int _regmap_register_page(struct regmap *map,
1874 					  unsigned int reg,
1875 					  struct regmap_range_node *range)
1876 {
1877 	unsigned int win_page = (reg - range->range_min) / range->window_len;
1878 
1879 	return win_page;
1880 }
1881 
1882 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1883 					       struct reg_sequence *regs,
1884 					       size_t num_regs)
1885 {
1886 	int ret;
1887 	int i, n;
1888 	struct reg_sequence *base;
1889 	unsigned int this_page = 0;
1890 	unsigned int page_change = 0;
1891 	/*
1892 	 * the set of registers are not neccessarily in order, but
1893 	 * since the order of write must be preserved this algorithm
1894 	 * chops the set each time the page changes. This also applies
1895 	 * if there is a delay required at any point in the sequence.
1896 	 */
1897 	base = regs;
1898 	for (i = 0, n = 0; i < num_regs; i++, n++) {
1899 		unsigned int reg = regs[i].reg;
1900 		struct regmap_range_node *range;
1901 
1902 		range = _regmap_range_lookup(map, reg);
1903 		if (range) {
1904 			unsigned int win_page = _regmap_register_page(map, reg,
1905 								      range);
1906 
1907 			if (i == 0)
1908 				this_page = win_page;
1909 			if (win_page != this_page) {
1910 				this_page = win_page;
1911 				page_change = 1;
1912 			}
1913 		}
1914 
1915 		/* If we have both a page change and a delay make sure to
1916 		 * write the regs and apply the delay before we change the
1917 		 * page.
1918 		 */
1919 
1920 		if (page_change || regs[i].delay_us) {
1921 
1922 				/* For situations where the first write requires
1923 				 * a delay we need to make sure we don't call
1924 				 * raw_multi_reg_write with n=0
1925 				 * This can't occur with page breaks as we
1926 				 * never write on the first iteration
1927 				 */
1928 				if (regs[i].delay_us && i == 0)
1929 					n = 1;
1930 
1931 				ret = _regmap_raw_multi_reg_write(map, base, n);
1932 				if (ret != 0)
1933 					return ret;
1934 
1935 				if (regs[i].delay_us)
1936 					udelay(regs[i].delay_us);
1937 
1938 				base += n;
1939 				n = 0;
1940 
1941 				if (page_change) {
1942 					ret = _regmap_select_page(map,
1943 								  &base[n].reg,
1944 								  range, 1);
1945 					if (ret != 0)
1946 						return ret;
1947 
1948 					page_change = 0;
1949 				}
1950 
1951 		}
1952 
1953 	}
1954 	if (n > 0)
1955 		return _regmap_raw_multi_reg_write(map, base, n);
1956 	return 0;
1957 }
1958 
1959 static int _regmap_multi_reg_write(struct regmap *map,
1960 				   const struct reg_sequence *regs,
1961 				   size_t num_regs)
1962 {
1963 	int i;
1964 	int ret;
1965 
1966 	if (!map->can_multi_write) {
1967 		for (i = 0; i < num_regs; i++) {
1968 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1969 			if (ret != 0)
1970 				return ret;
1971 
1972 			if (regs[i].delay_us)
1973 				udelay(regs[i].delay_us);
1974 		}
1975 		return 0;
1976 	}
1977 
1978 	if (!map->format.parse_inplace)
1979 		return -EINVAL;
1980 
1981 	if (map->writeable_reg)
1982 		for (i = 0; i < num_regs; i++) {
1983 			int reg = regs[i].reg;
1984 			if (!map->writeable_reg(map->dev, reg))
1985 				return -EINVAL;
1986 			if (reg % map->reg_stride)
1987 				return -EINVAL;
1988 		}
1989 
1990 	if (!map->cache_bypass) {
1991 		for (i = 0; i < num_regs; i++) {
1992 			unsigned int val = regs[i].def;
1993 			unsigned int reg = regs[i].reg;
1994 			ret = regcache_write(map, reg, val);
1995 			if (ret) {
1996 				dev_err(map->dev,
1997 				"Error in caching of register: %x ret: %d\n",
1998 								reg, ret);
1999 				return ret;
2000 			}
2001 		}
2002 		if (map->cache_only) {
2003 			map->cache_dirty = true;
2004 			return 0;
2005 		}
2006 	}
2007 
2008 	WARN_ON(!map->bus);
2009 
2010 	for (i = 0; i < num_regs; i++) {
2011 		unsigned int reg = regs[i].reg;
2012 		struct regmap_range_node *range;
2013 
2014 		/* Coalesce all the writes between a page break or a delay
2015 		 * in a sequence
2016 		 */
2017 		range = _regmap_range_lookup(map, reg);
2018 		if (range || regs[i].delay_us) {
2019 			size_t len = sizeof(struct reg_sequence)*num_regs;
2020 			struct reg_sequence *base = kmemdup(regs, len,
2021 							   GFP_KERNEL);
2022 			if (!base)
2023 				return -ENOMEM;
2024 			ret = _regmap_range_multi_paged_reg_write(map, base,
2025 								  num_regs);
2026 			kfree(base);
2027 
2028 			return ret;
2029 		}
2030 	}
2031 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2032 }
2033 
2034 /*
2035  * regmap_multi_reg_write(): Write multiple registers to the device
2036  *
2037  * where the set of register,value pairs are supplied in any order,
2038  * possibly not all in a single range.
2039  *
2040  * @map: Register map to write to
2041  * @regs: Array of structures containing register,value to be written
2042  * @num_regs: Number of registers to write
2043  *
2044  * The 'normal' block write mode will send ultimately send data on the
2045  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2046  * addressed. However, this alternative block multi write mode will send
2047  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2048  * must of course support the mode.
2049  *
2050  * A value of zero will be returned on success, a negative errno will be
2051  * returned in error cases.
2052  */
2053 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2054 			   int num_regs)
2055 {
2056 	int ret;
2057 
2058 	map->lock(map->lock_arg);
2059 
2060 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2061 
2062 	map->unlock(map->lock_arg);
2063 
2064 	return ret;
2065 }
2066 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2067 
2068 /*
2069  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2070  *                                    device but not the cache
2071  *
2072  * where the set of register are supplied in any order
2073  *
2074  * @map: Register map to write to
2075  * @regs: Array of structures containing register,value to be written
2076  * @num_regs: Number of registers to write
2077  *
2078  * This function is intended to be used for writing a large block of data
2079  * atomically to the device in single transfer for those I2C client devices
2080  * that implement this alternative block write mode.
2081  *
2082  * A value of zero will be returned on success, a negative errno will
2083  * be returned in error cases.
2084  */
2085 int regmap_multi_reg_write_bypassed(struct regmap *map,
2086 				    const struct reg_sequence *regs,
2087 				    int num_regs)
2088 {
2089 	int ret;
2090 	bool bypass;
2091 
2092 	map->lock(map->lock_arg);
2093 
2094 	bypass = map->cache_bypass;
2095 	map->cache_bypass = true;
2096 
2097 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2098 
2099 	map->cache_bypass = bypass;
2100 
2101 	map->unlock(map->lock_arg);
2102 
2103 	return ret;
2104 }
2105 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2106 
2107 /**
2108  * regmap_raw_write_async(): Write raw values to one or more registers
2109  *                           asynchronously
2110  *
2111  * @map: Register map to write to
2112  * @reg: Initial register to write to
2113  * @val: Block of data to be written, laid out for direct transmission to the
2114  *       device.  Must be valid until regmap_async_complete() is called.
2115  * @val_len: Length of data pointed to by val.
2116  *
2117  * This function is intended to be used for things like firmware
2118  * download where a large block of data needs to be transferred to the
2119  * device.  No formatting will be done on the data provided.
2120  *
2121  * If supported by the underlying bus the write will be scheduled
2122  * asynchronously, helping maximise I/O speed on higher speed buses
2123  * like SPI.  regmap_async_complete() can be called to ensure that all
2124  * asynchrnous writes have been completed.
2125  *
2126  * A value of zero will be returned on success, a negative errno will
2127  * be returned in error cases.
2128  */
2129 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2130 			   const void *val, size_t val_len)
2131 {
2132 	int ret;
2133 
2134 	if (val_len % map->format.val_bytes)
2135 		return -EINVAL;
2136 	if (reg % map->reg_stride)
2137 		return -EINVAL;
2138 
2139 	map->lock(map->lock_arg);
2140 
2141 	map->async = true;
2142 
2143 	ret = _regmap_raw_write(map, reg, val, val_len);
2144 
2145 	map->async = false;
2146 
2147 	map->unlock(map->lock_arg);
2148 
2149 	return ret;
2150 }
2151 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2152 
2153 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2154 			    unsigned int val_len)
2155 {
2156 	struct regmap_range_node *range;
2157 	u8 *u8 = map->work_buf;
2158 	int ret;
2159 
2160 	WARN_ON(!map->bus);
2161 
2162 	range = _regmap_range_lookup(map, reg);
2163 	if (range) {
2164 		ret = _regmap_select_page(map, &reg, range,
2165 					  val_len / map->format.val_bytes);
2166 		if (ret != 0)
2167 			return ret;
2168 	}
2169 
2170 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2171 
2172 	/*
2173 	 * Some buses or devices flag reads by setting the high bits in the
2174 	 * register address; since it's always the high bits for all
2175 	 * current formats we can do this here rather than in
2176 	 * formatting.  This may break if we get interesting formats.
2177 	 */
2178 	u8[0] |= map->read_flag_mask;
2179 
2180 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2181 
2182 	ret = map->bus->read(map->bus_context, map->work_buf,
2183 			     map->format.reg_bytes + map->format.pad_bytes,
2184 			     val, val_len);
2185 
2186 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2187 
2188 	return ret;
2189 }
2190 
2191 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2192 				unsigned int *val)
2193 {
2194 	struct regmap *map = context;
2195 
2196 	return map->bus->reg_read(map->bus_context, reg, val);
2197 }
2198 
2199 static int _regmap_bus_read(void *context, unsigned int reg,
2200 			    unsigned int *val)
2201 {
2202 	int ret;
2203 	struct regmap *map = context;
2204 
2205 	if (!map->format.parse_val)
2206 		return -EINVAL;
2207 
2208 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2209 	if (ret == 0)
2210 		*val = map->format.parse_val(map->work_buf);
2211 
2212 	return ret;
2213 }
2214 
2215 static int _regmap_read(struct regmap *map, unsigned int reg,
2216 			unsigned int *val)
2217 {
2218 	int ret;
2219 	void *context = _regmap_map_get_context(map);
2220 
2221 	if (!map->cache_bypass) {
2222 		ret = regcache_read(map, reg, val);
2223 		if (ret == 0)
2224 			return 0;
2225 	}
2226 
2227 	if (map->cache_only)
2228 		return -EBUSY;
2229 
2230 	if (!regmap_readable(map, reg))
2231 		return -EIO;
2232 
2233 	ret = map->reg_read(context, reg, val);
2234 	if (ret == 0) {
2235 #ifdef LOG_DEVICE
2236 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2237 			dev_info(map->dev, "%x => %x\n", reg, *val);
2238 #endif
2239 
2240 		trace_regmap_reg_read(map, reg, *val);
2241 
2242 		if (!map->cache_bypass)
2243 			regcache_write(map, reg, *val);
2244 	}
2245 
2246 	return ret;
2247 }
2248 
2249 /**
2250  * regmap_read(): Read a value from a single register
2251  *
2252  * @map: Register map to read from
2253  * @reg: Register to be read from
2254  * @val: Pointer to store read value
2255  *
2256  * A value of zero will be returned on success, a negative errno will
2257  * be returned in error cases.
2258  */
2259 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2260 {
2261 	int ret;
2262 
2263 	if (reg % map->reg_stride)
2264 		return -EINVAL;
2265 
2266 	map->lock(map->lock_arg);
2267 
2268 	ret = _regmap_read(map, reg, val);
2269 
2270 	map->unlock(map->lock_arg);
2271 
2272 	return ret;
2273 }
2274 EXPORT_SYMBOL_GPL(regmap_read);
2275 
2276 /**
2277  * regmap_raw_read(): Read raw data from the device
2278  *
2279  * @map: Register map to read from
2280  * @reg: First register to be read from
2281  * @val: Pointer to store read value
2282  * @val_len: Size of data to read
2283  *
2284  * A value of zero will be returned on success, a negative errno will
2285  * be returned in error cases.
2286  */
2287 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2288 		    size_t val_len)
2289 {
2290 	size_t val_bytes = map->format.val_bytes;
2291 	size_t val_count = val_len / val_bytes;
2292 	unsigned int v;
2293 	int ret, i;
2294 
2295 	if (!map->bus)
2296 		return -EINVAL;
2297 	if (val_len % map->format.val_bytes)
2298 		return -EINVAL;
2299 	if (reg % map->reg_stride)
2300 		return -EINVAL;
2301 	if (val_count == 0)
2302 		return -EINVAL;
2303 
2304 	map->lock(map->lock_arg);
2305 
2306 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2307 	    map->cache_type == REGCACHE_NONE) {
2308 		if (!map->bus->read) {
2309 			ret = -ENOTSUPP;
2310 			goto out;
2311 		}
2312 		if (map->max_raw_read && map->max_raw_read < val_len) {
2313 			ret = -E2BIG;
2314 			goto out;
2315 		}
2316 
2317 		/* Physical block read if there's no cache involved */
2318 		ret = _regmap_raw_read(map, reg, val, val_len);
2319 
2320 	} else {
2321 		/* Otherwise go word by word for the cache; should be low
2322 		 * cost as we expect to hit the cache.
2323 		 */
2324 		for (i = 0; i < val_count; i++) {
2325 			ret = _regmap_read(map, reg + (i * map->reg_stride),
2326 					   &v);
2327 			if (ret != 0)
2328 				goto out;
2329 
2330 			map->format.format_val(val + (i * val_bytes), v, 0);
2331 		}
2332 	}
2333 
2334  out:
2335 	map->unlock(map->lock_arg);
2336 
2337 	return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(regmap_raw_read);
2340 
2341 /**
2342  * regmap_field_read(): Read a value to a single register field
2343  *
2344  * @field: Register field to read from
2345  * @val: Pointer to store read value
2346  *
2347  * A value of zero will be returned on success, a negative errno will
2348  * be returned in error cases.
2349  */
2350 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2351 {
2352 	int ret;
2353 	unsigned int reg_val;
2354 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2355 	if (ret != 0)
2356 		return ret;
2357 
2358 	reg_val &= field->mask;
2359 	reg_val >>= field->shift;
2360 	*val = reg_val;
2361 
2362 	return ret;
2363 }
2364 EXPORT_SYMBOL_GPL(regmap_field_read);
2365 
2366 /**
2367  * regmap_fields_read(): Read a value to a single register field with port ID
2368  *
2369  * @field: Register field to read from
2370  * @id: port ID
2371  * @val: Pointer to store read value
2372  *
2373  * A value of zero will be returned on success, a negative errno will
2374  * be returned in error cases.
2375  */
2376 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2377 		       unsigned int *val)
2378 {
2379 	int ret;
2380 	unsigned int reg_val;
2381 
2382 	if (id >= field->id_size)
2383 		return -EINVAL;
2384 
2385 	ret = regmap_read(field->regmap,
2386 			  field->reg + (field->id_offset * id),
2387 			  &reg_val);
2388 	if (ret != 0)
2389 		return ret;
2390 
2391 	reg_val &= field->mask;
2392 	reg_val >>= field->shift;
2393 	*val = reg_val;
2394 
2395 	return ret;
2396 }
2397 EXPORT_SYMBOL_GPL(regmap_fields_read);
2398 
2399 /**
2400  * regmap_bulk_read(): Read multiple registers from the device
2401  *
2402  * @map: Register map to read from
2403  * @reg: First register to be read from
2404  * @val: Pointer to store read value, in native register size for device
2405  * @val_count: Number of registers to read
2406  *
2407  * A value of zero will be returned on success, a negative errno will
2408  * be returned in error cases.
2409  */
2410 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2411 		     size_t val_count)
2412 {
2413 	int ret, i;
2414 	size_t val_bytes = map->format.val_bytes;
2415 	bool vol = regmap_volatile_range(map, reg, val_count);
2416 
2417 	if (reg % map->reg_stride)
2418 		return -EINVAL;
2419 
2420 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2421 		/*
2422 		 * Some devices does not support bulk read, for
2423 		 * them we have a series of single read operations.
2424 		 */
2425 		size_t total_size = val_bytes * val_count;
2426 
2427 		if (!map->use_single_read &&
2428 		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2429 			ret = regmap_raw_read(map, reg, val,
2430 					      val_bytes * val_count);
2431 			if (ret != 0)
2432 				return ret;
2433 		} else {
2434 			/*
2435 			 * Some devices do not support bulk read or do not
2436 			 * support large bulk reads, for them we have a series
2437 			 * of read operations.
2438 			 */
2439 			int chunk_stride = map->reg_stride;
2440 			size_t chunk_size = val_bytes;
2441 			size_t chunk_count = val_count;
2442 
2443 			if (!map->use_single_read) {
2444 				chunk_size = map->max_raw_read;
2445 				if (chunk_size % val_bytes)
2446 					chunk_size -= chunk_size % val_bytes;
2447 				chunk_count = total_size / chunk_size;
2448 				chunk_stride *= chunk_size / val_bytes;
2449 			}
2450 
2451 			/* Read bytes that fit into a multiple of chunk_size */
2452 			for (i = 0; i < chunk_count; i++) {
2453 				ret = regmap_raw_read(map,
2454 						      reg + (i * chunk_stride),
2455 						      val + (i * chunk_size),
2456 						      chunk_size);
2457 				if (ret != 0)
2458 					return ret;
2459 			}
2460 
2461 			/* Read remaining bytes */
2462 			if (chunk_size * i < total_size) {
2463 				ret = regmap_raw_read(map,
2464 						      reg + (i * chunk_stride),
2465 						      val + (i * chunk_size),
2466 						      total_size - i * chunk_size);
2467 				if (ret != 0)
2468 					return ret;
2469 			}
2470 		}
2471 
2472 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2473 			map->format.parse_inplace(val + i);
2474 	} else {
2475 		for (i = 0; i < val_count; i++) {
2476 			unsigned int ival;
2477 			ret = regmap_read(map, reg + (i * map->reg_stride),
2478 					  &ival);
2479 			if (ret != 0)
2480 				return ret;
2481 
2482 			if (map->format.format_val) {
2483 				map->format.format_val(val + (i * val_bytes), ival, 0);
2484 			} else {
2485 				/* Devices providing read and write
2486 				 * operations can use the bulk I/O
2487 				 * functions if they define a val_bytes,
2488 				 * we assume that the values are native
2489 				 * endian.
2490 				 */
2491 				u32 *u32 = val;
2492 				u16 *u16 = val;
2493 				u8 *u8 = val;
2494 
2495 				switch (map->format.val_bytes) {
2496 				case 4:
2497 					u32[i] = ival;
2498 					break;
2499 				case 2:
2500 					u16[i] = ival;
2501 					break;
2502 				case 1:
2503 					u8[i] = ival;
2504 					break;
2505 				default:
2506 					return -EINVAL;
2507 				}
2508 			}
2509 		}
2510 	}
2511 
2512 	return 0;
2513 }
2514 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2515 
2516 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2517 			       unsigned int mask, unsigned int val,
2518 			       bool *change, bool force_write)
2519 {
2520 	int ret;
2521 	unsigned int tmp, orig;
2522 
2523 	if (change)
2524 		*change = false;
2525 
2526 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2527 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2528 		if (ret == 0 && change)
2529 			*change = true;
2530 	} else {
2531 		ret = _regmap_read(map, reg, &orig);
2532 		if (ret != 0)
2533 			return ret;
2534 
2535 		tmp = orig & ~mask;
2536 		tmp |= val & mask;
2537 
2538 		if (force_write || (tmp != orig)) {
2539 			ret = _regmap_write(map, reg, tmp);
2540 			if (ret == 0 && change)
2541 				*change = true;
2542 		}
2543 	}
2544 
2545 	return ret;
2546 }
2547 
2548 /**
2549  * regmap_update_bits: Perform a read/modify/write cycle on the register map
2550  *
2551  * @map: Register map to update
2552  * @reg: Register to update
2553  * @mask: Bitmask to change
2554  * @val: New value for bitmask
2555  *
2556  * Returns zero for success, a negative number on error.
2557  */
2558 int regmap_update_bits(struct regmap *map, unsigned int reg,
2559 		       unsigned int mask, unsigned int val)
2560 {
2561 	int ret;
2562 
2563 	map->lock(map->lock_arg);
2564 	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2565 	map->unlock(map->lock_arg);
2566 
2567 	return ret;
2568 }
2569 EXPORT_SYMBOL_GPL(regmap_update_bits);
2570 
2571 /**
2572  * regmap_write_bits: Perform a read/modify/write cycle on the register map
2573  *
2574  * @map: Register map to update
2575  * @reg: Register to update
2576  * @mask: Bitmask to change
2577  * @val: New value for bitmask
2578  *
2579  * Returns zero for success, a negative number on error.
2580  */
2581 int regmap_write_bits(struct regmap *map, unsigned int reg,
2582 		      unsigned int mask, unsigned int val)
2583 {
2584 	int ret;
2585 
2586 	map->lock(map->lock_arg);
2587 	ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
2588 	map->unlock(map->lock_arg);
2589 
2590 	return ret;
2591 }
2592 EXPORT_SYMBOL_GPL(regmap_write_bits);
2593 
2594 /**
2595  * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2596  *                           map asynchronously
2597  *
2598  * @map: Register map to update
2599  * @reg: Register to update
2600  * @mask: Bitmask to change
2601  * @val: New value for bitmask
2602  *
2603  * With most buses the read must be done synchronously so this is most
2604  * useful for devices with a cache which do not need to interact with
2605  * the hardware to determine the current register value.
2606  *
2607  * Returns zero for success, a negative number on error.
2608  */
2609 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2610 			     unsigned int mask, unsigned int val)
2611 {
2612 	int ret;
2613 
2614 	map->lock(map->lock_arg);
2615 
2616 	map->async = true;
2617 
2618 	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2619 
2620 	map->async = false;
2621 
2622 	map->unlock(map->lock_arg);
2623 
2624 	return ret;
2625 }
2626 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2627 
2628 /**
2629  * regmap_update_bits_check: Perform a read/modify/write cycle on the
2630  *                           register map and report if updated
2631  *
2632  * @map: Register map to update
2633  * @reg: Register to update
2634  * @mask: Bitmask to change
2635  * @val: New value for bitmask
2636  * @change: Boolean indicating if a write was done
2637  *
2638  * Returns zero for success, a negative number on error.
2639  */
2640 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2641 			     unsigned int mask, unsigned int val,
2642 			     bool *change)
2643 {
2644 	int ret;
2645 
2646 	map->lock(map->lock_arg);
2647 	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2648 	map->unlock(map->lock_arg);
2649 	return ret;
2650 }
2651 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2652 
2653 /**
2654  * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2655  *                                 register map asynchronously and report if
2656  *                                 updated
2657  *
2658  * @map: Register map to update
2659  * @reg: Register to update
2660  * @mask: Bitmask to change
2661  * @val: New value for bitmask
2662  * @change: Boolean indicating if a write was done
2663  *
2664  * With most buses the read must be done synchronously so this is most
2665  * useful for devices with a cache which do not need to interact with
2666  * the hardware to determine the current register value.
2667  *
2668  * Returns zero for success, a negative number on error.
2669  */
2670 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2671 				   unsigned int mask, unsigned int val,
2672 				   bool *change)
2673 {
2674 	int ret;
2675 
2676 	map->lock(map->lock_arg);
2677 
2678 	map->async = true;
2679 
2680 	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2681 
2682 	map->async = false;
2683 
2684 	map->unlock(map->lock_arg);
2685 
2686 	return ret;
2687 }
2688 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2689 
2690 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2691 {
2692 	struct regmap *map = async->map;
2693 	bool wake;
2694 
2695 	trace_regmap_async_io_complete(map);
2696 
2697 	spin_lock(&map->async_lock);
2698 	list_move(&async->list, &map->async_free);
2699 	wake = list_empty(&map->async_list);
2700 
2701 	if (ret != 0)
2702 		map->async_ret = ret;
2703 
2704 	spin_unlock(&map->async_lock);
2705 
2706 	if (wake)
2707 		wake_up(&map->async_waitq);
2708 }
2709 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2710 
2711 static int regmap_async_is_done(struct regmap *map)
2712 {
2713 	unsigned long flags;
2714 	int ret;
2715 
2716 	spin_lock_irqsave(&map->async_lock, flags);
2717 	ret = list_empty(&map->async_list);
2718 	spin_unlock_irqrestore(&map->async_lock, flags);
2719 
2720 	return ret;
2721 }
2722 
2723 /**
2724  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2725  *
2726  * @map: Map to operate on.
2727  *
2728  * Blocks until any pending asynchronous I/O has completed.  Returns
2729  * an error code for any failed I/O operations.
2730  */
2731 int regmap_async_complete(struct regmap *map)
2732 {
2733 	unsigned long flags;
2734 	int ret;
2735 
2736 	/* Nothing to do with no async support */
2737 	if (!map->bus || !map->bus->async_write)
2738 		return 0;
2739 
2740 	trace_regmap_async_complete_start(map);
2741 
2742 	wait_event(map->async_waitq, regmap_async_is_done(map));
2743 
2744 	spin_lock_irqsave(&map->async_lock, flags);
2745 	ret = map->async_ret;
2746 	map->async_ret = 0;
2747 	spin_unlock_irqrestore(&map->async_lock, flags);
2748 
2749 	trace_regmap_async_complete_done(map);
2750 
2751 	return ret;
2752 }
2753 EXPORT_SYMBOL_GPL(regmap_async_complete);
2754 
2755 /**
2756  * regmap_register_patch: Register and apply register updates to be applied
2757  *                        on device initialistion
2758  *
2759  * @map: Register map to apply updates to.
2760  * @regs: Values to update.
2761  * @num_regs: Number of entries in regs.
2762  *
2763  * Register a set of register updates to be applied to the device
2764  * whenever the device registers are synchronised with the cache and
2765  * apply them immediately.  Typically this is used to apply
2766  * corrections to be applied to the device defaults on startup, such
2767  * as the updates some vendors provide to undocumented registers.
2768  *
2769  * The caller must ensure that this function cannot be called
2770  * concurrently with either itself or regcache_sync().
2771  */
2772 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2773 			  int num_regs)
2774 {
2775 	struct reg_sequence *p;
2776 	int ret;
2777 	bool bypass;
2778 
2779 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2780 	    num_regs))
2781 		return 0;
2782 
2783 	p = krealloc(map->patch,
2784 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2785 		     GFP_KERNEL);
2786 	if (p) {
2787 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2788 		map->patch = p;
2789 		map->patch_regs += num_regs;
2790 	} else {
2791 		return -ENOMEM;
2792 	}
2793 
2794 	map->lock(map->lock_arg);
2795 
2796 	bypass = map->cache_bypass;
2797 
2798 	map->cache_bypass = true;
2799 	map->async = true;
2800 
2801 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2802 
2803 	map->async = false;
2804 	map->cache_bypass = bypass;
2805 
2806 	map->unlock(map->lock_arg);
2807 
2808 	regmap_async_complete(map);
2809 
2810 	return ret;
2811 }
2812 EXPORT_SYMBOL_GPL(regmap_register_patch);
2813 
2814 /*
2815  * regmap_get_val_bytes(): Report the size of a register value
2816  *
2817  * Report the size of a register value, mainly intended to for use by
2818  * generic infrastructure built on top of regmap.
2819  */
2820 int regmap_get_val_bytes(struct regmap *map)
2821 {
2822 	if (map->format.format_write)
2823 		return -EINVAL;
2824 
2825 	return map->format.val_bytes;
2826 }
2827 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2828 
2829 /**
2830  * regmap_get_max_register(): Report the max register value
2831  *
2832  * Report the max register value, mainly intended to for use by
2833  * generic infrastructure built on top of regmap.
2834  */
2835 int regmap_get_max_register(struct regmap *map)
2836 {
2837 	return map->max_register ? map->max_register : -EINVAL;
2838 }
2839 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2840 
2841 /**
2842  * regmap_get_reg_stride(): Report the register address stride
2843  *
2844  * Report the register address stride, mainly intended to for use by
2845  * generic infrastructure built on top of regmap.
2846  */
2847 int regmap_get_reg_stride(struct regmap *map)
2848 {
2849 	return map->reg_stride;
2850 }
2851 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2852 
2853 int regmap_parse_val(struct regmap *map, const void *buf,
2854 			unsigned int *val)
2855 {
2856 	if (!map->format.parse_val)
2857 		return -EINVAL;
2858 
2859 	*val = map->format.parse_val(buf);
2860 
2861 	return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(regmap_parse_val);
2864 
2865 static int __init regmap_initcall(void)
2866 {
2867 	regmap_debugfs_initcall();
2868 
2869 	return 0;
2870 }
2871 postcore_initcall(regmap_initcall);
2872