xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include "trace.h"
27 
28 #include "internal.h"
29 
30 /*
31  * Sometimes for failures during very early init the trace
32  * infrastructure isn't available early enough to be used.  For this
33  * sort of problem defining LOG_DEVICE will add printks for basic
34  * register I/O on a specific device.
35  */
36 #undef LOG_DEVICE
37 
38 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
39 			       unsigned int mask, unsigned int val,
40 			       bool *change, bool force_write);
41 
42 static int _regmap_bus_reg_read(void *context, unsigned int reg,
43 				unsigned int *val);
44 static int _regmap_bus_read(void *context, unsigned int reg,
45 			    unsigned int *val);
46 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
47 				       unsigned int val);
48 static int _regmap_bus_reg_write(void *context, unsigned int reg,
49 				 unsigned int val);
50 static int _regmap_bus_raw_write(void *context, unsigned int reg,
51 				 unsigned int val);
52 
53 bool regmap_reg_in_ranges(unsigned int reg,
54 			  const struct regmap_range *ranges,
55 			  unsigned int nranges)
56 {
57 	const struct regmap_range *r;
58 	int i;
59 
60 	for (i = 0, r = ranges; i < nranges; i++, r++)
61 		if (regmap_reg_in_range(reg, r))
62 			return true;
63 	return false;
64 }
65 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
66 
67 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
68 			      const struct regmap_access_table *table)
69 {
70 	/* Check "no ranges" first */
71 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
72 		return false;
73 
74 	/* In case zero "yes ranges" are supplied, any reg is OK */
75 	if (!table->n_yes_ranges)
76 		return true;
77 
78 	return regmap_reg_in_ranges(reg, table->yes_ranges,
79 				    table->n_yes_ranges);
80 }
81 EXPORT_SYMBOL_GPL(regmap_check_range_table);
82 
83 bool regmap_writeable(struct regmap *map, unsigned int reg)
84 {
85 	if (map->max_register && reg > map->max_register)
86 		return false;
87 
88 	if (map->writeable_reg)
89 		return map->writeable_reg(map->dev, reg);
90 
91 	if (map->wr_table)
92 		return regmap_check_range_table(map, reg, map->wr_table);
93 
94 	return true;
95 }
96 
97 bool regmap_cached(struct regmap *map, unsigned int reg)
98 {
99 	int ret;
100 	unsigned int val;
101 
102 	if (map->cache == REGCACHE_NONE)
103 		return false;
104 
105 	if (!map->cache_ops)
106 		return false;
107 
108 	if (map->max_register && reg > map->max_register)
109 		return false;
110 
111 	map->lock(map->lock_arg);
112 	ret = regcache_read(map, reg, &val);
113 	map->unlock(map->lock_arg);
114 	if (ret)
115 		return false;
116 
117 	return true;
118 }
119 
120 bool regmap_readable(struct regmap *map, unsigned int reg)
121 {
122 	if (!map->reg_read)
123 		return false;
124 
125 	if (map->max_register && reg > map->max_register)
126 		return false;
127 
128 	if (map->format.format_write)
129 		return false;
130 
131 	if (map->readable_reg)
132 		return map->readable_reg(map->dev, reg);
133 
134 	if (map->rd_table)
135 		return regmap_check_range_table(map, reg, map->rd_table);
136 
137 	return true;
138 }
139 
140 bool regmap_volatile(struct regmap *map, unsigned int reg)
141 {
142 	if (!map->format.format_write && !regmap_readable(map, reg))
143 		return false;
144 
145 	if (map->volatile_reg)
146 		return map->volatile_reg(map->dev, reg);
147 
148 	if (map->volatile_table)
149 		return regmap_check_range_table(map, reg, map->volatile_table);
150 
151 	if (map->cache_ops)
152 		return false;
153 	else
154 		return true;
155 }
156 
157 bool regmap_precious(struct regmap *map, unsigned int reg)
158 {
159 	if (!regmap_readable(map, reg))
160 		return false;
161 
162 	if (map->precious_reg)
163 		return map->precious_reg(map->dev, reg);
164 
165 	if (map->precious_table)
166 		return regmap_check_range_table(map, reg, map->precious_table);
167 
168 	return false;
169 }
170 
171 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
172 	size_t num)
173 {
174 	unsigned int i;
175 
176 	for (i = 0; i < num; i++)
177 		if (!regmap_volatile(map, reg + i))
178 			return false;
179 
180 	return true;
181 }
182 
183 static void regmap_format_2_6_write(struct regmap *map,
184 				     unsigned int reg, unsigned int val)
185 {
186 	u8 *out = map->work_buf;
187 
188 	*out = (reg << 6) | val;
189 }
190 
191 static void regmap_format_4_12_write(struct regmap *map,
192 				     unsigned int reg, unsigned int val)
193 {
194 	__be16 *out = map->work_buf;
195 	*out = cpu_to_be16((reg << 12) | val);
196 }
197 
198 static void regmap_format_7_9_write(struct regmap *map,
199 				    unsigned int reg, unsigned int val)
200 {
201 	__be16 *out = map->work_buf;
202 	*out = cpu_to_be16((reg << 9) | val);
203 }
204 
205 static void regmap_format_10_14_write(struct regmap *map,
206 				    unsigned int reg, unsigned int val)
207 {
208 	u8 *out = map->work_buf;
209 
210 	out[2] = val;
211 	out[1] = (val >> 8) | (reg << 6);
212 	out[0] = reg >> 2;
213 }
214 
215 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
216 {
217 	u8 *b = buf;
218 
219 	b[0] = val << shift;
220 }
221 
222 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
223 {
224 	__be16 *b = buf;
225 
226 	b[0] = cpu_to_be16(val << shift);
227 }
228 
229 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
230 {
231 	__le16 *b = buf;
232 
233 	b[0] = cpu_to_le16(val << shift);
234 }
235 
236 static void regmap_format_16_native(void *buf, unsigned int val,
237 				    unsigned int shift)
238 {
239 	*(u16 *)buf = val << shift;
240 }
241 
242 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
243 {
244 	u8 *b = buf;
245 
246 	val <<= shift;
247 
248 	b[0] = val >> 16;
249 	b[1] = val >> 8;
250 	b[2] = val;
251 }
252 
253 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
254 {
255 	__be32 *b = buf;
256 
257 	b[0] = cpu_to_be32(val << shift);
258 }
259 
260 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
261 {
262 	__le32 *b = buf;
263 
264 	b[0] = cpu_to_le32(val << shift);
265 }
266 
267 static void regmap_format_32_native(void *buf, unsigned int val,
268 				    unsigned int shift)
269 {
270 	*(u32 *)buf = val << shift;
271 }
272 
273 #ifdef CONFIG_64BIT
274 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
275 {
276 	__be64 *b = buf;
277 
278 	b[0] = cpu_to_be64((u64)val << shift);
279 }
280 
281 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
282 {
283 	__le64 *b = buf;
284 
285 	b[0] = cpu_to_le64((u64)val << shift);
286 }
287 
288 static void regmap_format_64_native(void *buf, unsigned int val,
289 				    unsigned int shift)
290 {
291 	*(u64 *)buf = (u64)val << shift;
292 }
293 #endif
294 
295 static void regmap_parse_inplace_noop(void *buf)
296 {
297 }
298 
299 static unsigned int regmap_parse_8(const void *buf)
300 {
301 	const u8 *b = buf;
302 
303 	return b[0];
304 }
305 
306 static unsigned int regmap_parse_16_be(const void *buf)
307 {
308 	const __be16 *b = buf;
309 
310 	return be16_to_cpu(b[0]);
311 }
312 
313 static unsigned int regmap_parse_16_le(const void *buf)
314 {
315 	const __le16 *b = buf;
316 
317 	return le16_to_cpu(b[0]);
318 }
319 
320 static void regmap_parse_16_be_inplace(void *buf)
321 {
322 	__be16 *b = buf;
323 
324 	b[0] = be16_to_cpu(b[0]);
325 }
326 
327 static void regmap_parse_16_le_inplace(void *buf)
328 {
329 	__le16 *b = buf;
330 
331 	b[0] = le16_to_cpu(b[0]);
332 }
333 
334 static unsigned int regmap_parse_16_native(const void *buf)
335 {
336 	return *(u16 *)buf;
337 }
338 
339 static unsigned int regmap_parse_24(const void *buf)
340 {
341 	const u8 *b = buf;
342 	unsigned int ret = b[2];
343 	ret |= ((unsigned int)b[1]) << 8;
344 	ret |= ((unsigned int)b[0]) << 16;
345 
346 	return ret;
347 }
348 
349 static unsigned int regmap_parse_32_be(const void *buf)
350 {
351 	const __be32 *b = buf;
352 
353 	return be32_to_cpu(b[0]);
354 }
355 
356 static unsigned int regmap_parse_32_le(const void *buf)
357 {
358 	const __le32 *b = buf;
359 
360 	return le32_to_cpu(b[0]);
361 }
362 
363 static void regmap_parse_32_be_inplace(void *buf)
364 {
365 	__be32 *b = buf;
366 
367 	b[0] = be32_to_cpu(b[0]);
368 }
369 
370 static void regmap_parse_32_le_inplace(void *buf)
371 {
372 	__le32 *b = buf;
373 
374 	b[0] = le32_to_cpu(b[0]);
375 }
376 
377 static unsigned int regmap_parse_32_native(const void *buf)
378 {
379 	return *(u32 *)buf;
380 }
381 
382 #ifdef CONFIG_64BIT
383 static unsigned int regmap_parse_64_be(const void *buf)
384 {
385 	const __be64 *b = buf;
386 
387 	return be64_to_cpu(b[0]);
388 }
389 
390 static unsigned int regmap_parse_64_le(const void *buf)
391 {
392 	const __le64 *b = buf;
393 
394 	return le64_to_cpu(b[0]);
395 }
396 
397 static void regmap_parse_64_be_inplace(void *buf)
398 {
399 	__be64 *b = buf;
400 
401 	b[0] = be64_to_cpu(b[0]);
402 }
403 
404 static void regmap_parse_64_le_inplace(void *buf)
405 {
406 	__le64 *b = buf;
407 
408 	b[0] = le64_to_cpu(b[0]);
409 }
410 
411 static unsigned int regmap_parse_64_native(const void *buf)
412 {
413 	return *(u64 *)buf;
414 }
415 #endif
416 
417 static void regmap_lock_hwlock(void *__map)
418 {
419 	struct regmap *map = __map;
420 
421 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
422 }
423 
424 static void regmap_lock_hwlock_irq(void *__map)
425 {
426 	struct regmap *map = __map;
427 
428 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
429 }
430 
431 static void regmap_lock_hwlock_irqsave(void *__map)
432 {
433 	struct regmap *map = __map;
434 
435 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
436 				    &map->spinlock_flags);
437 }
438 
439 static void regmap_unlock_hwlock(void *__map)
440 {
441 	struct regmap *map = __map;
442 
443 	hwspin_unlock(map->hwlock);
444 }
445 
446 static void regmap_unlock_hwlock_irq(void *__map)
447 {
448 	struct regmap *map = __map;
449 
450 	hwspin_unlock_irq(map->hwlock);
451 }
452 
453 static void regmap_unlock_hwlock_irqrestore(void *__map)
454 {
455 	struct regmap *map = __map;
456 
457 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
458 }
459 
460 static void regmap_lock_unlock_none(void *__map)
461 {
462 
463 }
464 
465 static void regmap_lock_mutex(void *__map)
466 {
467 	struct regmap *map = __map;
468 	mutex_lock(&map->mutex);
469 }
470 
471 static void regmap_unlock_mutex(void *__map)
472 {
473 	struct regmap *map = __map;
474 	mutex_unlock(&map->mutex);
475 }
476 
477 static void regmap_lock_spinlock(void *__map)
478 __acquires(&map->spinlock)
479 {
480 	struct regmap *map = __map;
481 	unsigned long flags;
482 
483 	spin_lock_irqsave(&map->spinlock, flags);
484 	map->spinlock_flags = flags;
485 }
486 
487 static void regmap_unlock_spinlock(void *__map)
488 __releases(&map->spinlock)
489 {
490 	struct regmap *map = __map;
491 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
492 }
493 
494 static void dev_get_regmap_release(struct device *dev, void *res)
495 {
496 	/*
497 	 * We don't actually have anything to do here; the goal here
498 	 * is not to manage the regmap but to provide a simple way to
499 	 * get the regmap back given a struct device.
500 	 */
501 }
502 
503 static bool _regmap_range_add(struct regmap *map,
504 			      struct regmap_range_node *data)
505 {
506 	struct rb_root *root = &map->range_tree;
507 	struct rb_node **new = &(root->rb_node), *parent = NULL;
508 
509 	while (*new) {
510 		struct regmap_range_node *this =
511 			rb_entry(*new, struct regmap_range_node, node);
512 
513 		parent = *new;
514 		if (data->range_max < this->range_min)
515 			new = &((*new)->rb_left);
516 		else if (data->range_min > this->range_max)
517 			new = &((*new)->rb_right);
518 		else
519 			return false;
520 	}
521 
522 	rb_link_node(&data->node, parent, new);
523 	rb_insert_color(&data->node, root);
524 
525 	return true;
526 }
527 
528 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
529 						      unsigned int reg)
530 {
531 	struct rb_node *node = map->range_tree.rb_node;
532 
533 	while (node) {
534 		struct regmap_range_node *this =
535 			rb_entry(node, struct regmap_range_node, node);
536 
537 		if (reg < this->range_min)
538 			node = node->rb_left;
539 		else if (reg > this->range_max)
540 			node = node->rb_right;
541 		else
542 			return this;
543 	}
544 
545 	return NULL;
546 }
547 
548 static void regmap_range_exit(struct regmap *map)
549 {
550 	struct rb_node *next;
551 	struct regmap_range_node *range_node;
552 
553 	next = rb_first(&map->range_tree);
554 	while (next) {
555 		range_node = rb_entry(next, struct regmap_range_node, node);
556 		next = rb_next(&range_node->node);
557 		rb_erase(&range_node->node, &map->range_tree);
558 		kfree(range_node);
559 	}
560 
561 	kfree(map->selector_work_buf);
562 }
563 
564 int regmap_attach_dev(struct device *dev, struct regmap *map,
565 		      const struct regmap_config *config)
566 {
567 	struct regmap **m;
568 
569 	map->dev = dev;
570 
571 	regmap_debugfs_init(map, config->name);
572 
573 	/* Add a devres resource for dev_get_regmap() */
574 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
575 	if (!m) {
576 		regmap_debugfs_exit(map);
577 		return -ENOMEM;
578 	}
579 	*m = map;
580 	devres_add(dev, m);
581 
582 	return 0;
583 }
584 EXPORT_SYMBOL_GPL(regmap_attach_dev);
585 
586 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
587 					const struct regmap_config *config)
588 {
589 	enum regmap_endian endian;
590 
591 	/* Retrieve the endianness specification from the regmap config */
592 	endian = config->reg_format_endian;
593 
594 	/* If the regmap config specified a non-default value, use that */
595 	if (endian != REGMAP_ENDIAN_DEFAULT)
596 		return endian;
597 
598 	/* Retrieve the endianness specification from the bus config */
599 	if (bus && bus->reg_format_endian_default)
600 		endian = bus->reg_format_endian_default;
601 
602 	/* If the bus specified a non-default value, use that */
603 	if (endian != REGMAP_ENDIAN_DEFAULT)
604 		return endian;
605 
606 	/* Use this if no other value was found */
607 	return REGMAP_ENDIAN_BIG;
608 }
609 
610 enum regmap_endian regmap_get_val_endian(struct device *dev,
611 					 const struct regmap_bus *bus,
612 					 const struct regmap_config *config)
613 {
614 	struct device_node *np;
615 	enum regmap_endian endian;
616 
617 	/* Retrieve the endianness specification from the regmap config */
618 	endian = config->val_format_endian;
619 
620 	/* If the regmap config specified a non-default value, use that */
621 	if (endian != REGMAP_ENDIAN_DEFAULT)
622 		return endian;
623 
624 	/* If the dev and dev->of_node exist try to get endianness from DT */
625 	if (dev && dev->of_node) {
626 		np = dev->of_node;
627 
628 		/* Parse the device's DT node for an endianness specification */
629 		if (of_property_read_bool(np, "big-endian"))
630 			endian = REGMAP_ENDIAN_BIG;
631 		else if (of_property_read_bool(np, "little-endian"))
632 			endian = REGMAP_ENDIAN_LITTLE;
633 		else if (of_property_read_bool(np, "native-endian"))
634 			endian = REGMAP_ENDIAN_NATIVE;
635 
636 		/* If the endianness was specified in DT, use that */
637 		if (endian != REGMAP_ENDIAN_DEFAULT)
638 			return endian;
639 	}
640 
641 	/* Retrieve the endianness specification from the bus config */
642 	if (bus && bus->val_format_endian_default)
643 		endian = bus->val_format_endian_default;
644 
645 	/* If the bus specified a non-default value, use that */
646 	if (endian != REGMAP_ENDIAN_DEFAULT)
647 		return endian;
648 
649 	/* Use this if no other value was found */
650 	return REGMAP_ENDIAN_BIG;
651 }
652 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
653 
654 struct regmap *__regmap_init(struct device *dev,
655 			     const struct regmap_bus *bus,
656 			     void *bus_context,
657 			     const struct regmap_config *config,
658 			     struct lock_class_key *lock_key,
659 			     const char *lock_name)
660 {
661 	struct regmap *map;
662 	int ret = -EINVAL;
663 	enum regmap_endian reg_endian, val_endian;
664 	int i, j;
665 
666 	if (!config)
667 		goto err;
668 
669 	map = kzalloc(sizeof(*map), GFP_KERNEL);
670 	if (map == NULL) {
671 		ret = -ENOMEM;
672 		goto err;
673 	}
674 
675 	if (config->name) {
676 		map->name = kstrdup_const(config->name, GFP_KERNEL);
677 		if (!map->name) {
678 			ret = -ENOMEM;
679 			goto err_map;
680 		}
681 	}
682 
683 	if (config->disable_locking) {
684 		map->lock = map->unlock = regmap_lock_unlock_none;
685 		regmap_debugfs_disable(map);
686 	} else if (config->lock && config->unlock) {
687 		map->lock = config->lock;
688 		map->unlock = config->unlock;
689 		map->lock_arg = config->lock_arg;
690 	} else if (config->use_hwlock) {
691 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
692 		if (!map->hwlock) {
693 			ret = -ENXIO;
694 			goto err_name;
695 		}
696 
697 		switch (config->hwlock_mode) {
698 		case HWLOCK_IRQSTATE:
699 			map->lock = regmap_lock_hwlock_irqsave;
700 			map->unlock = regmap_unlock_hwlock_irqrestore;
701 			break;
702 		case HWLOCK_IRQ:
703 			map->lock = regmap_lock_hwlock_irq;
704 			map->unlock = regmap_unlock_hwlock_irq;
705 			break;
706 		default:
707 			map->lock = regmap_lock_hwlock;
708 			map->unlock = regmap_unlock_hwlock;
709 			break;
710 		}
711 
712 		map->lock_arg = map;
713 	} else {
714 		if ((bus && bus->fast_io) ||
715 		    config->fast_io) {
716 			spin_lock_init(&map->spinlock);
717 			map->lock = regmap_lock_spinlock;
718 			map->unlock = regmap_unlock_spinlock;
719 			lockdep_set_class_and_name(&map->spinlock,
720 						   lock_key, lock_name);
721 		} else {
722 			mutex_init(&map->mutex);
723 			map->lock = regmap_lock_mutex;
724 			map->unlock = regmap_unlock_mutex;
725 			lockdep_set_class_and_name(&map->mutex,
726 						   lock_key, lock_name);
727 		}
728 		map->lock_arg = map;
729 	}
730 
731 	/*
732 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
733 	 * scratch buffers with sleeping allocations.
734 	 */
735 	if ((bus && bus->fast_io) || config->fast_io)
736 		map->alloc_flags = GFP_ATOMIC;
737 	else
738 		map->alloc_flags = GFP_KERNEL;
739 
740 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
741 	map->format.pad_bytes = config->pad_bits / 8;
742 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
743 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
744 			config->val_bits + config->pad_bits, 8);
745 	map->reg_shift = config->pad_bits % 8;
746 	if (config->reg_stride)
747 		map->reg_stride = config->reg_stride;
748 	else
749 		map->reg_stride = 1;
750 	if (is_power_of_2(map->reg_stride))
751 		map->reg_stride_order = ilog2(map->reg_stride);
752 	else
753 		map->reg_stride_order = -1;
754 	map->use_single_read = config->use_single_rw || !bus || !bus->read;
755 	map->use_single_write = config->use_single_rw || !bus || !bus->write;
756 	map->can_multi_write = config->can_multi_write && bus && bus->write;
757 	if (bus) {
758 		map->max_raw_read = bus->max_raw_read;
759 		map->max_raw_write = bus->max_raw_write;
760 	}
761 	map->dev = dev;
762 	map->bus = bus;
763 	map->bus_context = bus_context;
764 	map->max_register = config->max_register;
765 	map->wr_table = config->wr_table;
766 	map->rd_table = config->rd_table;
767 	map->volatile_table = config->volatile_table;
768 	map->precious_table = config->precious_table;
769 	map->writeable_reg = config->writeable_reg;
770 	map->readable_reg = config->readable_reg;
771 	map->volatile_reg = config->volatile_reg;
772 	map->precious_reg = config->precious_reg;
773 	map->cache_type = config->cache_type;
774 
775 	spin_lock_init(&map->async_lock);
776 	INIT_LIST_HEAD(&map->async_list);
777 	INIT_LIST_HEAD(&map->async_free);
778 	init_waitqueue_head(&map->async_waitq);
779 
780 	if (config->read_flag_mask ||
781 	    config->write_flag_mask ||
782 	    config->zero_flag_mask) {
783 		map->read_flag_mask = config->read_flag_mask;
784 		map->write_flag_mask = config->write_flag_mask;
785 	} else if (bus) {
786 		map->read_flag_mask = bus->read_flag_mask;
787 	}
788 
789 	if (!bus) {
790 		map->reg_read  = config->reg_read;
791 		map->reg_write = config->reg_write;
792 
793 		map->defer_caching = false;
794 		goto skip_format_initialization;
795 	} else if (!bus->read || !bus->write) {
796 		map->reg_read = _regmap_bus_reg_read;
797 		map->reg_write = _regmap_bus_reg_write;
798 
799 		map->defer_caching = false;
800 		goto skip_format_initialization;
801 	} else {
802 		map->reg_read  = _regmap_bus_read;
803 		map->reg_update_bits = bus->reg_update_bits;
804 	}
805 
806 	reg_endian = regmap_get_reg_endian(bus, config);
807 	val_endian = regmap_get_val_endian(dev, bus, config);
808 
809 	switch (config->reg_bits + map->reg_shift) {
810 	case 2:
811 		switch (config->val_bits) {
812 		case 6:
813 			map->format.format_write = regmap_format_2_6_write;
814 			break;
815 		default:
816 			goto err_hwlock;
817 		}
818 		break;
819 
820 	case 4:
821 		switch (config->val_bits) {
822 		case 12:
823 			map->format.format_write = regmap_format_4_12_write;
824 			break;
825 		default:
826 			goto err_hwlock;
827 		}
828 		break;
829 
830 	case 7:
831 		switch (config->val_bits) {
832 		case 9:
833 			map->format.format_write = regmap_format_7_9_write;
834 			break;
835 		default:
836 			goto err_hwlock;
837 		}
838 		break;
839 
840 	case 10:
841 		switch (config->val_bits) {
842 		case 14:
843 			map->format.format_write = regmap_format_10_14_write;
844 			break;
845 		default:
846 			goto err_hwlock;
847 		}
848 		break;
849 
850 	case 8:
851 		map->format.format_reg = regmap_format_8;
852 		break;
853 
854 	case 16:
855 		switch (reg_endian) {
856 		case REGMAP_ENDIAN_BIG:
857 			map->format.format_reg = regmap_format_16_be;
858 			break;
859 		case REGMAP_ENDIAN_LITTLE:
860 			map->format.format_reg = regmap_format_16_le;
861 			break;
862 		case REGMAP_ENDIAN_NATIVE:
863 			map->format.format_reg = regmap_format_16_native;
864 			break;
865 		default:
866 			goto err_hwlock;
867 		}
868 		break;
869 
870 	case 24:
871 		if (reg_endian != REGMAP_ENDIAN_BIG)
872 			goto err_hwlock;
873 		map->format.format_reg = regmap_format_24;
874 		break;
875 
876 	case 32:
877 		switch (reg_endian) {
878 		case REGMAP_ENDIAN_BIG:
879 			map->format.format_reg = regmap_format_32_be;
880 			break;
881 		case REGMAP_ENDIAN_LITTLE:
882 			map->format.format_reg = regmap_format_32_le;
883 			break;
884 		case REGMAP_ENDIAN_NATIVE:
885 			map->format.format_reg = regmap_format_32_native;
886 			break;
887 		default:
888 			goto err_hwlock;
889 		}
890 		break;
891 
892 #ifdef CONFIG_64BIT
893 	case 64:
894 		switch (reg_endian) {
895 		case REGMAP_ENDIAN_BIG:
896 			map->format.format_reg = regmap_format_64_be;
897 			break;
898 		case REGMAP_ENDIAN_LITTLE:
899 			map->format.format_reg = regmap_format_64_le;
900 			break;
901 		case REGMAP_ENDIAN_NATIVE:
902 			map->format.format_reg = regmap_format_64_native;
903 			break;
904 		default:
905 			goto err_hwlock;
906 		}
907 		break;
908 #endif
909 
910 	default:
911 		goto err_hwlock;
912 	}
913 
914 	if (val_endian == REGMAP_ENDIAN_NATIVE)
915 		map->format.parse_inplace = regmap_parse_inplace_noop;
916 
917 	switch (config->val_bits) {
918 	case 8:
919 		map->format.format_val = regmap_format_8;
920 		map->format.parse_val = regmap_parse_8;
921 		map->format.parse_inplace = regmap_parse_inplace_noop;
922 		break;
923 	case 16:
924 		switch (val_endian) {
925 		case REGMAP_ENDIAN_BIG:
926 			map->format.format_val = regmap_format_16_be;
927 			map->format.parse_val = regmap_parse_16_be;
928 			map->format.parse_inplace = regmap_parse_16_be_inplace;
929 			break;
930 		case REGMAP_ENDIAN_LITTLE:
931 			map->format.format_val = regmap_format_16_le;
932 			map->format.parse_val = regmap_parse_16_le;
933 			map->format.parse_inplace = regmap_parse_16_le_inplace;
934 			break;
935 		case REGMAP_ENDIAN_NATIVE:
936 			map->format.format_val = regmap_format_16_native;
937 			map->format.parse_val = regmap_parse_16_native;
938 			break;
939 		default:
940 			goto err_hwlock;
941 		}
942 		break;
943 	case 24:
944 		if (val_endian != REGMAP_ENDIAN_BIG)
945 			goto err_hwlock;
946 		map->format.format_val = regmap_format_24;
947 		map->format.parse_val = regmap_parse_24;
948 		break;
949 	case 32:
950 		switch (val_endian) {
951 		case REGMAP_ENDIAN_BIG:
952 			map->format.format_val = regmap_format_32_be;
953 			map->format.parse_val = regmap_parse_32_be;
954 			map->format.parse_inplace = regmap_parse_32_be_inplace;
955 			break;
956 		case REGMAP_ENDIAN_LITTLE:
957 			map->format.format_val = regmap_format_32_le;
958 			map->format.parse_val = regmap_parse_32_le;
959 			map->format.parse_inplace = regmap_parse_32_le_inplace;
960 			break;
961 		case REGMAP_ENDIAN_NATIVE:
962 			map->format.format_val = regmap_format_32_native;
963 			map->format.parse_val = regmap_parse_32_native;
964 			break;
965 		default:
966 			goto err_hwlock;
967 		}
968 		break;
969 #ifdef CONFIG_64BIT
970 	case 64:
971 		switch (val_endian) {
972 		case REGMAP_ENDIAN_BIG:
973 			map->format.format_val = regmap_format_64_be;
974 			map->format.parse_val = regmap_parse_64_be;
975 			map->format.parse_inplace = regmap_parse_64_be_inplace;
976 			break;
977 		case REGMAP_ENDIAN_LITTLE:
978 			map->format.format_val = regmap_format_64_le;
979 			map->format.parse_val = regmap_parse_64_le;
980 			map->format.parse_inplace = regmap_parse_64_le_inplace;
981 			break;
982 		case REGMAP_ENDIAN_NATIVE:
983 			map->format.format_val = regmap_format_64_native;
984 			map->format.parse_val = regmap_parse_64_native;
985 			break;
986 		default:
987 			goto err_hwlock;
988 		}
989 		break;
990 #endif
991 	}
992 
993 	if (map->format.format_write) {
994 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
995 		    (val_endian != REGMAP_ENDIAN_BIG))
996 			goto err_hwlock;
997 		map->use_single_write = true;
998 	}
999 
1000 	if (!map->format.format_write &&
1001 	    !(map->format.format_reg && map->format.format_val))
1002 		goto err_hwlock;
1003 
1004 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1005 	if (map->work_buf == NULL) {
1006 		ret = -ENOMEM;
1007 		goto err_hwlock;
1008 	}
1009 
1010 	if (map->format.format_write) {
1011 		map->defer_caching = false;
1012 		map->reg_write = _regmap_bus_formatted_write;
1013 	} else if (map->format.format_val) {
1014 		map->defer_caching = true;
1015 		map->reg_write = _regmap_bus_raw_write;
1016 	}
1017 
1018 skip_format_initialization:
1019 
1020 	map->range_tree = RB_ROOT;
1021 	for (i = 0; i < config->num_ranges; i++) {
1022 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1023 		struct regmap_range_node *new;
1024 
1025 		/* Sanity check */
1026 		if (range_cfg->range_max < range_cfg->range_min) {
1027 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1028 				range_cfg->range_max, range_cfg->range_min);
1029 			goto err_range;
1030 		}
1031 
1032 		if (range_cfg->range_max > map->max_register) {
1033 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1034 				range_cfg->range_max, map->max_register);
1035 			goto err_range;
1036 		}
1037 
1038 		if (range_cfg->selector_reg > map->max_register) {
1039 			dev_err(map->dev,
1040 				"Invalid range %d: selector out of map\n", i);
1041 			goto err_range;
1042 		}
1043 
1044 		if (range_cfg->window_len == 0) {
1045 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1046 				i);
1047 			goto err_range;
1048 		}
1049 
1050 		/* Make sure, that this register range has no selector
1051 		   or data window within its boundary */
1052 		for (j = 0; j < config->num_ranges; j++) {
1053 			unsigned sel_reg = config->ranges[j].selector_reg;
1054 			unsigned win_min = config->ranges[j].window_start;
1055 			unsigned win_max = win_min +
1056 					   config->ranges[j].window_len - 1;
1057 
1058 			/* Allow data window inside its own virtual range */
1059 			if (j == i)
1060 				continue;
1061 
1062 			if (range_cfg->range_min <= sel_reg &&
1063 			    sel_reg <= range_cfg->range_max) {
1064 				dev_err(map->dev,
1065 					"Range %d: selector for %d in window\n",
1066 					i, j);
1067 				goto err_range;
1068 			}
1069 
1070 			if (!(win_max < range_cfg->range_min ||
1071 			      win_min > range_cfg->range_max)) {
1072 				dev_err(map->dev,
1073 					"Range %d: window for %d in window\n",
1074 					i, j);
1075 				goto err_range;
1076 			}
1077 		}
1078 
1079 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1080 		if (new == NULL) {
1081 			ret = -ENOMEM;
1082 			goto err_range;
1083 		}
1084 
1085 		new->map = map;
1086 		new->name = range_cfg->name;
1087 		new->range_min = range_cfg->range_min;
1088 		new->range_max = range_cfg->range_max;
1089 		new->selector_reg = range_cfg->selector_reg;
1090 		new->selector_mask = range_cfg->selector_mask;
1091 		new->selector_shift = range_cfg->selector_shift;
1092 		new->window_start = range_cfg->window_start;
1093 		new->window_len = range_cfg->window_len;
1094 
1095 		if (!_regmap_range_add(map, new)) {
1096 			dev_err(map->dev, "Failed to add range %d\n", i);
1097 			kfree(new);
1098 			goto err_range;
1099 		}
1100 
1101 		if (map->selector_work_buf == NULL) {
1102 			map->selector_work_buf =
1103 				kzalloc(map->format.buf_size, GFP_KERNEL);
1104 			if (map->selector_work_buf == NULL) {
1105 				ret = -ENOMEM;
1106 				goto err_range;
1107 			}
1108 		}
1109 	}
1110 
1111 	ret = regcache_init(map, config);
1112 	if (ret != 0)
1113 		goto err_range;
1114 
1115 	if (dev) {
1116 		ret = regmap_attach_dev(dev, map, config);
1117 		if (ret != 0)
1118 			goto err_regcache;
1119 	}
1120 
1121 	return map;
1122 
1123 err_regcache:
1124 	regcache_exit(map);
1125 err_range:
1126 	regmap_range_exit(map);
1127 	kfree(map->work_buf);
1128 err_hwlock:
1129 	if (map->hwlock)
1130 		hwspin_lock_free(map->hwlock);
1131 err_name:
1132 	kfree_const(map->name);
1133 err_map:
1134 	kfree(map);
1135 err:
1136 	return ERR_PTR(ret);
1137 }
1138 EXPORT_SYMBOL_GPL(__regmap_init);
1139 
1140 static void devm_regmap_release(struct device *dev, void *res)
1141 {
1142 	regmap_exit(*(struct regmap **)res);
1143 }
1144 
1145 struct regmap *__devm_regmap_init(struct device *dev,
1146 				  const struct regmap_bus *bus,
1147 				  void *bus_context,
1148 				  const struct regmap_config *config,
1149 				  struct lock_class_key *lock_key,
1150 				  const char *lock_name)
1151 {
1152 	struct regmap **ptr, *regmap;
1153 
1154 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1155 	if (!ptr)
1156 		return ERR_PTR(-ENOMEM);
1157 
1158 	regmap = __regmap_init(dev, bus, bus_context, config,
1159 			       lock_key, lock_name);
1160 	if (!IS_ERR(regmap)) {
1161 		*ptr = regmap;
1162 		devres_add(dev, ptr);
1163 	} else {
1164 		devres_free(ptr);
1165 	}
1166 
1167 	return regmap;
1168 }
1169 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1170 
1171 static void regmap_field_init(struct regmap_field *rm_field,
1172 	struct regmap *regmap, struct reg_field reg_field)
1173 {
1174 	rm_field->regmap = regmap;
1175 	rm_field->reg = reg_field.reg;
1176 	rm_field->shift = reg_field.lsb;
1177 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1178 	rm_field->id_size = reg_field.id_size;
1179 	rm_field->id_offset = reg_field.id_offset;
1180 }
1181 
1182 /**
1183  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1184  *
1185  * @dev: Device that will be interacted with
1186  * @regmap: regmap bank in which this register field is located.
1187  * @reg_field: Register field with in the bank.
1188  *
1189  * The return value will be an ERR_PTR() on error or a valid pointer
1190  * to a struct regmap_field. The regmap_field will be automatically freed
1191  * by the device management code.
1192  */
1193 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1194 		struct regmap *regmap, struct reg_field reg_field)
1195 {
1196 	struct regmap_field *rm_field = devm_kzalloc(dev,
1197 					sizeof(*rm_field), GFP_KERNEL);
1198 	if (!rm_field)
1199 		return ERR_PTR(-ENOMEM);
1200 
1201 	regmap_field_init(rm_field, regmap, reg_field);
1202 
1203 	return rm_field;
1204 
1205 }
1206 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1207 
1208 /**
1209  * devm_regmap_field_free() - Free a register field allocated using
1210  *                            devm_regmap_field_alloc.
1211  *
1212  * @dev: Device that will be interacted with
1213  * @field: regmap field which should be freed.
1214  *
1215  * Free register field allocated using devm_regmap_field_alloc(). Usually
1216  * drivers need not call this function, as the memory allocated via devm
1217  * will be freed as per device-driver life-cyle.
1218  */
1219 void devm_regmap_field_free(struct device *dev,
1220 	struct regmap_field *field)
1221 {
1222 	devm_kfree(dev, field);
1223 }
1224 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1225 
1226 /**
1227  * regmap_field_alloc() - Allocate and initialise a register field.
1228  *
1229  * @regmap: regmap bank in which this register field is located.
1230  * @reg_field: Register field with in the bank.
1231  *
1232  * The return value will be an ERR_PTR() on error or a valid pointer
1233  * to a struct regmap_field. The regmap_field should be freed by the
1234  * user once its finished working with it using regmap_field_free().
1235  */
1236 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1237 		struct reg_field reg_field)
1238 {
1239 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1240 
1241 	if (!rm_field)
1242 		return ERR_PTR(-ENOMEM);
1243 
1244 	regmap_field_init(rm_field, regmap, reg_field);
1245 
1246 	return rm_field;
1247 }
1248 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1249 
1250 /**
1251  * regmap_field_free() - Free register field allocated using
1252  *                       regmap_field_alloc.
1253  *
1254  * @field: regmap field which should be freed.
1255  */
1256 void regmap_field_free(struct regmap_field *field)
1257 {
1258 	kfree(field);
1259 }
1260 EXPORT_SYMBOL_GPL(regmap_field_free);
1261 
1262 /**
1263  * regmap_reinit_cache() - Reinitialise the current register cache
1264  *
1265  * @map: Register map to operate on.
1266  * @config: New configuration.  Only the cache data will be used.
1267  *
1268  * Discard any existing register cache for the map and initialize a
1269  * new cache.  This can be used to restore the cache to defaults or to
1270  * update the cache configuration to reflect runtime discovery of the
1271  * hardware.
1272  *
1273  * No explicit locking is done here, the user needs to ensure that
1274  * this function will not race with other calls to regmap.
1275  */
1276 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1277 {
1278 	regcache_exit(map);
1279 	regmap_debugfs_exit(map);
1280 
1281 	map->max_register = config->max_register;
1282 	map->writeable_reg = config->writeable_reg;
1283 	map->readable_reg = config->readable_reg;
1284 	map->volatile_reg = config->volatile_reg;
1285 	map->precious_reg = config->precious_reg;
1286 	map->cache_type = config->cache_type;
1287 
1288 	regmap_debugfs_init(map, config->name);
1289 
1290 	map->cache_bypass = false;
1291 	map->cache_only = false;
1292 
1293 	return regcache_init(map, config);
1294 }
1295 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1296 
1297 /**
1298  * regmap_exit() - Free a previously allocated register map
1299  *
1300  * @map: Register map to operate on.
1301  */
1302 void regmap_exit(struct regmap *map)
1303 {
1304 	struct regmap_async *async;
1305 
1306 	regcache_exit(map);
1307 	regmap_debugfs_exit(map);
1308 	regmap_range_exit(map);
1309 	if (map->bus && map->bus->free_context)
1310 		map->bus->free_context(map->bus_context);
1311 	kfree(map->work_buf);
1312 	while (!list_empty(&map->async_free)) {
1313 		async = list_first_entry_or_null(&map->async_free,
1314 						 struct regmap_async,
1315 						 list);
1316 		list_del(&async->list);
1317 		kfree(async->work_buf);
1318 		kfree(async);
1319 	}
1320 	if (map->hwlock)
1321 		hwspin_lock_free(map->hwlock);
1322 	kfree_const(map->name);
1323 	kfree(map);
1324 }
1325 EXPORT_SYMBOL_GPL(regmap_exit);
1326 
1327 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1328 {
1329 	struct regmap **r = res;
1330 	if (!r || !*r) {
1331 		WARN_ON(!r || !*r);
1332 		return 0;
1333 	}
1334 
1335 	/* If the user didn't specify a name match any */
1336 	if (data)
1337 		return (*r)->name == data;
1338 	else
1339 		return 1;
1340 }
1341 
1342 /**
1343  * dev_get_regmap() - Obtain the regmap (if any) for a device
1344  *
1345  * @dev: Device to retrieve the map for
1346  * @name: Optional name for the register map, usually NULL.
1347  *
1348  * Returns the regmap for the device if one is present, or NULL.  If
1349  * name is specified then it must match the name specified when
1350  * registering the device, if it is NULL then the first regmap found
1351  * will be used.  Devices with multiple register maps are very rare,
1352  * generic code should normally not need to specify a name.
1353  */
1354 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1355 {
1356 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1357 					dev_get_regmap_match, (void *)name);
1358 
1359 	if (!r)
1360 		return NULL;
1361 	return *r;
1362 }
1363 EXPORT_SYMBOL_GPL(dev_get_regmap);
1364 
1365 /**
1366  * regmap_get_device() - Obtain the device from a regmap
1367  *
1368  * @map: Register map to operate on.
1369  *
1370  * Returns the underlying device that the regmap has been created for.
1371  */
1372 struct device *regmap_get_device(struct regmap *map)
1373 {
1374 	return map->dev;
1375 }
1376 EXPORT_SYMBOL_GPL(regmap_get_device);
1377 
1378 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1379 			       struct regmap_range_node *range,
1380 			       unsigned int val_num)
1381 {
1382 	void *orig_work_buf;
1383 	unsigned int win_offset;
1384 	unsigned int win_page;
1385 	bool page_chg;
1386 	int ret;
1387 
1388 	win_offset = (*reg - range->range_min) % range->window_len;
1389 	win_page = (*reg - range->range_min) / range->window_len;
1390 
1391 	if (val_num > 1) {
1392 		/* Bulk write shouldn't cross range boundary */
1393 		if (*reg + val_num - 1 > range->range_max)
1394 			return -EINVAL;
1395 
1396 		/* ... or single page boundary */
1397 		if (val_num > range->window_len - win_offset)
1398 			return -EINVAL;
1399 	}
1400 
1401 	/* It is possible to have selector register inside data window.
1402 	   In that case, selector register is located on every page and
1403 	   it needs no page switching, when accessed alone. */
1404 	if (val_num > 1 ||
1405 	    range->window_start + win_offset != range->selector_reg) {
1406 		/* Use separate work_buf during page switching */
1407 		orig_work_buf = map->work_buf;
1408 		map->work_buf = map->selector_work_buf;
1409 
1410 		ret = _regmap_update_bits(map, range->selector_reg,
1411 					  range->selector_mask,
1412 					  win_page << range->selector_shift,
1413 					  &page_chg, false);
1414 
1415 		map->work_buf = orig_work_buf;
1416 
1417 		if (ret != 0)
1418 			return ret;
1419 	}
1420 
1421 	*reg = range->window_start + win_offset;
1422 
1423 	return 0;
1424 }
1425 
1426 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1427 					  unsigned long mask)
1428 {
1429 	u8 *buf;
1430 	int i;
1431 
1432 	if (!mask || !map->work_buf)
1433 		return;
1434 
1435 	buf = map->work_buf;
1436 
1437 	for (i = 0; i < max_bytes; i++)
1438 		buf[i] |= (mask >> (8 * i)) & 0xff;
1439 }
1440 
1441 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1442 		      const void *val, size_t val_len)
1443 {
1444 	struct regmap_range_node *range;
1445 	unsigned long flags;
1446 	void *work_val = map->work_buf + map->format.reg_bytes +
1447 		map->format.pad_bytes;
1448 	void *buf;
1449 	int ret = -ENOTSUPP;
1450 	size_t len;
1451 	int i;
1452 
1453 	WARN_ON(!map->bus);
1454 
1455 	/* Check for unwritable registers before we start */
1456 	if (map->writeable_reg)
1457 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1458 			if (!map->writeable_reg(map->dev,
1459 					       reg + regmap_get_offset(map, i)))
1460 				return -EINVAL;
1461 
1462 	if (!map->cache_bypass && map->format.parse_val) {
1463 		unsigned int ival;
1464 		int val_bytes = map->format.val_bytes;
1465 		for (i = 0; i < val_len / val_bytes; i++) {
1466 			ival = map->format.parse_val(val + (i * val_bytes));
1467 			ret = regcache_write(map,
1468 					     reg + regmap_get_offset(map, i),
1469 					     ival);
1470 			if (ret) {
1471 				dev_err(map->dev,
1472 					"Error in caching of register: %x ret: %d\n",
1473 					reg + i, ret);
1474 				return ret;
1475 			}
1476 		}
1477 		if (map->cache_only) {
1478 			map->cache_dirty = true;
1479 			return 0;
1480 		}
1481 	}
1482 
1483 	range = _regmap_range_lookup(map, reg);
1484 	if (range) {
1485 		int val_num = val_len / map->format.val_bytes;
1486 		int win_offset = (reg - range->range_min) % range->window_len;
1487 		int win_residue = range->window_len - win_offset;
1488 
1489 		/* If the write goes beyond the end of the window split it */
1490 		while (val_num > win_residue) {
1491 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1492 				win_residue, val_len / map->format.val_bytes);
1493 			ret = _regmap_raw_write(map, reg, val, win_residue *
1494 						map->format.val_bytes);
1495 			if (ret != 0)
1496 				return ret;
1497 
1498 			reg += win_residue;
1499 			val_num -= win_residue;
1500 			val += win_residue * map->format.val_bytes;
1501 			val_len -= win_residue * map->format.val_bytes;
1502 
1503 			win_offset = (reg - range->range_min) %
1504 				range->window_len;
1505 			win_residue = range->window_len - win_offset;
1506 		}
1507 
1508 		ret = _regmap_select_page(map, &reg, range, val_num);
1509 		if (ret != 0)
1510 			return ret;
1511 	}
1512 
1513 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1514 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1515 				      map->write_flag_mask);
1516 
1517 	/*
1518 	 * Essentially all I/O mechanisms will be faster with a single
1519 	 * buffer to write.  Since register syncs often generate raw
1520 	 * writes of single registers optimise that case.
1521 	 */
1522 	if (val != work_val && val_len == map->format.val_bytes) {
1523 		memcpy(work_val, val, map->format.val_bytes);
1524 		val = work_val;
1525 	}
1526 
1527 	if (map->async && map->bus->async_write) {
1528 		struct regmap_async *async;
1529 
1530 		trace_regmap_async_write_start(map, reg, val_len);
1531 
1532 		spin_lock_irqsave(&map->async_lock, flags);
1533 		async = list_first_entry_or_null(&map->async_free,
1534 						 struct regmap_async,
1535 						 list);
1536 		if (async)
1537 			list_del(&async->list);
1538 		spin_unlock_irqrestore(&map->async_lock, flags);
1539 
1540 		if (!async) {
1541 			async = map->bus->async_alloc();
1542 			if (!async)
1543 				return -ENOMEM;
1544 
1545 			async->work_buf = kzalloc(map->format.buf_size,
1546 						  GFP_KERNEL | GFP_DMA);
1547 			if (!async->work_buf) {
1548 				kfree(async);
1549 				return -ENOMEM;
1550 			}
1551 		}
1552 
1553 		async->map = map;
1554 
1555 		/* If the caller supplied the value we can use it safely. */
1556 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1557 		       map->format.reg_bytes + map->format.val_bytes);
1558 
1559 		spin_lock_irqsave(&map->async_lock, flags);
1560 		list_add_tail(&async->list, &map->async_list);
1561 		spin_unlock_irqrestore(&map->async_lock, flags);
1562 
1563 		if (val != work_val)
1564 			ret = map->bus->async_write(map->bus_context,
1565 						    async->work_buf,
1566 						    map->format.reg_bytes +
1567 						    map->format.pad_bytes,
1568 						    val, val_len, async);
1569 		else
1570 			ret = map->bus->async_write(map->bus_context,
1571 						    async->work_buf,
1572 						    map->format.reg_bytes +
1573 						    map->format.pad_bytes +
1574 						    val_len, NULL, 0, async);
1575 
1576 		if (ret != 0) {
1577 			dev_err(map->dev, "Failed to schedule write: %d\n",
1578 				ret);
1579 
1580 			spin_lock_irqsave(&map->async_lock, flags);
1581 			list_move(&async->list, &map->async_free);
1582 			spin_unlock_irqrestore(&map->async_lock, flags);
1583 		}
1584 
1585 		return ret;
1586 	}
1587 
1588 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1589 
1590 	/* If we're doing a single register write we can probably just
1591 	 * send the work_buf directly, otherwise try to do a gather
1592 	 * write.
1593 	 */
1594 	if (val == work_val)
1595 		ret = map->bus->write(map->bus_context, map->work_buf,
1596 				      map->format.reg_bytes +
1597 				      map->format.pad_bytes +
1598 				      val_len);
1599 	else if (map->bus->gather_write)
1600 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1601 					     map->format.reg_bytes +
1602 					     map->format.pad_bytes,
1603 					     val, val_len);
1604 
1605 	/* If that didn't work fall back on linearising by hand. */
1606 	if (ret == -ENOTSUPP) {
1607 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1608 		buf = kzalloc(len, GFP_KERNEL);
1609 		if (!buf)
1610 			return -ENOMEM;
1611 
1612 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1613 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1614 		       val, val_len);
1615 		ret = map->bus->write(map->bus_context, buf, len);
1616 
1617 		kfree(buf);
1618 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1619 		/* regcache_drop_region() takes lock that we already have,
1620 		 * thus call map->cache_ops->drop() directly
1621 		 */
1622 		if (map->cache_ops && map->cache_ops->drop)
1623 			map->cache_ops->drop(map, reg, reg + 1);
1624 	}
1625 
1626 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1627 
1628 	return ret;
1629 }
1630 
1631 /**
1632  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1633  *
1634  * @map: Map to check.
1635  */
1636 bool regmap_can_raw_write(struct regmap *map)
1637 {
1638 	return map->bus && map->bus->write && map->format.format_val &&
1639 		map->format.format_reg;
1640 }
1641 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1642 
1643 /**
1644  * regmap_get_raw_read_max - Get the maximum size we can read
1645  *
1646  * @map: Map to check.
1647  */
1648 size_t regmap_get_raw_read_max(struct regmap *map)
1649 {
1650 	return map->max_raw_read;
1651 }
1652 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1653 
1654 /**
1655  * regmap_get_raw_write_max - Get the maximum size we can read
1656  *
1657  * @map: Map to check.
1658  */
1659 size_t regmap_get_raw_write_max(struct regmap *map)
1660 {
1661 	return map->max_raw_write;
1662 }
1663 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1664 
1665 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1666 				       unsigned int val)
1667 {
1668 	int ret;
1669 	struct regmap_range_node *range;
1670 	struct regmap *map = context;
1671 
1672 	WARN_ON(!map->bus || !map->format.format_write);
1673 
1674 	range = _regmap_range_lookup(map, reg);
1675 	if (range) {
1676 		ret = _regmap_select_page(map, &reg, range, 1);
1677 		if (ret != 0)
1678 			return ret;
1679 	}
1680 
1681 	map->format.format_write(map, reg, val);
1682 
1683 	trace_regmap_hw_write_start(map, reg, 1);
1684 
1685 	ret = map->bus->write(map->bus_context, map->work_buf,
1686 			      map->format.buf_size);
1687 
1688 	trace_regmap_hw_write_done(map, reg, 1);
1689 
1690 	return ret;
1691 }
1692 
1693 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1694 				 unsigned int val)
1695 {
1696 	struct regmap *map = context;
1697 
1698 	return map->bus->reg_write(map->bus_context, reg, val);
1699 }
1700 
1701 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1702 				 unsigned int val)
1703 {
1704 	struct regmap *map = context;
1705 
1706 	WARN_ON(!map->bus || !map->format.format_val);
1707 
1708 	map->format.format_val(map->work_buf + map->format.reg_bytes
1709 			       + map->format.pad_bytes, val, 0);
1710 	return _regmap_raw_write(map, reg,
1711 				 map->work_buf +
1712 				 map->format.reg_bytes +
1713 				 map->format.pad_bytes,
1714 				 map->format.val_bytes);
1715 }
1716 
1717 static inline void *_regmap_map_get_context(struct regmap *map)
1718 {
1719 	return (map->bus) ? map : map->bus_context;
1720 }
1721 
1722 int _regmap_write(struct regmap *map, unsigned int reg,
1723 		  unsigned int val)
1724 {
1725 	int ret;
1726 	void *context = _regmap_map_get_context(map);
1727 
1728 	if (!regmap_writeable(map, reg))
1729 		return -EIO;
1730 
1731 	if (!map->cache_bypass && !map->defer_caching) {
1732 		ret = regcache_write(map, reg, val);
1733 		if (ret != 0)
1734 			return ret;
1735 		if (map->cache_only) {
1736 			map->cache_dirty = true;
1737 			return 0;
1738 		}
1739 	}
1740 
1741 #ifdef LOG_DEVICE
1742 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1743 		dev_info(map->dev, "%x <= %x\n", reg, val);
1744 #endif
1745 
1746 	trace_regmap_reg_write(map, reg, val);
1747 
1748 	return map->reg_write(context, reg, val);
1749 }
1750 
1751 /**
1752  * regmap_write() - Write a value to a single register
1753  *
1754  * @map: Register map to write to
1755  * @reg: Register to write to
1756  * @val: Value to be written
1757  *
1758  * A value of zero will be returned on success, a negative errno will
1759  * be returned in error cases.
1760  */
1761 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1762 {
1763 	int ret;
1764 
1765 	if (!IS_ALIGNED(reg, map->reg_stride))
1766 		return -EINVAL;
1767 
1768 	map->lock(map->lock_arg);
1769 
1770 	ret = _regmap_write(map, reg, val);
1771 
1772 	map->unlock(map->lock_arg);
1773 
1774 	return ret;
1775 }
1776 EXPORT_SYMBOL_GPL(regmap_write);
1777 
1778 /**
1779  * regmap_write_async() - Write a value to a single register asynchronously
1780  *
1781  * @map: Register map to write to
1782  * @reg: Register to write to
1783  * @val: Value to be written
1784  *
1785  * A value of zero will be returned on success, a negative errno will
1786  * be returned in error cases.
1787  */
1788 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1789 {
1790 	int ret;
1791 
1792 	if (!IS_ALIGNED(reg, map->reg_stride))
1793 		return -EINVAL;
1794 
1795 	map->lock(map->lock_arg);
1796 
1797 	map->async = true;
1798 
1799 	ret = _regmap_write(map, reg, val);
1800 
1801 	map->async = false;
1802 
1803 	map->unlock(map->lock_arg);
1804 
1805 	return ret;
1806 }
1807 EXPORT_SYMBOL_GPL(regmap_write_async);
1808 
1809 /**
1810  * regmap_raw_write() - Write raw values to one or more registers
1811  *
1812  * @map: Register map to write to
1813  * @reg: Initial register to write to
1814  * @val: Block of data to be written, laid out for direct transmission to the
1815  *       device
1816  * @val_len: Length of data pointed to by val.
1817  *
1818  * This function is intended to be used for things like firmware
1819  * download where a large block of data needs to be transferred to the
1820  * device.  No formatting will be done on the data provided.
1821  *
1822  * A value of zero will be returned on success, a negative errno will
1823  * be returned in error cases.
1824  */
1825 int regmap_raw_write(struct regmap *map, unsigned int reg,
1826 		     const void *val, size_t val_len)
1827 {
1828 	int ret;
1829 
1830 	if (!regmap_can_raw_write(map))
1831 		return -EINVAL;
1832 	if (val_len % map->format.val_bytes)
1833 		return -EINVAL;
1834 	if (map->max_raw_write && map->max_raw_write > val_len)
1835 		return -E2BIG;
1836 
1837 	map->lock(map->lock_arg);
1838 
1839 	ret = _regmap_raw_write(map, reg, val, val_len);
1840 
1841 	map->unlock(map->lock_arg);
1842 
1843 	return ret;
1844 }
1845 EXPORT_SYMBOL_GPL(regmap_raw_write);
1846 
1847 /**
1848  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1849  *                                   register field.
1850  *
1851  * @field: Register field to write to
1852  * @mask: Bitmask to change
1853  * @val: Value to be written
1854  * @change: Boolean indicating if a write was done
1855  * @async: Boolean indicating asynchronously
1856  * @force: Boolean indicating use force update
1857  *
1858  * Perform a read/modify/write cycle on the register field with change,
1859  * async, force option.
1860  *
1861  * A value of zero will be returned on success, a negative errno will
1862  * be returned in error cases.
1863  */
1864 int regmap_field_update_bits_base(struct regmap_field *field,
1865 				  unsigned int mask, unsigned int val,
1866 				  bool *change, bool async, bool force)
1867 {
1868 	mask = (mask << field->shift) & field->mask;
1869 
1870 	return regmap_update_bits_base(field->regmap, field->reg,
1871 				       mask, val << field->shift,
1872 				       change, async, force);
1873 }
1874 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1875 
1876 /**
1877  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1878  *                                    register field with port ID
1879  *
1880  * @field: Register field to write to
1881  * @id: port ID
1882  * @mask: Bitmask to change
1883  * @val: Value to be written
1884  * @change: Boolean indicating if a write was done
1885  * @async: Boolean indicating asynchronously
1886  * @force: Boolean indicating use force update
1887  *
1888  * A value of zero will be returned on success, a negative errno will
1889  * be returned in error cases.
1890  */
1891 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1892 				   unsigned int mask, unsigned int val,
1893 				   bool *change, bool async, bool force)
1894 {
1895 	if (id >= field->id_size)
1896 		return -EINVAL;
1897 
1898 	mask = (mask << field->shift) & field->mask;
1899 
1900 	return regmap_update_bits_base(field->regmap,
1901 				       field->reg + (field->id_offset * id),
1902 				       mask, val << field->shift,
1903 				       change, async, force);
1904 }
1905 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1906 
1907 /**
1908  * regmap_bulk_write() - Write multiple registers to the device
1909  *
1910  * @map: Register map to write to
1911  * @reg: First register to be write from
1912  * @val: Block of data to be written, in native register size for device
1913  * @val_count: Number of registers to write
1914  *
1915  * This function is intended to be used for writing a large block of
1916  * data to the device either in single transfer or multiple transfer.
1917  *
1918  * A value of zero will be returned on success, a negative errno will
1919  * be returned in error cases.
1920  */
1921 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1922 		     size_t val_count)
1923 {
1924 	int ret = 0, i;
1925 	size_t val_bytes = map->format.val_bytes;
1926 	size_t total_size = val_bytes * val_count;
1927 
1928 	if (!IS_ALIGNED(reg, map->reg_stride))
1929 		return -EINVAL;
1930 
1931 	/*
1932 	 * Some devices don't support bulk write, for
1933 	 * them we have a series of single write operations in the first two if
1934 	 * blocks.
1935 	 *
1936 	 * The first if block is used for memory mapped io. It does not allow
1937 	 * val_bytes of 3 for example.
1938 	 * The second one is for busses that do not provide raw I/O.
1939 	 * The third one is used for busses which do not have these limitations
1940 	 * and can write arbitrary value lengths.
1941 	 */
1942 	if (!map->bus) {
1943 		map->lock(map->lock_arg);
1944 		for (i = 0; i < val_count; i++) {
1945 			unsigned int ival;
1946 
1947 			switch (val_bytes) {
1948 			case 1:
1949 				ival = *(u8 *)(val + (i * val_bytes));
1950 				break;
1951 			case 2:
1952 				ival = *(u16 *)(val + (i * val_bytes));
1953 				break;
1954 			case 4:
1955 				ival = *(u32 *)(val + (i * val_bytes));
1956 				break;
1957 #ifdef CONFIG_64BIT
1958 			case 8:
1959 				ival = *(u64 *)(val + (i * val_bytes));
1960 				break;
1961 #endif
1962 			default:
1963 				ret = -EINVAL;
1964 				goto out;
1965 			}
1966 
1967 			ret = _regmap_write(map,
1968 					    reg + regmap_get_offset(map, i),
1969 					    ival);
1970 			if (ret != 0)
1971 				goto out;
1972 		}
1973 out:
1974 		map->unlock(map->lock_arg);
1975 	} else if (map->bus && !map->format.parse_inplace) {
1976 		const u8 *u8 = val;
1977 		const u16 *u16 = val;
1978 		const u32 *u32 = val;
1979 		unsigned int ival;
1980 
1981 		for (i = 0; i < val_count; i++) {
1982 			switch (map->format.val_bytes) {
1983 			case 4:
1984 				ival = u32[i];
1985 				break;
1986 			case 2:
1987 				ival = u16[i];
1988 				break;
1989 			case 1:
1990 				ival = u8[i];
1991 				break;
1992 			default:
1993 				return -EINVAL;
1994 			}
1995 
1996 			ret = regmap_write(map, reg + (i * map->reg_stride),
1997 					   ival);
1998 			if (ret)
1999 				return ret;
2000 		}
2001 	} else if (map->use_single_write ||
2002 		   (map->max_raw_write && map->max_raw_write < total_size)) {
2003 		int chunk_stride = map->reg_stride;
2004 		size_t chunk_size = val_bytes;
2005 		size_t chunk_count = val_count;
2006 
2007 		if (!map->use_single_write) {
2008 			chunk_size = map->max_raw_write;
2009 			if (chunk_size % val_bytes)
2010 				chunk_size -= chunk_size % val_bytes;
2011 			chunk_count = total_size / chunk_size;
2012 			chunk_stride *= chunk_size / val_bytes;
2013 		}
2014 
2015 		map->lock(map->lock_arg);
2016 		/* Write as many bytes as possible with chunk_size */
2017 		for (i = 0; i < chunk_count; i++) {
2018 			ret = _regmap_raw_write(map,
2019 						reg + (i * chunk_stride),
2020 						val + (i * chunk_size),
2021 						chunk_size);
2022 			if (ret)
2023 				break;
2024 		}
2025 
2026 		/* Write remaining bytes */
2027 		if (!ret && chunk_size * i < total_size) {
2028 			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
2029 						val + (i * chunk_size),
2030 						total_size - i * chunk_size);
2031 		}
2032 		map->unlock(map->lock_arg);
2033 	} else {
2034 		void *wval;
2035 
2036 		if (!val_count)
2037 			return -EINVAL;
2038 
2039 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2040 		if (!wval) {
2041 			dev_err(map->dev, "Error in memory allocation\n");
2042 			return -ENOMEM;
2043 		}
2044 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2045 			map->format.parse_inplace(wval + i);
2046 
2047 		map->lock(map->lock_arg);
2048 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
2049 		map->unlock(map->lock_arg);
2050 
2051 		kfree(wval);
2052 	}
2053 	return ret;
2054 }
2055 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2056 
2057 /*
2058  * _regmap_raw_multi_reg_write()
2059  *
2060  * the (register,newvalue) pairs in regs have not been formatted, but
2061  * they are all in the same page and have been changed to being page
2062  * relative. The page register has been written if that was necessary.
2063  */
2064 static int _regmap_raw_multi_reg_write(struct regmap *map,
2065 				       const struct reg_sequence *regs,
2066 				       size_t num_regs)
2067 {
2068 	int ret;
2069 	void *buf;
2070 	int i;
2071 	u8 *u8;
2072 	size_t val_bytes = map->format.val_bytes;
2073 	size_t reg_bytes = map->format.reg_bytes;
2074 	size_t pad_bytes = map->format.pad_bytes;
2075 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2076 	size_t len = pair_size * num_regs;
2077 
2078 	if (!len)
2079 		return -EINVAL;
2080 
2081 	buf = kzalloc(len, GFP_KERNEL);
2082 	if (!buf)
2083 		return -ENOMEM;
2084 
2085 	/* We have to linearise by hand. */
2086 
2087 	u8 = buf;
2088 
2089 	for (i = 0; i < num_regs; i++) {
2090 		unsigned int reg = regs[i].reg;
2091 		unsigned int val = regs[i].def;
2092 		trace_regmap_hw_write_start(map, reg, 1);
2093 		map->format.format_reg(u8, reg, map->reg_shift);
2094 		u8 += reg_bytes + pad_bytes;
2095 		map->format.format_val(u8, val, 0);
2096 		u8 += val_bytes;
2097 	}
2098 	u8 = buf;
2099 	*u8 |= map->write_flag_mask;
2100 
2101 	ret = map->bus->write(map->bus_context, buf, len);
2102 
2103 	kfree(buf);
2104 
2105 	for (i = 0; i < num_regs; i++) {
2106 		int reg = regs[i].reg;
2107 		trace_regmap_hw_write_done(map, reg, 1);
2108 	}
2109 	return ret;
2110 }
2111 
2112 static unsigned int _regmap_register_page(struct regmap *map,
2113 					  unsigned int reg,
2114 					  struct regmap_range_node *range)
2115 {
2116 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2117 
2118 	return win_page;
2119 }
2120 
2121 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2122 					       struct reg_sequence *regs,
2123 					       size_t num_regs)
2124 {
2125 	int ret;
2126 	int i, n;
2127 	struct reg_sequence *base;
2128 	unsigned int this_page = 0;
2129 	unsigned int page_change = 0;
2130 	/*
2131 	 * the set of registers are not neccessarily in order, but
2132 	 * since the order of write must be preserved this algorithm
2133 	 * chops the set each time the page changes. This also applies
2134 	 * if there is a delay required at any point in the sequence.
2135 	 */
2136 	base = regs;
2137 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2138 		unsigned int reg = regs[i].reg;
2139 		struct regmap_range_node *range;
2140 
2141 		range = _regmap_range_lookup(map, reg);
2142 		if (range) {
2143 			unsigned int win_page = _regmap_register_page(map, reg,
2144 								      range);
2145 
2146 			if (i == 0)
2147 				this_page = win_page;
2148 			if (win_page != this_page) {
2149 				this_page = win_page;
2150 				page_change = 1;
2151 			}
2152 		}
2153 
2154 		/* If we have both a page change and a delay make sure to
2155 		 * write the regs and apply the delay before we change the
2156 		 * page.
2157 		 */
2158 
2159 		if (page_change || regs[i].delay_us) {
2160 
2161 				/* For situations where the first write requires
2162 				 * a delay we need to make sure we don't call
2163 				 * raw_multi_reg_write with n=0
2164 				 * This can't occur with page breaks as we
2165 				 * never write on the first iteration
2166 				 */
2167 				if (regs[i].delay_us && i == 0)
2168 					n = 1;
2169 
2170 				ret = _regmap_raw_multi_reg_write(map, base, n);
2171 				if (ret != 0)
2172 					return ret;
2173 
2174 				if (regs[i].delay_us)
2175 					udelay(regs[i].delay_us);
2176 
2177 				base += n;
2178 				n = 0;
2179 
2180 				if (page_change) {
2181 					ret = _regmap_select_page(map,
2182 								  &base[n].reg,
2183 								  range, 1);
2184 					if (ret != 0)
2185 						return ret;
2186 
2187 					page_change = 0;
2188 				}
2189 
2190 		}
2191 
2192 	}
2193 	if (n > 0)
2194 		return _regmap_raw_multi_reg_write(map, base, n);
2195 	return 0;
2196 }
2197 
2198 static int _regmap_multi_reg_write(struct regmap *map,
2199 				   const struct reg_sequence *regs,
2200 				   size_t num_regs)
2201 {
2202 	int i;
2203 	int ret;
2204 
2205 	if (!map->can_multi_write) {
2206 		for (i = 0; i < num_regs; i++) {
2207 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2208 			if (ret != 0)
2209 				return ret;
2210 
2211 			if (regs[i].delay_us)
2212 				udelay(regs[i].delay_us);
2213 		}
2214 		return 0;
2215 	}
2216 
2217 	if (!map->format.parse_inplace)
2218 		return -EINVAL;
2219 
2220 	if (map->writeable_reg)
2221 		for (i = 0; i < num_regs; i++) {
2222 			int reg = regs[i].reg;
2223 			if (!map->writeable_reg(map->dev, reg))
2224 				return -EINVAL;
2225 			if (!IS_ALIGNED(reg, map->reg_stride))
2226 				return -EINVAL;
2227 		}
2228 
2229 	if (!map->cache_bypass) {
2230 		for (i = 0; i < num_regs; i++) {
2231 			unsigned int val = regs[i].def;
2232 			unsigned int reg = regs[i].reg;
2233 			ret = regcache_write(map, reg, val);
2234 			if (ret) {
2235 				dev_err(map->dev,
2236 				"Error in caching of register: %x ret: %d\n",
2237 								reg, ret);
2238 				return ret;
2239 			}
2240 		}
2241 		if (map->cache_only) {
2242 			map->cache_dirty = true;
2243 			return 0;
2244 		}
2245 	}
2246 
2247 	WARN_ON(!map->bus);
2248 
2249 	for (i = 0; i < num_regs; i++) {
2250 		unsigned int reg = regs[i].reg;
2251 		struct regmap_range_node *range;
2252 
2253 		/* Coalesce all the writes between a page break or a delay
2254 		 * in a sequence
2255 		 */
2256 		range = _regmap_range_lookup(map, reg);
2257 		if (range || regs[i].delay_us) {
2258 			size_t len = sizeof(struct reg_sequence)*num_regs;
2259 			struct reg_sequence *base = kmemdup(regs, len,
2260 							   GFP_KERNEL);
2261 			if (!base)
2262 				return -ENOMEM;
2263 			ret = _regmap_range_multi_paged_reg_write(map, base,
2264 								  num_regs);
2265 			kfree(base);
2266 
2267 			return ret;
2268 		}
2269 	}
2270 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2271 }
2272 
2273 /**
2274  * regmap_multi_reg_write() - Write multiple registers to the device
2275  *
2276  * @map: Register map to write to
2277  * @regs: Array of structures containing register,value to be written
2278  * @num_regs: Number of registers to write
2279  *
2280  * Write multiple registers to the device where the set of register, value
2281  * pairs are supplied in any order, possibly not all in a single range.
2282  *
2283  * The 'normal' block write mode will send ultimately send data on the
2284  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2285  * addressed. However, this alternative block multi write mode will send
2286  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2287  * must of course support the mode.
2288  *
2289  * A value of zero will be returned on success, a negative errno will be
2290  * returned in error cases.
2291  */
2292 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2293 			   int num_regs)
2294 {
2295 	int ret;
2296 
2297 	map->lock(map->lock_arg);
2298 
2299 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2300 
2301 	map->unlock(map->lock_arg);
2302 
2303 	return ret;
2304 }
2305 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2306 
2307 /**
2308  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2309  *                                     device but not the cache
2310  *
2311  * @map: Register map to write to
2312  * @regs: Array of structures containing register,value to be written
2313  * @num_regs: Number of registers to write
2314  *
2315  * Write multiple registers to the device but not the cache where the set
2316  * of register are supplied in any order.
2317  *
2318  * This function is intended to be used for writing a large block of data
2319  * atomically to the device in single transfer for those I2C client devices
2320  * that implement this alternative block write mode.
2321  *
2322  * A value of zero will be returned on success, a negative errno will
2323  * be returned in error cases.
2324  */
2325 int regmap_multi_reg_write_bypassed(struct regmap *map,
2326 				    const struct reg_sequence *regs,
2327 				    int num_regs)
2328 {
2329 	int ret;
2330 	bool bypass;
2331 
2332 	map->lock(map->lock_arg);
2333 
2334 	bypass = map->cache_bypass;
2335 	map->cache_bypass = true;
2336 
2337 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2338 
2339 	map->cache_bypass = bypass;
2340 
2341 	map->unlock(map->lock_arg);
2342 
2343 	return ret;
2344 }
2345 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2346 
2347 /**
2348  * regmap_raw_write_async() - Write raw values to one or more registers
2349  *                            asynchronously
2350  *
2351  * @map: Register map to write to
2352  * @reg: Initial register to write to
2353  * @val: Block of data to be written, laid out for direct transmission to the
2354  *       device.  Must be valid until regmap_async_complete() is called.
2355  * @val_len: Length of data pointed to by val.
2356  *
2357  * This function is intended to be used for things like firmware
2358  * download where a large block of data needs to be transferred to the
2359  * device.  No formatting will be done on the data provided.
2360  *
2361  * If supported by the underlying bus the write will be scheduled
2362  * asynchronously, helping maximise I/O speed on higher speed buses
2363  * like SPI.  regmap_async_complete() can be called to ensure that all
2364  * asynchrnous writes have been completed.
2365  *
2366  * A value of zero will be returned on success, a negative errno will
2367  * be returned in error cases.
2368  */
2369 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2370 			   const void *val, size_t val_len)
2371 {
2372 	int ret;
2373 
2374 	if (val_len % map->format.val_bytes)
2375 		return -EINVAL;
2376 	if (!IS_ALIGNED(reg, map->reg_stride))
2377 		return -EINVAL;
2378 
2379 	map->lock(map->lock_arg);
2380 
2381 	map->async = true;
2382 
2383 	ret = _regmap_raw_write(map, reg, val, val_len);
2384 
2385 	map->async = false;
2386 
2387 	map->unlock(map->lock_arg);
2388 
2389 	return ret;
2390 }
2391 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2392 
2393 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2394 			    unsigned int val_len)
2395 {
2396 	struct regmap_range_node *range;
2397 	int ret;
2398 
2399 	WARN_ON(!map->bus);
2400 
2401 	if (!map->bus || !map->bus->read)
2402 		return -EINVAL;
2403 
2404 	range = _regmap_range_lookup(map, reg);
2405 	if (range) {
2406 		ret = _regmap_select_page(map, &reg, range,
2407 					  val_len / map->format.val_bytes);
2408 		if (ret != 0)
2409 			return ret;
2410 	}
2411 
2412 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2413 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2414 				      map->read_flag_mask);
2415 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2416 
2417 	ret = map->bus->read(map->bus_context, map->work_buf,
2418 			     map->format.reg_bytes + map->format.pad_bytes,
2419 			     val, val_len);
2420 
2421 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2422 
2423 	return ret;
2424 }
2425 
2426 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2427 				unsigned int *val)
2428 {
2429 	struct regmap *map = context;
2430 
2431 	return map->bus->reg_read(map->bus_context, reg, val);
2432 }
2433 
2434 static int _regmap_bus_read(void *context, unsigned int reg,
2435 			    unsigned int *val)
2436 {
2437 	int ret;
2438 	struct regmap *map = context;
2439 	void *work_val = map->work_buf + map->format.reg_bytes +
2440 		map->format.pad_bytes;
2441 
2442 	if (!map->format.parse_val)
2443 		return -EINVAL;
2444 
2445 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2446 	if (ret == 0)
2447 		*val = map->format.parse_val(work_val);
2448 
2449 	return ret;
2450 }
2451 
2452 static int _regmap_read(struct regmap *map, unsigned int reg,
2453 			unsigned int *val)
2454 {
2455 	int ret;
2456 	void *context = _regmap_map_get_context(map);
2457 
2458 	if (!map->cache_bypass) {
2459 		ret = regcache_read(map, reg, val);
2460 		if (ret == 0)
2461 			return 0;
2462 	}
2463 
2464 	if (map->cache_only)
2465 		return -EBUSY;
2466 
2467 	if (!regmap_readable(map, reg))
2468 		return -EIO;
2469 
2470 	ret = map->reg_read(context, reg, val);
2471 	if (ret == 0) {
2472 #ifdef LOG_DEVICE
2473 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2474 			dev_info(map->dev, "%x => %x\n", reg, *val);
2475 #endif
2476 
2477 		trace_regmap_reg_read(map, reg, *val);
2478 
2479 		if (!map->cache_bypass)
2480 			regcache_write(map, reg, *val);
2481 	}
2482 
2483 	return ret;
2484 }
2485 
2486 /**
2487  * regmap_read() - Read a value from a single register
2488  *
2489  * @map: Register map to read from
2490  * @reg: Register to be read from
2491  * @val: Pointer to store read value
2492  *
2493  * A value of zero will be returned on success, a negative errno will
2494  * be returned in error cases.
2495  */
2496 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2497 {
2498 	int ret;
2499 
2500 	if (!IS_ALIGNED(reg, map->reg_stride))
2501 		return -EINVAL;
2502 
2503 	map->lock(map->lock_arg);
2504 
2505 	ret = _regmap_read(map, reg, val);
2506 
2507 	map->unlock(map->lock_arg);
2508 
2509 	return ret;
2510 }
2511 EXPORT_SYMBOL_GPL(regmap_read);
2512 
2513 /**
2514  * regmap_raw_read() - Read raw data from the device
2515  *
2516  * @map: Register map to read from
2517  * @reg: First register to be read from
2518  * @val: Pointer to store read value
2519  * @val_len: Size of data to read
2520  *
2521  * A value of zero will be returned on success, a negative errno will
2522  * be returned in error cases.
2523  */
2524 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2525 		    size_t val_len)
2526 {
2527 	size_t val_bytes = map->format.val_bytes;
2528 	size_t val_count = val_len / val_bytes;
2529 	unsigned int v;
2530 	int ret, i;
2531 
2532 	if (!map->bus)
2533 		return -EINVAL;
2534 	if (val_len % map->format.val_bytes)
2535 		return -EINVAL;
2536 	if (!IS_ALIGNED(reg, map->reg_stride))
2537 		return -EINVAL;
2538 	if (val_count == 0)
2539 		return -EINVAL;
2540 
2541 	map->lock(map->lock_arg);
2542 
2543 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2544 	    map->cache_type == REGCACHE_NONE) {
2545 		if (!map->bus->read) {
2546 			ret = -ENOTSUPP;
2547 			goto out;
2548 		}
2549 		if (map->max_raw_read && map->max_raw_read < val_len) {
2550 			ret = -E2BIG;
2551 			goto out;
2552 		}
2553 
2554 		/* Physical block read if there's no cache involved */
2555 		ret = _regmap_raw_read(map, reg, val, val_len);
2556 
2557 	} else {
2558 		/* Otherwise go word by word for the cache; should be low
2559 		 * cost as we expect to hit the cache.
2560 		 */
2561 		for (i = 0; i < val_count; i++) {
2562 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2563 					   &v);
2564 			if (ret != 0)
2565 				goto out;
2566 
2567 			map->format.format_val(val + (i * val_bytes), v, 0);
2568 		}
2569 	}
2570 
2571  out:
2572 	map->unlock(map->lock_arg);
2573 
2574 	return ret;
2575 }
2576 EXPORT_SYMBOL_GPL(regmap_raw_read);
2577 
2578 /**
2579  * regmap_field_read() - Read a value to a single register field
2580  *
2581  * @field: Register field to read from
2582  * @val: Pointer to store read value
2583  *
2584  * A value of zero will be returned on success, a negative errno will
2585  * be returned in error cases.
2586  */
2587 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2588 {
2589 	int ret;
2590 	unsigned int reg_val;
2591 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2592 	if (ret != 0)
2593 		return ret;
2594 
2595 	reg_val &= field->mask;
2596 	reg_val >>= field->shift;
2597 	*val = reg_val;
2598 
2599 	return ret;
2600 }
2601 EXPORT_SYMBOL_GPL(regmap_field_read);
2602 
2603 /**
2604  * regmap_fields_read() - Read a value to a single register field with port ID
2605  *
2606  * @field: Register field to read from
2607  * @id: port ID
2608  * @val: Pointer to store read value
2609  *
2610  * A value of zero will be returned on success, a negative errno will
2611  * be returned in error cases.
2612  */
2613 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2614 		       unsigned int *val)
2615 {
2616 	int ret;
2617 	unsigned int reg_val;
2618 
2619 	if (id >= field->id_size)
2620 		return -EINVAL;
2621 
2622 	ret = regmap_read(field->regmap,
2623 			  field->reg + (field->id_offset * id),
2624 			  &reg_val);
2625 	if (ret != 0)
2626 		return ret;
2627 
2628 	reg_val &= field->mask;
2629 	reg_val >>= field->shift;
2630 	*val = reg_val;
2631 
2632 	return ret;
2633 }
2634 EXPORT_SYMBOL_GPL(regmap_fields_read);
2635 
2636 /**
2637  * regmap_bulk_read() - Read multiple registers from the device
2638  *
2639  * @map: Register map to read from
2640  * @reg: First register to be read from
2641  * @val: Pointer to store read value, in native register size for device
2642  * @val_count: Number of registers to read
2643  *
2644  * A value of zero will be returned on success, a negative errno will
2645  * be returned in error cases.
2646  */
2647 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2648 		     size_t val_count)
2649 {
2650 	int ret, i;
2651 	size_t val_bytes = map->format.val_bytes;
2652 	bool vol = regmap_volatile_range(map, reg, val_count);
2653 
2654 	if (!IS_ALIGNED(reg, map->reg_stride))
2655 		return -EINVAL;
2656 
2657 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2658 		/*
2659 		 * Some devices does not support bulk read, for
2660 		 * them we have a series of single read operations.
2661 		 */
2662 		size_t total_size = val_bytes * val_count;
2663 
2664 		if (!map->use_single_read &&
2665 		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2666 			ret = regmap_raw_read(map, reg, val,
2667 					      val_bytes * val_count);
2668 			if (ret != 0)
2669 				return ret;
2670 		} else {
2671 			/*
2672 			 * Some devices do not support bulk read or do not
2673 			 * support large bulk reads, for them we have a series
2674 			 * of read operations.
2675 			 */
2676 			int chunk_stride = map->reg_stride;
2677 			size_t chunk_size = val_bytes;
2678 			size_t chunk_count = val_count;
2679 
2680 			if (!map->use_single_read) {
2681 				chunk_size = map->max_raw_read;
2682 				if (chunk_size % val_bytes)
2683 					chunk_size -= chunk_size % val_bytes;
2684 				chunk_count = total_size / chunk_size;
2685 				chunk_stride *= chunk_size / val_bytes;
2686 			}
2687 
2688 			/* Read bytes that fit into a multiple of chunk_size */
2689 			for (i = 0; i < chunk_count; i++) {
2690 				ret = regmap_raw_read(map,
2691 						      reg + (i * chunk_stride),
2692 						      val + (i * chunk_size),
2693 						      chunk_size);
2694 				if (ret != 0)
2695 					return ret;
2696 			}
2697 
2698 			/* Read remaining bytes */
2699 			if (chunk_size * i < total_size) {
2700 				ret = regmap_raw_read(map,
2701 						      reg + (i * chunk_stride),
2702 						      val + (i * chunk_size),
2703 						      total_size - i * chunk_size);
2704 				if (ret != 0)
2705 					return ret;
2706 			}
2707 		}
2708 
2709 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2710 			map->format.parse_inplace(val + i);
2711 	} else {
2712 		for (i = 0; i < val_count; i++) {
2713 			unsigned int ival;
2714 			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2715 					  &ival);
2716 			if (ret != 0)
2717 				return ret;
2718 
2719 			if (map->format.format_val) {
2720 				map->format.format_val(val + (i * val_bytes), ival, 0);
2721 			} else {
2722 				/* Devices providing read and write
2723 				 * operations can use the bulk I/O
2724 				 * functions if they define a val_bytes,
2725 				 * we assume that the values are native
2726 				 * endian.
2727 				 */
2728 #ifdef CONFIG_64BIT
2729 				u64 *u64 = val;
2730 #endif
2731 				u32 *u32 = val;
2732 				u16 *u16 = val;
2733 				u8 *u8 = val;
2734 
2735 				switch (map->format.val_bytes) {
2736 #ifdef CONFIG_64BIT
2737 				case 8:
2738 					u64[i] = ival;
2739 					break;
2740 #endif
2741 				case 4:
2742 					u32[i] = ival;
2743 					break;
2744 				case 2:
2745 					u16[i] = ival;
2746 					break;
2747 				case 1:
2748 					u8[i] = ival;
2749 					break;
2750 				default:
2751 					return -EINVAL;
2752 				}
2753 			}
2754 		}
2755 	}
2756 
2757 	return 0;
2758 }
2759 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2760 
2761 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2762 			       unsigned int mask, unsigned int val,
2763 			       bool *change, bool force_write)
2764 {
2765 	int ret;
2766 	unsigned int tmp, orig;
2767 
2768 	if (change)
2769 		*change = false;
2770 
2771 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2772 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2773 		if (ret == 0 && change)
2774 			*change = true;
2775 	} else {
2776 		ret = _regmap_read(map, reg, &orig);
2777 		if (ret != 0)
2778 			return ret;
2779 
2780 		tmp = orig & ~mask;
2781 		tmp |= val & mask;
2782 
2783 		if (force_write || (tmp != orig)) {
2784 			ret = _regmap_write(map, reg, tmp);
2785 			if (ret == 0 && change)
2786 				*change = true;
2787 		}
2788 	}
2789 
2790 	return ret;
2791 }
2792 
2793 /**
2794  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2795  *
2796  * @map: Register map to update
2797  * @reg: Register to update
2798  * @mask: Bitmask to change
2799  * @val: New value for bitmask
2800  * @change: Boolean indicating if a write was done
2801  * @async: Boolean indicating asynchronously
2802  * @force: Boolean indicating use force update
2803  *
2804  * Perform a read/modify/write cycle on a register map with change, async, force
2805  * options.
2806  *
2807  * If async is true:
2808  *
2809  * With most buses the read must be done synchronously so this is most useful
2810  * for devices with a cache which do not need to interact with the hardware to
2811  * determine the current register value.
2812  *
2813  * Returns zero for success, a negative number on error.
2814  */
2815 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2816 			    unsigned int mask, unsigned int val,
2817 			    bool *change, bool async, bool force)
2818 {
2819 	int ret;
2820 
2821 	map->lock(map->lock_arg);
2822 
2823 	map->async = async;
2824 
2825 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2826 
2827 	map->async = false;
2828 
2829 	map->unlock(map->lock_arg);
2830 
2831 	return ret;
2832 }
2833 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2834 
2835 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2836 {
2837 	struct regmap *map = async->map;
2838 	bool wake;
2839 
2840 	trace_regmap_async_io_complete(map);
2841 
2842 	spin_lock(&map->async_lock);
2843 	list_move(&async->list, &map->async_free);
2844 	wake = list_empty(&map->async_list);
2845 
2846 	if (ret != 0)
2847 		map->async_ret = ret;
2848 
2849 	spin_unlock(&map->async_lock);
2850 
2851 	if (wake)
2852 		wake_up(&map->async_waitq);
2853 }
2854 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2855 
2856 static int regmap_async_is_done(struct regmap *map)
2857 {
2858 	unsigned long flags;
2859 	int ret;
2860 
2861 	spin_lock_irqsave(&map->async_lock, flags);
2862 	ret = list_empty(&map->async_list);
2863 	spin_unlock_irqrestore(&map->async_lock, flags);
2864 
2865 	return ret;
2866 }
2867 
2868 /**
2869  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2870  *
2871  * @map: Map to operate on.
2872  *
2873  * Blocks until any pending asynchronous I/O has completed.  Returns
2874  * an error code for any failed I/O operations.
2875  */
2876 int regmap_async_complete(struct regmap *map)
2877 {
2878 	unsigned long flags;
2879 	int ret;
2880 
2881 	/* Nothing to do with no async support */
2882 	if (!map->bus || !map->bus->async_write)
2883 		return 0;
2884 
2885 	trace_regmap_async_complete_start(map);
2886 
2887 	wait_event(map->async_waitq, regmap_async_is_done(map));
2888 
2889 	spin_lock_irqsave(&map->async_lock, flags);
2890 	ret = map->async_ret;
2891 	map->async_ret = 0;
2892 	spin_unlock_irqrestore(&map->async_lock, flags);
2893 
2894 	trace_regmap_async_complete_done(map);
2895 
2896 	return ret;
2897 }
2898 EXPORT_SYMBOL_GPL(regmap_async_complete);
2899 
2900 /**
2901  * regmap_register_patch - Register and apply register updates to be applied
2902  *                         on device initialistion
2903  *
2904  * @map: Register map to apply updates to.
2905  * @regs: Values to update.
2906  * @num_regs: Number of entries in regs.
2907  *
2908  * Register a set of register updates to be applied to the device
2909  * whenever the device registers are synchronised with the cache and
2910  * apply them immediately.  Typically this is used to apply
2911  * corrections to be applied to the device defaults on startup, such
2912  * as the updates some vendors provide to undocumented registers.
2913  *
2914  * The caller must ensure that this function cannot be called
2915  * concurrently with either itself or regcache_sync().
2916  */
2917 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2918 			  int num_regs)
2919 {
2920 	struct reg_sequence *p;
2921 	int ret;
2922 	bool bypass;
2923 
2924 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2925 	    num_regs))
2926 		return 0;
2927 
2928 	p = krealloc(map->patch,
2929 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2930 		     GFP_KERNEL);
2931 	if (p) {
2932 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2933 		map->patch = p;
2934 		map->patch_regs += num_regs;
2935 	} else {
2936 		return -ENOMEM;
2937 	}
2938 
2939 	map->lock(map->lock_arg);
2940 
2941 	bypass = map->cache_bypass;
2942 
2943 	map->cache_bypass = true;
2944 	map->async = true;
2945 
2946 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2947 
2948 	map->async = false;
2949 	map->cache_bypass = bypass;
2950 
2951 	map->unlock(map->lock_arg);
2952 
2953 	regmap_async_complete(map);
2954 
2955 	return ret;
2956 }
2957 EXPORT_SYMBOL_GPL(regmap_register_patch);
2958 
2959 /**
2960  * regmap_get_val_bytes() - Report the size of a register value
2961  *
2962  * @map: Register map to operate on.
2963  *
2964  * Report the size of a register value, mainly intended to for use by
2965  * generic infrastructure built on top of regmap.
2966  */
2967 int regmap_get_val_bytes(struct regmap *map)
2968 {
2969 	if (map->format.format_write)
2970 		return -EINVAL;
2971 
2972 	return map->format.val_bytes;
2973 }
2974 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2975 
2976 /**
2977  * regmap_get_max_register() - Report the max register value
2978  *
2979  * @map: Register map to operate on.
2980  *
2981  * Report the max register value, mainly intended to for use by
2982  * generic infrastructure built on top of regmap.
2983  */
2984 int regmap_get_max_register(struct regmap *map)
2985 {
2986 	return map->max_register ? map->max_register : -EINVAL;
2987 }
2988 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2989 
2990 /**
2991  * regmap_get_reg_stride() - Report the register address stride
2992  *
2993  * @map: Register map to operate on.
2994  *
2995  * Report the register address stride, mainly intended to for use by
2996  * generic infrastructure built on top of regmap.
2997  */
2998 int regmap_get_reg_stride(struct regmap *map)
2999 {
3000 	return map->reg_stride;
3001 }
3002 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3003 
3004 int regmap_parse_val(struct regmap *map, const void *buf,
3005 			unsigned int *val)
3006 {
3007 	if (!map->format.parse_val)
3008 		return -EINVAL;
3009 
3010 	*val = map->format.parse_val(buf);
3011 
3012 	return 0;
3013 }
3014 EXPORT_SYMBOL_GPL(regmap_parse_val);
3015 
3016 static int __init regmap_initcall(void)
3017 {
3018 	regmap_debugfs_initcall();
3019 
3020 	return 0;
3021 }
3022 postcore_initcall(regmap_initcall);
3023