xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision a06c488d)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25 
26 #include "internal.h"
27 
28 /*
29  * Sometimes for failures during very early init the trace
30  * infrastructure isn't available early enough to be used.  For this
31  * sort of problem defining LOG_DEVICE will add printks for basic
32  * register I/O on a specific device.
33  */
34 #undef LOG_DEVICE
35 
36 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
37 			       unsigned int mask, unsigned int val,
38 			       bool *change, bool force_write);
39 
40 static int _regmap_bus_reg_read(void *context, unsigned int reg,
41 				unsigned int *val);
42 static int _regmap_bus_read(void *context, unsigned int reg,
43 			    unsigned int *val);
44 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
45 				       unsigned int val);
46 static int _regmap_bus_reg_write(void *context, unsigned int reg,
47 				 unsigned int val);
48 static int _regmap_bus_raw_write(void *context, unsigned int reg,
49 				 unsigned int val);
50 
51 bool regmap_reg_in_ranges(unsigned int reg,
52 			  const struct regmap_range *ranges,
53 			  unsigned int nranges)
54 {
55 	const struct regmap_range *r;
56 	int i;
57 
58 	for (i = 0, r = ranges; i < nranges; i++, r++)
59 		if (regmap_reg_in_range(reg, r))
60 			return true;
61 	return false;
62 }
63 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
64 
65 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
66 			      const struct regmap_access_table *table)
67 {
68 	/* Check "no ranges" first */
69 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
70 		return false;
71 
72 	/* In case zero "yes ranges" are supplied, any reg is OK */
73 	if (!table->n_yes_ranges)
74 		return true;
75 
76 	return regmap_reg_in_ranges(reg, table->yes_ranges,
77 				    table->n_yes_ranges);
78 }
79 EXPORT_SYMBOL_GPL(regmap_check_range_table);
80 
81 bool regmap_writeable(struct regmap *map, unsigned int reg)
82 {
83 	if (map->max_register && reg > map->max_register)
84 		return false;
85 
86 	if (map->writeable_reg)
87 		return map->writeable_reg(map->dev, reg);
88 
89 	if (map->wr_table)
90 		return regmap_check_range_table(map, reg, map->wr_table);
91 
92 	return true;
93 }
94 
95 bool regmap_readable(struct regmap *map, unsigned int reg)
96 {
97 	if (!map->reg_read)
98 		return false;
99 
100 	if (map->max_register && reg > map->max_register)
101 		return false;
102 
103 	if (map->format.format_write)
104 		return false;
105 
106 	if (map->readable_reg)
107 		return map->readable_reg(map->dev, reg);
108 
109 	if (map->rd_table)
110 		return regmap_check_range_table(map, reg, map->rd_table);
111 
112 	return true;
113 }
114 
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117 	if (!map->format.format_write && !regmap_readable(map, reg))
118 		return false;
119 
120 	if (map->volatile_reg)
121 		return map->volatile_reg(map->dev, reg);
122 
123 	if (map->volatile_table)
124 		return regmap_check_range_table(map, reg, map->volatile_table);
125 
126 	if (map->cache_ops)
127 		return false;
128 	else
129 		return true;
130 }
131 
132 bool regmap_precious(struct regmap *map, unsigned int reg)
133 {
134 	if (!regmap_readable(map, reg))
135 		return false;
136 
137 	if (map->precious_reg)
138 		return map->precious_reg(map->dev, reg);
139 
140 	if (map->precious_table)
141 		return regmap_check_range_table(map, reg, map->precious_table);
142 
143 	return false;
144 }
145 
146 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
147 	size_t num)
148 {
149 	unsigned int i;
150 
151 	for (i = 0; i < num; i++)
152 		if (!regmap_volatile(map, reg + i))
153 			return false;
154 
155 	return true;
156 }
157 
158 static void regmap_format_2_6_write(struct regmap *map,
159 				     unsigned int reg, unsigned int val)
160 {
161 	u8 *out = map->work_buf;
162 
163 	*out = (reg << 6) | val;
164 }
165 
166 static void regmap_format_4_12_write(struct regmap *map,
167 				     unsigned int reg, unsigned int val)
168 {
169 	__be16 *out = map->work_buf;
170 	*out = cpu_to_be16((reg << 12) | val);
171 }
172 
173 static void regmap_format_7_9_write(struct regmap *map,
174 				    unsigned int reg, unsigned int val)
175 {
176 	__be16 *out = map->work_buf;
177 	*out = cpu_to_be16((reg << 9) | val);
178 }
179 
180 static void regmap_format_10_14_write(struct regmap *map,
181 				    unsigned int reg, unsigned int val)
182 {
183 	u8 *out = map->work_buf;
184 
185 	out[2] = val;
186 	out[1] = (val >> 8) | (reg << 6);
187 	out[0] = reg >> 2;
188 }
189 
190 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 {
192 	u8 *b = buf;
193 
194 	b[0] = val << shift;
195 }
196 
197 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 {
199 	__be16 *b = buf;
200 
201 	b[0] = cpu_to_be16(val << shift);
202 }
203 
204 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
205 {
206 	__le16 *b = buf;
207 
208 	b[0] = cpu_to_le16(val << shift);
209 }
210 
211 static void regmap_format_16_native(void *buf, unsigned int val,
212 				    unsigned int shift)
213 {
214 	*(u16 *)buf = val << shift;
215 }
216 
217 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
218 {
219 	u8 *b = buf;
220 
221 	val <<= shift;
222 
223 	b[0] = val >> 16;
224 	b[1] = val >> 8;
225 	b[2] = val;
226 }
227 
228 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
229 {
230 	__be32 *b = buf;
231 
232 	b[0] = cpu_to_be32(val << shift);
233 }
234 
235 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
236 {
237 	__le32 *b = buf;
238 
239 	b[0] = cpu_to_le32(val << shift);
240 }
241 
242 static void regmap_format_32_native(void *buf, unsigned int val,
243 				    unsigned int shift)
244 {
245 	*(u32 *)buf = val << shift;
246 }
247 
248 #ifdef CONFIG_64BIT
249 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
250 {
251 	__be64 *b = buf;
252 
253 	b[0] = cpu_to_be64((u64)val << shift);
254 }
255 
256 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
257 {
258 	__le64 *b = buf;
259 
260 	b[0] = cpu_to_le64((u64)val << shift);
261 }
262 
263 static void regmap_format_64_native(void *buf, unsigned int val,
264 				    unsigned int shift)
265 {
266 	*(u64 *)buf = (u64)val << shift;
267 }
268 #endif
269 
270 static void regmap_parse_inplace_noop(void *buf)
271 {
272 }
273 
274 static unsigned int regmap_parse_8(const void *buf)
275 {
276 	const u8 *b = buf;
277 
278 	return b[0];
279 }
280 
281 static unsigned int regmap_parse_16_be(const void *buf)
282 {
283 	const __be16 *b = buf;
284 
285 	return be16_to_cpu(b[0]);
286 }
287 
288 static unsigned int regmap_parse_16_le(const void *buf)
289 {
290 	const __le16 *b = buf;
291 
292 	return le16_to_cpu(b[0]);
293 }
294 
295 static void regmap_parse_16_be_inplace(void *buf)
296 {
297 	__be16 *b = buf;
298 
299 	b[0] = be16_to_cpu(b[0]);
300 }
301 
302 static void regmap_parse_16_le_inplace(void *buf)
303 {
304 	__le16 *b = buf;
305 
306 	b[0] = le16_to_cpu(b[0]);
307 }
308 
309 static unsigned int regmap_parse_16_native(const void *buf)
310 {
311 	return *(u16 *)buf;
312 }
313 
314 static unsigned int regmap_parse_24(const void *buf)
315 {
316 	const u8 *b = buf;
317 	unsigned int ret = b[2];
318 	ret |= ((unsigned int)b[1]) << 8;
319 	ret |= ((unsigned int)b[0]) << 16;
320 
321 	return ret;
322 }
323 
324 static unsigned int regmap_parse_32_be(const void *buf)
325 {
326 	const __be32 *b = buf;
327 
328 	return be32_to_cpu(b[0]);
329 }
330 
331 static unsigned int regmap_parse_32_le(const void *buf)
332 {
333 	const __le32 *b = buf;
334 
335 	return le32_to_cpu(b[0]);
336 }
337 
338 static void regmap_parse_32_be_inplace(void *buf)
339 {
340 	__be32 *b = buf;
341 
342 	b[0] = be32_to_cpu(b[0]);
343 }
344 
345 static void regmap_parse_32_le_inplace(void *buf)
346 {
347 	__le32 *b = buf;
348 
349 	b[0] = le32_to_cpu(b[0]);
350 }
351 
352 static unsigned int regmap_parse_32_native(const void *buf)
353 {
354 	return *(u32 *)buf;
355 }
356 
357 #ifdef CONFIG_64BIT
358 static unsigned int regmap_parse_64_be(const void *buf)
359 {
360 	const __be64 *b = buf;
361 
362 	return be64_to_cpu(b[0]);
363 }
364 
365 static unsigned int regmap_parse_64_le(const void *buf)
366 {
367 	const __le64 *b = buf;
368 
369 	return le64_to_cpu(b[0]);
370 }
371 
372 static void regmap_parse_64_be_inplace(void *buf)
373 {
374 	__be64 *b = buf;
375 
376 	b[0] = be64_to_cpu(b[0]);
377 }
378 
379 static void regmap_parse_64_le_inplace(void *buf)
380 {
381 	__le64 *b = buf;
382 
383 	b[0] = le64_to_cpu(b[0]);
384 }
385 
386 static unsigned int regmap_parse_64_native(const void *buf)
387 {
388 	return *(u64 *)buf;
389 }
390 #endif
391 
392 static void regmap_lock_mutex(void *__map)
393 {
394 	struct regmap *map = __map;
395 	mutex_lock(&map->mutex);
396 }
397 
398 static void regmap_unlock_mutex(void *__map)
399 {
400 	struct regmap *map = __map;
401 	mutex_unlock(&map->mutex);
402 }
403 
404 static void regmap_lock_spinlock(void *__map)
405 __acquires(&map->spinlock)
406 {
407 	struct regmap *map = __map;
408 	unsigned long flags;
409 
410 	spin_lock_irqsave(&map->spinlock, flags);
411 	map->spinlock_flags = flags;
412 }
413 
414 static void regmap_unlock_spinlock(void *__map)
415 __releases(&map->spinlock)
416 {
417 	struct regmap *map = __map;
418 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
419 }
420 
421 static void dev_get_regmap_release(struct device *dev, void *res)
422 {
423 	/*
424 	 * We don't actually have anything to do here; the goal here
425 	 * is not to manage the regmap but to provide a simple way to
426 	 * get the regmap back given a struct device.
427 	 */
428 }
429 
430 static bool _regmap_range_add(struct regmap *map,
431 			      struct regmap_range_node *data)
432 {
433 	struct rb_root *root = &map->range_tree;
434 	struct rb_node **new = &(root->rb_node), *parent = NULL;
435 
436 	while (*new) {
437 		struct regmap_range_node *this =
438 			container_of(*new, struct regmap_range_node, node);
439 
440 		parent = *new;
441 		if (data->range_max < this->range_min)
442 			new = &((*new)->rb_left);
443 		else if (data->range_min > this->range_max)
444 			new = &((*new)->rb_right);
445 		else
446 			return false;
447 	}
448 
449 	rb_link_node(&data->node, parent, new);
450 	rb_insert_color(&data->node, root);
451 
452 	return true;
453 }
454 
455 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
456 						      unsigned int reg)
457 {
458 	struct rb_node *node = map->range_tree.rb_node;
459 
460 	while (node) {
461 		struct regmap_range_node *this =
462 			container_of(node, struct regmap_range_node, node);
463 
464 		if (reg < this->range_min)
465 			node = node->rb_left;
466 		else if (reg > this->range_max)
467 			node = node->rb_right;
468 		else
469 			return this;
470 	}
471 
472 	return NULL;
473 }
474 
475 static void regmap_range_exit(struct regmap *map)
476 {
477 	struct rb_node *next;
478 	struct regmap_range_node *range_node;
479 
480 	next = rb_first(&map->range_tree);
481 	while (next) {
482 		range_node = rb_entry(next, struct regmap_range_node, node);
483 		next = rb_next(&range_node->node);
484 		rb_erase(&range_node->node, &map->range_tree);
485 		kfree(range_node);
486 	}
487 
488 	kfree(map->selector_work_buf);
489 }
490 
491 int regmap_attach_dev(struct device *dev, struct regmap *map,
492 		      const struct regmap_config *config)
493 {
494 	struct regmap **m;
495 
496 	map->dev = dev;
497 
498 	regmap_debugfs_init(map, config->name);
499 
500 	/* Add a devres resource for dev_get_regmap() */
501 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
502 	if (!m) {
503 		regmap_debugfs_exit(map);
504 		return -ENOMEM;
505 	}
506 	*m = map;
507 	devres_add(dev, m);
508 
509 	return 0;
510 }
511 EXPORT_SYMBOL_GPL(regmap_attach_dev);
512 
513 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
514 					const struct regmap_config *config)
515 {
516 	enum regmap_endian endian;
517 
518 	/* Retrieve the endianness specification from the regmap config */
519 	endian = config->reg_format_endian;
520 
521 	/* If the regmap config specified a non-default value, use that */
522 	if (endian != REGMAP_ENDIAN_DEFAULT)
523 		return endian;
524 
525 	/* Retrieve the endianness specification from the bus config */
526 	if (bus && bus->reg_format_endian_default)
527 		endian = bus->reg_format_endian_default;
528 
529 	/* If the bus specified a non-default value, use that */
530 	if (endian != REGMAP_ENDIAN_DEFAULT)
531 		return endian;
532 
533 	/* Use this if no other value was found */
534 	return REGMAP_ENDIAN_BIG;
535 }
536 
537 enum regmap_endian regmap_get_val_endian(struct device *dev,
538 					 const struct regmap_bus *bus,
539 					 const struct regmap_config *config)
540 {
541 	struct device_node *np;
542 	enum regmap_endian endian;
543 
544 	/* Retrieve the endianness specification from the regmap config */
545 	endian = config->val_format_endian;
546 
547 	/* If the regmap config specified a non-default value, use that */
548 	if (endian != REGMAP_ENDIAN_DEFAULT)
549 		return endian;
550 
551 	/* If the dev and dev->of_node exist try to get endianness from DT */
552 	if (dev && dev->of_node) {
553 		np = dev->of_node;
554 
555 		/* Parse the device's DT node for an endianness specification */
556 		if (of_property_read_bool(np, "big-endian"))
557 			endian = REGMAP_ENDIAN_BIG;
558 		else if (of_property_read_bool(np, "little-endian"))
559 			endian = REGMAP_ENDIAN_LITTLE;
560 		else if (of_property_read_bool(np, "native-endian"))
561 			endian = REGMAP_ENDIAN_NATIVE;
562 
563 		/* If the endianness was specified in DT, use that */
564 		if (endian != REGMAP_ENDIAN_DEFAULT)
565 			return endian;
566 	}
567 
568 	/* Retrieve the endianness specification from the bus config */
569 	if (bus && bus->val_format_endian_default)
570 		endian = bus->val_format_endian_default;
571 
572 	/* If the bus specified a non-default value, use that */
573 	if (endian != REGMAP_ENDIAN_DEFAULT)
574 		return endian;
575 
576 	/* Use this if no other value was found */
577 	return REGMAP_ENDIAN_BIG;
578 }
579 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
580 
581 struct regmap *__regmap_init(struct device *dev,
582 			     const struct regmap_bus *bus,
583 			     void *bus_context,
584 			     const struct regmap_config *config,
585 			     struct lock_class_key *lock_key,
586 			     const char *lock_name)
587 {
588 	struct regmap *map;
589 	int ret = -EINVAL;
590 	enum regmap_endian reg_endian, val_endian;
591 	int i, j;
592 
593 	if (!config)
594 		goto err;
595 
596 	map = kzalloc(sizeof(*map), GFP_KERNEL);
597 	if (map == NULL) {
598 		ret = -ENOMEM;
599 		goto err;
600 	}
601 
602 	if (config->lock && config->unlock) {
603 		map->lock = config->lock;
604 		map->unlock = config->unlock;
605 		map->lock_arg = config->lock_arg;
606 	} else {
607 		if ((bus && bus->fast_io) ||
608 		    config->fast_io) {
609 			spin_lock_init(&map->spinlock);
610 			map->lock = regmap_lock_spinlock;
611 			map->unlock = regmap_unlock_spinlock;
612 			lockdep_set_class_and_name(&map->spinlock,
613 						   lock_key, lock_name);
614 		} else {
615 			mutex_init(&map->mutex);
616 			map->lock = regmap_lock_mutex;
617 			map->unlock = regmap_unlock_mutex;
618 			lockdep_set_class_and_name(&map->mutex,
619 						   lock_key, lock_name);
620 		}
621 		map->lock_arg = map;
622 	}
623 
624 	/*
625 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
626 	 * scratch buffers with sleeping allocations.
627 	 */
628 	if ((bus && bus->fast_io) || config->fast_io)
629 		map->alloc_flags = GFP_ATOMIC;
630 	else
631 		map->alloc_flags = GFP_KERNEL;
632 
633 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
634 	map->format.pad_bytes = config->pad_bits / 8;
635 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
636 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
637 			config->val_bits + config->pad_bits, 8);
638 	map->reg_shift = config->pad_bits % 8;
639 	if (config->reg_stride)
640 		map->reg_stride = config->reg_stride;
641 	else
642 		map->reg_stride = 1;
643 	map->use_single_read = config->use_single_rw || !bus || !bus->read;
644 	map->use_single_write = config->use_single_rw || !bus || !bus->write;
645 	map->can_multi_write = config->can_multi_write && bus && bus->write;
646 	if (bus) {
647 		map->max_raw_read = bus->max_raw_read;
648 		map->max_raw_write = bus->max_raw_write;
649 	}
650 	map->dev = dev;
651 	map->bus = bus;
652 	map->bus_context = bus_context;
653 	map->max_register = config->max_register;
654 	map->wr_table = config->wr_table;
655 	map->rd_table = config->rd_table;
656 	map->volatile_table = config->volatile_table;
657 	map->precious_table = config->precious_table;
658 	map->writeable_reg = config->writeable_reg;
659 	map->readable_reg = config->readable_reg;
660 	map->volatile_reg = config->volatile_reg;
661 	map->precious_reg = config->precious_reg;
662 	map->cache_type = config->cache_type;
663 	map->name = config->name;
664 
665 	spin_lock_init(&map->async_lock);
666 	INIT_LIST_HEAD(&map->async_list);
667 	INIT_LIST_HEAD(&map->async_free);
668 	init_waitqueue_head(&map->async_waitq);
669 
670 	if (config->read_flag_mask || config->write_flag_mask) {
671 		map->read_flag_mask = config->read_flag_mask;
672 		map->write_flag_mask = config->write_flag_mask;
673 	} else if (bus) {
674 		map->read_flag_mask = bus->read_flag_mask;
675 	}
676 
677 	if (!bus) {
678 		map->reg_read  = config->reg_read;
679 		map->reg_write = config->reg_write;
680 
681 		map->defer_caching = false;
682 		goto skip_format_initialization;
683 	} else if (!bus->read || !bus->write) {
684 		map->reg_read = _regmap_bus_reg_read;
685 		map->reg_write = _regmap_bus_reg_write;
686 
687 		map->defer_caching = false;
688 		goto skip_format_initialization;
689 	} else {
690 		map->reg_read  = _regmap_bus_read;
691 		map->reg_update_bits = bus->reg_update_bits;
692 	}
693 
694 	reg_endian = regmap_get_reg_endian(bus, config);
695 	val_endian = regmap_get_val_endian(dev, bus, config);
696 
697 	switch (config->reg_bits + map->reg_shift) {
698 	case 2:
699 		switch (config->val_bits) {
700 		case 6:
701 			map->format.format_write = regmap_format_2_6_write;
702 			break;
703 		default:
704 			goto err_map;
705 		}
706 		break;
707 
708 	case 4:
709 		switch (config->val_bits) {
710 		case 12:
711 			map->format.format_write = regmap_format_4_12_write;
712 			break;
713 		default:
714 			goto err_map;
715 		}
716 		break;
717 
718 	case 7:
719 		switch (config->val_bits) {
720 		case 9:
721 			map->format.format_write = regmap_format_7_9_write;
722 			break;
723 		default:
724 			goto err_map;
725 		}
726 		break;
727 
728 	case 10:
729 		switch (config->val_bits) {
730 		case 14:
731 			map->format.format_write = regmap_format_10_14_write;
732 			break;
733 		default:
734 			goto err_map;
735 		}
736 		break;
737 
738 	case 8:
739 		map->format.format_reg = regmap_format_8;
740 		break;
741 
742 	case 16:
743 		switch (reg_endian) {
744 		case REGMAP_ENDIAN_BIG:
745 			map->format.format_reg = regmap_format_16_be;
746 			break;
747 		case REGMAP_ENDIAN_NATIVE:
748 			map->format.format_reg = regmap_format_16_native;
749 			break;
750 		default:
751 			goto err_map;
752 		}
753 		break;
754 
755 	case 24:
756 		if (reg_endian != REGMAP_ENDIAN_BIG)
757 			goto err_map;
758 		map->format.format_reg = regmap_format_24;
759 		break;
760 
761 	case 32:
762 		switch (reg_endian) {
763 		case REGMAP_ENDIAN_BIG:
764 			map->format.format_reg = regmap_format_32_be;
765 			break;
766 		case REGMAP_ENDIAN_NATIVE:
767 			map->format.format_reg = regmap_format_32_native;
768 			break;
769 		default:
770 			goto err_map;
771 		}
772 		break;
773 
774 #ifdef CONFIG_64BIT
775 	case 64:
776 		switch (reg_endian) {
777 		case REGMAP_ENDIAN_BIG:
778 			map->format.format_reg = regmap_format_64_be;
779 			break;
780 		case REGMAP_ENDIAN_NATIVE:
781 			map->format.format_reg = regmap_format_64_native;
782 			break;
783 		default:
784 			goto err_map;
785 		}
786 		break;
787 #endif
788 
789 	default:
790 		goto err_map;
791 	}
792 
793 	if (val_endian == REGMAP_ENDIAN_NATIVE)
794 		map->format.parse_inplace = regmap_parse_inplace_noop;
795 
796 	switch (config->val_bits) {
797 	case 8:
798 		map->format.format_val = regmap_format_8;
799 		map->format.parse_val = regmap_parse_8;
800 		map->format.parse_inplace = regmap_parse_inplace_noop;
801 		break;
802 	case 16:
803 		switch (val_endian) {
804 		case REGMAP_ENDIAN_BIG:
805 			map->format.format_val = regmap_format_16_be;
806 			map->format.parse_val = regmap_parse_16_be;
807 			map->format.parse_inplace = regmap_parse_16_be_inplace;
808 			break;
809 		case REGMAP_ENDIAN_LITTLE:
810 			map->format.format_val = regmap_format_16_le;
811 			map->format.parse_val = regmap_parse_16_le;
812 			map->format.parse_inplace = regmap_parse_16_le_inplace;
813 			break;
814 		case REGMAP_ENDIAN_NATIVE:
815 			map->format.format_val = regmap_format_16_native;
816 			map->format.parse_val = regmap_parse_16_native;
817 			break;
818 		default:
819 			goto err_map;
820 		}
821 		break;
822 	case 24:
823 		if (val_endian != REGMAP_ENDIAN_BIG)
824 			goto err_map;
825 		map->format.format_val = regmap_format_24;
826 		map->format.parse_val = regmap_parse_24;
827 		break;
828 	case 32:
829 		switch (val_endian) {
830 		case REGMAP_ENDIAN_BIG:
831 			map->format.format_val = regmap_format_32_be;
832 			map->format.parse_val = regmap_parse_32_be;
833 			map->format.parse_inplace = regmap_parse_32_be_inplace;
834 			break;
835 		case REGMAP_ENDIAN_LITTLE:
836 			map->format.format_val = regmap_format_32_le;
837 			map->format.parse_val = regmap_parse_32_le;
838 			map->format.parse_inplace = regmap_parse_32_le_inplace;
839 			break;
840 		case REGMAP_ENDIAN_NATIVE:
841 			map->format.format_val = regmap_format_32_native;
842 			map->format.parse_val = regmap_parse_32_native;
843 			break;
844 		default:
845 			goto err_map;
846 		}
847 		break;
848 #ifdef CONFIG_64BIT
849 	case 64:
850 		switch (val_endian) {
851 		case REGMAP_ENDIAN_BIG:
852 			map->format.format_val = regmap_format_64_be;
853 			map->format.parse_val = regmap_parse_64_be;
854 			map->format.parse_inplace = regmap_parse_64_be_inplace;
855 			break;
856 		case REGMAP_ENDIAN_LITTLE:
857 			map->format.format_val = regmap_format_64_le;
858 			map->format.parse_val = regmap_parse_64_le;
859 			map->format.parse_inplace = regmap_parse_64_le_inplace;
860 			break;
861 		case REGMAP_ENDIAN_NATIVE:
862 			map->format.format_val = regmap_format_64_native;
863 			map->format.parse_val = regmap_parse_64_native;
864 			break;
865 		default:
866 			goto err_map;
867 		}
868 		break;
869 #endif
870 	}
871 
872 	if (map->format.format_write) {
873 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
874 		    (val_endian != REGMAP_ENDIAN_BIG))
875 			goto err_map;
876 		map->use_single_write = true;
877 	}
878 
879 	if (!map->format.format_write &&
880 	    !(map->format.format_reg && map->format.format_val))
881 		goto err_map;
882 
883 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
884 	if (map->work_buf == NULL) {
885 		ret = -ENOMEM;
886 		goto err_map;
887 	}
888 
889 	if (map->format.format_write) {
890 		map->defer_caching = false;
891 		map->reg_write = _regmap_bus_formatted_write;
892 	} else if (map->format.format_val) {
893 		map->defer_caching = true;
894 		map->reg_write = _regmap_bus_raw_write;
895 	}
896 
897 skip_format_initialization:
898 
899 	map->range_tree = RB_ROOT;
900 	for (i = 0; i < config->num_ranges; i++) {
901 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
902 		struct regmap_range_node *new;
903 
904 		/* Sanity check */
905 		if (range_cfg->range_max < range_cfg->range_min) {
906 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
907 				range_cfg->range_max, range_cfg->range_min);
908 			goto err_range;
909 		}
910 
911 		if (range_cfg->range_max > map->max_register) {
912 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
913 				range_cfg->range_max, map->max_register);
914 			goto err_range;
915 		}
916 
917 		if (range_cfg->selector_reg > map->max_register) {
918 			dev_err(map->dev,
919 				"Invalid range %d: selector out of map\n", i);
920 			goto err_range;
921 		}
922 
923 		if (range_cfg->window_len == 0) {
924 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
925 				i);
926 			goto err_range;
927 		}
928 
929 		/* Make sure, that this register range has no selector
930 		   or data window within its boundary */
931 		for (j = 0; j < config->num_ranges; j++) {
932 			unsigned sel_reg = config->ranges[j].selector_reg;
933 			unsigned win_min = config->ranges[j].window_start;
934 			unsigned win_max = win_min +
935 					   config->ranges[j].window_len - 1;
936 
937 			/* Allow data window inside its own virtual range */
938 			if (j == i)
939 				continue;
940 
941 			if (range_cfg->range_min <= sel_reg &&
942 			    sel_reg <= range_cfg->range_max) {
943 				dev_err(map->dev,
944 					"Range %d: selector for %d in window\n",
945 					i, j);
946 				goto err_range;
947 			}
948 
949 			if (!(win_max < range_cfg->range_min ||
950 			      win_min > range_cfg->range_max)) {
951 				dev_err(map->dev,
952 					"Range %d: window for %d in window\n",
953 					i, j);
954 				goto err_range;
955 			}
956 		}
957 
958 		new = kzalloc(sizeof(*new), GFP_KERNEL);
959 		if (new == NULL) {
960 			ret = -ENOMEM;
961 			goto err_range;
962 		}
963 
964 		new->map = map;
965 		new->name = range_cfg->name;
966 		new->range_min = range_cfg->range_min;
967 		new->range_max = range_cfg->range_max;
968 		new->selector_reg = range_cfg->selector_reg;
969 		new->selector_mask = range_cfg->selector_mask;
970 		new->selector_shift = range_cfg->selector_shift;
971 		new->window_start = range_cfg->window_start;
972 		new->window_len = range_cfg->window_len;
973 
974 		if (!_regmap_range_add(map, new)) {
975 			dev_err(map->dev, "Failed to add range %d\n", i);
976 			kfree(new);
977 			goto err_range;
978 		}
979 
980 		if (map->selector_work_buf == NULL) {
981 			map->selector_work_buf =
982 				kzalloc(map->format.buf_size, GFP_KERNEL);
983 			if (map->selector_work_buf == NULL) {
984 				ret = -ENOMEM;
985 				goto err_range;
986 			}
987 		}
988 	}
989 
990 	ret = regcache_init(map, config);
991 	if (ret != 0)
992 		goto err_range;
993 
994 	if (dev) {
995 		ret = regmap_attach_dev(dev, map, config);
996 		if (ret != 0)
997 			goto err_regcache;
998 	}
999 
1000 	return map;
1001 
1002 err_regcache:
1003 	regcache_exit(map);
1004 err_range:
1005 	regmap_range_exit(map);
1006 	kfree(map->work_buf);
1007 err_map:
1008 	kfree(map);
1009 err:
1010 	return ERR_PTR(ret);
1011 }
1012 EXPORT_SYMBOL_GPL(__regmap_init);
1013 
1014 static void devm_regmap_release(struct device *dev, void *res)
1015 {
1016 	regmap_exit(*(struct regmap **)res);
1017 }
1018 
1019 struct regmap *__devm_regmap_init(struct device *dev,
1020 				  const struct regmap_bus *bus,
1021 				  void *bus_context,
1022 				  const struct regmap_config *config,
1023 				  struct lock_class_key *lock_key,
1024 				  const char *lock_name)
1025 {
1026 	struct regmap **ptr, *regmap;
1027 
1028 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1029 	if (!ptr)
1030 		return ERR_PTR(-ENOMEM);
1031 
1032 	regmap = __regmap_init(dev, bus, bus_context, config,
1033 			       lock_key, lock_name);
1034 	if (!IS_ERR(regmap)) {
1035 		*ptr = regmap;
1036 		devres_add(dev, ptr);
1037 	} else {
1038 		devres_free(ptr);
1039 	}
1040 
1041 	return regmap;
1042 }
1043 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1044 
1045 static void regmap_field_init(struct regmap_field *rm_field,
1046 	struct regmap *regmap, struct reg_field reg_field)
1047 {
1048 	rm_field->regmap = regmap;
1049 	rm_field->reg = reg_field.reg;
1050 	rm_field->shift = reg_field.lsb;
1051 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1052 	rm_field->id_size = reg_field.id_size;
1053 	rm_field->id_offset = reg_field.id_offset;
1054 }
1055 
1056 /**
1057  * devm_regmap_field_alloc(): Allocate and initialise a register field
1058  * in a register map.
1059  *
1060  * @dev: Device that will be interacted with
1061  * @regmap: regmap bank in which this register field is located.
1062  * @reg_field: Register field with in the bank.
1063  *
1064  * The return value will be an ERR_PTR() on error or a valid pointer
1065  * to a struct regmap_field. The regmap_field will be automatically freed
1066  * by the device management code.
1067  */
1068 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1069 		struct regmap *regmap, struct reg_field reg_field)
1070 {
1071 	struct regmap_field *rm_field = devm_kzalloc(dev,
1072 					sizeof(*rm_field), GFP_KERNEL);
1073 	if (!rm_field)
1074 		return ERR_PTR(-ENOMEM);
1075 
1076 	regmap_field_init(rm_field, regmap, reg_field);
1077 
1078 	return rm_field;
1079 
1080 }
1081 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1082 
1083 /**
1084  * devm_regmap_field_free(): Free register field allocated using
1085  * devm_regmap_field_alloc. Usally drivers need not call this function,
1086  * as the memory allocated via devm will be freed as per device-driver
1087  * life-cyle.
1088  *
1089  * @dev: Device that will be interacted with
1090  * @field: regmap field which should be freed.
1091  */
1092 void devm_regmap_field_free(struct device *dev,
1093 	struct regmap_field *field)
1094 {
1095 	devm_kfree(dev, field);
1096 }
1097 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1098 
1099 /**
1100  * regmap_field_alloc(): Allocate and initialise a register field
1101  * in a register map.
1102  *
1103  * @regmap: regmap bank in which this register field is located.
1104  * @reg_field: Register field with in the bank.
1105  *
1106  * The return value will be an ERR_PTR() on error or a valid pointer
1107  * to a struct regmap_field. The regmap_field should be freed by the
1108  * user once its finished working with it using regmap_field_free().
1109  */
1110 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1111 		struct reg_field reg_field)
1112 {
1113 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1114 
1115 	if (!rm_field)
1116 		return ERR_PTR(-ENOMEM);
1117 
1118 	regmap_field_init(rm_field, regmap, reg_field);
1119 
1120 	return rm_field;
1121 }
1122 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1123 
1124 /**
1125  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1126  *
1127  * @field: regmap field which should be freed.
1128  */
1129 void regmap_field_free(struct regmap_field *field)
1130 {
1131 	kfree(field);
1132 }
1133 EXPORT_SYMBOL_GPL(regmap_field_free);
1134 
1135 /**
1136  * regmap_reinit_cache(): Reinitialise the current register cache
1137  *
1138  * @map: Register map to operate on.
1139  * @config: New configuration.  Only the cache data will be used.
1140  *
1141  * Discard any existing register cache for the map and initialize a
1142  * new cache.  This can be used to restore the cache to defaults or to
1143  * update the cache configuration to reflect runtime discovery of the
1144  * hardware.
1145  *
1146  * No explicit locking is done here, the user needs to ensure that
1147  * this function will not race with other calls to regmap.
1148  */
1149 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1150 {
1151 	regcache_exit(map);
1152 	regmap_debugfs_exit(map);
1153 
1154 	map->max_register = config->max_register;
1155 	map->writeable_reg = config->writeable_reg;
1156 	map->readable_reg = config->readable_reg;
1157 	map->volatile_reg = config->volatile_reg;
1158 	map->precious_reg = config->precious_reg;
1159 	map->cache_type = config->cache_type;
1160 
1161 	regmap_debugfs_init(map, config->name);
1162 
1163 	map->cache_bypass = false;
1164 	map->cache_only = false;
1165 
1166 	return regcache_init(map, config);
1167 }
1168 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1169 
1170 /**
1171  * regmap_exit(): Free a previously allocated register map
1172  */
1173 void regmap_exit(struct regmap *map)
1174 {
1175 	struct regmap_async *async;
1176 
1177 	regcache_exit(map);
1178 	regmap_debugfs_exit(map);
1179 	regmap_range_exit(map);
1180 	if (map->bus && map->bus->free_context)
1181 		map->bus->free_context(map->bus_context);
1182 	kfree(map->work_buf);
1183 	while (!list_empty(&map->async_free)) {
1184 		async = list_first_entry_or_null(&map->async_free,
1185 						 struct regmap_async,
1186 						 list);
1187 		list_del(&async->list);
1188 		kfree(async->work_buf);
1189 		kfree(async);
1190 	}
1191 	kfree(map);
1192 }
1193 EXPORT_SYMBOL_GPL(regmap_exit);
1194 
1195 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1196 {
1197 	struct regmap **r = res;
1198 	if (!r || !*r) {
1199 		WARN_ON(!r || !*r);
1200 		return 0;
1201 	}
1202 
1203 	/* If the user didn't specify a name match any */
1204 	if (data)
1205 		return (*r)->name == data;
1206 	else
1207 		return 1;
1208 }
1209 
1210 /**
1211  * dev_get_regmap(): Obtain the regmap (if any) for a device
1212  *
1213  * @dev: Device to retrieve the map for
1214  * @name: Optional name for the register map, usually NULL.
1215  *
1216  * Returns the regmap for the device if one is present, or NULL.  If
1217  * name is specified then it must match the name specified when
1218  * registering the device, if it is NULL then the first regmap found
1219  * will be used.  Devices with multiple register maps are very rare,
1220  * generic code should normally not need to specify a name.
1221  */
1222 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1223 {
1224 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1225 					dev_get_regmap_match, (void *)name);
1226 
1227 	if (!r)
1228 		return NULL;
1229 	return *r;
1230 }
1231 EXPORT_SYMBOL_GPL(dev_get_regmap);
1232 
1233 /**
1234  * regmap_get_device(): Obtain the device from a regmap
1235  *
1236  * @map: Register map to operate on.
1237  *
1238  * Returns the underlying device that the regmap has been created for.
1239  */
1240 struct device *regmap_get_device(struct regmap *map)
1241 {
1242 	return map->dev;
1243 }
1244 EXPORT_SYMBOL_GPL(regmap_get_device);
1245 
1246 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1247 			       struct regmap_range_node *range,
1248 			       unsigned int val_num)
1249 {
1250 	void *orig_work_buf;
1251 	unsigned int win_offset;
1252 	unsigned int win_page;
1253 	bool page_chg;
1254 	int ret;
1255 
1256 	win_offset = (*reg - range->range_min) % range->window_len;
1257 	win_page = (*reg - range->range_min) / range->window_len;
1258 
1259 	if (val_num > 1) {
1260 		/* Bulk write shouldn't cross range boundary */
1261 		if (*reg + val_num - 1 > range->range_max)
1262 			return -EINVAL;
1263 
1264 		/* ... or single page boundary */
1265 		if (val_num > range->window_len - win_offset)
1266 			return -EINVAL;
1267 	}
1268 
1269 	/* It is possible to have selector register inside data window.
1270 	   In that case, selector register is located on every page and
1271 	   it needs no page switching, when accessed alone. */
1272 	if (val_num > 1 ||
1273 	    range->window_start + win_offset != range->selector_reg) {
1274 		/* Use separate work_buf during page switching */
1275 		orig_work_buf = map->work_buf;
1276 		map->work_buf = map->selector_work_buf;
1277 
1278 		ret = _regmap_update_bits(map, range->selector_reg,
1279 					  range->selector_mask,
1280 					  win_page << range->selector_shift,
1281 					  &page_chg, false);
1282 
1283 		map->work_buf = orig_work_buf;
1284 
1285 		if (ret != 0)
1286 			return ret;
1287 	}
1288 
1289 	*reg = range->window_start + win_offset;
1290 
1291 	return 0;
1292 }
1293 
1294 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1295 		      const void *val, size_t val_len)
1296 {
1297 	struct regmap_range_node *range;
1298 	unsigned long flags;
1299 	u8 *u8 = map->work_buf;
1300 	void *work_val = map->work_buf + map->format.reg_bytes +
1301 		map->format.pad_bytes;
1302 	void *buf;
1303 	int ret = -ENOTSUPP;
1304 	size_t len;
1305 	int i;
1306 
1307 	WARN_ON(!map->bus);
1308 
1309 	/* Check for unwritable registers before we start */
1310 	if (map->writeable_reg)
1311 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1312 			if (!map->writeable_reg(map->dev,
1313 						reg + (i * map->reg_stride)))
1314 				return -EINVAL;
1315 
1316 	if (!map->cache_bypass && map->format.parse_val) {
1317 		unsigned int ival;
1318 		int val_bytes = map->format.val_bytes;
1319 		for (i = 0; i < val_len / val_bytes; i++) {
1320 			ival = map->format.parse_val(val + (i * val_bytes));
1321 			ret = regcache_write(map, reg + (i * map->reg_stride),
1322 					     ival);
1323 			if (ret) {
1324 				dev_err(map->dev,
1325 					"Error in caching of register: %x ret: %d\n",
1326 					reg + i, ret);
1327 				return ret;
1328 			}
1329 		}
1330 		if (map->cache_only) {
1331 			map->cache_dirty = true;
1332 			return 0;
1333 		}
1334 	}
1335 
1336 	range = _regmap_range_lookup(map, reg);
1337 	if (range) {
1338 		int val_num = val_len / map->format.val_bytes;
1339 		int win_offset = (reg - range->range_min) % range->window_len;
1340 		int win_residue = range->window_len - win_offset;
1341 
1342 		/* If the write goes beyond the end of the window split it */
1343 		while (val_num > win_residue) {
1344 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1345 				win_residue, val_len / map->format.val_bytes);
1346 			ret = _regmap_raw_write(map, reg, val, win_residue *
1347 						map->format.val_bytes);
1348 			if (ret != 0)
1349 				return ret;
1350 
1351 			reg += win_residue;
1352 			val_num -= win_residue;
1353 			val += win_residue * map->format.val_bytes;
1354 			val_len -= win_residue * map->format.val_bytes;
1355 
1356 			win_offset = (reg - range->range_min) %
1357 				range->window_len;
1358 			win_residue = range->window_len - win_offset;
1359 		}
1360 
1361 		ret = _regmap_select_page(map, &reg, range, val_num);
1362 		if (ret != 0)
1363 			return ret;
1364 	}
1365 
1366 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1367 
1368 	u8[0] |= map->write_flag_mask;
1369 
1370 	/*
1371 	 * Essentially all I/O mechanisms will be faster with a single
1372 	 * buffer to write.  Since register syncs often generate raw
1373 	 * writes of single registers optimise that case.
1374 	 */
1375 	if (val != work_val && val_len == map->format.val_bytes) {
1376 		memcpy(work_val, val, map->format.val_bytes);
1377 		val = work_val;
1378 	}
1379 
1380 	if (map->async && map->bus->async_write) {
1381 		struct regmap_async *async;
1382 
1383 		trace_regmap_async_write_start(map, reg, val_len);
1384 
1385 		spin_lock_irqsave(&map->async_lock, flags);
1386 		async = list_first_entry_or_null(&map->async_free,
1387 						 struct regmap_async,
1388 						 list);
1389 		if (async)
1390 			list_del(&async->list);
1391 		spin_unlock_irqrestore(&map->async_lock, flags);
1392 
1393 		if (!async) {
1394 			async = map->bus->async_alloc();
1395 			if (!async)
1396 				return -ENOMEM;
1397 
1398 			async->work_buf = kzalloc(map->format.buf_size,
1399 						  GFP_KERNEL | GFP_DMA);
1400 			if (!async->work_buf) {
1401 				kfree(async);
1402 				return -ENOMEM;
1403 			}
1404 		}
1405 
1406 		async->map = map;
1407 
1408 		/* If the caller supplied the value we can use it safely. */
1409 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1410 		       map->format.reg_bytes + map->format.val_bytes);
1411 
1412 		spin_lock_irqsave(&map->async_lock, flags);
1413 		list_add_tail(&async->list, &map->async_list);
1414 		spin_unlock_irqrestore(&map->async_lock, flags);
1415 
1416 		if (val != work_val)
1417 			ret = map->bus->async_write(map->bus_context,
1418 						    async->work_buf,
1419 						    map->format.reg_bytes +
1420 						    map->format.pad_bytes,
1421 						    val, val_len, async);
1422 		else
1423 			ret = map->bus->async_write(map->bus_context,
1424 						    async->work_buf,
1425 						    map->format.reg_bytes +
1426 						    map->format.pad_bytes +
1427 						    val_len, NULL, 0, async);
1428 
1429 		if (ret != 0) {
1430 			dev_err(map->dev, "Failed to schedule write: %d\n",
1431 				ret);
1432 
1433 			spin_lock_irqsave(&map->async_lock, flags);
1434 			list_move(&async->list, &map->async_free);
1435 			spin_unlock_irqrestore(&map->async_lock, flags);
1436 		}
1437 
1438 		return ret;
1439 	}
1440 
1441 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1442 
1443 	/* If we're doing a single register write we can probably just
1444 	 * send the work_buf directly, otherwise try to do a gather
1445 	 * write.
1446 	 */
1447 	if (val == work_val)
1448 		ret = map->bus->write(map->bus_context, map->work_buf,
1449 				      map->format.reg_bytes +
1450 				      map->format.pad_bytes +
1451 				      val_len);
1452 	else if (map->bus->gather_write)
1453 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1454 					     map->format.reg_bytes +
1455 					     map->format.pad_bytes,
1456 					     val, val_len);
1457 
1458 	/* If that didn't work fall back on linearising by hand. */
1459 	if (ret == -ENOTSUPP) {
1460 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1461 		buf = kzalloc(len, GFP_KERNEL);
1462 		if (!buf)
1463 			return -ENOMEM;
1464 
1465 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1466 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1467 		       val, val_len);
1468 		ret = map->bus->write(map->bus_context, buf, len);
1469 
1470 		kfree(buf);
1471 	}
1472 
1473 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1474 
1475 	return ret;
1476 }
1477 
1478 /**
1479  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1480  *
1481  * @map: Map to check.
1482  */
1483 bool regmap_can_raw_write(struct regmap *map)
1484 {
1485 	return map->bus && map->bus->write && map->format.format_val &&
1486 		map->format.format_reg;
1487 }
1488 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1489 
1490 /**
1491  * regmap_get_raw_read_max - Get the maximum size we can read
1492  *
1493  * @map: Map to check.
1494  */
1495 size_t regmap_get_raw_read_max(struct regmap *map)
1496 {
1497 	return map->max_raw_read;
1498 }
1499 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1500 
1501 /**
1502  * regmap_get_raw_write_max - Get the maximum size we can read
1503  *
1504  * @map: Map to check.
1505  */
1506 size_t regmap_get_raw_write_max(struct regmap *map)
1507 {
1508 	return map->max_raw_write;
1509 }
1510 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1511 
1512 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1513 				       unsigned int val)
1514 {
1515 	int ret;
1516 	struct regmap_range_node *range;
1517 	struct regmap *map = context;
1518 
1519 	WARN_ON(!map->bus || !map->format.format_write);
1520 
1521 	range = _regmap_range_lookup(map, reg);
1522 	if (range) {
1523 		ret = _regmap_select_page(map, &reg, range, 1);
1524 		if (ret != 0)
1525 			return ret;
1526 	}
1527 
1528 	map->format.format_write(map, reg, val);
1529 
1530 	trace_regmap_hw_write_start(map, reg, 1);
1531 
1532 	ret = map->bus->write(map->bus_context, map->work_buf,
1533 			      map->format.buf_size);
1534 
1535 	trace_regmap_hw_write_done(map, reg, 1);
1536 
1537 	return ret;
1538 }
1539 
1540 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1541 				 unsigned int val)
1542 {
1543 	struct regmap *map = context;
1544 
1545 	return map->bus->reg_write(map->bus_context, reg, val);
1546 }
1547 
1548 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1549 				 unsigned int val)
1550 {
1551 	struct regmap *map = context;
1552 
1553 	WARN_ON(!map->bus || !map->format.format_val);
1554 
1555 	map->format.format_val(map->work_buf + map->format.reg_bytes
1556 			       + map->format.pad_bytes, val, 0);
1557 	return _regmap_raw_write(map, reg,
1558 				 map->work_buf +
1559 				 map->format.reg_bytes +
1560 				 map->format.pad_bytes,
1561 				 map->format.val_bytes);
1562 }
1563 
1564 static inline void *_regmap_map_get_context(struct regmap *map)
1565 {
1566 	return (map->bus) ? map : map->bus_context;
1567 }
1568 
1569 int _regmap_write(struct regmap *map, unsigned int reg,
1570 		  unsigned int val)
1571 {
1572 	int ret;
1573 	void *context = _regmap_map_get_context(map);
1574 
1575 	if (!regmap_writeable(map, reg))
1576 		return -EIO;
1577 
1578 	if (!map->cache_bypass && !map->defer_caching) {
1579 		ret = regcache_write(map, reg, val);
1580 		if (ret != 0)
1581 			return ret;
1582 		if (map->cache_only) {
1583 			map->cache_dirty = true;
1584 			return 0;
1585 		}
1586 	}
1587 
1588 #ifdef LOG_DEVICE
1589 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1590 		dev_info(map->dev, "%x <= %x\n", reg, val);
1591 #endif
1592 
1593 	trace_regmap_reg_write(map, reg, val);
1594 
1595 	return map->reg_write(context, reg, val);
1596 }
1597 
1598 /**
1599  * regmap_write(): Write a value to a single register
1600  *
1601  * @map: Register map to write to
1602  * @reg: Register to write to
1603  * @val: Value to be written
1604  *
1605  * A value of zero will be returned on success, a negative errno will
1606  * be returned in error cases.
1607  */
1608 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1609 {
1610 	int ret;
1611 
1612 	if (!IS_ALIGNED(reg, map->reg_stride))
1613 		return -EINVAL;
1614 
1615 	map->lock(map->lock_arg);
1616 
1617 	ret = _regmap_write(map, reg, val);
1618 
1619 	map->unlock(map->lock_arg);
1620 
1621 	return ret;
1622 }
1623 EXPORT_SYMBOL_GPL(regmap_write);
1624 
1625 /**
1626  * regmap_write_async(): Write a value to a single register asynchronously
1627  *
1628  * @map: Register map to write to
1629  * @reg: Register to write to
1630  * @val: Value to be written
1631  *
1632  * A value of zero will be returned on success, a negative errno will
1633  * be returned in error cases.
1634  */
1635 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1636 {
1637 	int ret;
1638 
1639 	if (!IS_ALIGNED(reg, map->reg_stride))
1640 		return -EINVAL;
1641 
1642 	map->lock(map->lock_arg);
1643 
1644 	map->async = true;
1645 
1646 	ret = _regmap_write(map, reg, val);
1647 
1648 	map->async = false;
1649 
1650 	map->unlock(map->lock_arg);
1651 
1652 	return ret;
1653 }
1654 EXPORT_SYMBOL_GPL(regmap_write_async);
1655 
1656 /**
1657  * regmap_raw_write(): Write raw values to one or more registers
1658  *
1659  * @map: Register map to write to
1660  * @reg: Initial register to write to
1661  * @val: Block of data to be written, laid out for direct transmission to the
1662  *       device
1663  * @val_len: Length of data pointed to by val.
1664  *
1665  * This function is intended to be used for things like firmware
1666  * download where a large block of data needs to be transferred to the
1667  * device.  No formatting will be done on the data provided.
1668  *
1669  * A value of zero will be returned on success, a negative errno will
1670  * be returned in error cases.
1671  */
1672 int regmap_raw_write(struct regmap *map, unsigned int reg,
1673 		     const void *val, size_t val_len)
1674 {
1675 	int ret;
1676 
1677 	if (!regmap_can_raw_write(map))
1678 		return -EINVAL;
1679 	if (val_len % map->format.val_bytes)
1680 		return -EINVAL;
1681 	if (map->max_raw_write && map->max_raw_write > val_len)
1682 		return -E2BIG;
1683 
1684 	map->lock(map->lock_arg);
1685 
1686 	ret = _regmap_raw_write(map, reg, val, val_len);
1687 
1688 	map->unlock(map->lock_arg);
1689 
1690 	return ret;
1691 }
1692 EXPORT_SYMBOL_GPL(regmap_raw_write);
1693 
1694 /**
1695  * regmap_field_write(): Write a value to a single register field
1696  *
1697  * @field: Register field to write to
1698  * @val: Value to be written
1699  *
1700  * A value of zero will be returned on success, a negative errno will
1701  * be returned in error cases.
1702  */
1703 int regmap_field_write(struct regmap_field *field, unsigned int val)
1704 {
1705 	return regmap_update_bits(field->regmap, field->reg,
1706 				field->mask, val << field->shift);
1707 }
1708 EXPORT_SYMBOL_GPL(regmap_field_write);
1709 
1710 /**
1711  * regmap_field_update_bits():	Perform a read/modify/write cycle
1712  *                              on the register field
1713  *
1714  * @field: Register field to write to
1715  * @mask: Bitmask to change
1716  * @val: Value to be written
1717  *
1718  * A value of zero will be returned on success, a negative errno will
1719  * be returned in error cases.
1720  */
1721 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1722 {
1723 	mask = (mask << field->shift) & field->mask;
1724 
1725 	return regmap_update_bits(field->regmap, field->reg,
1726 				  mask, val << field->shift);
1727 }
1728 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1729 
1730 /**
1731  * regmap_fields_write(): Write a value to a single register field with port ID
1732  *
1733  * @field: Register field to write to
1734  * @id: port ID
1735  * @val: Value to be written
1736  *
1737  * A value of zero will be returned on success, a negative errno will
1738  * be returned in error cases.
1739  */
1740 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1741 			unsigned int val)
1742 {
1743 	if (id >= field->id_size)
1744 		return -EINVAL;
1745 
1746 	return regmap_update_bits(field->regmap,
1747 				  field->reg + (field->id_offset * id),
1748 				  field->mask, val << field->shift);
1749 }
1750 EXPORT_SYMBOL_GPL(regmap_fields_write);
1751 
1752 int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
1753 			unsigned int val)
1754 {
1755 	if (id >= field->id_size)
1756 		return -EINVAL;
1757 
1758 	return regmap_write_bits(field->regmap,
1759 				  field->reg + (field->id_offset * id),
1760 				  field->mask, val << field->shift);
1761 }
1762 EXPORT_SYMBOL_GPL(regmap_fields_force_write);
1763 
1764 /**
1765  * regmap_fields_update_bits():	Perform a read/modify/write cycle
1766  *                              on the register field
1767  *
1768  * @field: Register field to write to
1769  * @id: port ID
1770  * @mask: Bitmask to change
1771  * @val: Value to be written
1772  *
1773  * A value of zero will be returned on success, a negative errno will
1774  * be returned in error cases.
1775  */
1776 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1777 			      unsigned int mask, unsigned int val)
1778 {
1779 	if (id >= field->id_size)
1780 		return -EINVAL;
1781 
1782 	mask = (mask << field->shift) & field->mask;
1783 
1784 	return regmap_update_bits(field->regmap,
1785 				  field->reg + (field->id_offset * id),
1786 				  mask, val << field->shift);
1787 }
1788 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1789 
1790 /*
1791  * regmap_bulk_write(): Write multiple registers to the device
1792  *
1793  * @map: Register map to write to
1794  * @reg: First register to be write from
1795  * @val: Block of data to be written, in native register size for device
1796  * @val_count: Number of registers to write
1797  *
1798  * This function is intended to be used for writing a large block of
1799  * data to the device either in single transfer or multiple transfer.
1800  *
1801  * A value of zero will be returned on success, a negative errno will
1802  * be returned in error cases.
1803  */
1804 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1805 		     size_t val_count)
1806 {
1807 	int ret = 0, i;
1808 	size_t val_bytes = map->format.val_bytes;
1809 	size_t total_size = val_bytes * val_count;
1810 
1811 	if (map->bus && !map->format.parse_inplace)
1812 		return -EINVAL;
1813 	if (!IS_ALIGNED(reg, map->reg_stride))
1814 		return -EINVAL;
1815 
1816 	/*
1817 	 * Some devices don't support bulk write, for
1818 	 * them we have a series of single write operations in the first two if
1819 	 * blocks.
1820 	 *
1821 	 * The first if block is used for memory mapped io. It does not allow
1822 	 * val_bytes of 3 for example.
1823 	 * The second one is used for busses which do not have this limitation
1824 	 * and can write arbitrary value lengths.
1825 	 */
1826 	if (!map->bus) {
1827 		map->lock(map->lock_arg);
1828 		for (i = 0; i < val_count; i++) {
1829 			unsigned int ival;
1830 
1831 			switch (val_bytes) {
1832 			case 1:
1833 				ival = *(u8 *)(val + (i * val_bytes));
1834 				break;
1835 			case 2:
1836 				ival = *(u16 *)(val + (i * val_bytes));
1837 				break;
1838 			case 4:
1839 				ival = *(u32 *)(val + (i * val_bytes));
1840 				break;
1841 #ifdef CONFIG_64BIT
1842 			case 8:
1843 				ival = *(u64 *)(val + (i * val_bytes));
1844 				break;
1845 #endif
1846 			default:
1847 				ret = -EINVAL;
1848 				goto out;
1849 			}
1850 
1851 			ret = _regmap_write(map, reg + (i * map->reg_stride),
1852 					ival);
1853 			if (ret != 0)
1854 				goto out;
1855 		}
1856 out:
1857 		map->unlock(map->lock_arg);
1858 	} else if (map->use_single_write ||
1859 		   (map->max_raw_write && map->max_raw_write < total_size)) {
1860 		int chunk_stride = map->reg_stride;
1861 		size_t chunk_size = val_bytes;
1862 		size_t chunk_count = val_count;
1863 
1864 		if (!map->use_single_write) {
1865 			chunk_size = map->max_raw_write;
1866 			if (chunk_size % val_bytes)
1867 				chunk_size -= chunk_size % val_bytes;
1868 			chunk_count = total_size / chunk_size;
1869 			chunk_stride *= chunk_size / val_bytes;
1870 		}
1871 
1872 		map->lock(map->lock_arg);
1873 		/* Write as many bytes as possible with chunk_size */
1874 		for (i = 0; i < chunk_count; i++) {
1875 			ret = _regmap_raw_write(map,
1876 						reg + (i * chunk_stride),
1877 						val + (i * chunk_size),
1878 						chunk_size);
1879 			if (ret)
1880 				break;
1881 		}
1882 
1883 		/* Write remaining bytes */
1884 		if (!ret && chunk_size * i < total_size) {
1885 			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1886 						val + (i * chunk_size),
1887 						total_size - i * chunk_size);
1888 		}
1889 		map->unlock(map->lock_arg);
1890 	} else {
1891 		void *wval;
1892 
1893 		if (!val_count)
1894 			return -EINVAL;
1895 
1896 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1897 		if (!wval) {
1898 			dev_err(map->dev, "Error in memory allocation\n");
1899 			return -ENOMEM;
1900 		}
1901 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1902 			map->format.parse_inplace(wval + i);
1903 
1904 		map->lock(map->lock_arg);
1905 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1906 		map->unlock(map->lock_arg);
1907 
1908 		kfree(wval);
1909 	}
1910 	return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1913 
1914 /*
1915  * _regmap_raw_multi_reg_write()
1916  *
1917  * the (register,newvalue) pairs in regs have not been formatted, but
1918  * they are all in the same page and have been changed to being page
1919  * relative. The page register has been written if that was necessary.
1920  */
1921 static int _regmap_raw_multi_reg_write(struct regmap *map,
1922 				       const struct reg_sequence *regs,
1923 				       size_t num_regs)
1924 {
1925 	int ret;
1926 	void *buf;
1927 	int i;
1928 	u8 *u8;
1929 	size_t val_bytes = map->format.val_bytes;
1930 	size_t reg_bytes = map->format.reg_bytes;
1931 	size_t pad_bytes = map->format.pad_bytes;
1932 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1933 	size_t len = pair_size * num_regs;
1934 
1935 	if (!len)
1936 		return -EINVAL;
1937 
1938 	buf = kzalloc(len, GFP_KERNEL);
1939 	if (!buf)
1940 		return -ENOMEM;
1941 
1942 	/* We have to linearise by hand. */
1943 
1944 	u8 = buf;
1945 
1946 	for (i = 0; i < num_regs; i++) {
1947 		unsigned int reg = regs[i].reg;
1948 		unsigned int val = regs[i].def;
1949 		trace_regmap_hw_write_start(map, reg, 1);
1950 		map->format.format_reg(u8, reg, map->reg_shift);
1951 		u8 += reg_bytes + pad_bytes;
1952 		map->format.format_val(u8, val, 0);
1953 		u8 += val_bytes;
1954 	}
1955 	u8 = buf;
1956 	*u8 |= map->write_flag_mask;
1957 
1958 	ret = map->bus->write(map->bus_context, buf, len);
1959 
1960 	kfree(buf);
1961 
1962 	for (i = 0; i < num_regs; i++) {
1963 		int reg = regs[i].reg;
1964 		trace_regmap_hw_write_done(map, reg, 1);
1965 	}
1966 	return ret;
1967 }
1968 
1969 static unsigned int _regmap_register_page(struct regmap *map,
1970 					  unsigned int reg,
1971 					  struct regmap_range_node *range)
1972 {
1973 	unsigned int win_page = (reg - range->range_min) / range->window_len;
1974 
1975 	return win_page;
1976 }
1977 
1978 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1979 					       struct reg_sequence *regs,
1980 					       size_t num_regs)
1981 {
1982 	int ret;
1983 	int i, n;
1984 	struct reg_sequence *base;
1985 	unsigned int this_page = 0;
1986 	unsigned int page_change = 0;
1987 	/*
1988 	 * the set of registers are not neccessarily in order, but
1989 	 * since the order of write must be preserved this algorithm
1990 	 * chops the set each time the page changes. This also applies
1991 	 * if there is a delay required at any point in the sequence.
1992 	 */
1993 	base = regs;
1994 	for (i = 0, n = 0; i < num_regs; i++, n++) {
1995 		unsigned int reg = regs[i].reg;
1996 		struct regmap_range_node *range;
1997 
1998 		range = _regmap_range_lookup(map, reg);
1999 		if (range) {
2000 			unsigned int win_page = _regmap_register_page(map, reg,
2001 								      range);
2002 
2003 			if (i == 0)
2004 				this_page = win_page;
2005 			if (win_page != this_page) {
2006 				this_page = win_page;
2007 				page_change = 1;
2008 			}
2009 		}
2010 
2011 		/* If we have both a page change and a delay make sure to
2012 		 * write the regs and apply the delay before we change the
2013 		 * page.
2014 		 */
2015 
2016 		if (page_change || regs[i].delay_us) {
2017 
2018 				/* For situations where the first write requires
2019 				 * a delay we need to make sure we don't call
2020 				 * raw_multi_reg_write with n=0
2021 				 * This can't occur with page breaks as we
2022 				 * never write on the first iteration
2023 				 */
2024 				if (regs[i].delay_us && i == 0)
2025 					n = 1;
2026 
2027 				ret = _regmap_raw_multi_reg_write(map, base, n);
2028 				if (ret != 0)
2029 					return ret;
2030 
2031 				if (regs[i].delay_us)
2032 					udelay(regs[i].delay_us);
2033 
2034 				base += n;
2035 				n = 0;
2036 
2037 				if (page_change) {
2038 					ret = _regmap_select_page(map,
2039 								  &base[n].reg,
2040 								  range, 1);
2041 					if (ret != 0)
2042 						return ret;
2043 
2044 					page_change = 0;
2045 				}
2046 
2047 		}
2048 
2049 	}
2050 	if (n > 0)
2051 		return _regmap_raw_multi_reg_write(map, base, n);
2052 	return 0;
2053 }
2054 
2055 static int _regmap_multi_reg_write(struct regmap *map,
2056 				   const struct reg_sequence *regs,
2057 				   size_t num_regs)
2058 {
2059 	int i;
2060 	int ret;
2061 
2062 	if (!map->can_multi_write) {
2063 		for (i = 0; i < num_regs; i++) {
2064 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2065 			if (ret != 0)
2066 				return ret;
2067 
2068 			if (regs[i].delay_us)
2069 				udelay(regs[i].delay_us);
2070 		}
2071 		return 0;
2072 	}
2073 
2074 	if (!map->format.parse_inplace)
2075 		return -EINVAL;
2076 
2077 	if (map->writeable_reg)
2078 		for (i = 0; i < num_regs; i++) {
2079 			int reg = regs[i].reg;
2080 			if (!map->writeable_reg(map->dev, reg))
2081 				return -EINVAL;
2082 			if (!IS_ALIGNED(reg, map->reg_stride))
2083 				return -EINVAL;
2084 		}
2085 
2086 	if (!map->cache_bypass) {
2087 		for (i = 0; i < num_regs; i++) {
2088 			unsigned int val = regs[i].def;
2089 			unsigned int reg = regs[i].reg;
2090 			ret = regcache_write(map, reg, val);
2091 			if (ret) {
2092 				dev_err(map->dev,
2093 				"Error in caching of register: %x ret: %d\n",
2094 								reg, ret);
2095 				return ret;
2096 			}
2097 		}
2098 		if (map->cache_only) {
2099 			map->cache_dirty = true;
2100 			return 0;
2101 		}
2102 	}
2103 
2104 	WARN_ON(!map->bus);
2105 
2106 	for (i = 0; i < num_regs; i++) {
2107 		unsigned int reg = regs[i].reg;
2108 		struct regmap_range_node *range;
2109 
2110 		/* Coalesce all the writes between a page break or a delay
2111 		 * in a sequence
2112 		 */
2113 		range = _regmap_range_lookup(map, reg);
2114 		if (range || regs[i].delay_us) {
2115 			size_t len = sizeof(struct reg_sequence)*num_regs;
2116 			struct reg_sequence *base = kmemdup(regs, len,
2117 							   GFP_KERNEL);
2118 			if (!base)
2119 				return -ENOMEM;
2120 			ret = _regmap_range_multi_paged_reg_write(map, base,
2121 								  num_regs);
2122 			kfree(base);
2123 
2124 			return ret;
2125 		}
2126 	}
2127 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2128 }
2129 
2130 /*
2131  * regmap_multi_reg_write(): Write multiple registers to the device
2132  *
2133  * where the set of register,value pairs are supplied in any order,
2134  * possibly not all in a single range.
2135  *
2136  * @map: Register map to write to
2137  * @regs: Array of structures containing register,value to be written
2138  * @num_regs: Number of registers to write
2139  *
2140  * The 'normal' block write mode will send ultimately send data on the
2141  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2142  * addressed. However, this alternative block multi write mode will send
2143  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2144  * must of course support the mode.
2145  *
2146  * A value of zero will be returned on success, a negative errno will be
2147  * returned in error cases.
2148  */
2149 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2150 			   int num_regs)
2151 {
2152 	int ret;
2153 
2154 	map->lock(map->lock_arg);
2155 
2156 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2157 
2158 	map->unlock(map->lock_arg);
2159 
2160 	return ret;
2161 }
2162 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2163 
2164 /*
2165  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2166  *                                    device but not the cache
2167  *
2168  * where the set of register are supplied in any order
2169  *
2170  * @map: Register map to write to
2171  * @regs: Array of structures containing register,value to be written
2172  * @num_regs: Number of registers to write
2173  *
2174  * This function is intended to be used for writing a large block of data
2175  * atomically to the device in single transfer for those I2C client devices
2176  * that implement this alternative block write mode.
2177  *
2178  * A value of zero will be returned on success, a negative errno will
2179  * be returned in error cases.
2180  */
2181 int regmap_multi_reg_write_bypassed(struct regmap *map,
2182 				    const struct reg_sequence *regs,
2183 				    int num_regs)
2184 {
2185 	int ret;
2186 	bool bypass;
2187 
2188 	map->lock(map->lock_arg);
2189 
2190 	bypass = map->cache_bypass;
2191 	map->cache_bypass = true;
2192 
2193 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2194 
2195 	map->cache_bypass = bypass;
2196 
2197 	map->unlock(map->lock_arg);
2198 
2199 	return ret;
2200 }
2201 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2202 
2203 /**
2204  * regmap_raw_write_async(): Write raw values to one or more registers
2205  *                           asynchronously
2206  *
2207  * @map: Register map to write to
2208  * @reg: Initial register to write to
2209  * @val: Block of data to be written, laid out for direct transmission to the
2210  *       device.  Must be valid until regmap_async_complete() is called.
2211  * @val_len: Length of data pointed to by val.
2212  *
2213  * This function is intended to be used for things like firmware
2214  * download where a large block of data needs to be transferred to the
2215  * device.  No formatting will be done on the data provided.
2216  *
2217  * If supported by the underlying bus the write will be scheduled
2218  * asynchronously, helping maximise I/O speed on higher speed buses
2219  * like SPI.  regmap_async_complete() can be called to ensure that all
2220  * asynchrnous writes have been completed.
2221  *
2222  * A value of zero will be returned on success, a negative errno will
2223  * be returned in error cases.
2224  */
2225 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2226 			   const void *val, size_t val_len)
2227 {
2228 	int ret;
2229 
2230 	if (val_len % map->format.val_bytes)
2231 		return -EINVAL;
2232 	if (!IS_ALIGNED(reg, map->reg_stride))
2233 		return -EINVAL;
2234 
2235 	map->lock(map->lock_arg);
2236 
2237 	map->async = true;
2238 
2239 	ret = _regmap_raw_write(map, reg, val, val_len);
2240 
2241 	map->async = false;
2242 
2243 	map->unlock(map->lock_arg);
2244 
2245 	return ret;
2246 }
2247 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2248 
2249 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2250 			    unsigned int val_len)
2251 {
2252 	struct regmap_range_node *range;
2253 	u8 *u8 = map->work_buf;
2254 	int ret;
2255 
2256 	WARN_ON(!map->bus);
2257 
2258 	range = _regmap_range_lookup(map, reg);
2259 	if (range) {
2260 		ret = _regmap_select_page(map, &reg, range,
2261 					  val_len / map->format.val_bytes);
2262 		if (ret != 0)
2263 			return ret;
2264 	}
2265 
2266 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2267 
2268 	/*
2269 	 * Some buses or devices flag reads by setting the high bits in the
2270 	 * register address; since it's always the high bits for all
2271 	 * current formats we can do this here rather than in
2272 	 * formatting.  This may break if we get interesting formats.
2273 	 */
2274 	u8[0] |= map->read_flag_mask;
2275 
2276 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2277 
2278 	ret = map->bus->read(map->bus_context, map->work_buf,
2279 			     map->format.reg_bytes + map->format.pad_bytes,
2280 			     val, val_len);
2281 
2282 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2283 
2284 	return ret;
2285 }
2286 
2287 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2288 				unsigned int *val)
2289 {
2290 	struct regmap *map = context;
2291 
2292 	return map->bus->reg_read(map->bus_context, reg, val);
2293 }
2294 
2295 static int _regmap_bus_read(void *context, unsigned int reg,
2296 			    unsigned int *val)
2297 {
2298 	int ret;
2299 	struct regmap *map = context;
2300 
2301 	if (!map->format.parse_val)
2302 		return -EINVAL;
2303 
2304 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2305 	if (ret == 0)
2306 		*val = map->format.parse_val(map->work_buf);
2307 
2308 	return ret;
2309 }
2310 
2311 static int _regmap_read(struct regmap *map, unsigned int reg,
2312 			unsigned int *val)
2313 {
2314 	int ret;
2315 	void *context = _regmap_map_get_context(map);
2316 
2317 	if (!map->cache_bypass) {
2318 		ret = regcache_read(map, reg, val);
2319 		if (ret == 0)
2320 			return 0;
2321 	}
2322 
2323 	if (map->cache_only)
2324 		return -EBUSY;
2325 
2326 	if (!regmap_readable(map, reg))
2327 		return -EIO;
2328 
2329 	ret = map->reg_read(context, reg, val);
2330 	if (ret == 0) {
2331 #ifdef LOG_DEVICE
2332 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2333 			dev_info(map->dev, "%x => %x\n", reg, *val);
2334 #endif
2335 
2336 		trace_regmap_reg_read(map, reg, *val);
2337 
2338 		if (!map->cache_bypass)
2339 			regcache_write(map, reg, *val);
2340 	}
2341 
2342 	return ret;
2343 }
2344 
2345 /**
2346  * regmap_read(): Read a value from a single register
2347  *
2348  * @map: Register map to read from
2349  * @reg: Register to be read from
2350  * @val: Pointer to store read value
2351  *
2352  * A value of zero will be returned on success, a negative errno will
2353  * be returned in error cases.
2354  */
2355 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2356 {
2357 	int ret;
2358 
2359 	if (!IS_ALIGNED(reg, map->reg_stride))
2360 		return -EINVAL;
2361 
2362 	map->lock(map->lock_arg);
2363 
2364 	ret = _regmap_read(map, reg, val);
2365 
2366 	map->unlock(map->lock_arg);
2367 
2368 	return ret;
2369 }
2370 EXPORT_SYMBOL_GPL(regmap_read);
2371 
2372 /**
2373  * regmap_raw_read(): Read raw data from the device
2374  *
2375  * @map: Register map to read from
2376  * @reg: First register to be read from
2377  * @val: Pointer to store read value
2378  * @val_len: Size of data to read
2379  *
2380  * A value of zero will be returned on success, a negative errno will
2381  * be returned in error cases.
2382  */
2383 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2384 		    size_t val_len)
2385 {
2386 	size_t val_bytes = map->format.val_bytes;
2387 	size_t val_count = val_len / val_bytes;
2388 	unsigned int v;
2389 	int ret, i;
2390 
2391 	if (!map->bus)
2392 		return -EINVAL;
2393 	if (val_len % map->format.val_bytes)
2394 		return -EINVAL;
2395 	if (!IS_ALIGNED(reg, map->reg_stride))
2396 		return -EINVAL;
2397 	if (val_count == 0)
2398 		return -EINVAL;
2399 
2400 	map->lock(map->lock_arg);
2401 
2402 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2403 	    map->cache_type == REGCACHE_NONE) {
2404 		if (!map->bus->read) {
2405 			ret = -ENOTSUPP;
2406 			goto out;
2407 		}
2408 		if (map->max_raw_read && map->max_raw_read < val_len) {
2409 			ret = -E2BIG;
2410 			goto out;
2411 		}
2412 
2413 		/* Physical block read if there's no cache involved */
2414 		ret = _regmap_raw_read(map, reg, val, val_len);
2415 
2416 	} else {
2417 		/* Otherwise go word by word for the cache; should be low
2418 		 * cost as we expect to hit the cache.
2419 		 */
2420 		for (i = 0; i < val_count; i++) {
2421 			ret = _regmap_read(map, reg + (i * map->reg_stride),
2422 					   &v);
2423 			if (ret != 0)
2424 				goto out;
2425 
2426 			map->format.format_val(val + (i * val_bytes), v, 0);
2427 		}
2428 	}
2429 
2430  out:
2431 	map->unlock(map->lock_arg);
2432 
2433 	return ret;
2434 }
2435 EXPORT_SYMBOL_GPL(regmap_raw_read);
2436 
2437 /**
2438  * regmap_field_read(): Read a value to a single register field
2439  *
2440  * @field: Register field to read from
2441  * @val: Pointer to store read value
2442  *
2443  * A value of zero will be returned on success, a negative errno will
2444  * be returned in error cases.
2445  */
2446 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2447 {
2448 	int ret;
2449 	unsigned int reg_val;
2450 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2451 	if (ret != 0)
2452 		return ret;
2453 
2454 	reg_val &= field->mask;
2455 	reg_val >>= field->shift;
2456 	*val = reg_val;
2457 
2458 	return ret;
2459 }
2460 EXPORT_SYMBOL_GPL(regmap_field_read);
2461 
2462 /**
2463  * regmap_fields_read(): Read a value to a single register field with port ID
2464  *
2465  * @field: Register field to read from
2466  * @id: port ID
2467  * @val: Pointer to store read value
2468  *
2469  * A value of zero will be returned on success, a negative errno will
2470  * be returned in error cases.
2471  */
2472 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2473 		       unsigned int *val)
2474 {
2475 	int ret;
2476 	unsigned int reg_val;
2477 
2478 	if (id >= field->id_size)
2479 		return -EINVAL;
2480 
2481 	ret = regmap_read(field->regmap,
2482 			  field->reg + (field->id_offset * id),
2483 			  &reg_val);
2484 	if (ret != 0)
2485 		return ret;
2486 
2487 	reg_val &= field->mask;
2488 	reg_val >>= field->shift;
2489 	*val = reg_val;
2490 
2491 	return ret;
2492 }
2493 EXPORT_SYMBOL_GPL(regmap_fields_read);
2494 
2495 /**
2496  * regmap_bulk_read(): Read multiple registers from the device
2497  *
2498  * @map: Register map to read from
2499  * @reg: First register to be read from
2500  * @val: Pointer to store read value, in native register size for device
2501  * @val_count: Number of registers to read
2502  *
2503  * A value of zero will be returned on success, a negative errno will
2504  * be returned in error cases.
2505  */
2506 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2507 		     size_t val_count)
2508 {
2509 	int ret, i;
2510 	size_t val_bytes = map->format.val_bytes;
2511 	bool vol = regmap_volatile_range(map, reg, val_count);
2512 
2513 	if (!IS_ALIGNED(reg, map->reg_stride))
2514 		return -EINVAL;
2515 
2516 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2517 		/*
2518 		 * Some devices does not support bulk read, for
2519 		 * them we have a series of single read operations.
2520 		 */
2521 		size_t total_size = val_bytes * val_count;
2522 
2523 		if (!map->use_single_read &&
2524 		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2525 			ret = regmap_raw_read(map, reg, val,
2526 					      val_bytes * val_count);
2527 			if (ret != 0)
2528 				return ret;
2529 		} else {
2530 			/*
2531 			 * Some devices do not support bulk read or do not
2532 			 * support large bulk reads, for them we have a series
2533 			 * of read operations.
2534 			 */
2535 			int chunk_stride = map->reg_stride;
2536 			size_t chunk_size = val_bytes;
2537 			size_t chunk_count = val_count;
2538 
2539 			if (!map->use_single_read) {
2540 				chunk_size = map->max_raw_read;
2541 				if (chunk_size % val_bytes)
2542 					chunk_size -= chunk_size % val_bytes;
2543 				chunk_count = total_size / chunk_size;
2544 				chunk_stride *= chunk_size / val_bytes;
2545 			}
2546 
2547 			/* Read bytes that fit into a multiple of chunk_size */
2548 			for (i = 0; i < chunk_count; i++) {
2549 				ret = regmap_raw_read(map,
2550 						      reg + (i * chunk_stride),
2551 						      val + (i * chunk_size),
2552 						      chunk_size);
2553 				if (ret != 0)
2554 					return ret;
2555 			}
2556 
2557 			/* Read remaining bytes */
2558 			if (chunk_size * i < total_size) {
2559 				ret = regmap_raw_read(map,
2560 						      reg + (i * chunk_stride),
2561 						      val + (i * chunk_size),
2562 						      total_size - i * chunk_size);
2563 				if (ret != 0)
2564 					return ret;
2565 			}
2566 		}
2567 
2568 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2569 			map->format.parse_inplace(val + i);
2570 	} else {
2571 		for (i = 0; i < val_count; i++) {
2572 			unsigned int ival;
2573 			ret = regmap_read(map, reg + (i * map->reg_stride),
2574 					  &ival);
2575 			if (ret != 0)
2576 				return ret;
2577 
2578 			if (map->format.format_val) {
2579 				map->format.format_val(val + (i * val_bytes), ival, 0);
2580 			} else {
2581 				/* Devices providing read and write
2582 				 * operations can use the bulk I/O
2583 				 * functions if they define a val_bytes,
2584 				 * we assume that the values are native
2585 				 * endian.
2586 				 */
2587 #ifdef CONFIG_64BIT
2588 				u64 *u64 = val;
2589 #endif
2590 				u32 *u32 = val;
2591 				u16 *u16 = val;
2592 				u8 *u8 = val;
2593 
2594 				switch (map->format.val_bytes) {
2595 #ifdef CONFIG_64BIT
2596 				case 8:
2597 					u64[i] = ival;
2598 					break;
2599 #endif
2600 				case 4:
2601 					u32[i] = ival;
2602 					break;
2603 				case 2:
2604 					u16[i] = ival;
2605 					break;
2606 				case 1:
2607 					u8[i] = ival;
2608 					break;
2609 				default:
2610 					return -EINVAL;
2611 				}
2612 			}
2613 		}
2614 	}
2615 
2616 	return 0;
2617 }
2618 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2619 
2620 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2621 			       unsigned int mask, unsigned int val,
2622 			       bool *change, bool force_write)
2623 {
2624 	int ret;
2625 	unsigned int tmp, orig;
2626 
2627 	if (change)
2628 		*change = false;
2629 
2630 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2631 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2632 		if (ret == 0 && change)
2633 			*change = true;
2634 	} else {
2635 		ret = _regmap_read(map, reg, &orig);
2636 		if (ret != 0)
2637 			return ret;
2638 
2639 		tmp = orig & ~mask;
2640 		tmp |= val & mask;
2641 
2642 		if (force_write || (tmp != orig)) {
2643 			ret = _regmap_write(map, reg, tmp);
2644 			if (ret == 0 && change)
2645 				*change = true;
2646 		}
2647 	}
2648 
2649 	return ret;
2650 }
2651 
2652 /**
2653  * regmap_update_bits: Perform a read/modify/write cycle on the register map
2654  *
2655  * @map: Register map to update
2656  * @reg: Register to update
2657  * @mask: Bitmask to change
2658  * @val: New value for bitmask
2659  *
2660  * Returns zero for success, a negative number on error.
2661  */
2662 int regmap_update_bits(struct regmap *map, unsigned int reg,
2663 		       unsigned int mask, unsigned int val)
2664 {
2665 	int ret;
2666 
2667 	map->lock(map->lock_arg);
2668 	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2669 	map->unlock(map->lock_arg);
2670 
2671 	return ret;
2672 }
2673 EXPORT_SYMBOL_GPL(regmap_update_bits);
2674 
2675 /**
2676  * regmap_write_bits: Perform a read/modify/write cycle on the register map
2677  *
2678  * @map: Register map to update
2679  * @reg: Register to update
2680  * @mask: Bitmask to change
2681  * @val: New value for bitmask
2682  *
2683  * Returns zero for success, a negative number on error.
2684  */
2685 int regmap_write_bits(struct regmap *map, unsigned int reg,
2686 		      unsigned int mask, unsigned int val)
2687 {
2688 	int ret;
2689 
2690 	map->lock(map->lock_arg);
2691 	ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
2692 	map->unlock(map->lock_arg);
2693 
2694 	return ret;
2695 }
2696 EXPORT_SYMBOL_GPL(regmap_write_bits);
2697 
2698 /**
2699  * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2700  *                           map asynchronously
2701  *
2702  * @map: Register map to update
2703  * @reg: Register to update
2704  * @mask: Bitmask to change
2705  * @val: New value for bitmask
2706  *
2707  * With most buses the read must be done synchronously so this is most
2708  * useful for devices with a cache which do not need to interact with
2709  * the hardware to determine the current register value.
2710  *
2711  * Returns zero for success, a negative number on error.
2712  */
2713 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2714 			     unsigned int mask, unsigned int val)
2715 {
2716 	int ret;
2717 
2718 	map->lock(map->lock_arg);
2719 
2720 	map->async = true;
2721 
2722 	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2723 
2724 	map->async = false;
2725 
2726 	map->unlock(map->lock_arg);
2727 
2728 	return ret;
2729 }
2730 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2731 
2732 /**
2733  * regmap_update_bits_check: Perform a read/modify/write cycle on the
2734  *                           register map and report if updated
2735  *
2736  * @map: Register map to update
2737  * @reg: Register to update
2738  * @mask: Bitmask to change
2739  * @val: New value for bitmask
2740  * @change: Boolean indicating if a write was done
2741  *
2742  * Returns zero for success, a negative number on error.
2743  */
2744 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2745 			     unsigned int mask, unsigned int val,
2746 			     bool *change)
2747 {
2748 	int ret;
2749 
2750 	map->lock(map->lock_arg);
2751 	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2752 	map->unlock(map->lock_arg);
2753 	return ret;
2754 }
2755 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2756 
2757 /**
2758  * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2759  *                                 register map asynchronously and report if
2760  *                                 updated
2761  *
2762  * @map: Register map to update
2763  * @reg: Register to update
2764  * @mask: Bitmask to change
2765  * @val: New value for bitmask
2766  * @change: Boolean indicating if a write was done
2767  *
2768  * With most buses the read must be done synchronously so this is most
2769  * useful for devices with a cache which do not need to interact with
2770  * the hardware to determine the current register value.
2771  *
2772  * Returns zero for success, a negative number on error.
2773  */
2774 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2775 				   unsigned int mask, unsigned int val,
2776 				   bool *change)
2777 {
2778 	int ret;
2779 
2780 	map->lock(map->lock_arg);
2781 
2782 	map->async = true;
2783 
2784 	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2785 
2786 	map->async = false;
2787 
2788 	map->unlock(map->lock_arg);
2789 
2790 	return ret;
2791 }
2792 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2793 
2794 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2795 {
2796 	struct regmap *map = async->map;
2797 	bool wake;
2798 
2799 	trace_regmap_async_io_complete(map);
2800 
2801 	spin_lock(&map->async_lock);
2802 	list_move(&async->list, &map->async_free);
2803 	wake = list_empty(&map->async_list);
2804 
2805 	if (ret != 0)
2806 		map->async_ret = ret;
2807 
2808 	spin_unlock(&map->async_lock);
2809 
2810 	if (wake)
2811 		wake_up(&map->async_waitq);
2812 }
2813 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2814 
2815 static int regmap_async_is_done(struct regmap *map)
2816 {
2817 	unsigned long flags;
2818 	int ret;
2819 
2820 	spin_lock_irqsave(&map->async_lock, flags);
2821 	ret = list_empty(&map->async_list);
2822 	spin_unlock_irqrestore(&map->async_lock, flags);
2823 
2824 	return ret;
2825 }
2826 
2827 /**
2828  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2829  *
2830  * @map: Map to operate on.
2831  *
2832  * Blocks until any pending asynchronous I/O has completed.  Returns
2833  * an error code for any failed I/O operations.
2834  */
2835 int regmap_async_complete(struct regmap *map)
2836 {
2837 	unsigned long flags;
2838 	int ret;
2839 
2840 	/* Nothing to do with no async support */
2841 	if (!map->bus || !map->bus->async_write)
2842 		return 0;
2843 
2844 	trace_regmap_async_complete_start(map);
2845 
2846 	wait_event(map->async_waitq, regmap_async_is_done(map));
2847 
2848 	spin_lock_irqsave(&map->async_lock, flags);
2849 	ret = map->async_ret;
2850 	map->async_ret = 0;
2851 	spin_unlock_irqrestore(&map->async_lock, flags);
2852 
2853 	trace_regmap_async_complete_done(map);
2854 
2855 	return ret;
2856 }
2857 EXPORT_SYMBOL_GPL(regmap_async_complete);
2858 
2859 /**
2860  * regmap_register_patch: Register and apply register updates to be applied
2861  *                        on device initialistion
2862  *
2863  * @map: Register map to apply updates to.
2864  * @regs: Values to update.
2865  * @num_regs: Number of entries in regs.
2866  *
2867  * Register a set of register updates to be applied to the device
2868  * whenever the device registers are synchronised with the cache and
2869  * apply them immediately.  Typically this is used to apply
2870  * corrections to be applied to the device defaults on startup, such
2871  * as the updates some vendors provide to undocumented registers.
2872  *
2873  * The caller must ensure that this function cannot be called
2874  * concurrently with either itself or regcache_sync().
2875  */
2876 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2877 			  int num_regs)
2878 {
2879 	struct reg_sequence *p;
2880 	int ret;
2881 	bool bypass;
2882 
2883 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2884 	    num_regs))
2885 		return 0;
2886 
2887 	p = krealloc(map->patch,
2888 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2889 		     GFP_KERNEL);
2890 	if (p) {
2891 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2892 		map->patch = p;
2893 		map->patch_regs += num_regs;
2894 	} else {
2895 		return -ENOMEM;
2896 	}
2897 
2898 	map->lock(map->lock_arg);
2899 
2900 	bypass = map->cache_bypass;
2901 
2902 	map->cache_bypass = true;
2903 	map->async = true;
2904 
2905 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2906 
2907 	map->async = false;
2908 	map->cache_bypass = bypass;
2909 
2910 	map->unlock(map->lock_arg);
2911 
2912 	regmap_async_complete(map);
2913 
2914 	return ret;
2915 }
2916 EXPORT_SYMBOL_GPL(regmap_register_patch);
2917 
2918 /*
2919  * regmap_get_val_bytes(): Report the size of a register value
2920  *
2921  * Report the size of a register value, mainly intended to for use by
2922  * generic infrastructure built on top of regmap.
2923  */
2924 int regmap_get_val_bytes(struct regmap *map)
2925 {
2926 	if (map->format.format_write)
2927 		return -EINVAL;
2928 
2929 	return map->format.val_bytes;
2930 }
2931 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2932 
2933 /**
2934  * regmap_get_max_register(): Report the max register value
2935  *
2936  * Report the max register value, mainly intended to for use by
2937  * generic infrastructure built on top of regmap.
2938  */
2939 int regmap_get_max_register(struct regmap *map)
2940 {
2941 	return map->max_register ? map->max_register : -EINVAL;
2942 }
2943 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2944 
2945 /**
2946  * regmap_get_reg_stride(): Report the register address stride
2947  *
2948  * Report the register address stride, mainly intended to for use by
2949  * generic infrastructure built on top of regmap.
2950  */
2951 int regmap_get_reg_stride(struct regmap *map)
2952 {
2953 	return map->reg_stride;
2954 }
2955 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2956 
2957 int regmap_parse_val(struct regmap *map, const void *buf,
2958 			unsigned int *val)
2959 {
2960 	if (!map->format.parse_val)
2961 		return -EINVAL;
2962 
2963 	*val = map->format.parse_val(buf);
2964 
2965 	return 0;
2966 }
2967 EXPORT_SYMBOL_GPL(regmap_parse_val);
2968 
2969 static int __init regmap_initcall(void)
2970 {
2971 	regmap_debugfs_initcall();
2972 
2973 	return 0;
2974 }
2975 postcore_initcall(regmap_initcall);
2976