1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Register map access API 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/export.h> 12 #include <linux/mutex.h> 13 #include <linux/err.h> 14 #include <linux/property.h> 15 #include <linux/rbtree.h> 16 #include <linux/sched.h> 17 #include <linux/delay.h> 18 #include <linux/log2.h> 19 #include <linux/hwspinlock.h> 20 #include <asm/unaligned.h> 21 22 #define CREATE_TRACE_POINTS 23 #include "trace.h" 24 25 #include "internal.h" 26 27 /* 28 * Sometimes for failures during very early init the trace 29 * infrastructure isn't available early enough to be used. For this 30 * sort of problem defining LOG_DEVICE will add printks for basic 31 * register I/O on a specific device. 32 */ 33 #undef LOG_DEVICE 34 35 #ifdef LOG_DEVICE 36 static inline bool regmap_should_log(struct regmap *map) 37 { 38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0); 39 } 40 #else 41 static inline bool regmap_should_log(struct regmap *map) { return false; } 42 #endif 43 44 45 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 46 unsigned int mask, unsigned int val, 47 bool *change, bool force_write); 48 49 static int _regmap_bus_reg_read(void *context, unsigned int reg, 50 unsigned int *val); 51 static int _regmap_bus_read(void *context, unsigned int reg, 52 unsigned int *val); 53 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 54 unsigned int val); 55 static int _regmap_bus_reg_write(void *context, unsigned int reg, 56 unsigned int val); 57 static int _regmap_bus_raw_write(void *context, unsigned int reg, 58 unsigned int val); 59 60 bool regmap_reg_in_ranges(unsigned int reg, 61 const struct regmap_range *ranges, 62 unsigned int nranges) 63 { 64 const struct regmap_range *r; 65 int i; 66 67 for (i = 0, r = ranges; i < nranges; i++, r++) 68 if (regmap_reg_in_range(reg, r)) 69 return true; 70 return false; 71 } 72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 73 74 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 75 const struct regmap_access_table *table) 76 { 77 /* Check "no ranges" first */ 78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 79 return false; 80 81 /* In case zero "yes ranges" are supplied, any reg is OK */ 82 if (!table->n_yes_ranges) 83 return true; 84 85 return regmap_reg_in_ranges(reg, table->yes_ranges, 86 table->n_yes_ranges); 87 } 88 EXPORT_SYMBOL_GPL(regmap_check_range_table); 89 90 bool regmap_writeable(struct regmap *map, unsigned int reg) 91 { 92 if (map->max_register && reg > map->max_register) 93 return false; 94 95 if (map->writeable_reg) 96 return map->writeable_reg(map->dev, reg); 97 98 if (map->wr_table) 99 return regmap_check_range_table(map, reg, map->wr_table); 100 101 return true; 102 } 103 104 bool regmap_cached(struct regmap *map, unsigned int reg) 105 { 106 int ret; 107 unsigned int val; 108 109 if (map->cache_type == REGCACHE_NONE) 110 return false; 111 112 if (!map->cache_ops) 113 return false; 114 115 if (map->max_register && reg > map->max_register) 116 return false; 117 118 map->lock(map->lock_arg); 119 ret = regcache_read(map, reg, &val); 120 map->unlock(map->lock_arg); 121 if (ret) 122 return false; 123 124 return true; 125 } 126 127 bool regmap_readable(struct regmap *map, unsigned int reg) 128 { 129 if (!map->reg_read) 130 return false; 131 132 if (map->max_register && reg > map->max_register) 133 return false; 134 135 if (map->format.format_write) 136 return false; 137 138 if (map->readable_reg) 139 return map->readable_reg(map->dev, reg); 140 141 if (map->rd_table) 142 return regmap_check_range_table(map, reg, map->rd_table); 143 144 return true; 145 } 146 147 bool regmap_volatile(struct regmap *map, unsigned int reg) 148 { 149 if (!map->format.format_write && !regmap_readable(map, reg)) 150 return false; 151 152 if (map->volatile_reg) 153 return map->volatile_reg(map->dev, reg); 154 155 if (map->volatile_table) 156 return regmap_check_range_table(map, reg, map->volatile_table); 157 158 if (map->cache_ops) 159 return false; 160 else 161 return true; 162 } 163 164 bool regmap_precious(struct regmap *map, unsigned int reg) 165 { 166 if (!regmap_readable(map, reg)) 167 return false; 168 169 if (map->precious_reg) 170 return map->precious_reg(map->dev, reg); 171 172 if (map->precious_table) 173 return regmap_check_range_table(map, reg, map->precious_table); 174 175 return false; 176 } 177 178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg) 179 { 180 if (map->writeable_noinc_reg) 181 return map->writeable_noinc_reg(map->dev, reg); 182 183 if (map->wr_noinc_table) 184 return regmap_check_range_table(map, reg, map->wr_noinc_table); 185 186 return true; 187 } 188 189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg) 190 { 191 if (map->readable_noinc_reg) 192 return map->readable_noinc_reg(map->dev, reg); 193 194 if (map->rd_noinc_table) 195 return regmap_check_range_table(map, reg, map->rd_noinc_table); 196 197 return true; 198 } 199 200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 201 size_t num) 202 { 203 unsigned int i; 204 205 for (i = 0; i < num; i++) 206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i))) 207 return false; 208 209 return true; 210 } 211 212 static void regmap_format_12_20_write(struct regmap *map, 213 unsigned int reg, unsigned int val) 214 { 215 u8 *out = map->work_buf; 216 217 out[0] = reg >> 4; 218 out[1] = (reg << 4) | (val >> 16); 219 out[2] = val >> 8; 220 out[3] = val; 221 } 222 223 224 static void regmap_format_2_6_write(struct regmap *map, 225 unsigned int reg, unsigned int val) 226 { 227 u8 *out = map->work_buf; 228 229 *out = (reg << 6) | val; 230 } 231 232 static void regmap_format_4_12_write(struct regmap *map, 233 unsigned int reg, unsigned int val) 234 { 235 __be16 *out = map->work_buf; 236 *out = cpu_to_be16((reg << 12) | val); 237 } 238 239 static void regmap_format_7_9_write(struct regmap *map, 240 unsigned int reg, unsigned int val) 241 { 242 __be16 *out = map->work_buf; 243 *out = cpu_to_be16((reg << 9) | val); 244 } 245 246 static void regmap_format_7_17_write(struct regmap *map, 247 unsigned int reg, unsigned int val) 248 { 249 u8 *out = map->work_buf; 250 251 out[2] = val; 252 out[1] = val >> 8; 253 out[0] = (val >> 16) | (reg << 1); 254 } 255 256 static void regmap_format_10_14_write(struct regmap *map, 257 unsigned int reg, unsigned int val) 258 { 259 u8 *out = map->work_buf; 260 261 out[2] = val; 262 out[1] = (val >> 8) | (reg << 6); 263 out[0] = reg >> 2; 264 } 265 266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 267 { 268 u8 *b = buf; 269 270 b[0] = val << shift; 271 } 272 273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 274 { 275 put_unaligned_be16(val << shift, buf); 276 } 277 278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) 279 { 280 put_unaligned_le16(val << shift, buf); 281 } 282 283 static void regmap_format_16_native(void *buf, unsigned int val, 284 unsigned int shift) 285 { 286 u16 v = val << shift; 287 288 memcpy(buf, &v, sizeof(v)); 289 } 290 291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift) 292 { 293 put_unaligned_be24(val << shift, buf); 294 } 295 296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 297 { 298 put_unaligned_be32(val << shift, buf); 299 } 300 301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) 302 { 303 put_unaligned_le32(val << shift, buf); 304 } 305 306 static void regmap_format_32_native(void *buf, unsigned int val, 307 unsigned int shift) 308 { 309 u32 v = val << shift; 310 311 memcpy(buf, &v, sizeof(v)); 312 } 313 314 static void regmap_parse_inplace_noop(void *buf) 315 { 316 } 317 318 static unsigned int regmap_parse_8(const void *buf) 319 { 320 const u8 *b = buf; 321 322 return b[0]; 323 } 324 325 static unsigned int regmap_parse_16_be(const void *buf) 326 { 327 return get_unaligned_be16(buf); 328 } 329 330 static unsigned int regmap_parse_16_le(const void *buf) 331 { 332 return get_unaligned_le16(buf); 333 } 334 335 static void regmap_parse_16_be_inplace(void *buf) 336 { 337 u16 v = get_unaligned_be16(buf); 338 339 memcpy(buf, &v, sizeof(v)); 340 } 341 342 static void regmap_parse_16_le_inplace(void *buf) 343 { 344 u16 v = get_unaligned_le16(buf); 345 346 memcpy(buf, &v, sizeof(v)); 347 } 348 349 static unsigned int regmap_parse_16_native(const void *buf) 350 { 351 u16 v; 352 353 memcpy(&v, buf, sizeof(v)); 354 return v; 355 } 356 357 static unsigned int regmap_parse_24_be(const void *buf) 358 { 359 return get_unaligned_be24(buf); 360 } 361 362 static unsigned int regmap_parse_32_be(const void *buf) 363 { 364 return get_unaligned_be32(buf); 365 } 366 367 static unsigned int regmap_parse_32_le(const void *buf) 368 { 369 return get_unaligned_le32(buf); 370 } 371 372 static void regmap_parse_32_be_inplace(void *buf) 373 { 374 u32 v = get_unaligned_be32(buf); 375 376 memcpy(buf, &v, sizeof(v)); 377 } 378 379 static void regmap_parse_32_le_inplace(void *buf) 380 { 381 u32 v = get_unaligned_le32(buf); 382 383 memcpy(buf, &v, sizeof(v)); 384 } 385 386 static unsigned int regmap_parse_32_native(const void *buf) 387 { 388 u32 v; 389 390 memcpy(&v, buf, sizeof(v)); 391 return v; 392 } 393 394 static void regmap_lock_hwlock(void *__map) 395 { 396 struct regmap *map = __map; 397 398 hwspin_lock_timeout(map->hwlock, UINT_MAX); 399 } 400 401 static void regmap_lock_hwlock_irq(void *__map) 402 { 403 struct regmap *map = __map; 404 405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX); 406 } 407 408 static void regmap_lock_hwlock_irqsave(void *__map) 409 { 410 struct regmap *map = __map; 411 412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX, 413 &map->spinlock_flags); 414 } 415 416 static void regmap_unlock_hwlock(void *__map) 417 { 418 struct regmap *map = __map; 419 420 hwspin_unlock(map->hwlock); 421 } 422 423 static void regmap_unlock_hwlock_irq(void *__map) 424 { 425 struct regmap *map = __map; 426 427 hwspin_unlock_irq(map->hwlock); 428 } 429 430 static void regmap_unlock_hwlock_irqrestore(void *__map) 431 { 432 struct regmap *map = __map; 433 434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags); 435 } 436 437 static void regmap_lock_unlock_none(void *__map) 438 { 439 440 } 441 442 static void regmap_lock_mutex(void *__map) 443 { 444 struct regmap *map = __map; 445 mutex_lock(&map->mutex); 446 } 447 448 static void regmap_unlock_mutex(void *__map) 449 { 450 struct regmap *map = __map; 451 mutex_unlock(&map->mutex); 452 } 453 454 static void regmap_lock_spinlock(void *__map) 455 __acquires(&map->spinlock) 456 { 457 struct regmap *map = __map; 458 unsigned long flags; 459 460 spin_lock_irqsave(&map->spinlock, flags); 461 map->spinlock_flags = flags; 462 } 463 464 static void regmap_unlock_spinlock(void *__map) 465 __releases(&map->spinlock) 466 { 467 struct regmap *map = __map; 468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 469 } 470 471 static void regmap_lock_raw_spinlock(void *__map) 472 __acquires(&map->raw_spinlock) 473 { 474 struct regmap *map = __map; 475 unsigned long flags; 476 477 raw_spin_lock_irqsave(&map->raw_spinlock, flags); 478 map->raw_spinlock_flags = flags; 479 } 480 481 static void regmap_unlock_raw_spinlock(void *__map) 482 __releases(&map->raw_spinlock) 483 { 484 struct regmap *map = __map; 485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags); 486 } 487 488 static void dev_get_regmap_release(struct device *dev, void *res) 489 { 490 /* 491 * We don't actually have anything to do here; the goal here 492 * is not to manage the regmap but to provide a simple way to 493 * get the regmap back given a struct device. 494 */ 495 } 496 497 static bool _regmap_range_add(struct regmap *map, 498 struct regmap_range_node *data) 499 { 500 struct rb_root *root = &map->range_tree; 501 struct rb_node **new = &(root->rb_node), *parent = NULL; 502 503 while (*new) { 504 struct regmap_range_node *this = 505 rb_entry(*new, struct regmap_range_node, node); 506 507 parent = *new; 508 if (data->range_max < this->range_min) 509 new = &((*new)->rb_left); 510 else if (data->range_min > this->range_max) 511 new = &((*new)->rb_right); 512 else 513 return false; 514 } 515 516 rb_link_node(&data->node, parent, new); 517 rb_insert_color(&data->node, root); 518 519 return true; 520 } 521 522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 523 unsigned int reg) 524 { 525 struct rb_node *node = map->range_tree.rb_node; 526 527 while (node) { 528 struct regmap_range_node *this = 529 rb_entry(node, struct regmap_range_node, node); 530 531 if (reg < this->range_min) 532 node = node->rb_left; 533 else if (reg > this->range_max) 534 node = node->rb_right; 535 else 536 return this; 537 } 538 539 return NULL; 540 } 541 542 static void regmap_range_exit(struct regmap *map) 543 { 544 struct rb_node *next; 545 struct regmap_range_node *range_node; 546 547 next = rb_first(&map->range_tree); 548 while (next) { 549 range_node = rb_entry(next, struct regmap_range_node, node); 550 next = rb_next(&range_node->node); 551 rb_erase(&range_node->node, &map->range_tree); 552 kfree(range_node); 553 } 554 555 kfree(map->selector_work_buf); 556 } 557 558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config) 559 { 560 if (config->name) { 561 const char *name = kstrdup_const(config->name, GFP_KERNEL); 562 563 if (!name) 564 return -ENOMEM; 565 566 kfree_const(map->name); 567 map->name = name; 568 } 569 570 return 0; 571 } 572 573 int regmap_attach_dev(struct device *dev, struct regmap *map, 574 const struct regmap_config *config) 575 { 576 struct regmap **m; 577 int ret; 578 579 map->dev = dev; 580 581 ret = regmap_set_name(map, config); 582 if (ret) 583 return ret; 584 585 regmap_debugfs_exit(map); 586 regmap_debugfs_init(map); 587 588 /* Add a devres resource for dev_get_regmap() */ 589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 590 if (!m) { 591 regmap_debugfs_exit(map); 592 return -ENOMEM; 593 } 594 *m = map; 595 devres_add(dev, m); 596 597 return 0; 598 } 599 EXPORT_SYMBOL_GPL(regmap_attach_dev); 600 601 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, 602 const struct regmap_config *config) 603 { 604 enum regmap_endian endian; 605 606 /* Retrieve the endianness specification from the regmap config */ 607 endian = config->reg_format_endian; 608 609 /* If the regmap config specified a non-default value, use that */ 610 if (endian != REGMAP_ENDIAN_DEFAULT) 611 return endian; 612 613 /* Retrieve the endianness specification from the bus config */ 614 if (bus && bus->reg_format_endian_default) 615 endian = bus->reg_format_endian_default; 616 617 /* If the bus specified a non-default value, use that */ 618 if (endian != REGMAP_ENDIAN_DEFAULT) 619 return endian; 620 621 /* Use this if no other value was found */ 622 return REGMAP_ENDIAN_BIG; 623 } 624 625 enum regmap_endian regmap_get_val_endian(struct device *dev, 626 const struct regmap_bus *bus, 627 const struct regmap_config *config) 628 { 629 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 630 enum regmap_endian endian; 631 632 /* Retrieve the endianness specification from the regmap config */ 633 endian = config->val_format_endian; 634 635 /* If the regmap config specified a non-default value, use that */ 636 if (endian != REGMAP_ENDIAN_DEFAULT) 637 return endian; 638 639 /* If the firmware node exist try to get endianness from it */ 640 if (fwnode_property_read_bool(fwnode, "big-endian")) 641 endian = REGMAP_ENDIAN_BIG; 642 else if (fwnode_property_read_bool(fwnode, "little-endian")) 643 endian = REGMAP_ENDIAN_LITTLE; 644 else if (fwnode_property_read_bool(fwnode, "native-endian")) 645 endian = REGMAP_ENDIAN_NATIVE; 646 647 /* If the endianness was specified in fwnode, use that */ 648 if (endian != REGMAP_ENDIAN_DEFAULT) 649 return endian; 650 651 /* Retrieve the endianness specification from the bus config */ 652 if (bus && bus->val_format_endian_default) 653 endian = bus->val_format_endian_default; 654 655 /* If the bus specified a non-default value, use that */ 656 if (endian != REGMAP_ENDIAN_DEFAULT) 657 return endian; 658 659 /* Use this if no other value was found */ 660 return REGMAP_ENDIAN_BIG; 661 } 662 EXPORT_SYMBOL_GPL(regmap_get_val_endian); 663 664 struct regmap *__regmap_init(struct device *dev, 665 const struct regmap_bus *bus, 666 void *bus_context, 667 const struct regmap_config *config, 668 struct lock_class_key *lock_key, 669 const char *lock_name) 670 { 671 struct regmap *map; 672 int ret = -EINVAL; 673 enum regmap_endian reg_endian, val_endian; 674 int i, j; 675 676 if (!config) 677 goto err; 678 679 map = kzalloc(sizeof(*map), GFP_KERNEL); 680 if (map == NULL) { 681 ret = -ENOMEM; 682 goto err; 683 } 684 685 ret = regmap_set_name(map, config); 686 if (ret) 687 goto err_map; 688 689 ret = -EINVAL; /* Later error paths rely on this */ 690 691 if (config->disable_locking) { 692 map->lock = map->unlock = regmap_lock_unlock_none; 693 map->can_sleep = config->can_sleep; 694 regmap_debugfs_disable(map); 695 } else if (config->lock && config->unlock) { 696 map->lock = config->lock; 697 map->unlock = config->unlock; 698 map->lock_arg = config->lock_arg; 699 map->can_sleep = config->can_sleep; 700 } else if (config->use_hwlock) { 701 map->hwlock = hwspin_lock_request_specific(config->hwlock_id); 702 if (!map->hwlock) { 703 ret = -ENXIO; 704 goto err_name; 705 } 706 707 switch (config->hwlock_mode) { 708 case HWLOCK_IRQSTATE: 709 map->lock = regmap_lock_hwlock_irqsave; 710 map->unlock = regmap_unlock_hwlock_irqrestore; 711 break; 712 case HWLOCK_IRQ: 713 map->lock = regmap_lock_hwlock_irq; 714 map->unlock = regmap_unlock_hwlock_irq; 715 break; 716 default: 717 map->lock = regmap_lock_hwlock; 718 map->unlock = regmap_unlock_hwlock; 719 break; 720 } 721 722 map->lock_arg = map; 723 } else { 724 if ((bus && bus->fast_io) || 725 config->fast_io) { 726 if (config->use_raw_spinlock) { 727 raw_spin_lock_init(&map->raw_spinlock); 728 map->lock = regmap_lock_raw_spinlock; 729 map->unlock = regmap_unlock_raw_spinlock; 730 lockdep_set_class_and_name(&map->raw_spinlock, 731 lock_key, lock_name); 732 } else { 733 spin_lock_init(&map->spinlock); 734 map->lock = regmap_lock_spinlock; 735 map->unlock = regmap_unlock_spinlock; 736 lockdep_set_class_and_name(&map->spinlock, 737 lock_key, lock_name); 738 } 739 } else { 740 mutex_init(&map->mutex); 741 map->lock = regmap_lock_mutex; 742 map->unlock = regmap_unlock_mutex; 743 map->can_sleep = true; 744 lockdep_set_class_and_name(&map->mutex, 745 lock_key, lock_name); 746 } 747 map->lock_arg = map; 748 } 749 750 /* 751 * When we write in fast-paths with regmap_bulk_write() don't allocate 752 * scratch buffers with sleeping allocations. 753 */ 754 if ((bus && bus->fast_io) || config->fast_io) 755 map->alloc_flags = GFP_ATOMIC; 756 else 757 map->alloc_flags = GFP_KERNEL; 758 759 map->reg_base = config->reg_base; 760 761 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); 762 map->format.pad_bytes = config->pad_bits / 8; 763 map->format.reg_shift = config->reg_shift; 764 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); 765 map->format.buf_size = DIV_ROUND_UP(config->reg_bits + 766 config->val_bits + config->pad_bits, 8); 767 map->reg_shift = config->pad_bits % 8; 768 if (config->reg_stride) 769 map->reg_stride = config->reg_stride; 770 else 771 map->reg_stride = 1; 772 if (is_power_of_2(map->reg_stride)) 773 map->reg_stride_order = ilog2(map->reg_stride); 774 else 775 map->reg_stride_order = -1; 776 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read)); 777 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write)); 778 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write)); 779 if (bus) { 780 map->max_raw_read = bus->max_raw_read; 781 map->max_raw_write = bus->max_raw_write; 782 } else if (config->max_raw_read && config->max_raw_write) { 783 map->max_raw_read = config->max_raw_read; 784 map->max_raw_write = config->max_raw_write; 785 } 786 map->dev = dev; 787 map->bus = bus; 788 map->bus_context = bus_context; 789 map->max_register = config->max_register; 790 map->wr_table = config->wr_table; 791 map->rd_table = config->rd_table; 792 map->volatile_table = config->volatile_table; 793 map->precious_table = config->precious_table; 794 map->wr_noinc_table = config->wr_noinc_table; 795 map->rd_noinc_table = config->rd_noinc_table; 796 map->writeable_reg = config->writeable_reg; 797 map->readable_reg = config->readable_reg; 798 map->volatile_reg = config->volatile_reg; 799 map->precious_reg = config->precious_reg; 800 map->writeable_noinc_reg = config->writeable_noinc_reg; 801 map->readable_noinc_reg = config->readable_noinc_reg; 802 map->cache_type = config->cache_type; 803 804 spin_lock_init(&map->async_lock); 805 INIT_LIST_HEAD(&map->async_list); 806 INIT_LIST_HEAD(&map->async_free); 807 init_waitqueue_head(&map->async_waitq); 808 809 if (config->read_flag_mask || 810 config->write_flag_mask || 811 config->zero_flag_mask) { 812 map->read_flag_mask = config->read_flag_mask; 813 map->write_flag_mask = config->write_flag_mask; 814 } else if (bus) { 815 map->read_flag_mask = bus->read_flag_mask; 816 } 817 818 if (config && config->read && config->write) { 819 map->reg_read = _regmap_bus_read; 820 if (config->reg_update_bits) 821 map->reg_update_bits = config->reg_update_bits; 822 823 /* Bulk read/write */ 824 map->read = config->read; 825 map->write = config->write; 826 827 reg_endian = REGMAP_ENDIAN_NATIVE; 828 val_endian = REGMAP_ENDIAN_NATIVE; 829 } else if (!bus) { 830 map->reg_read = config->reg_read; 831 map->reg_write = config->reg_write; 832 map->reg_update_bits = config->reg_update_bits; 833 834 map->defer_caching = false; 835 goto skip_format_initialization; 836 } else if (!bus->read || !bus->write) { 837 map->reg_read = _regmap_bus_reg_read; 838 map->reg_write = _regmap_bus_reg_write; 839 map->reg_update_bits = bus->reg_update_bits; 840 841 map->defer_caching = false; 842 goto skip_format_initialization; 843 } else { 844 map->reg_read = _regmap_bus_read; 845 map->reg_update_bits = bus->reg_update_bits; 846 /* Bulk read/write */ 847 map->read = bus->read; 848 map->write = bus->write; 849 850 reg_endian = regmap_get_reg_endian(bus, config); 851 val_endian = regmap_get_val_endian(dev, bus, config); 852 } 853 854 switch (config->reg_bits + map->reg_shift) { 855 case 2: 856 switch (config->val_bits) { 857 case 6: 858 map->format.format_write = regmap_format_2_6_write; 859 break; 860 default: 861 goto err_hwlock; 862 } 863 break; 864 865 case 4: 866 switch (config->val_bits) { 867 case 12: 868 map->format.format_write = regmap_format_4_12_write; 869 break; 870 default: 871 goto err_hwlock; 872 } 873 break; 874 875 case 7: 876 switch (config->val_bits) { 877 case 9: 878 map->format.format_write = regmap_format_7_9_write; 879 break; 880 case 17: 881 map->format.format_write = regmap_format_7_17_write; 882 break; 883 default: 884 goto err_hwlock; 885 } 886 break; 887 888 case 10: 889 switch (config->val_bits) { 890 case 14: 891 map->format.format_write = regmap_format_10_14_write; 892 break; 893 default: 894 goto err_hwlock; 895 } 896 break; 897 898 case 12: 899 switch (config->val_bits) { 900 case 20: 901 map->format.format_write = regmap_format_12_20_write; 902 break; 903 default: 904 goto err_hwlock; 905 } 906 break; 907 908 case 8: 909 map->format.format_reg = regmap_format_8; 910 break; 911 912 case 16: 913 switch (reg_endian) { 914 case REGMAP_ENDIAN_BIG: 915 map->format.format_reg = regmap_format_16_be; 916 break; 917 case REGMAP_ENDIAN_LITTLE: 918 map->format.format_reg = regmap_format_16_le; 919 break; 920 case REGMAP_ENDIAN_NATIVE: 921 map->format.format_reg = regmap_format_16_native; 922 break; 923 default: 924 goto err_hwlock; 925 } 926 break; 927 928 case 24: 929 switch (reg_endian) { 930 case REGMAP_ENDIAN_BIG: 931 map->format.format_reg = regmap_format_24_be; 932 break; 933 default: 934 goto err_hwlock; 935 } 936 break; 937 938 case 32: 939 switch (reg_endian) { 940 case REGMAP_ENDIAN_BIG: 941 map->format.format_reg = regmap_format_32_be; 942 break; 943 case REGMAP_ENDIAN_LITTLE: 944 map->format.format_reg = regmap_format_32_le; 945 break; 946 case REGMAP_ENDIAN_NATIVE: 947 map->format.format_reg = regmap_format_32_native; 948 break; 949 default: 950 goto err_hwlock; 951 } 952 break; 953 954 default: 955 goto err_hwlock; 956 } 957 958 if (val_endian == REGMAP_ENDIAN_NATIVE) 959 map->format.parse_inplace = regmap_parse_inplace_noop; 960 961 switch (config->val_bits) { 962 case 8: 963 map->format.format_val = regmap_format_8; 964 map->format.parse_val = regmap_parse_8; 965 map->format.parse_inplace = regmap_parse_inplace_noop; 966 break; 967 case 16: 968 switch (val_endian) { 969 case REGMAP_ENDIAN_BIG: 970 map->format.format_val = regmap_format_16_be; 971 map->format.parse_val = regmap_parse_16_be; 972 map->format.parse_inplace = regmap_parse_16_be_inplace; 973 break; 974 case REGMAP_ENDIAN_LITTLE: 975 map->format.format_val = regmap_format_16_le; 976 map->format.parse_val = regmap_parse_16_le; 977 map->format.parse_inplace = regmap_parse_16_le_inplace; 978 break; 979 case REGMAP_ENDIAN_NATIVE: 980 map->format.format_val = regmap_format_16_native; 981 map->format.parse_val = regmap_parse_16_native; 982 break; 983 default: 984 goto err_hwlock; 985 } 986 break; 987 case 24: 988 switch (val_endian) { 989 case REGMAP_ENDIAN_BIG: 990 map->format.format_val = regmap_format_24_be; 991 map->format.parse_val = regmap_parse_24_be; 992 break; 993 default: 994 goto err_hwlock; 995 } 996 break; 997 case 32: 998 switch (val_endian) { 999 case REGMAP_ENDIAN_BIG: 1000 map->format.format_val = regmap_format_32_be; 1001 map->format.parse_val = regmap_parse_32_be; 1002 map->format.parse_inplace = regmap_parse_32_be_inplace; 1003 break; 1004 case REGMAP_ENDIAN_LITTLE: 1005 map->format.format_val = regmap_format_32_le; 1006 map->format.parse_val = regmap_parse_32_le; 1007 map->format.parse_inplace = regmap_parse_32_le_inplace; 1008 break; 1009 case REGMAP_ENDIAN_NATIVE: 1010 map->format.format_val = regmap_format_32_native; 1011 map->format.parse_val = regmap_parse_32_native; 1012 break; 1013 default: 1014 goto err_hwlock; 1015 } 1016 break; 1017 } 1018 1019 if (map->format.format_write) { 1020 if ((reg_endian != REGMAP_ENDIAN_BIG) || 1021 (val_endian != REGMAP_ENDIAN_BIG)) 1022 goto err_hwlock; 1023 map->use_single_write = true; 1024 } 1025 1026 if (!map->format.format_write && 1027 !(map->format.format_reg && map->format.format_val)) 1028 goto err_hwlock; 1029 1030 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 1031 if (map->work_buf == NULL) { 1032 ret = -ENOMEM; 1033 goto err_hwlock; 1034 } 1035 1036 if (map->format.format_write) { 1037 map->defer_caching = false; 1038 map->reg_write = _regmap_bus_formatted_write; 1039 } else if (map->format.format_val) { 1040 map->defer_caching = true; 1041 map->reg_write = _regmap_bus_raw_write; 1042 } 1043 1044 skip_format_initialization: 1045 1046 map->range_tree = RB_ROOT; 1047 for (i = 0; i < config->num_ranges; i++) { 1048 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 1049 struct regmap_range_node *new; 1050 1051 /* Sanity check */ 1052 if (range_cfg->range_max < range_cfg->range_min) { 1053 dev_err(map->dev, "Invalid range %d: %d < %d\n", i, 1054 range_cfg->range_max, range_cfg->range_min); 1055 goto err_range; 1056 } 1057 1058 if (range_cfg->range_max > map->max_register) { 1059 dev_err(map->dev, "Invalid range %d: %d > %d\n", i, 1060 range_cfg->range_max, map->max_register); 1061 goto err_range; 1062 } 1063 1064 if (range_cfg->selector_reg > map->max_register) { 1065 dev_err(map->dev, 1066 "Invalid range %d: selector out of map\n", i); 1067 goto err_range; 1068 } 1069 1070 if (range_cfg->window_len == 0) { 1071 dev_err(map->dev, "Invalid range %d: window_len 0\n", 1072 i); 1073 goto err_range; 1074 } 1075 1076 /* Make sure, that this register range has no selector 1077 or data window within its boundary */ 1078 for (j = 0; j < config->num_ranges; j++) { 1079 unsigned int sel_reg = config->ranges[j].selector_reg; 1080 unsigned int win_min = config->ranges[j].window_start; 1081 unsigned int win_max = win_min + 1082 config->ranges[j].window_len - 1; 1083 1084 /* Allow data window inside its own virtual range */ 1085 if (j == i) 1086 continue; 1087 1088 if (range_cfg->range_min <= sel_reg && 1089 sel_reg <= range_cfg->range_max) { 1090 dev_err(map->dev, 1091 "Range %d: selector for %d in window\n", 1092 i, j); 1093 goto err_range; 1094 } 1095 1096 if (!(win_max < range_cfg->range_min || 1097 win_min > range_cfg->range_max)) { 1098 dev_err(map->dev, 1099 "Range %d: window for %d in window\n", 1100 i, j); 1101 goto err_range; 1102 } 1103 } 1104 1105 new = kzalloc(sizeof(*new), GFP_KERNEL); 1106 if (new == NULL) { 1107 ret = -ENOMEM; 1108 goto err_range; 1109 } 1110 1111 new->map = map; 1112 new->name = range_cfg->name; 1113 new->range_min = range_cfg->range_min; 1114 new->range_max = range_cfg->range_max; 1115 new->selector_reg = range_cfg->selector_reg; 1116 new->selector_mask = range_cfg->selector_mask; 1117 new->selector_shift = range_cfg->selector_shift; 1118 new->window_start = range_cfg->window_start; 1119 new->window_len = range_cfg->window_len; 1120 1121 if (!_regmap_range_add(map, new)) { 1122 dev_err(map->dev, "Failed to add range %d\n", i); 1123 kfree(new); 1124 goto err_range; 1125 } 1126 1127 if (map->selector_work_buf == NULL) { 1128 map->selector_work_buf = 1129 kzalloc(map->format.buf_size, GFP_KERNEL); 1130 if (map->selector_work_buf == NULL) { 1131 ret = -ENOMEM; 1132 goto err_range; 1133 } 1134 } 1135 } 1136 1137 ret = regcache_init(map, config); 1138 if (ret != 0) 1139 goto err_range; 1140 1141 if (dev) { 1142 ret = regmap_attach_dev(dev, map, config); 1143 if (ret != 0) 1144 goto err_regcache; 1145 } else { 1146 regmap_debugfs_init(map); 1147 } 1148 1149 return map; 1150 1151 err_regcache: 1152 regcache_exit(map); 1153 err_range: 1154 regmap_range_exit(map); 1155 kfree(map->work_buf); 1156 err_hwlock: 1157 if (map->hwlock) 1158 hwspin_lock_free(map->hwlock); 1159 err_name: 1160 kfree_const(map->name); 1161 err_map: 1162 kfree(map); 1163 err: 1164 return ERR_PTR(ret); 1165 } 1166 EXPORT_SYMBOL_GPL(__regmap_init); 1167 1168 static void devm_regmap_release(struct device *dev, void *res) 1169 { 1170 regmap_exit(*(struct regmap **)res); 1171 } 1172 1173 struct regmap *__devm_regmap_init(struct device *dev, 1174 const struct regmap_bus *bus, 1175 void *bus_context, 1176 const struct regmap_config *config, 1177 struct lock_class_key *lock_key, 1178 const char *lock_name) 1179 { 1180 struct regmap **ptr, *regmap; 1181 1182 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 1183 if (!ptr) 1184 return ERR_PTR(-ENOMEM); 1185 1186 regmap = __regmap_init(dev, bus, bus_context, config, 1187 lock_key, lock_name); 1188 if (!IS_ERR(regmap)) { 1189 *ptr = regmap; 1190 devres_add(dev, ptr); 1191 } else { 1192 devres_free(ptr); 1193 } 1194 1195 return regmap; 1196 } 1197 EXPORT_SYMBOL_GPL(__devm_regmap_init); 1198 1199 static void regmap_field_init(struct regmap_field *rm_field, 1200 struct regmap *regmap, struct reg_field reg_field) 1201 { 1202 rm_field->regmap = regmap; 1203 rm_field->reg = reg_field.reg; 1204 rm_field->shift = reg_field.lsb; 1205 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb); 1206 1207 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n"); 1208 1209 rm_field->id_size = reg_field.id_size; 1210 rm_field->id_offset = reg_field.id_offset; 1211 } 1212 1213 /** 1214 * devm_regmap_field_alloc() - Allocate and initialise a register field. 1215 * 1216 * @dev: Device that will be interacted with 1217 * @regmap: regmap bank in which this register field is located. 1218 * @reg_field: Register field with in the bank. 1219 * 1220 * The return value will be an ERR_PTR() on error or a valid pointer 1221 * to a struct regmap_field. The regmap_field will be automatically freed 1222 * by the device management code. 1223 */ 1224 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 1225 struct regmap *regmap, struct reg_field reg_field) 1226 { 1227 struct regmap_field *rm_field = devm_kzalloc(dev, 1228 sizeof(*rm_field), GFP_KERNEL); 1229 if (!rm_field) 1230 return ERR_PTR(-ENOMEM); 1231 1232 regmap_field_init(rm_field, regmap, reg_field); 1233 1234 return rm_field; 1235 1236 } 1237 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 1238 1239 1240 /** 1241 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field. 1242 * 1243 * @regmap: regmap bank in which this register field is located. 1244 * @rm_field: regmap register fields within the bank. 1245 * @reg_field: Register fields within the bank. 1246 * @num_fields: Number of register fields. 1247 * 1248 * The return value will be an -ENOMEM on error or zero for success. 1249 * Newly allocated regmap_fields should be freed by calling 1250 * regmap_field_bulk_free() 1251 */ 1252 int regmap_field_bulk_alloc(struct regmap *regmap, 1253 struct regmap_field **rm_field, 1254 const struct reg_field *reg_field, 1255 int num_fields) 1256 { 1257 struct regmap_field *rf; 1258 int i; 1259 1260 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL); 1261 if (!rf) 1262 return -ENOMEM; 1263 1264 for (i = 0; i < num_fields; i++) { 1265 regmap_field_init(&rf[i], regmap, reg_field[i]); 1266 rm_field[i] = &rf[i]; 1267 } 1268 1269 return 0; 1270 } 1271 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc); 1272 1273 /** 1274 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register 1275 * fields. 1276 * 1277 * @dev: Device that will be interacted with 1278 * @regmap: regmap bank in which this register field is located. 1279 * @rm_field: regmap register fields within the bank. 1280 * @reg_field: Register fields within the bank. 1281 * @num_fields: Number of register fields. 1282 * 1283 * The return value will be an -ENOMEM on error or zero for success. 1284 * Newly allocated regmap_fields will be automatically freed by the 1285 * device management code. 1286 */ 1287 int devm_regmap_field_bulk_alloc(struct device *dev, 1288 struct regmap *regmap, 1289 struct regmap_field **rm_field, 1290 const struct reg_field *reg_field, 1291 int num_fields) 1292 { 1293 struct regmap_field *rf; 1294 int i; 1295 1296 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL); 1297 if (!rf) 1298 return -ENOMEM; 1299 1300 for (i = 0; i < num_fields; i++) { 1301 regmap_field_init(&rf[i], regmap, reg_field[i]); 1302 rm_field[i] = &rf[i]; 1303 } 1304 1305 return 0; 1306 } 1307 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc); 1308 1309 /** 1310 * regmap_field_bulk_free() - Free register field allocated using 1311 * regmap_field_bulk_alloc. 1312 * 1313 * @field: regmap fields which should be freed. 1314 */ 1315 void regmap_field_bulk_free(struct regmap_field *field) 1316 { 1317 kfree(field); 1318 } 1319 EXPORT_SYMBOL_GPL(regmap_field_bulk_free); 1320 1321 /** 1322 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using 1323 * devm_regmap_field_bulk_alloc. 1324 * 1325 * @dev: Device that will be interacted with 1326 * @field: regmap field which should be freed. 1327 * 1328 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually 1329 * drivers need not call this function, as the memory allocated via devm 1330 * will be freed as per device-driver life-cycle. 1331 */ 1332 void devm_regmap_field_bulk_free(struct device *dev, 1333 struct regmap_field *field) 1334 { 1335 devm_kfree(dev, field); 1336 } 1337 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free); 1338 1339 /** 1340 * devm_regmap_field_free() - Free a register field allocated using 1341 * devm_regmap_field_alloc. 1342 * 1343 * @dev: Device that will be interacted with 1344 * @field: regmap field which should be freed. 1345 * 1346 * Free register field allocated using devm_regmap_field_alloc(). Usually 1347 * drivers need not call this function, as the memory allocated via devm 1348 * will be freed as per device-driver life-cyle. 1349 */ 1350 void devm_regmap_field_free(struct device *dev, 1351 struct regmap_field *field) 1352 { 1353 devm_kfree(dev, field); 1354 } 1355 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 1356 1357 /** 1358 * regmap_field_alloc() - Allocate and initialise a register field. 1359 * 1360 * @regmap: regmap bank in which this register field is located. 1361 * @reg_field: Register field with in the bank. 1362 * 1363 * The return value will be an ERR_PTR() on error or a valid pointer 1364 * to a struct regmap_field. The regmap_field should be freed by the 1365 * user once its finished working with it using regmap_field_free(). 1366 */ 1367 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 1368 struct reg_field reg_field) 1369 { 1370 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 1371 1372 if (!rm_field) 1373 return ERR_PTR(-ENOMEM); 1374 1375 regmap_field_init(rm_field, regmap, reg_field); 1376 1377 return rm_field; 1378 } 1379 EXPORT_SYMBOL_GPL(regmap_field_alloc); 1380 1381 /** 1382 * regmap_field_free() - Free register field allocated using 1383 * regmap_field_alloc. 1384 * 1385 * @field: regmap field which should be freed. 1386 */ 1387 void regmap_field_free(struct regmap_field *field) 1388 { 1389 kfree(field); 1390 } 1391 EXPORT_SYMBOL_GPL(regmap_field_free); 1392 1393 /** 1394 * regmap_reinit_cache() - Reinitialise the current register cache 1395 * 1396 * @map: Register map to operate on. 1397 * @config: New configuration. Only the cache data will be used. 1398 * 1399 * Discard any existing register cache for the map and initialize a 1400 * new cache. This can be used to restore the cache to defaults or to 1401 * update the cache configuration to reflect runtime discovery of the 1402 * hardware. 1403 * 1404 * No explicit locking is done here, the user needs to ensure that 1405 * this function will not race with other calls to regmap. 1406 */ 1407 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 1408 { 1409 int ret; 1410 1411 regcache_exit(map); 1412 regmap_debugfs_exit(map); 1413 1414 map->max_register = config->max_register; 1415 map->writeable_reg = config->writeable_reg; 1416 map->readable_reg = config->readable_reg; 1417 map->volatile_reg = config->volatile_reg; 1418 map->precious_reg = config->precious_reg; 1419 map->writeable_noinc_reg = config->writeable_noinc_reg; 1420 map->readable_noinc_reg = config->readable_noinc_reg; 1421 map->cache_type = config->cache_type; 1422 1423 ret = regmap_set_name(map, config); 1424 if (ret) 1425 return ret; 1426 1427 regmap_debugfs_init(map); 1428 1429 map->cache_bypass = false; 1430 map->cache_only = false; 1431 1432 return regcache_init(map, config); 1433 } 1434 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 1435 1436 /** 1437 * regmap_exit() - Free a previously allocated register map 1438 * 1439 * @map: Register map to operate on. 1440 */ 1441 void regmap_exit(struct regmap *map) 1442 { 1443 struct regmap_async *async; 1444 1445 regcache_exit(map); 1446 regmap_debugfs_exit(map); 1447 regmap_range_exit(map); 1448 if (map->bus && map->bus->free_context) 1449 map->bus->free_context(map->bus_context); 1450 kfree(map->work_buf); 1451 while (!list_empty(&map->async_free)) { 1452 async = list_first_entry_or_null(&map->async_free, 1453 struct regmap_async, 1454 list); 1455 list_del(&async->list); 1456 kfree(async->work_buf); 1457 kfree(async); 1458 } 1459 if (map->hwlock) 1460 hwspin_lock_free(map->hwlock); 1461 if (map->lock == regmap_lock_mutex) 1462 mutex_destroy(&map->mutex); 1463 kfree_const(map->name); 1464 kfree(map->patch); 1465 if (map->bus && map->bus->free_on_exit) 1466 kfree(map->bus); 1467 kfree(map); 1468 } 1469 EXPORT_SYMBOL_GPL(regmap_exit); 1470 1471 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 1472 { 1473 struct regmap **r = res; 1474 if (!r || !*r) { 1475 WARN_ON(!r || !*r); 1476 return 0; 1477 } 1478 1479 /* If the user didn't specify a name match any */ 1480 if (data) 1481 return (*r)->name && !strcmp((*r)->name, data); 1482 else 1483 return 1; 1484 } 1485 1486 /** 1487 * dev_get_regmap() - Obtain the regmap (if any) for a device 1488 * 1489 * @dev: Device to retrieve the map for 1490 * @name: Optional name for the register map, usually NULL. 1491 * 1492 * Returns the regmap for the device if one is present, or NULL. If 1493 * name is specified then it must match the name specified when 1494 * registering the device, if it is NULL then the first regmap found 1495 * will be used. Devices with multiple register maps are very rare, 1496 * generic code should normally not need to specify a name. 1497 */ 1498 struct regmap *dev_get_regmap(struct device *dev, const char *name) 1499 { 1500 struct regmap **r = devres_find(dev, dev_get_regmap_release, 1501 dev_get_regmap_match, (void *)name); 1502 1503 if (!r) 1504 return NULL; 1505 return *r; 1506 } 1507 EXPORT_SYMBOL_GPL(dev_get_regmap); 1508 1509 /** 1510 * regmap_get_device() - Obtain the device from a regmap 1511 * 1512 * @map: Register map to operate on. 1513 * 1514 * Returns the underlying device that the regmap has been created for. 1515 */ 1516 struct device *regmap_get_device(struct regmap *map) 1517 { 1518 return map->dev; 1519 } 1520 EXPORT_SYMBOL_GPL(regmap_get_device); 1521 1522 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 1523 struct regmap_range_node *range, 1524 unsigned int val_num) 1525 { 1526 void *orig_work_buf; 1527 unsigned int win_offset; 1528 unsigned int win_page; 1529 bool page_chg; 1530 int ret; 1531 1532 win_offset = (*reg - range->range_min) % range->window_len; 1533 win_page = (*reg - range->range_min) / range->window_len; 1534 1535 if (val_num > 1) { 1536 /* Bulk write shouldn't cross range boundary */ 1537 if (*reg + val_num - 1 > range->range_max) 1538 return -EINVAL; 1539 1540 /* ... or single page boundary */ 1541 if (val_num > range->window_len - win_offset) 1542 return -EINVAL; 1543 } 1544 1545 /* It is possible to have selector register inside data window. 1546 In that case, selector register is located on every page and 1547 it needs no page switching, when accessed alone. */ 1548 if (val_num > 1 || 1549 range->window_start + win_offset != range->selector_reg) { 1550 /* Use separate work_buf during page switching */ 1551 orig_work_buf = map->work_buf; 1552 map->work_buf = map->selector_work_buf; 1553 1554 ret = _regmap_update_bits(map, range->selector_reg, 1555 range->selector_mask, 1556 win_page << range->selector_shift, 1557 &page_chg, false); 1558 1559 map->work_buf = orig_work_buf; 1560 1561 if (ret != 0) 1562 return ret; 1563 } 1564 1565 *reg = range->window_start + win_offset; 1566 1567 return 0; 1568 } 1569 1570 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes, 1571 unsigned long mask) 1572 { 1573 u8 *buf; 1574 int i; 1575 1576 if (!mask || !map->work_buf) 1577 return; 1578 1579 buf = map->work_buf; 1580 1581 for (i = 0; i < max_bytes; i++) 1582 buf[i] |= (mask >> (8 * i)) & 0xff; 1583 } 1584 1585 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg) 1586 { 1587 reg += map->reg_base; 1588 1589 if (map->format.reg_shift > 0) 1590 reg >>= map->format.reg_shift; 1591 else if (map->format.reg_shift < 0) 1592 reg <<= -(map->format.reg_shift); 1593 1594 return reg; 1595 } 1596 1597 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg, 1598 const void *val, size_t val_len, bool noinc) 1599 { 1600 struct regmap_range_node *range; 1601 unsigned long flags; 1602 void *work_val = map->work_buf + map->format.reg_bytes + 1603 map->format.pad_bytes; 1604 void *buf; 1605 int ret = -ENOTSUPP; 1606 size_t len; 1607 int i; 1608 1609 /* Check for unwritable or noinc registers in range 1610 * before we start 1611 */ 1612 if (!regmap_writeable_noinc(map, reg)) { 1613 for (i = 0; i < val_len / map->format.val_bytes; i++) { 1614 unsigned int element = 1615 reg + regmap_get_offset(map, i); 1616 if (!regmap_writeable(map, element) || 1617 regmap_writeable_noinc(map, element)) 1618 return -EINVAL; 1619 } 1620 } 1621 1622 if (!map->cache_bypass && map->format.parse_val) { 1623 unsigned int ival, offset; 1624 int val_bytes = map->format.val_bytes; 1625 1626 /* Cache the last written value for noinc writes */ 1627 i = noinc ? val_len - val_bytes : 0; 1628 for (; i < val_len; i += val_bytes) { 1629 ival = map->format.parse_val(val + i); 1630 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes); 1631 ret = regcache_write(map, reg + offset, ival); 1632 if (ret) { 1633 dev_err(map->dev, 1634 "Error in caching of register: %x ret: %d\n", 1635 reg + offset, ret); 1636 return ret; 1637 } 1638 } 1639 if (map->cache_only) { 1640 map->cache_dirty = true; 1641 return 0; 1642 } 1643 } 1644 1645 range = _regmap_range_lookup(map, reg); 1646 if (range) { 1647 int val_num = val_len / map->format.val_bytes; 1648 int win_offset = (reg - range->range_min) % range->window_len; 1649 int win_residue = range->window_len - win_offset; 1650 1651 /* If the write goes beyond the end of the window split it */ 1652 while (val_num > win_residue) { 1653 dev_dbg(map->dev, "Writing window %d/%zu\n", 1654 win_residue, val_len / map->format.val_bytes); 1655 ret = _regmap_raw_write_impl(map, reg, val, 1656 win_residue * 1657 map->format.val_bytes, noinc); 1658 if (ret != 0) 1659 return ret; 1660 1661 reg += win_residue; 1662 val_num -= win_residue; 1663 val += win_residue * map->format.val_bytes; 1664 val_len -= win_residue * map->format.val_bytes; 1665 1666 win_offset = (reg - range->range_min) % 1667 range->window_len; 1668 win_residue = range->window_len - win_offset; 1669 } 1670 1671 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num); 1672 if (ret != 0) 1673 return ret; 1674 } 1675 1676 reg = regmap_reg_addr(map, reg); 1677 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1678 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 1679 map->write_flag_mask); 1680 1681 /* 1682 * Essentially all I/O mechanisms will be faster with a single 1683 * buffer to write. Since register syncs often generate raw 1684 * writes of single registers optimise that case. 1685 */ 1686 if (val != work_val && val_len == map->format.val_bytes) { 1687 memcpy(work_val, val, map->format.val_bytes); 1688 val = work_val; 1689 } 1690 1691 if (map->async && map->bus && map->bus->async_write) { 1692 struct regmap_async *async; 1693 1694 trace_regmap_async_write_start(map, reg, val_len); 1695 1696 spin_lock_irqsave(&map->async_lock, flags); 1697 async = list_first_entry_or_null(&map->async_free, 1698 struct regmap_async, 1699 list); 1700 if (async) 1701 list_del(&async->list); 1702 spin_unlock_irqrestore(&map->async_lock, flags); 1703 1704 if (!async) { 1705 async = map->bus->async_alloc(); 1706 if (!async) 1707 return -ENOMEM; 1708 1709 async->work_buf = kzalloc(map->format.buf_size, 1710 GFP_KERNEL | GFP_DMA); 1711 if (!async->work_buf) { 1712 kfree(async); 1713 return -ENOMEM; 1714 } 1715 } 1716 1717 async->map = map; 1718 1719 /* If the caller supplied the value we can use it safely. */ 1720 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1721 map->format.reg_bytes + map->format.val_bytes); 1722 1723 spin_lock_irqsave(&map->async_lock, flags); 1724 list_add_tail(&async->list, &map->async_list); 1725 spin_unlock_irqrestore(&map->async_lock, flags); 1726 1727 if (val != work_val) 1728 ret = map->bus->async_write(map->bus_context, 1729 async->work_buf, 1730 map->format.reg_bytes + 1731 map->format.pad_bytes, 1732 val, val_len, async); 1733 else 1734 ret = map->bus->async_write(map->bus_context, 1735 async->work_buf, 1736 map->format.reg_bytes + 1737 map->format.pad_bytes + 1738 val_len, NULL, 0, async); 1739 1740 if (ret != 0) { 1741 dev_err(map->dev, "Failed to schedule write: %d\n", 1742 ret); 1743 1744 spin_lock_irqsave(&map->async_lock, flags); 1745 list_move(&async->list, &map->async_free); 1746 spin_unlock_irqrestore(&map->async_lock, flags); 1747 } 1748 1749 return ret; 1750 } 1751 1752 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); 1753 1754 /* If we're doing a single register write we can probably just 1755 * send the work_buf directly, otherwise try to do a gather 1756 * write. 1757 */ 1758 if (val == work_val) 1759 ret = map->write(map->bus_context, map->work_buf, 1760 map->format.reg_bytes + 1761 map->format.pad_bytes + 1762 val_len); 1763 else if (map->bus && map->bus->gather_write) 1764 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1765 map->format.reg_bytes + 1766 map->format.pad_bytes, 1767 val, val_len); 1768 else 1769 ret = -ENOTSUPP; 1770 1771 /* If that didn't work fall back on linearising by hand. */ 1772 if (ret == -ENOTSUPP) { 1773 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1774 buf = kzalloc(len, GFP_KERNEL); 1775 if (!buf) 1776 return -ENOMEM; 1777 1778 memcpy(buf, map->work_buf, map->format.reg_bytes); 1779 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1780 val, val_len); 1781 ret = map->write(map->bus_context, buf, len); 1782 1783 kfree(buf); 1784 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) { 1785 /* regcache_drop_region() takes lock that we already have, 1786 * thus call map->cache_ops->drop() directly 1787 */ 1788 if (map->cache_ops && map->cache_ops->drop) 1789 map->cache_ops->drop(map, reg, reg + 1); 1790 } 1791 1792 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); 1793 1794 return ret; 1795 } 1796 1797 /** 1798 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1799 * 1800 * @map: Map to check. 1801 */ 1802 bool regmap_can_raw_write(struct regmap *map) 1803 { 1804 return map->write && map->format.format_val && map->format.format_reg; 1805 } 1806 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1807 1808 /** 1809 * regmap_get_raw_read_max - Get the maximum size we can read 1810 * 1811 * @map: Map to check. 1812 */ 1813 size_t regmap_get_raw_read_max(struct regmap *map) 1814 { 1815 return map->max_raw_read; 1816 } 1817 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max); 1818 1819 /** 1820 * regmap_get_raw_write_max - Get the maximum size we can read 1821 * 1822 * @map: Map to check. 1823 */ 1824 size_t regmap_get_raw_write_max(struct regmap *map) 1825 { 1826 return map->max_raw_write; 1827 } 1828 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max); 1829 1830 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1831 unsigned int val) 1832 { 1833 int ret; 1834 struct regmap_range_node *range; 1835 struct regmap *map = context; 1836 1837 WARN_ON(!map->format.format_write); 1838 1839 range = _regmap_range_lookup(map, reg); 1840 if (range) { 1841 ret = _regmap_select_page(map, ®, range, 1); 1842 if (ret != 0) 1843 return ret; 1844 } 1845 1846 reg = regmap_reg_addr(map, reg); 1847 map->format.format_write(map, reg, val); 1848 1849 trace_regmap_hw_write_start(map, reg, 1); 1850 1851 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size); 1852 1853 trace_regmap_hw_write_done(map, reg, 1); 1854 1855 return ret; 1856 } 1857 1858 static int _regmap_bus_reg_write(void *context, unsigned int reg, 1859 unsigned int val) 1860 { 1861 struct regmap *map = context; 1862 struct regmap_range_node *range; 1863 int ret; 1864 1865 range = _regmap_range_lookup(map, reg); 1866 if (range) { 1867 ret = _regmap_select_page(map, ®, range, 1); 1868 if (ret != 0) 1869 return ret; 1870 } 1871 1872 reg = regmap_reg_addr(map, reg); 1873 return map->bus->reg_write(map->bus_context, reg, val); 1874 } 1875 1876 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1877 unsigned int val) 1878 { 1879 struct regmap *map = context; 1880 1881 WARN_ON(!map->format.format_val); 1882 1883 map->format.format_val(map->work_buf + map->format.reg_bytes 1884 + map->format.pad_bytes, val, 0); 1885 return _regmap_raw_write_impl(map, reg, 1886 map->work_buf + 1887 map->format.reg_bytes + 1888 map->format.pad_bytes, 1889 map->format.val_bytes, 1890 false); 1891 } 1892 1893 static inline void *_regmap_map_get_context(struct regmap *map) 1894 { 1895 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context; 1896 } 1897 1898 int _regmap_write(struct regmap *map, unsigned int reg, 1899 unsigned int val) 1900 { 1901 int ret; 1902 void *context = _regmap_map_get_context(map); 1903 1904 if (!regmap_writeable(map, reg)) 1905 return -EIO; 1906 1907 if (!map->cache_bypass && !map->defer_caching) { 1908 ret = regcache_write(map, reg, val); 1909 if (ret != 0) 1910 return ret; 1911 if (map->cache_only) { 1912 map->cache_dirty = true; 1913 return 0; 1914 } 1915 } 1916 1917 ret = map->reg_write(context, reg, val); 1918 if (ret == 0) { 1919 if (regmap_should_log(map)) 1920 dev_info(map->dev, "%x <= %x\n", reg, val); 1921 1922 trace_regmap_reg_write(map, reg, val); 1923 } 1924 1925 return ret; 1926 } 1927 1928 /** 1929 * regmap_write() - Write a value to a single register 1930 * 1931 * @map: Register map to write to 1932 * @reg: Register to write to 1933 * @val: Value to be written 1934 * 1935 * A value of zero will be returned on success, a negative errno will 1936 * be returned in error cases. 1937 */ 1938 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 1939 { 1940 int ret; 1941 1942 if (!IS_ALIGNED(reg, map->reg_stride)) 1943 return -EINVAL; 1944 1945 map->lock(map->lock_arg); 1946 1947 ret = _regmap_write(map, reg, val); 1948 1949 map->unlock(map->lock_arg); 1950 1951 return ret; 1952 } 1953 EXPORT_SYMBOL_GPL(regmap_write); 1954 1955 /** 1956 * regmap_write_async() - Write a value to a single register asynchronously 1957 * 1958 * @map: Register map to write to 1959 * @reg: Register to write to 1960 * @val: Value to be written 1961 * 1962 * A value of zero will be returned on success, a negative errno will 1963 * be returned in error cases. 1964 */ 1965 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 1966 { 1967 int ret; 1968 1969 if (!IS_ALIGNED(reg, map->reg_stride)) 1970 return -EINVAL; 1971 1972 map->lock(map->lock_arg); 1973 1974 map->async = true; 1975 1976 ret = _regmap_write(map, reg, val); 1977 1978 map->async = false; 1979 1980 map->unlock(map->lock_arg); 1981 1982 return ret; 1983 } 1984 EXPORT_SYMBOL_GPL(regmap_write_async); 1985 1986 int _regmap_raw_write(struct regmap *map, unsigned int reg, 1987 const void *val, size_t val_len, bool noinc) 1988 { 1989 size_t val_bytes = map->format.val_bytes; 1990 size_t val_count = val_len / val_bytes; 1991 size_t chunk_count, chunk_bytes; 1992 size_t chunk_regs = val_count; 1993 int ret, i; 1994 1995 if (!val_count) 1996 return -EINVAL; 1997 1998 if (map->use_single_write) 1999 chunk_regs = 1; 2000 else if (map->max_raw_write && val_len > map->max_raw_write) 2001 chunk_regs = map->max_raw_write / val_bytes; 2002 2003 chunk_count = val_count / chunk_regs; 2004 chunk_bytes = chunk_regs * val_bytes; 2005 2006 /* Write as many bytes as possible with chunk_size */ 2007 for (i = 0; i < chunk_count; i++) { 2008 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc); 2009 if (ret) 2010 return ret; 2011 2012 reg += regmap_get_offset(map, chunk_regs); 2013 val += chunk_bytes; 2014 val_len -= chunk_bytes; 2015 } 2016 2017 /* Write remaining bytes */ 2018 if (val_len) 2019 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc); 2020 2021 return ret; 2022 } 2023 2024 /** 2025 * regmap_raw_write() - Write raw values to one or more registers 2026 * 2027 * @map: Register map to write to 2028 * @reg: Initial register to write to 2029 * @val: Block of data to be written, laid out for direct transmission to the 2030 * device 2031 * @val_len: Length of data pointed to by val. 2032 * 2033 * This function is intended to be used for things like firmware 2034 * download where a large block of data needs to be transferred to the 2035 * device. No formatting will be done on the data provided. 2036 * 2037 * A value of zero will be returned on success, a negative errno will 2038 * be returned in error cases. 2039 */ 2040 int regmap_raw_write(struct regmap *map, unsigned int reg, 2041 const void *val, size_t val_len) 2042 { 2043 int ret; 2044 2045 if (!regmap_can_raw_write(map)) 2046 return -EINVAL; 2047 if (val_len % map->format.val_bytes) 2048 return -EINVAL; 2049 2050 map->lock(map->lock_arg); 2051 2052 ret = _regmap_raw_write(map, reg, val, val_len, false); 2053 2054 map->unlock(map->lock_arg); 2055 2056 return ret; 2057 } 2058 EXPORT_SYMBOL_GPL(regmap_raw_write); 2059 2060 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg, 2061 void *val, unsigned int val_len, bool write) 2062 { 2063 size_t val_bytes = map->format.val_bytes; 2064 size_t val_count = val_len / val_bytes; 2065 unsigned int lastval; 2066 u8 *u8p; 2067 u16 *u16p; 2068 u32 *u32p; 2069 int ret; 2070 int i; 2071 2072 switch (val_bytes) { 2073 case 1: 2074 u8p = val; 2075 if (write) 2076 lastval = (unsigned int)u8p[val_count - 1]; 2077 break; 2078 case 2: 2079 u16p = val; 2080 if (write) 2081 lastval = (unsigned int)u16p[val_count - 1]; 2082 break; 2083 case 4: 2084 u32p = val; 2085 if (write) 2086 lastval = (unsigned int)u32p[val_count - 1]; 2087 break; 2088 default: 2089 return -EINVAL; 2090 } 2091 2092 /* 2093 * Update the cache with the last value we write, the rest is just 2094 * gone down in the hardware FIFO. We can't cache FIFOs. This makes 2095 * sure a single read from the cache will work. 2096 */ 2097 if (write) { 2098 if (!map->cache_bypass && !map->defer_caching) { 2099 ret = regcache_write(map, reg, lastval); 2100 if (ret != 0) 2101 return ret; 2102 if (map->cache_only) { 2103 map->cache_dirty = true; 2104 return 0; 2105 } 2106 } 2107 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count); 2108 } else { 2109 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count); 2110 } 2111 2112 if (!ret && regmap_should_log(map)) { 2113 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>"); 2114 for (i = 0; i < val_count; i++) { 2115 switch (val_bytes) { 2116 case 1: 2117 pr_cont("%x", u8p[i]); 2118 break; 2119 case 2: 2120 pr_cont("%x", u16p[i]); 2121 break; 2122 case 4: 2123 pr_cont("%x", u32p[i]); 2124 break; 2125 default: 2126 break; 2127 } 2128 if (i == (val_count - 1)) 2129 pr_cont("]\n"); 2130 else 2131 pr_cont(","); 2132 } 2133 } 2134 2135 return 0; 2136 } 2137 2138 /** 2139 * regmap_noinc_write(): Write data from a register without incrementing the 2140 * register number 2141 * 2142 * @map: Register map to write to 2143 * @reg: Register to write to 2144 * @val: Pointer to data buffer 2145 * @val_len: Length of output buffer in bytes. 2146 * 2147 * The regmap API usually assumes that bulk bus write operations will write a 2148 * range of registers. Some devices have certain registers for which a write 2149 * operation can write to an internal FIFO. 2150 * 2151 * The target register must be volatile but registers after it can be 2152 * completely unrelated cacheable registers. 2153 * 2154 * This will attempt multiple writes as required to write val_len bytes. 2155 * 2156 * A value of zero will be returned on success, a negative errno will be 2157 * returned in error cases. 2158 */ 2159 int regmap_noinc_write(struct regmap *map, unsigned int reg, 2160 const void *val, size_t val_len) 2161 { 2162 size_t write_len; 2163 int ret; 2164 2165 if (!map->write && !(map->bus && map->bus->reg_noinc_write)) 2166 return -EINVAL; 2167 if (val_len % map->format.val_bytes) 2168 return -EINVAL; 2169 if (!IS_ALIGNED(reg, map->reg_stride)) 2170 return -EINVAL; 2171 if (val_len == 0) 2172 return -EINVAL; 2173 2174 map->lock(map->lock_arg); 2175 2176 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) { 2177 ret = -EINVAL; 2178 goto out_unlock; 2179 } 2180 2181 /* 2182 * Use the accelerated operation if we can. The val drops the const 2183 * typing in order to facilitate code reuse in regmap_noinc_readwrite(). 2184 */ 2185 if (map->bus->reg_noinc_write) { 2186 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true); 2187 goto out_unlock; 2188 } 2189 2190 while (val_len) { 2191 if (map->max_raw_write && map->max_raw_write < val_len) 2192 write_len = map->max_raw_write; 2193 else 2194 write_len = val_len; 2195 ret = _regmap_raw_write(map, reg, val, write_len, true); 2196 if (ret) 2197 goto out_unlock; 2198 val = ((u8 *)val) + write_len; 2199 val_len -= write_len; 2200 } 2201 2202 out_unlock: 2203 map->unlock(map->lock_arg); 2204 return ret; 2205 } 2206 EXPORT_SYMBOL_GPL(regmap_noinc_write); 2207 2208 /** 2209 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a 2210 * register field. 2211 * 2212 * @field: Register field to write to 2213 * @mask: Bitmask to change 2214 * @val: Value to be written 2215 * @change: Boolean indicating if a write was done 2216 * @async: Boolean indicating asynchronously 2217 * @force: Boolean indicating use force update 2218 * 2219 * Perform a read/modify/write cycle on the register field with change, 2220 * async, force option. 2221 * 2222 * A value of zero will be returned on success, a negative errno will 2223 * be returned in error cases. 2224 */ 2225 int regmap_field_update_bits_base(struct regmap_field *field, 2226 unsigned int mask, unsigned int val, 2227 bool *change, bool async, bool force) 2228 { 2229 mask = (mask << field->shift) & field->mask; 2230 2231 return regmap_update_bits_base(field->regmap, field->reg, 2232 mask, val << field->shift, 2233 change, async, force); 2234 } 2235 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base); 2236 2237 /** 2238 * regmap_field_test_bits() - Check if all specified bits are set in a 2239 * register field. 2240 * 2241 * @field: Register field to operate on 2242 * @bits: Bits to test 2243 * 2244 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the 2245 * tested bits is not set and 1 if all tested bits are set. 2246 */ 2247 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits) 2248 { 2249 unsigned int val, ret; 2250 2251 ret = regmap_field_read(field, &val); 2252 if (ret) 2253 return ret; 2254 2255 return (val & bits) == bits; 2256 } 2257 EXPORT_SYMBOL_GPL(regmap_field_test_bits); 2258 2259 /** 2260 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a 2261 * register field with port ID 2262 * 2263 * @field: Register field to write to 2264 * @id: port ID 2265 * @mask: Bitmask to change 2266 * @val: Value to be written 2267 * @change: Boolean indicating if a write was done 2268 * @async: Boolean indicating asynchronously 2269 * @force: Boolean indicating use force update 2270 * 2271 * A value of zero will be returned on success, a negative errno will 2272 * be returned in error cases. 2273 */ 2274 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id, 2275 unsigned int mask, unsigned int val, 2276 bool *change, bool async, bool force) 2277 { 2278 if (id >= field->id_size) 2279 return -EINVAL; 2280 2281 mask = (mask << field->shift) & field->mask; 2282 2283 return regmap_update_bits_base(field->regmap, 2284 field->reg + (field->id_offset * id), 2285 mask, val << field->shift, 2286 change, async, force); 2287 } 2288 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base); 2289 2290 /** 2291 * regmap_bulk_write() - Write multiple registers to the device 2292 * 2293 * @map: Register map to write to 2294 * @reg: First register to be write from 2295 * @val: Block of data to be written, in native register size for device 2296 * @val_count: Number of registers to write 2297 * 2298 * This function is intended to be used for writing a large block of 2299 * data to the device either in single transfer or multiple transfer. 2300 * 2301 * A value of zero will be returned on success, a negative errno will 2302 * be returned in error cases. 2303 */ 2304 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 2305 size_t val_count) 2306 { 2307 int ret = 0, i; 2308 size_t val_bytes = map->format.val_bytes; 2309 2310 if (!IS_ALIGNED(reg, map->reg_stride)) 2311 return -EINVAL; 2312 2313 /* 2314 * Some devices don't support bulk write, for them we have a series of 2315 * single write operations. 2316 */ 2317 if (!map->write || !map->format.parse_inplace) { 2318 map->lock(map->lock_arg); 2319 for (i = 0; i < val_count; i++) { 2320 unsigned int ival; 2321 2322 switch (val_bytes) { 2323 case 1: 2324 ival = *(u8 *)(val + (i * val_bytes)); 2325 break; 2326 case 2: 2327 ival = *(u16 *)(val + (i * val_bytes)); 2328 break; 2329 case 4: 2330 ival = *(u32 *)(val + (i * val_bytes)); 2331 break; 2332 default: 2333 ret = -EINVAL; 2334 goto out; 2335 } 2336 2337 ret = _regmap_write(map, 2338 reg + regmap_get_offset(map, i), 2339 ival); 2340 if (ret != 0) 2341 goto out; 2342 } 2343 out: 2344 map->unlock(map->lock_arg); 2345 } else { 2346 void *wval; 2347 2348 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags); 2349 if (!wval) 2350 return -ENOMEM; 2351 2352 for (i = 0; i < val_count * val_bytes; i += val_bytes) 2353 map->format.parse_inplace(wval + i); 2354 2355 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count); 2356 2357 kfree(wval); 2358 } 2359 2360 if (!ret) 2361 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count); 2362 2363 return ret; 2364 } 2365 EXPORT_SYMBOL_GPL(regmap_bulk_write); 2366 2367 /* 2368 * _regmap_raw_multi_reg_write() 2369 * 2370 * the (register,newvalue) pairs in regs have not been formatted, but 2371 * they are all in the same page and have been changed to being page 2372 * relative. The page register has been written if that was necessary. 2373 */ 2374 static int _regmap_raw_multi_reg_write(struct regmap *map, 2375 const struct reg_sequence *regs, 2376 size_t num_regs) 2377 { 2378 int ret; 2379 void *buf; 2380 int i; 2381 u8 *u8; 2382 size_t val_bytes = map->format.val_bytes; 2383 size_t reg_bytes = map->format.reg_bytes; 2384 size_t pad_bytes = map->format.pad_bytes; 2385 size_t pair_size = reg_bytes + pad_bytes + val_bytes; 2386 size_t len = pair_size * num_regs; 2387 2388 if (!len) 2389 return -EINVAL; 2390 2391 buf = kzalloc(len, GFP_KERNEL); 2392 if (!buf) 2393 return -ENOMEM; 2394 2395 /* We have to linearise by hand. */ 2396 2397 u8 = buf; 2398 2399 for (i = 0; i < num_regs; i++) { 2400 unsigned int reg = regs[i].reg; 2401 unsigned int val = regs[i].def; 2402 trace_regmap_hw_write_start(map, reg, 1); 2403 reg = regmap_reg_addr(map, reg); 2404 map->format.format_reg(u8, reg, map->reg_shift); 2405 u8 += reg_bytes + pad_bytes; 2406 map->format.format_val(u8, val, 0); 2407 u8 += val_bytes; 2408 } 2409 u8 = buf; 2410 *u8 |= map->write_flag_mask; 2411 2412 ret = map->write(map->bus_context, buf, len); 2413 2414 kfree(buf); 2415 2416 for (i = 0; i < num_regs; i++) { 2417 int reg = regs[i].reg; 2418 trace_regmap_hw_write_done(map, reg, 1); 2419 } 2420 return ret; 2421 } 2422 2423 static unsigned int _regmap_register_page(struct regmap *map, 2424 unsigned int reg, 2425 struct regmap_range_node *range) 2426 { 2427 unsigned int win_page = (reg - range->range_min) / range->window_len; 2428 2429 return win_page; 2430 } 2431 2432 static int _regmap_range_multi_paged_reg_write(struct regmap *map, 2433 struct reg_sequence *regs, 2434 size_t num_regs) 2435 { 2436 int ret; 2437 int i, n; 2438 struct reg_sequence *base; 2439 unsigned int this_page = 0; 2440 unsigned int page_change = 0; 2441 /* 2442 * the set of registers are not neccessarily in order, but 2443 * since the order of write must be preserved this algorithm 2444 * chops the set each time the page changes. This also applies 2445 * if there is a delay required at any point in the sequence. 2446 */ 2447 base = regs; 2448 for (i = 0, n = 0; i < num_regs; i++, n++) { 2449 unsigned int reg = regs[i].reg; 2450 struct regmap_range_node *range; 2451 2452 range = _regmap_range_lookup(map, reg); 2453 if (range) { 2454 unsigned int win_page = _regmap_register_page(map, reg, 2455 range); 2456 2457 if (i == 0) 2458 this_page = win_page; 2459 if (win_page != this_page) { 2460 this_page = win_page; 2461 page_change = 1; 2462 } 2463 } 2464 2465 /* If we have both a page change and a delay make sure to 2466 * write the regs and apply the delay before we change the 2467 * page. 2468 */ 2469 2470 if (page_change || regs[i].delay_us) { 2471 2472 /* For situations where the first write requires 2473 * a delay we need to make sure we don't call 2474 * raw_multi_reg_write with n=0 2475 * This can't occur with page breaks as we 2476 * never write on the first iteration 2477 */ 2478 if (regs[i].delay_us && i == 0) 2479 n = 1; 2480 2481 ret = _regmap_raw_multi_reg_write(map, base, n); 2482 if (ret != 0) 2483 return ret; 2484 2485 if (regs[i].delay_us) { 2486 if (map->can_sleep) 2487 fsleep(regs[i].delay_us); 2488 else 2489 udelay(regs[i].delay_us); 2490 } 2491 2492 base += n; 2493 n = 0; 2494 2495 if (page_change) { 2496 ret = _regmap_select_page(map, 2497 &base[n].reg, 2498 range, 1); 2499 if (ret != 0) 2500 return ret; 2501 2502 page_change = 0; 2503 } 2504 2505 } 2506 2507 } 2508 if (n > 0) 2509 return _regmap_raw_multi_reg_write(map, base, n); 2510 return 0; 2511 } 2512 2513 static int _regmap_multi_reg_write(struct regmap *map, 2514 const struct reg_sequence *regs, 2515 size_t num_regs) 2516 { 2517 int i; 2518 int ret; 2519 2520 if (!map->can_multi_write) { 2521 for (i = 0; i < num_regs; i++) { 2522 ret = _regmap_write(map, regs[i].reg, regs[i].def); 2523 if (ret != 0) 2524 return ret; 2525 2526 if (regs[i].delay_us) { 2527 if (map->can_sleep) 2528 fsleep(regs[i].delay_us); 2529 else 2530 udelay(regs[i].delay_us); 2531 } 2532 } 2533 return 0; 2534 } 2535 2536 if (!map->format.parse_inplace) 2537 return -EINVAL; 2538 2539 if (map->writeable_reg) 2540 for (i = 0; i < num_regs; i++) { 2541 int reg = regs[i].reg; 2542 if (!map->writeable_reg(map->dev, reg)) 2543 return -EINVAL; 2544 if (!IS_ALIGNED(reg, map->reg_stride)) 2545 return -EINVAL; 2546 } 2547 2548 if (!map->cache_bypass) { 2549 for (i = 0; i < num_regs; i++) { 2550 unsigned int val = regs[i].def; 2551 unsigned int reg = regs[i].reg; 2552 ret = regcache_write(map, reg, val); 2553 if (ret) { 2554 dev_err(map->dev, 2555 "Error in caching of register: %x ret: %d\n", 2556 reg, ret); 2557 return ret; 2558 } 2559 } 2560 if (map->cache_only) { 2561 map->cache_dirty = true; 2562 return 0; 2563 } 2564 } 2565 2566 WARN_ON(!map->bus); 2567 2568 for (i = 0; i < num_regs; i++) { 2569 unsigned int reg = regs[i].reg; 2570 struct regmap_range_node *range; 2571 2572 /* Coalesce all the writes between a page break or a delay 2573 * in a sequence 2574 */ 2575 range = _regmap_range_lookup(map, reg); 2576 if (range || regs[i].delay_us) { 2577 size_t len = sizeof(struct reg_sequence)*num_regs; 2578 struct reg_sequence *base = kmemdup(regs, len, 2579 GFP_KERNEL); 2580 if (!base) 2581 return -ENOMEM; 2582 ret = _regmap_range_multi_paged_reg_write(map, base, 2583 num_regs); 2584 kfree(base); 2585 2586 return ret; 2587 } 2588 } 2589 return _regmap_raw_multi_reg_write(map, regs, num_regs); 2590 } 2591 2592 /** 2593 * regmap_multi_reg_write() - Write multiple registers to the device 2594 * 2595 * @map: Register map to write to 2596 * @regs: Array of structures containing register,value to be written 2597 * @num_regs: Number of registers to write 2598 * 2599 * Write multiple registers to the device where the set of register, value 2600 * pairs are supplied in any order, possibly not all in a single range. 2601 * 2602 * The 'normal' block write mode will send ultimately send data on the 2603 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are 2604 * addressed. However, this alternative block multi write mode will send 2605 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device 2606 * must of course support the mode. 2607 * 2608 * A value of zero will be returned on success, a negative errno will be 2609 * returned in error cases. 2610 */ 2611 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, 2612 int num_regs) 2613 { 2614 int ret; 2615 2616 map->lock(map->lock_arg); 2617 2618 ret = _regmap_multi_reg_write(map, regs, num_regs); 2619 2620 map->unlock(map->lock_arg); 2621 2622 return ret; 2623 } 2624 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 2625 2626 /** 2627 * regmap_multi_reg_write_bypassed() - Write multiple registers to the 2628 * device but not the cache 2629 * 2630 * @map: Register map to write to 2631 * @regs: Array of structures containing register,value to be written 2632 * @num_regs: Number of registers to write 2633 * 2634 * Write multiple registers to the device but not the cache where the set 2635 * of register are supplied in any order. 2636 * 2637 * This function is intended to be used for writing a large block of data 2638 * atomically to the device in single transfer for those I2C client devices 2639 * that implement this alternative block write mode. 2640 * 2641 * A value of zero will be returned on success, a negative errno will 2642 * be returned in error cases. 2643 */ 2644 int regmap_multi_reg_write_bypassed(struct regmap *map, 2645 const struct reg_sequence *regs, 2646 int num_regs) 2647 { 2648 int ret; 2649 bool bypass; 2650 2651 map->lock(map->lock_arg); 2652 2653 bypass = map->cache_bypass; 2654 map->cache_bypass = true; 2655 2656 ret = _regmap_multi_reg_write(map, regs, num_regs); 2657 2658 map->cache_bypass = bypass; 2659 2660 map->unlock(map->lock_arg); 2661 2662 return ret; 2663 } 2664 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); 2665 2666 /** 2667 * regmap_raw_write_async() - Write raw values to one or more registers 2668 * asynchronously 2669 * 2670 * @map: Register map to write to 2671 * @reg: Initial register to write to 2672 * @val: Block of data to be written, laid out for direct transmission to the 2673 * device. Must be valid until regmap_async_complete() is called. 2674 * @val_len: Length of data pointed to by val. 2675 * 2676 * This function is intended to be used for things like firmware 2677 * download where a large block of data needs to be transferred to the 2678 * device. No formatting will be done on the data provided. 2679 * 2680 * If supported by the underlying bus the write will be scheduled 2681 * asynchronously, helping maximise I/O speed on higher speed buses 2682 * like SPI. regmap_async_complete() can be called to ensure that all 2683 * asynchrnous writes have been completed. 2684 * 2685 * A value of zero will be returned on success, a negative errno will 2686 * be returned in error cases. 2687 */ 2688 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 2689 const void *val, size_t val_len) 2690 { 2691 int ret; 2692 2693 if (val_len % map->format.val_bytes) 2694 return -EINVAL; 2695 if (!IS_ALIGNED(reg, map->reg_stride)) 2696 return -EINVAL; 2697 2698 map->lock(map->lock_arg); 2699 2700 map->async = true; 2701 2702 ret = _regmap_raw_write(map, reg, val, val_len, false); 2703 2704 map->async = false; 2705 2706 map->unlock(map->lock_arg); 2707 2708 return ret; 2709 } 2710 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 2711 2712 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2713 unsigned int val_len, bool noinc) 2714 { 2715 struct regmap_range_node *range; 2716 int ret; 2717 2718 if (!map->read) 2719 return -EINVAL; 2720 2721 range = _regmap_range_lookup(map, reg); 2722 if (range) { 2723 ret = _regmap_select_page(map, ®, range, 2724 noinc ? 1 : val_len / map->format.val_bytes); 2725 if (ret != 0) 2726 return ret; 2727 } 2728 2729 reg = regmap_reg_addr(map, reg); 2730 map->format.format_reg(map->work_buf, reg, map->reg_shift); 2731 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 2732 map->read_flag_mask); 2733 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); 2734 2735 ret = map->read(map->bus_context, map->work_buf, 2736 map->format.reg_bytes + map->format.pad_bytes, 2737 val, val_len); 2738 2739 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); 2740 2741 return ret; 2742 } 2743 2744 static int _regmap_bus_reg_read(void *context, unsigned int reg, 2745 unsigned int *val) 2746 { 2747 struct regmap *map = context; 2748 struct regmap_range_node *range; 2749 int ret; 2750 2751 range = _regmap_range_lookup(map, reg); 2752 if (range) { 2753 ret = _regmap_select_page(map, ®, range, 1); 2754 if (ret != 0) 2755 return ret; 2756 } 2757 2758 reg = regmap_reg_addr(map, reg); 2759 return map->bus->reg_read(map->bus_context, reg, val); 2760 } 2761 2762 static int _regmap_bus_read(void *context, unsigned int reg, 2763 unsigned int *val) 2764 { 2765 int ret; 2766 struct regmap *map = context; 2767 void *work_val = map->work_buf + map->format.reg_bytes + 2768 map->format.pad_bytes; 2769 2770 if (!map->format.parse_val) 2771 return -EINVAL; 2772 2773 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false); 2774 if (ret == 0) 2775 *val = map->format.parse_val(work_val); 2776 2777 return ret; 2778 } 2779 2780 static int _regmap_read(struct regmap *map, unsigned int reg, 2781 unsigned int *val) 2782 { 2783 int ret; 2784 void *context = _regmap_map_get_context(map); 2785 2786 if (!map->cache_bypass) { 2787 ret = regcache_read(map, reg, val); 2788 if (ret == 0) 2789 return 0; 2790 } 2791 2792 if (map->cache_only) 2793 return -EBUSY; 2794 2795 if (!regmap_readable(map, reg)) 2796 return -EIO; 2797 2798 ret = map->reg_read(context, reg, val); 2799 if (ret == 0) { 2800 if (regmap_should_log(map)) 2801 dev_info(map->dev, "%x => %x\n", reg, *val); 2802 2803 trace_regmap_reg_read(map, reg, *val); 2804 2805 if (!map->cache_bypass) 2806 regcache_write(map, reg, *val); 2807 } 2808 2809 return ret; 2810 } 2811 2812 /** 2813 * regmap_read() - Read a value from a single register 2814 * 2815 * @map: Register map to read from 2816 * @reg: Register to be read from 2817 * @val: Pointer to store read value 2818 * 2819 * A value of zero will be returned on success, a negative errno will 2820 * be returned in error cases. 2821 */ 2822 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 2823 { 2824 int ret; 2825 2826 if (!IS_ALIGNED(reg, map->reg_stride)) 2827 return -EINVAL; 2828 2829 map->lock(map->lock_arg); 2830 2831 ret = _regmap_read(map, reg, val); 2832 2833 map->unlock(map->lock_arg); 2834 2835 return ret; 2836 } 2837 EXPORT_SYMBOL_GPL(regmap_read); 2838 2839 /** 2840 * regmap_read_bypassed() - Read a value from a single register direct 2841 * from the device, bypassing the cache 2842 * 2843 * @map: Register map to read from 2844 * @reg: Register to be read from 2845 * @val: Pointer to store read value 2846 * 2847 * A value of zero will be returned on success, a negative errno will 2848 * be returned in error cases. 2849 */ 2850 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val) 2851 { 2852 int ret; 2853 bool bypass, cache_only; 2854 2855 if (!IS_ALIGNED(reg, map->reg_stride)) 2856 return -EINVAL; 2857 2858 map->lock(map->lock_arg); 2859 2860 bypass = map->cache_bypass; 2861 cache_only = map->cache_only; 2862 map->cache_bypass = true; 2863 map->cache_only = false; 2864 2865 ret = _regmap_read(map, reg, val); 2866 2867 map->cache_bypass = bypass; 2868 map->cache_only = cache_only; 2869 2870 map->unlock(map->lock_arg); 2871 2872 return ret; 2873 } 2874 EXPORT_SYMBOL_GPL(regmap_read_bypassed); 2875 2876 /** 2877 * regmap_raw_read() - Read raw data from the device 2878 * 2879 * @map: Register map to read from 2880 * @reg: First register to be read from 2881 * @val: Pointer to store read value 2882 * @val_len: Size of data to read 2883 * 2884 * A value of zero will be returned on success, a negative errno will 2885 * be returned in error cases. 2886 */ 2887 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2888 size_t val_len) 2889 { 2890 size_t val_bytes = map->format.val_bytes; 2891 size_t val_count = val_len / val_bytes; 2892 unsigned int v; 2893 int ret, i; 2894 2895 if (val_len % map->format.val_bytes) 2896 return -EINVAL; 2897 if (!IS_ALIGNED(reg, map->reg_stride)) 2898 return -EINVAL; 2899 if (val_count == 0) 2900 return -EINVAL; 2901 2902 map->lock(map->lock_arg); 2903 2904 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 2905 map->cache_type == REGCACHE_NONE) { 2906 size_t chunk_count, chunk_bytes; 2907 size_t chunk_regs = val_count; 2908 2909 if (!map->cache_bypass && map->cache_only) { 2910 ret = -EBUSY; 2911 goto out; 2912 } 2913 2914 if (!map->read) { 2915 ret = -ENOTSUPP; 2916 goto out; 2917 } 2918 2919 if (map->use_single_read) 2920 chunk_regs = 1; 2921 else if (map->max_raw_read && val_len > map->max_raw_read) 2922 chunk_regs = map->max_raw_read / val_bytes; 2923 2924 chunk_count = val_count / chunk_regs; 2925 chunk_bytes = chunk_regs * val_bytes; 2926 2927 /* Read bytes that fit into whole chunks */ 2928 for (i = 0; i < chunk_count; i++) { 2929 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false); 2930 if (ret != 0) 2931 goto out; 2932 2933 reg += regmap_get_offset(map, chunk_regs); 2934 val += chunk_bytes; 2935 val_len -= chunk_bytes; 2936 } 2937 2938 /* Read remaining bytes */ 2939 if (val_len) { 2940 ret = _regmap_raw_read(map, reg, val, val_len, false); 2941 if (ret != 0) 2942 goto out; 2943 } 2944 } else { 2945 /* Otherwise go word by word for the cache; should be low 2946 * cost as we expect to hit the cache. 2947 */ 2948 for (i = 0; i < val_count; i++) { 2949 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 2950 &v); 2951 if (ret != 0) 2952 goto out; 2953 2954 map->format.format_val(val + (i * val_bytes), v, 0); 2955 } 2956 } 2957 2958 out: 2959 map->unlock(map->lock_arg); 2960 2961 return ret; 2962 } 2963 EXPORT_SYMBOL_GPL(regmap_raw_read); 2964 2965 /** 2966 * regmap_noinc_read(): Read data from a register without incrementing the 2967 * register number 2968 * 2969 * @map: Register map to read from 2970 * @reg: Register to read from 2971 * @val: Pointer to data buffer 2972 * @val_len: Length of output buffer in bytes. 2973 * 2974 * The regmap API usually assumes that bulk read operations will read a 2975 * range of registers. Some devices have certain registers for which a read 2976 * operation read will read from an internal FIFO. 2977 * 2978 * The target register must be volatile but registers after it can be 2979 * completely unrelated cacheable registers. 2980 * 2981 * This will attempt multiple reads as required to read val_len bytes. 2982 * 2983 * A value of zero will be returned on success, a negative errno will be 2984 * returned in error cases. 2985 */ 2986 int regmap_noinc_read(struct regmap *map, unsigned int reg, 2987 void *val, size_t val_len) 2988 { 2989 size_t read_len; 2990 int ret; 2991 2992 if (!map->read) 2993 return -ENOTSUPP; 2994 2995 if (val_len % map->format.val_bytes) 2996 return -EINVAL; 2997 if (!IS_ALIGNED(reg, map->reg_stride)) 2998 return -EINVAL; 2999 if (val_len == 0) 3000 return -EINVAL; 3001 3002 map->lock(map->lock_arg); 3003 3004 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) { 3005 ret = -EINVAL; 3006 goto out_unlock; 3007 } 3008 3009 /* 3010 * We have not defined the FIFO semantics for cache, as the 3011 * cache is just one value deep. Should we return the last 3012 * written value? Just avoid this by always reading the FIFO 3013 * even when using cache. Cache only will not work. 3014 */ 3015 if (!map->cache_bypass && map->cache_only) { 3016 ret = -EBUSY; 3017 goto out_unlock; 3018 } 3019 3020 /* Use the accelerated operation if we can */ 3021 if (map->bus->reg_noinc_read) { 3022 ret = regmap_noinc_readwrite(map, reg, val, val_len, false); 3023 goto out_unlock; 3024 } 3025 3026 while (val_len) { 3027 if (map->max_raw_read && map->max_raw_read < val_len) 3028 read_len = map->max_raw_read; 3029 else 3030 read_len = val_len; 3031 ret = _regmap_raw_read(map, reg, val, read_len, true); 3032 if (ret) 3033 goto out_unlock; 3034 val = ((u8 *)val) + read_len; 3035 val_len -= read_len; 3036 } 3037 3038 out_unlock: 3039 map->unlock(map->lock_arg); 3040 return ret; 3041 } 3042 EXPORT_SYMBOL_GPL(regmap_noinc_read); 3043 3044 /** 3045 * regmap_field_read(): Read a value to a single register field 3046 * 3047 * @field: Register field to read from 3048 * @val: Pointer to store read value 3049 * 3050 * A value of zero will be returned on success, a negative errno will 3051 * be returned in error cases. 3052 */ 3053 int regmap_field_read(struct regmap_field *field, unsigned int *val) 3054 { 3055 int ret; 3056 unsigned int reg_val; 3057 ret = regmap_read(field->regmap, field->reg, ®_val); 3058 if (ret != 0) 3059 return ret; 3060 3061 reg_val &= field->mask; 3062 reg_val >>= field->shift; 3063 *val = reg_val; 3064 3065 return ret; 3066 } 3067 EXPORT_SYMBOL_GPL(regmap_field_read); 3068 3069 /** 3070 * regmap_fields_read() - Read a value to a single register field with port ID 3071 * 3072 * @field: Register field to read from 3073 * @id: port ID 3074 * @val: Pointer to store read value 3075 * 3076 * A value of zero will be returned on success, a negative errno will 3077 * be returned in error cases. 3078 */ 3079 int regmap_fields_read(struct regmap_field *field, unsigned int id, 3080 unsigned int *val) 3081 { 3082 int ret; 3083 unsigned int reg_val; 3084 3085 if (id >= field->id_size) 3086 return -EINVAL; 3087 3088 ret = regmap_read(field->regmap, 3089 field->reg + (field->id_offset * id), 3090 ®_val); 3091 if (ret != 0) 3092 return ret; 3093 3094 reg_val &= field->mask; 3095 reg_val >>= field->shift; 3096 *val = reg_val; 3097 3098 return ret; 3099 } 3100 EXPORT_SYMBOL_GPL(regmap_fields_read); 3101 3102 /** 3103 * regmap_bulk_read() - Read multiple registers from the device 3104 * 3105 * @map: Register map to read from 3106 * @reg: First register to be read from 3107 * @val: Pointer to store read value, in native register size for device 3108 * @val_count: Number of registers to read 3109 * 3110 * A value of zero will be returned on success, a negative errno will 3111 * be returned in error cases. 3112 */ 3113 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 3114 size_t val_count) 3115 { 3116 int ret, i; 3117 size_t val_bytes = map->format.val_bytes; 3118 bool vol = regmap_volatile_range(map, reg, val_count); 3119 3120 if (!IS_ALIGNED(reg, map->reg_stride)) 3121 return -EINVAL; 3122 if (val_count == 0) 3123 return -EINVAL; 3124 3125 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { 3126 ret = regmap_raw_read(map, reg, val, val_bytes * val_count); 3127 if (ret != 0) 3128 return ret; 3129 3130 for (i = 0; i < val_count * val_bytes; i += val_bytes) 3131 map->format.parse_inplace(val + i); 3132 } else { 3133 u32 *u32 = val; 3134 u16 *u16 = val; 3135 u8 *u8 = val; 3136 3137 map->lock(map->lock_arg); 3138 3139 for (i = 0; i < val_count; i++) { 3140 unsigned int ival; 3141 3142 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 3143 &ival); 3144 if (ret != 0) 3145 goto out; 3146 3147 switch (map->format.val_bytes) { 3148 case 4: 3149 u32[i] = ival; 3150 break; 3151 case 2: 3152 u16[i] = ival; 3153 break; 3154 case 1: 3155 u8[i] = ival; 3156 break; 3157 default: 3158 ret = -EINVAL; 3159 goto out; 3160 } 3161 } 3162 3163 out: 3164 map->unlock(map->lock_arg); 3165 } 3166 3167 if (!ret) 3168 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count); 3169 3170 return ret; 3171 } 3172 EXPORT_SYMBOL_GPL(regmap_bulk_read); 3173 3174 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 3175 unsigned int mask, unsigned int val, 3176 bool *change, bool force_write) 3177 { 3178 int ret; 3179 unsigned int tmp, orig; 3180 3181 if (change) 3182 *change = false; 3183 3184 if (regmap_volatile(map, reg) && map->reg_update_bits) { 3185 reg = regmap_reg_addr(map, reg); 3186 ret = map->reg_update_bits(map->bus_context, reg, mask, val); 3187 if (ret == 0 && change) 3188 *change = true; 3189 } else { 3190 ret = _regmap_read(map, reg, &orig); 3191 if (ret != 0) 3192 return ret; 3193 3194 tmp = orig & ~mask; 3195 tmp |= val & mask; 3196 3197 if (force_write || (tmp != orig) || map->force_write_field) { 3198 ret = _regmap_write(map, reg, tmp); 3199 if (ret == 0 && change) 3200 *change = true; 3201 } 3202 } 3203 3204 return ret; 3205 } 3206 3207 /** 3208 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register 3209 * 3210 * @map: Register map to update 3211 * @reg: Register to update 3212 * @mask: Bitmask to change 3213 * @val: New value for bitmask 3214 * @change: Boolean indicating if a write was done 3215 * @async: Boolean indicating asynchronously 3216 * @force: Boolean indicating use force update 3217 * 3218 * Perform a read/modify/write cycle on a register map with change, async, force 3219 * options. 3220 * 3221 * If async is true: 3222 * 3223 * With most buses the read must be done synchronously so this is most useful 3224 * for devices with a cache which do not need to interact with the hardware to 3225 * determine the current register value. 3226 * 3227 * Returns zero for success, a negative number on error. 3228 */ 3229 int regmap_update_bits_base(struct regmap *map, unsigned int reg, 3230 unsigned int mask, unsigned int val, 3231 bool *change, bool async, bool force) 3232 { 3233 int ret; 3234 3235 map->lock(map->lock_arg); 3236 3237 map->async = async; 3238 3239 ret = _regmap_update_bits(map, reg, mask, val, change, force); 3240 3241 map->async = false; 3242 3243 map->unlock(map->lock_arg); 3244 3245 return ret; 3246 } 3247 EXPORT_SYMBOL_GPL(regmap_update_bits_base); 3248 3249 /** 3250 * regmap_test_bits() - Check if all specified bits are set in a register. 3251 * 3252 * @map: Register map to operate on 3253 * @reg: Register to read from 3254 * @bits: Bits to test 3255 * 3256 * Returns 0 if at least one of the tested bits is not set, 1 if all tested 3257 * bits are set and a negative error number if the underlying regmap_read() 3258 * fails. 3259 */ 3260 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits) 3261 { 3262 unsigned int val, ret; 3263 3264 ret = regmap_read(map, reg, &val); 3265 if (ret) 3266 return ret; 3267 3268 return (val & bits) == bits; 3269 } 3270 EXPORT_SYMBOL_GPL(regmap_test_bits); 3271 3272 void regmap_async_complete_cb(struct regmap_async *async, int ret) 3273 { 3274 struct regmap *map = async->map; 3275 bool wake; 3276 3277 trace_regmap_async_io_complete(map); 3278 3279 spin_lock(&map->async_lock); 3280 list_move(&async->list, &map->async_free); 3281 wake = list_empty(&map->async_list); 3282 3283 if (ret != 0) 3284 map->async_ret = ret; 3285 3286 spin_unlock(&map->async_lock); 3287 3288 if (wake) 3289 wake_up(&map->async_waitq); 3290 } 3291 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 3292 3293 static int regmap_async_is_done(struct regmap *map) 3294 { 3295 unsigned long flags; 3296 int ret; 3297 3298 spin_lock_irqsave(&map->async_lock, flags); 3299 ret = list_empty(&map->async_list); 3300 spin_unlock_irqrestore(&map->async_lock, flags); 3301 3302 return ret; 3303 } 3304 3305 /** 3306 * regmap_async_complete - Ensure all asynchronous I/O has completed. 3307 * 3308 * @map: Map to operate on. 3309 * 3310 * Blocks until any pending asynchronous I/O has completed. Returns 3311 * an error code for any failed I/O operations. 3312 */ 3313 int regmap_async_complete(struct regmap *map) 3314 { 3315 unsigned long flags; 3316 int ret; 3317 3318 /* Nothing to do with no async support */ 3319 if (!map->bus || !map->bus->async_write) 3320 return 0; 3321 3322 trace_regmap_async_complete_start(map); 3323 3324 wait_event(map->async_waitq, regmap_async_is_done(map)); 3325 3326 spin_lock_irqsave(&map->async_lock, flags); 3327 ret = map->async_ret; 3328 map->async_ret = 0; 3329 spin_unlock_irqrestore(&map->async_lock, flags); 3330 3331 trace_regmap_async_complete_done(map); 3332 3333 return ret; 3334 } 3335 EXPORT_SYMBOL_GPL(regmap_async_complete); 3336 3337 /** 3338 * regmap_register_patch - Register and apply register updates to be applied 3339 * on device initialistion 3340 * 3341 * @map: Register map to apply updates to. 3342 * @regs: Values to update. 3343 * @num_regs: Number of entries in regs. 3344 * 3345 * Register a set of register updates to be applied to the device 3346 * whenever the device registers are synchronised with the cache and 3347 * apply them immediately. Typically this is used to apply 3348 * corrections to be applied to the device defaults on startup, such 3349 * as the updates some vendors provide to undocumented registers. 3350 * 3351 * The caller must ensure that this function cannot be called 3352 * concurrently with either itself or regcache_sync(). 3353 */ 3354 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, 3355 int num_regs) 3356 { 3357 struct reg_sequence *p; 3358 int ret; 3359 bool bypass; 3360 3361 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", 3362 num_regs)) 3363 return 0; 3364 3365 p = krealloc(map->patch, 3366 sizeof(struct reg_sequence) * (map->patch_regs + num_regs), 3367 GFP_KERNEL); 3368 if (p) { 3369 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 3370 map->patch = p; 3371 map->patch_regs += num_regs; 3372 } else { 3373 return -ENOMEM; 3374 } 3375 3376 map->lock(map->lock_arg); 3377 3378 bypass = map->cache_bypass; 3379 3380 map->cache_bypass = true; 3381 map->async = true; 3382 3383 ret = _regmap_multi_reg_write(map, regs, num_regs); 3384 3385 map->async = false; 3386 map->cache_bypass = bypass; 3387 3388 map->unlock(map->lock_arg); 3389 3390 regmap_async_complete(map); 3391 3392 return ret; 3393 } 3394 EXPORT_SYMBOL_GPL(regmap_register_patch); 3395 3396 /** 3397 * regmap_get_val_bytes() - Report the size of a register value 3398 * 3399 * @map: Register map to operate on. 3400 * 3401 * Report the size of a register value, mainly intended to for use by 3402 * generic infrastructure built on top of regmap. 3403 */ 3404 int regmap_get_val_bytes(struct regmap *map) 3405 { 3406 if (map->format.format_write) 3407 return -EINVAL; 3408 3409 return map->format.val_bytes; 3410 } 3411 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 3412 3413 /** 3414 * regmap_get_max_register() - Report the max register value 3415 * 3416 * @map: Register map to operate on. 3417 * 3418 * Report the max register value, mainly intended to for use by 3419 * generic infrastructure built on top of regmap. 3420 */ 3421 int regmap_get_max_register(struct regmap *map) 3422 { 3423 return map->max_register ? map->max_register : -EINVAL; 3424 } 3425 EXPORT_SYMBOL_GPL(regmap_get_max_register); 3426 3427 /** 3428 * regmap_get_reg_stride() - Report the register address stride 3429 * 3430 * @map: Register map to operate on. 3431 * 3432 * Report the register address stride, mainly intended to for use by 3433 * generic infrastructure built on top of regmap. 3434 */ 3435 int regmap_get_reg_stride(struct regmap *map) 3436 { 3437 return map->reg_stride; 3438 } 3439 EXPORT_SYMBOL_GPL(regmap_get_reg_stride); 3440 3441 /** 3442 * regmap_might_sleep() - Returns whether a regmap access might sleep. 3443 * 3444 * @map: Register map to operate on. 3445 * 3446 * Returns true if an access to the register might sleep, else false. 3447 */ 3448 bool regmap_might_sleep(struct regmap *map) 3449 { 3450 return map->can_sleep; 3451 } 3452 EXPORT_SYMBOL_GPL(regmap_might_sleep); 3453 3454 int regmap_parse_val(struct regmap *map, const void *buf, 3455 unsigned int *val) 3456 { 3457 if (!map->format.parse_val) 3458 return -EINVAL; 3459 3460 *val = map->format.parse_val(buf); 3461 3462 return 0; 3463 } 3464 EXPORT_SYMBOL_GPL(regmap_parse_val); 3465 3466 static int __init regmap_initcall(void) 3467 { 3468 regmap_debugfs_initcall(); 3469 3470 return 0; 3471 } 3472 postcore_initcall(regmap_initcall); 3473