xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 92a2c6b2)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/regmap.h>
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
36 			       unsigned int mask, unsigned int val,
37 			       bool *change);
38 
39 static int _regmap_bus_reg_read(void *context, unsigned int reg,
40 				unsigned int *val);
41 static int _regmap_bus_read(void *context, unsigned int reg,
42 			    unsigned int *val);
43 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
44 				       unsigned int val);
45 static int _regmap_bus_reg_write(void *context, unsigned int reg,
46 				 unsigned int val);
47 static int _regmap_bus_raw_write(void *context, unsigned int reg,
48 				 unsigned int val);
49 
50 bool regmap_reg_in_ranges(unsigned int reg,
51 			  const struct regmap_range *ranges,
52 			  unsigned int nranges)
53 {
54 	const struct regmap_range *r;
55 	int i;
56 
57 	for (i = 0, r = ranges; i < nranges; i++, r++)
58 		if (regmap_reg_in_range(reg, r))
59 			return true;
60 	return false;
61 }
62 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
63 
64 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
65 			      const struct regmap_access_table *table)
66 {
67 	/* Check "no ranges" first */
68 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
69 		return false;
70 
71 	/* In case zero "yes ranges" are supplied, any reg is OK */
72 	if (!table->n_yes_ranges)
73 		return true;
74 
75 	return regmap_reg_in_ranges(reg, table->yes_ranges,
76 				    table->n_yes_ranges);
77 }
78 EXPORT_SYMBOL_GPL(regmap_check_range_table);
79 
80 bool regmap_writeable(struct regmap *map, unsigned int reg)
81 {
82 	if (map->max_register && reg > map->max_register)
83 		return false;
84 
85 	if (map->writeable_reg)
86 		return map->writeable_reg(map->dev, reg);
87 
88 	if (map->wr_table)
89 		return regmap_check_range_table(map, reg, map->wr_table);
90 
91 	return true;
92 }
93 
94 bool regmap_readable(struct regmap *map, unsigned int reg)
95 {
96 	if (map->max_register && reg > map->max_register)
97 		return false;
98 
99 	if (map->format.format_write)
100 		return false;
101 
102 	if (map->readable_reg)
103 		return map->readable_reg(map->dev, reg);
104 
105 	if (map->rd_table)
106 		return regmap_check_range_table(map, reg, map->rd_table);
107 
108 	return true;
109 }
110 
111 bool regmap_volatile(struct regmap *map, unsigned int reg)
112 {
113 	if (!map->format.format_write && !regmap_readable(map, reg))
114 		return false;
115 
116 	if (map->volatile_reg)
117 		return map->volatile_reg(map->dev, reg);
118 
119 	if (map->volatile_table)
120 		return regmap_check_range_table(map, reg, map->volatile_table);
121 
122 	if (map->cache_ops)
123 		return false;
124 	else
125 		return true;
126 }
127 
128 bool regmap_precious(struct regmap *map, unsigned int reg)
129 {
130 	if (!regmap_readable(map, reg))
131 		return false;
132 
133 	if (map->precious_reg)
134 		return map->precious_reg(map->dev, reg);
135 
136 	if (map->precious_table)
137 		return regmap_check_range_table(map, reg, map->precious_table);
138 
139 	return false;
140 }
141 
142 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
143 	size_t num)
144 {
145 	unsigned int i;
146 
147 	for (i = 0; i < num; i++)
148 		if (!regmap_volatile(map, reg + i))
149 			return false;
150 
151 	return true;
152 }
153 
154 static void regmap_format_2_6_write(struct regmap *map,
155 				     unsigned int reg, unsigned int val)
156 {
157 	u8 *out = map->work_buf;
158 
159 	*out = (reg << 6) | val;
160 }
161 
162 static void regmap_format_4_12_write(struct regmap *map,
163 				     unsigned int reg, unsigned int val)
164 {
165 	__be16 *out = map->work_buf;
166 	*out = cpu_to_be16((reg << 12) | val);
167 }
168 
169 static void regmap_format_7_9_write(struct regmap *map,
170 				    unsigned int reg, unsigned int val)
171 {
172 	__be16 *out = map->work_buf;
173 	*out = cpu_to_be16((reg << 9) | val);
174 }
175 
176 static void regmap_format_10_14_write(struct regmap *map,
177 				    unsigned int reg, unsigned int val)
178 {
179 	u8 *out = map->work_buf;
180 
181 	out[2] = val;
182 	out[1] = (val >> 8) | (reg << 6);
183 	out[0] = reg >> 2;
184 }
185 
186 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187 {
188 	u8 *b = buf;
189 
190 	b[0] = val << shift;
191 }
192 
193 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194 {
195 	__be16 *b = buf;
196 
197 	b[0] = cpu_to_be16(val << shift);
198 }
199 
200 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
201 {
202 	__le16 *b = buf;
203 
204 	b[0] = cpu_to_le16(val << shift);
205 }
206 
207 static void regmap_format_16_native(void *buf, unsigned int val,
208 				    unsigned int shift)
209 {
210 	*(u16 *)buf = val << shift;
211 }
212 
213 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214 {
215 	u8 *b = buf;
216 
217 	val <<= shift;
218 
219 	b[0] = val >> 16;
220 	b[1] = val >> 8;
221 	b[2] = val;
222 }
223 
224 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225 {
226 	__be32 *b = buf;
227 
228 	b[0] = cpu_to_be32(val << shift);
229 }
230 
231 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
232 {
233 	__le32 *b = buf;
234 
235 	b[0] = cpu_to_le32(val << shift);
236 }
237 
238 static void regmap_format_32_native(void *buf, unsigned int val,
239 				    unsigned int shift)
240 {
241 	*(u32 *)buf = val << shift;
242 }
243 
244 static void regmap_parse_inplace_noop(void *buf)
245 {
246 }
247 
248 static unsigned int regmap_parse_8(const void *buf)
249 {
250 	const u8 *b = buf;
251 
252 	return b[0];
253 }
254 
255 static unsigned int regmap_parse_16_be(const void *buf)
256 {
257 	const __be16 *b = buf;
258 
259 	return be16_to_cpu(b[0]);
260 }
261 
262 static unsigned int regmap_parse_16_le(const void *buf)
263 {
264 	const __le16 *b = buf;
265 
266 	return le16_to_cpu(b[0]);
267 }
268 
269 static void regmap_parse_16_be_inplace(void *buf)
270 {
271 	__be16 *b = buf;
272 
273 	b[0] = be16_to_cpu(b[0]);
274 }
275 
276 static void regmap_parse_16_le_inplace(void *buf)
277 {
278 	__le16 *b = buf;
279 
280 	b[0] = le16_to_cpu(b[0]);
281 }
282 
283 static unsigned int regmap_parse_16_native(const void *buf)
284 {
285 	return *(u16 *)buf;
286 }
287 
288 static unsigned int regmap_parse_24(const void *buf)
289 {
290 	const u8 *b = buf;
291 	unsigned int ret = b[2];
292 	ret |= ((unsigned int)b[1]) << 8;
293 	ret |= ((unsigned int)b[0]) << 16;
294 
295 	return ret;
296 }
297 
298 static unsigned int regmap_parse_32_be(const void *buf)
299 {
300 	const __be32 *b = buf;
301 
302 	return be32_to_cpu(b[0]);
303 }
304 
305 static unsigned int regmap_parse_32_le(const void *buf)
306 {
307 	const __le32 *b = buf;
308 
309 	return le32_to_cpu(b[0]);
310 }
311 
312 static void regmap_parse_32_be_inplace(void *buf)
313 {
314 	__be32 *b = buf;
315 
316 	b[0] = be32_to_cpu(b[0]);
317 }
318 
319 static void regmap_parse_32_le_inplace(void *buf)
320 {
321 	__le32 *b = buf;
322 
323 	b[0] = le32_to_cpu(b[0]);
324 }
325 
326 static unsigned int regmap_parse_32_native(const void *buf)
327 {
328 	return *(u32 *)buf;
329 }
330 
331 static void regmap_lock_mutex(void *__map)
332 {
333 	struct regmap *map = __map;
334 	mutex_lock(&map->mutex);
335 }
336 
337 static void regmap_unlock_mutex(void *__map)
338 {
339 	struct regmap *map = __map;
340 	mutex_unlock(&map->mutex);
341 }
342 
343 static void regmap_lock_spinlock(void *__map)
344 __acquires(&map->spinlock)
345 {
346 	struct regmap *map = __map;
347 	unsigned long flags;
348 
349 	spin_lock_irqsave(&map->spinlock, flags);
350 	map->spinlock_flags = flags;
351 }
352 
353 static void regmap_unlock_spinlock(void *__map)
354 __releases(&map->spinlock)
355 {
356 	struct regmap *map = __map;
357 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358 }
359 
360 static void dev_get_regmap_release(struct device *dev, void *res)
361 {
362 	/*
363 	 * We don't actually have anything to do here; the goal here
364 	 * is not to manage the regmap but to provide a simple way to
365 	 * get the regmap back given a struct device.
366 	 */
367 }
368 
369 static bool _regmap_range_add(struct regmap *map,
370 			      struct regmap_range_node *data)
371 {
372 	struct rb_root *root = &map->range_tree;
373 	struct rb_node **new = &(root->rb_node), *parent = NULL;
374 
375 	while (*new) {
376 		struct regmap_range_node *this =
377 			container_of(*new, struct regmap_range_node, node);
378 
379 		parent = *new;
380 		if (data->range_max < this->range_min)
381 			new = &((*new)->rb_left);
382 		else if (data->range_min > this->range_max)
383 			new = &((*new)->rb_right);
384 		else
385 			return false;
386 	}
387 
388 	rb_link_node(&data->node, parent, new);
389 	rb_insert_color(&data->node, root);
390 
391 	return true;
392 }
393 
394 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
395 						      unsigned int reg)
396 {
397 	struct rb_node *node = map->range_tree.rb_node;
398 
399 	while (node) {
400 		struct regmap_range_node *this =
401 			container_of(node, struct regmap_range_node, node);
402 
403 		if (reg < this->range_min)
404 			node = node->rb_left;
405 		else if (reg > this->range_max)
406 			node = node->rb_right;
407 		else
408 			return this;
409 	}
410 
411 	return NULL;
412 }
413 
414 static void regmap_range_exit(struct regmap *map)
415 {
416 	struct rb_node *next;
417 	struct regmap_range_node *range_node;
418 
419 	next = rb_first(&map->range_tree);
420 	while (next) {
421 		range_node = rb_entry(next, struct regmap_range_node, node);
422 		next = rb_next(&range_node->node);
423 		rb_erase(&range_node->node, &map->range_tree);
424 		kfree(range_node);
425 	}
426 
427 	kfree(map->selector_work_buf);
428 }
429 
430 int regmap_attach_dev(struct device *dev, struct regmap *map,
431 		      const struct regmap_config *config)
432 {
433 	struct regmap **m;
434 
435 	map->dev = dev;
436 
437 	regmap_debugfs_init(map, config->name);
438 
439 	/* Add a devres resource for dev_get_regmap() */
440 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
441 	if (!m) {
442 		regmap_debugfs_exit(map);
443 		return -ENOMEM;
444 	}
445 	*m = map;
446 	devres_add(dev, m);
447 
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(regmap_attach_dev);
451 
452 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
453 					const struct regmap_config *config)
454 {
455 	enum regmap_endian endian;
456 
457 	/* Retrieve the endianness specification from the regmap config */
458 	endian = config->reg_format_endian;
459 
460 	/* If the regmap config specified a non-default value, use that */
461 	if (endian != REGMAP_ENDIAN_DEFAULT)
462 		return endian;
463 
464 	/* Retrieve the endianness specification from the bus config */
465 	if (bus && bus->reg_format_endian_default)
466 		endian = bus->reg_format_endian_default;
467 
468 	/* If the bus specified a non-default value, use that */
469 	if (endian != REGMAP_ENDIAN_DEFAULT)
470 		return endian;
471 
472 	/* Use this if no other value was found */
473 	return REGMAP_ENDIAN_BIG;
474 }
475 
476 enum regmap_endian regmap_get_val_endian(struct device *dev,
477 					 const struct regmap_bus *bus,
478 					 const struct regmap_config *config)
479 {
480 	struct device_node *np;
481 	enum regmap_endian endian;
482 
483 	/* Retrieve the endianness specification from the regmap config */
484 	endian = config->val_format_endian;
485 
486 	/* If the regmap config specified a non-default value, use that */
487 	if (endian != REGMAP_ENDIAN_DEFAULT)
488 		return endian;
489 
490 	/* If the dev and dev->of_node exist try to get endianness from DT */
491 	if (dev && dev->of_node) {
492 		np = dev->of_node;
493 
494 		/* Parse the device's DT node for an endianness specification */
495 		if (of_property_read_bool(np, "big-endian"))
496 			endian = REGMAP_ENDIAN_BIG;
497 		else if (of_property_read_bool(np, "little-endian"))
498 			endian = REGMAP_ENDIAN_LITTLE;
499 
500 		/* If the endianness was specified in DT, use that */
501 		if (endian != REGMAP_ENDIAN_DEFAULT)
502 			return endian;
503 	}
504 
505 	/* Retrieve the endianness specification from the bus config */
506 	if (bus && bus->val_format_endian_default)
507 		endian = bus->val_format_endian_default;
508 
509 	/* If the bus specified a non-default value, use that */
510 	if (endian != REGMAP_ENDIAN_DEFAULT)
511 		return endian;
512 
513 	/* Use this if no other value was found */
514 	return REGMAP_ENDIAN_BIG;
515 }
516 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
517 
518 /**
519  * regmap_init(): Initialise register map
520  *
521  * @dev: Device that will be interacted with
522  * @bus: Bus-specific callbacks to use with device
523  * @bus_context: Data passed to bus-specific callbacks
524  * @config: Configuration for register map
525  *
526  * The return value will be an ERR_PTR() on error or a valid pointer to
527  * a struct regmap.  This function should generally not be called
528  * directly, it should be called by bus-specific init functions.
529  */
530 struct regmap *regmap_init(struct device *dev,
531 			   const struct regmap_bus *bus,
532 			   void *bus_context,
533 			   const struct regmap_config *config)
534 {
535 	struct regmap *map;
536 	int ret = -EINVAL;
537 	enum regmap_endian reg_endian, val_endian;
538 	int i, j;
539 
540 	if (!config)
541 		goto err;
542 
543 	map = kzalloc(sizeof(*map), GFP_KERNEL);
544 	if (map == NULL) {
545 		ret = -ENOMEM;
546 		goto err;
547 	}
548 
549 	if (config->lock && config->unlock) {
550 		map->lock = config->lock;
551 		map->unlock = config->unlock;
552 		map->lock_arg = config->lock_arg;
553 	} else {
554 		if ((bus && bus->fast_io) ||
555 		    config->fast_io) {
556 			spin_lock_init(&map->spinlock);
557 			map->lock = regmap_lock_spinlock;
558 			map->unlock = regmap_unlock_spinlock;
559 		} else {
560 			mutex_init(&map->mutex);
561 			map->lock = regmap_lock_mutex;
562 			map->unlock = regmap_unlock_mutex;
563 		}
564 		map->lock_arg = map;
565 	}
566 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
567 	map->format.pad_bytes = config->pad_bits / 8;
568 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
569 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
570 			config->val_bits + config->pad_bits, 8);
571 	map->reg_shift = config->pad_bits % 8;
572 	if (config->reg_stride)
573 		map->reg_stride = config->reg_stride;
574 	else
575 		map->reg_stride = 1;
576 	map->use_single_rw = config->use_single_rw;
577 	map->can_multi_write = config->can_multi_write;
578 	map->dev = dev;
579 	map->bus = bus;
580 	map->bus_context = bus_context;
581 	map->max_register = config->max_register;
582 	map->wr_table = config->wr_table;
583 	map->rd_table = config->rd_table;
584 	map->volatile_table = config->volatile_table;
585 	map->precious_table = config->precious_table;
586 	map->writeable_reg = config->writeable_reg;
587 	map->readable_reg = config->readable_reg;
588 	map->volatile_reg = config->volatile_reg;
589 	map->precious_reg = config->precious_reg;
590 	map->cache_type = config->cache_type;
591 	map->name = config->name;
592 
593 	spin_lock_init(&map->async_lock);
594 	INIT_LIST_HEAD(&map->async_list);
595 	INIT_LIST_HEAD(&map->async_free);
596 	init_waitqueue_head(&map->async_waitq);
597 
598 	if (config->read_flag_mask || config->write_flag_mask) {
599 		map->read_flag_mask = config->read_flag_mask;
600 		map->write_flag_mask = config->write_flag_mask;
601 	} else if (bus) {
602 		map->read_flag_mask = bus->read_flag_mask;
603 	}
604 
605 	if (!bus) {
606 		map->reg_read  = config->reg_read;
607 		map->reg_write = config->reg_write;
608 
609 		map->defer_caching = false;
610 		goto skip_format_initialization;
611 	} else if (!bus->read || !bus->write) {
612 		map->reg_read = _regmap_bus_reg_read;
613 		map->reg_write = _regmap_bus_reg_write;
614 
615 		map->defer_caching = false;
616 		goto skip_format_initialization;
617 	} else {
618 		map->reg_read  = _regmap_bus_read;
619 	}
620 
621 	reg_endian = regmap_get_reg_endian(bus, config);
622 	val_endian = regmap_get_val_endian(dev, bus, config);
623 
624 	switch (config->reg_bits + map->reg_shift) {
625 	case 2:
626 		switch (config->val_bits) {
627 		case 6:
628 			map->format.format_write = regmap_format_2_6_write;
629 			break;
630 		default:
631 			goto err_map;
632 		}
633 		break;
634 
635 	case 4:
636 		switch (config->val_bits) {
637 		case 12:
638 			map->format.format_write = regmap_format_4_12_write;
639 			break;
640 		default:
641 			goto err_map;
642 		}
643 		break;
644 
645 	case 7:
646 		switch (config->val_bits) {
647 		case 9:
648 			map->format.format_write = regmap_format_7_9_write;
649 			break;
650 		default:
651 			goto err_map;
652 		}
653 		break;
654 
655 	case 10:
656 		switch (config->val_bits) {
657 		case 14:
658 			map->format.format_write = regmap_format_10_14_write;
659 			break;
660 		default:
661 			goto err_map;
662 		}
663 		break;
664 
665 	case 8:
666 		map->format.format_reg = regmap_format_8;
667 		break;
668 
669 	case 16:
670 		switch (reg_endian) {
671 		case REGMAP_ENDIAN_BIG:
672 			map->format.format_reg = regmap_format_16_be;
673 			break;
674 		case REGMAP_ENDIAN_NATIVE:
675 			map->format.format_reg = regmap_format_16_native;
676 			break;
677 		default:
678 			goto err_map;
679 		}
680 		break;
681 
682 	case 24:
683 		if (reg_endian != REGMAP_ENDIAN_BIG)
684 			goto err_map;
685 		map->format.format_reg = regmap_format_24;
686 		break;
687 
688 	case 32:
689 		switch (reg_endian) {
690 		case REGMAP_ENDIAN_BIG:
691 			map->format.format_reg = regmap_format_32_be;
692 			break;
693 		case REGMAP_ENDIAN_NATIVE:
694 			map->format.format_reg = regmap_format_32_native;
695 			break;
696 		default:
697 			goto err_map;
698 		}
699 		break;
700 
701 	default:
702 		goto err_map;
703 	}
704 
705 	if (val_endian == REGMAP_ENDIAN_NATIVE)
706 		map->format.parse_inplace = regmap_parse_inplace_noop;
707 
708 	switch (config->val_bits) {
709 	case 8:
710 		map->format.format_val = regmap_format_8;
711 		map->format.parse_val = regmap_parse_8;
712 		map->format.parse_inplace = regmap_parse_inplace_noop;
713 		break;
714 	case 16:
715 		switch (val_endian) {
716 		case REGMAP_ENDIAN_BIG:
717 			map->format.format_val = regmap_format_16_be;
718 			map->format.parse_val = regmap_parse_16_be;
719 			map->format.parse_inplace = regmap_parse_16_be_inplace;
720 			break;
721 		case REGMAP_ENDIAN_LITTLE:
722 			map->format.format_val = regmap_format_16_le;
723 			map->format.parse_val = regmap_parse_16_le;
724 			map->format.parse_inplace = regmap_parse_16_le_inplace;
725 			break;
726 		case REGMAP_ENDIAN_NATIVE:
727 			map->format.format_val = regmap_format_16_native;
728 			map->format.parse_val = regmap_parse_16_native;
729 			break;
730 		default:
731 			goto err_map;
732 		}
733 		break;
734 	case 24:
735 		if (val_endian != REGMAP_ENDIAN_BIG)
736 			goto err_map;
737 		map->format.format_val = regmap_format_24;
738 		map->format.parse_val = regmap_parse_24;
739 		break;
740 	case 32:
741 		switch (val_endian) {
742 		case REGMAP_ENDIAN_BIG:
743 			map->format.format_val = regmap_format_32_be;
744 			map->format.parse_val = regmap_parse_32_be;
745 			map->format.parse_inplace = regmap_parse_32_be_inplace;
746 			break;
747 		case REGMAP_ENDIAN_LITTLE:
748 			map->format.format_val = regmap_format_32_le;
749 			map->format.parse_val = regmap_parse_32_le;
750 			map->format.parse_inplace = regmap_parse_32_le_inplace;
751 			break;
752 		case REGMAP_ENDIAN_NATIVE:
753 			map->format.format_val = regmap_format_32_native;
754 			map->format.parse_val = regmap_parse_32_native;
755 			break;
756 		default:
757 			goto err_map;
758 		}
759 		break;
760 	}
761 
762 	if (map->format.format_write) {
763 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
764 		    (val_endian != REGMAP_ENDIAN_BIG))
765 			goto err_map;
766 		map->use_single_rw = true;
767 	}
768 
769 	if (!map->format.format_write &&
770 	    !(map->format.format_reg && map->format.format_val))
771 		goto err_map;
772 
773 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
774 	if (map->work_buf == NULL) {
775 		ret = -ENOMEM;
776 		goto err_map;
777 	}
778 
779 	if (map->format.format_write) {
780 		map->defer_caching = false;
781 		map->reg_write = _regmap_bus_formatted_write;
782 	} else if (map->format.format_val) {
783 		map->defer_caching = true;
784 		map->reg_write = _regmap_bus_raw_write;
785 	}
786 
787 skip_format_initialization:
788 
789 	map->range_tree = RB_ROOT;
790 	for (i = 0; i < config->num_ranges; i++) {
791 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
792 		struct regmap_range_node *new;
793 
794 		/* Sanity check */
795 		if (range_cfg->range_max < range_cfg->range_min) {
796 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
797 				range_cfg->range_max, range_cfg->range_min);
798 			goto err_range;
799 		}
800 
801 		if (range_cfg->range_max > map->max_register) {
802 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
803 				range_cfg->range_max, map->max_register);
804 			goto err_range;
805 		}
806 
807 		if (range_cfg->selector_reg > map->max_register) {
808 			dev_err(map->dev,
809 				"Invalid range %d: selector out of map\n", i);
810 			goto err_range;
811 		}
812 
813 		if (range_cfg->window_len == 0) {
814 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
815 				i);
816 			goto err_range;
817 		}
818 
819 		/* Make sure, that this register range has no selector
820 		   or data window within its boundary */
821 		for (j = 0; j < config->num_ranges; j++) {
822 			unsigned sel_reg = config->ranges[j].selector_reg;
823 			unsigned win_min = config->ranges[j].window_start;
824 			unsigned win_max = win_min +
825 					   config->ranges[j].window_len - 1;
826 
827 			/* Allow data window inside its own virtual range */
828 			if (j == i)
829 				continue;
830 
831 			if (range_cfg->range_min <= sel_reg &&
832 			    sel_reg <= range_cfg->range_max) {
833 				dev_err(map->dev,
834 					"Range %d: selector for %d in window\n",
835 					i, j);
836 				goto err_range;
837 			}
838 
839 			if (!(win_max < range_cfg->range_min ||
840 			      win_min > range_cfg->range_max)) {
841 				dev_err(map->dev,
842 					"Range %d: window for %d in window\n",
843 					i, j);
844 				goto err_range;
845 			}
846 		}
847 
848 		new = kzalloc(sizeof(*new), GFP_KERNEL);
849 		if (new == NULL) {
850 			ret = -ENOMEM;
851 			goto err_range;
852 		}
853 
854 		new->map = map;
855 		new->name = range_cfg->name;
856 		new->range_min = range_cfg->range_min;
857 		new->range_max = range_cfg->range_max;
858 		new->selector_reg = range_cfg->selector_reg;
859 		new->selector_mask = range_cfg->selector_mask;
860 		new->selector_shift = range_cfg->selector_shift;
861 		new->window_start = range_cfg->window_start;
862 		new->window_len = range_cfg->window_len;
863 
864 		if (!_regmap_range_add(map, new)) {
865 			dev_err(map->dev, "Failed to add range %d\n", i);
866 			kfree(new);
867 			goto err_range;
868 		}
869 
870 		if (map->selector_work_buf == NULL) {
871 			map->selector_work_buf =
872 				kzalloc(map->format.buf_size, GFP_KERNEL);
873 			if (map->selector_work_buf == NULL) {
874 				ret = -ENOMEM;
875 				goto err_range;
876 			}
877 		}
878 	}
879 
880 	ret = regcache_init(map, config);
881 	if (ret != 0)
882 		goto err_range;
883 
884 	if (dev) {
885 		ret = regmap_attach_dev(dev, map, config);
886 		if (ret != 0)
887 			goto err_regcache;
888 	}
889 
890 	return map;
891 
892 err_regcache:
893 	regcache_exit(map);
894 err_range:
895 	regmap_range_exit(map);
896 	kfree(map->work_buf);
897 err_map:
898 	kfree(map);
899 err:
900 	return ERR_PTR(ret);
901 }
902 EXPORT_SYMBOL_GPL(regmap_init);
903 
904 static void devm_regmap_release(struct device *dev, void *res)
905 {
906 	regmap_exit(*(struct regmap **)res);
907 }
908 
909 /**
910  * devm_regmap_init(): Initialise managed register map
911  *
912  * @dev: Device that will be interacted with
913  * @bus: Bus-specific callbacks to use with device
914  * @bus_context: Data passed to bus-specific callbacks
915  * @config: Configuration for register map
916  *
917  * The return value will be an ERR_PTR() on error or a valid pointer
918  * to a struct regmap.  This function should generally not be called
919  * directly, it should be called by bus-specific init functions.  The
920  * map will be automatically freed by the device management code.
921  */
922 struct regmap *devm_regmap_init(struct device *dev,
923 				const struct regmap_bus *bus,
924 				void *bus_context,
925 				const struct regmap_config *config)
926 {
927 	struct regmap **ptr, *regmap;
928 
929 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
930 	if (!ptr)
931 		return ERR_PTR(-ENOMEM);
932 
933 	regmap = regmap_init(dev, bus, bus_context, config);
934 	if (!IS_ERR(regmap)) {
935 		*ptr = regmap;
936 		devres_add(dev, ptr);
937 	} else {
938 		devres_free(ptr);
939 	}
940 
941 	return regmap;
942 }
943 EXPORT_SYMBOL_GPL(devm_regmap_init);
944 
945 static void regmap_field_init(struct regmap_field *rm_field,
946 	struct regmap *regmap, struct reg_field reg_field)
947 {
948 	int field_bits = reg_field.msb - reg_field.lsb + 1;
949 	rm_field->regmap = regmap;
950 	rm_field->reg = reg_field.reg;
951 	rm_field->shift = reg_field.lsb;
952 	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
953 	rm_field->id_size = reg_field.id_size;
954 	rm_field->id_offset = reg_field.id_offset;
955 }
956 
957 /**
958  * devm_regmap_field_alloc(): Allocate and initialise a register field
959  * in a register map.
960  *
961  * @dev: Device that will be interacted with
962  * @regmap: regmap bank in which this register field is located.
963  * @reg_field: Register field with in the bank.
964  *
965  * The return value will be an ERR_PTR() on error or a valid pointer
966  * to a struct regmap_field. The regmap_field will be automatically freed
967  * by the device management code.
968  */
969 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
970 		struct regmap *regmap, struct reg_field reg_field)
971 {
972 	struct regmap_field *rm_field = devm_kzalloc(dev,
973 					sizeof(*rm_field), GFP_KERNEL);
974 	if (!rm_field)
975 		return ERR_PTR(-ENOMEM);
976 
977 	regmap_field_init(rm_field, regmap, reg_field);
978 
979 	return rm_field;
980 
981 }
982 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
983 
984 /**
985  * devm_regmap_field_free(): Free register field allocated using
986  * devm_regmap_field_alloc. Usally drivers need not call this function,
987  * as the memory allocated via devm will be freed as per device-driver
988  * life-cyle.
989  *
990  * @dev: Device that will be interacted with
991  * @field: regmap field which should be freed.
992  */
993 void devm_regmap_field_free(struct device *dev,
994 	struct regmap_field *field)
995 {
996 	devm_kfree(dev, field);
997 }
998 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
999 
1000 /**
1001  * regmap_field_alloc(): Allocate and initialise a register field
1002  * in a register map.
1003  *
1004  * @regmap: regmap bank in which this register field is located.
1005  * @reg_field: Register field with in the bank.
1006  *
1007  * The return value will be an ERR_PTR() on error or a valid pointer
1008  * to a struct regmap_field. The regmap_field should be freed by the
1009  * user once its finished working with it using regmap_field_free().
1010  */
1011 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1012 		struct reg_field reg_field)
1013 {
1014 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1015 
1016 	if (!rm_field)
1017 		return ERR_PTR(-ENOMEM);
1018 
1019 	regmap_field_init(rm_field, regmap, reg_field);
1020 
1021 	return rm_field;
1022 }
1023 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1024 
1025 /**
1026  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1027  *
1028  * @field: regmap field which should be freed.
1029  */
1030 void regmap_field_free(struct regmap_field *field)
1031 {
1032 	kfree(field);
1033 }
1034 EXPORT_SYMBOL_GPL(regmap_field_free);
1035 
1036 /**
1037  * regmap_reinit_cache(): Reinitialise the current register cache
1038  *
1039  * @map: Register map to operate on.
1040  * @config: New configuration.  Only the cache data will be used.
1041  *
1042  * Discard any existing register cache for the map and initialize a
1043  * new cache.  This can be used to restore the cache to defaults or to
1044  * update the cache configuration to reflect runtime discovery of the
1045  * hardware.
1046  *
1047  * No explicit locking is done here, the user needs to ensure that
1048  * this function will not race with other calls to regmap.
1049  */
1050 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1051 {
1052 	regcache_exit(map);
1053 	regmap_debugfs_exit(map);
1054 
1055 	map->max_register = config->max_register;
1056 	map->writeable_reg = config->writeable_reg;
1057 	map->readable_reg = config->readable_reg;
1058 	map->volatile_reg = config->volatile_reg;
1059 	map->precious_reg = config->precious_reg;
1060 	map->cache_type = config->cache_type;
1061 
1062 	regmap_debugfs_init(map, config->name);
1063 
1064 	map->cache_bypass = false;
1065 	map->cache_only = false;
1066 
1067 	return regcache_init(map, config);
1068 }
1069 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1070 
1071 /**
1072  * regmap_exit(): Free a previously allocated register map
1073  */
1074 void regmap_exit(struct regmap *map)
1075 {
1076 	struct regmap_async *async;
1077 
1078 	regcache_exit(map);
1079 	regmap_debugfs_exit(map);
1080 	regmap_range_exit(map);
1081 	if (map->bus && map->bus->free_context)
1082 		map->bus->free_context(map->bus_context);
1083 	kfree(map->work_buf);
1084 	while (!list_empty(&map->async_free)) {
1085 		async = list_first_entry_or_null(&map->async_free,
1086 						 struct regmap_async,
1087 						 list);
1088 		list_del(&async->list);
1089 		kfree(async->work_buf);
1090 		kfree(async);
1091 	}
1092 	kfree(map);
1093 }
1094 EXPORT_SYMBOL_GPL(regmap_exit);
1095 
1096 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1097 {
1098 	struct regmap **r = res;
1099 	if (!r || !*r) {
1100 		WARN_ON(!r || !*r);
1101 		return 0;
1102 	}
1103 
1104 	/* If the user didn't specify a name match any */
1105 	if (data)
1106 		return (*r)->name == data;
1107 	else
1108 		return 1;
1109 }
1110 
1111 /**
1112  * dev_get_regmap(): Obtain the regmap (if any) for a device
1113  *
1114  * @dev: Device to retrieve the map for
1115  * @name: Optional name for the register map, usually NULL.
1116  *
1117  * Returns the regmap for the device if one is present, or NULL.  If
1118  * name is specified then it must match the name specified when
1119  * registering the device, if it is NULL then the first regmap found
1120  * will be used.  Devices with multiple register maps are very rare,
1121  * generic code should normally not need to specify a name.
1122  */
1123 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1124 {
1125 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1126 					dev_get_regmap_match, (void *)name);
1127 
1128 	if (!r)
1129 		return NULL;
1130 	return *r;
1131 }
1132 EXPORT_SYMBOL_GPL(dev_get_regmap);
1133 
1134 /**
1135  * regmap_get_device(): Obtain the device from a regmap
1136  *
1137  * @map: Register map to operate on.
1138  *
1139  * Returns the underlying device that the regmap has been created for.
1140  */
1141 struct device *regmap_get_device(struct regmap *map)
1142 {
1143 	return map->dev;
1144 }
1145 EXPORT_SYMBOL_GPL(regmap_get_device);
1146 
1147 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1148 			       struct regmap_range_node *range,
1149 			       unsigned int val_num)
1150 {
1151 	void *orig_work_buf;
1152 	unsigned int win_offset;
1153 	unsigned int win_page;
1154 	bool page_chg;
1155 	int ret;
1156 
1157 	win_offset = (*reg - range->range_min) % range->window_len;
1158 	win_page = (*reg - range->range_min) / range->window_len;
1159 
1160 	if (val_num > 1) {
1161 		/* Bulk write shouldn't cross range boundary */
1162 		if (*reg + val_num - 1 > range->range_max)
1163 			return -EINVAL;
1164 
1165 		/* ... or single page boundary */
1166 		if (val_num > range->window_len - win_offset)
1167 			return -EINVAL;
1168 	}
1169 
1170 	/* It is possible to have selector register inside data window.
1171 	   In that case, selector register is located on every page and
1172 	   it needs no page switching, when accessed alone. */
1173 	if (val_num > 1 ||
1174 	    range->window_start + win_offset != range->selector_reg) {
1175 		/* Use separate work_buf during page switching */
1176 		orig_work_buf = map->work_buf;
1177 		map->work_buf = map->selector_work_buf;
1178 
1179 		ret = _regmap_update_bits(map, range->selector_reg,
1180 					  range->selector_mask,
1181 					  win_page << range->selector_shift,
1182 					  &page_chg);
1183 
1184 		map->work_buf = orig_work_buf;
1185 
1186 		if (ret != 0)
1187 			return ret;
1188 	}
1189 
1190 	*reg = range->window_start + win_offset;
1191 
1192 	return 0;
1193 }
1194 
1195 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1196 		      const void *val, size_t val_len)
1197 {
1198 	struct regmap_range_node *range;
1199 	unsigned long flags;
1200 	u8 *u8 = map->work_buf;
1201 	void *work_val = map->work_buf + map->format.reg_bytes +
1202 		map->format.pad_bytes;
1203 	void *buf;
1204 	int ret = -ENOTSUPP;
1205 	size_t len;
1206 	int i;
1207 
1208 	WARN_ON(!map->bus);
1209 
1210 	/* Check for unwritable registers before we start */
1211 	if (map->writeable_reg)
1212 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1213 			if (!map->writeable_reg(map->dev,
1214 						reg + (i * map->reg_stride)))
1215 				return -EINVAL;
1216 
1217 	if (!map->cache_bypass && map->format.parse_val) {
1218 		unsigned int ival;
1219 		int val_bytes = map->format.val_bytes;
1220 		for (i = 0; i < val_len / val_bytes; i++) {
1221 			ival = map->format.parse_val(val + (i * val_bytes));
1222 			ret = regcache_write(map, reg + (i * map->reg_stride),
1223 					     ival);
1224 			if (ret) {
1225 				dev_err(map->dev,
1226 					"Error in caching of register: %x ret: %d\n",
1227 					reg + i, ret);
1228 				return ret;
1229 			}
1230 		}
1231 		if (map->cache_only) {
1232 			map->cache_dirty = true;
1233 			return 0;
1234 		}
1235 	}
1236 
1237 	range = _regmap_range_lookup(map, reg);
1238 	if (range) {
1239 		int val_num = val_len / map->format.val_bytes;
1240 		int win_offset = (reg - range->range_min) % range->window_len;
1241 		int win_residue = range->window_len - win_offset;
1242 
1243 		/* If the write goes beyond the end of the window split it */
1244 		while (val_num > win_residue) {
1245 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1246 				win_residue, val_len / map->format.val_bytes);
1247 			ret = _regmap_raw_write(map, reg, val, win_residue *
1248 						map->format.val_bytes);
1249 			if (ret != 0)
1250 				return ret;
1251 
1252 			reg += win_residue;
1253 			val_num -= win_residue;
1254 			val += win_residue * map->format.val_bytes;
1255 			val_len -= win_residue * map->format.val_bytes;
1256 
1257 			win_offset = (reg - range->range_min) %
1258 				range->window_len;
1259 			win_residue = range->window_len - win_offset;
1260 		}
1261 
1262 		ret = _regmap_select_page(map, &reg, range, val_num);
1263 		if (ret != 0)
1264 			return ret;
1265 	}
1266 
1267 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1268 
1269 	u8[0] |= map->write_flag_mask;
1270 
1271 	/*
1272 	 * Essentially all I/O mechanisms will be faster with a single
1273 	 * buffer to write.  Since register syncs often generate raw
1274 	 * writes of single registers optimise that case.
1275 	 */
1276 	if (val != work_val && val_len == map->format.val_bytes) {
1277 		memcpy(work_val, val, map->format.val_bytes);
1278 		val = work_val;
1279 	}
1280 
1281 	if (map->async && map->bus->async_write) {
1282 		struct regmap_async *async;
1283 
1284 		trace_regmap_async_write_start(map->dev, reg, val_len);
1285 
1286 		spin_lock_irqsave(&map->async_lock, flags);
1287 		async = list_first_entry_or_null(&map->async_free,
1288 						 struct regmap_async,
1289 						 list);
1290 		if (async)
1291 			list_del(&async->list);
1292 		spin_unlock_irqrestore(&map->async_lock, flags);
1293 
1294 		if (!async) {
1295 			async = map->bus->async_alloc();
1296 			if (!async)
1297 				return -ENOMEM;
1298 
1299 			async->work_buf = kzalloc(map->format.buf_size,
1300 						  GFP_KERNEL | GFP_DMA);
1301 			if (!async->work_buf) {
1302 				kfree(async);
1303 				return -ENOMEM;
1304 			}
1305 		}
1306 
1307 		async->map = map;
1308 
1309 		/* If the caller supplied the value we can use it safely. */
1310 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1311 		       map->format.reg_bytes + map->format.val_bytes);
1312 
1313 		spin_lock_irqsave(&map->async_lock, flags);
1314 		list_add_tail(&async->list, &map->async_list);
1315 		spin_unlock_irqrestore(&map->async_lock, flags);
1316 
1317 		if (val != work_val)
1318 			ret = map->bus->async_write(map->bus_context,
1319 						    async->work_buf,
1320 						    map->format.reg_bytes +
1321 						    map->format.pad_bytes,
1322 						    val, val_len, async);
1323 		else
1324 			ret = map->bus->async_write(map->bus_context,
1325 						    async->work_buf,
1326 						    map->format.reg_bytes +
1327 						    map->format.pad_bytes +
1328 						    val_len, NULL, 0, async);
1329 
1330 		if (ret != 0) {
1331 			dev_err(map->dev, "Failed to schedule write: %d\n",
1332 				ret);
1333 
1334 			spin_lock_irqsave(&map->async_lock, flags);
1335 			list_move(&async->list, &map->async_free);
1336 			spin_unlock_irqrestore(&map->async_lock, flags);
1337 		}
1338 
1339 		return ret;
1340 	}
1341 
1342 	trace_regmap_hw_write_start(map->dev, reg,
1343 				    val_len / map->format.val_bytes);
1344 
1345 	/* If we're doing a single register write we can probably just
1346 	 * send the work_buf directly, otherwise try to do a gather
1347 	 * write.
1348 	 */
1349 	if (val == work_val)
1350 		ret = map->bus->write(map->bus_context, map->work_buf,
1351 				      map->format.reg_bytes +
1352 				      map->format.pad_bytes +
1353 				      val_len);
1354 	else if (map->bus->gather_write)
1355 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1356 					     map->format.reg_bytes +
1357 					     map->format.pad_bytes,
1358 					     val, val_len);
1359 
1360 	/* If that didn't work fall back on linearising by hand. */
1361 	if (ret == -ENOTSUPP) {
1362 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1363 		buf = kzalloc(len, GFP_KERNEL);
1364 		if (!buf)
1365 			return -ENOMEM;
1366 
1367 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1368 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1369 		       val, val_len);
1370 		ret = map->bus->write(map->bus_context, buf, len);
1371 
1372 		kfree(buf);
1373 	}
1374 
1375 	trace_regmap_hw_write_done(map->dev, reg,
1376 				   val_len / map->format.val_bytes);
1377 
1378 	return ret;
1379 }
1380 
1381 /**
1382  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1383  *
1384  * @map: Map to check.
1385  */
1386 bool regmap_can_raw_write(struct regmap *map)
1387 {
1388 	return map->bus && map->format.format_val && map->format.format_reg;
1389 }
1390 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1391 
1392 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1393 				       unsigned int val)
1394 {
1395 	int ret;
1396 	struct regmap_range_node *range;
1397 	struct regmap *map = context;
1398 
1399 	WARN_ON(!map->bus || !map->format.format_write);
1400 
1401 	range = _regmap_range_lookup(map, reg);
1402 	if (range) {
1403 		ret = _regmap_select_page(map, &reg, range, 1);
1404 		if (ret != 0)
1405 			return ret;
1406 	}
1407 
1408 	map->format.format_write(map, reg, val);
1409 
1410 	trace_regmap_hw_write_start(map->dev, reg, 1);
1411 
1412 	ret = map->bus->write(map->bus_context, map->work_buf,
1413 			      map->format.buf_size);
1414 
1415 	trace_regmap_hw_write_done(map->dev, reg, 1);
1416 
1417 	return ret;
1418 }
1419 
1420 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1421 				 unsigned int val)
1422 {
1423 	struct regmap *map = context;
1424 
1425 	return map->bus->reg_write(map->bus_context, reg, val);
1426 }
1427 
1428 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1429 				 unsigned int val)
1430 {
1431 	struct regmap *map = context;
1432 
1433 	WARN_ON(!map->bus || !map->format.format_val);
1434 
1435 	map->format.format_val(map->work_buf + map->format.reg_bytes
1436 			       + map->format.pad_bytes, val, 0);
1437 	return _regmap_raw_write(map, reg,
1438 				 map->work_buf +
1439 				 map->format.reg_bytes +
1440 				 map->format.pad_bytes,
1441 				 map->format.val_bytes);
1442 }
1443 
1444 static inline void *_regmap_map_get_context(struct regmap *map)
1445 {
1446 	return (map->bus) ? map : map->bus_context;
1447 }
1448 
1449 int _regmap_write(struct regmap *map, unsigned int reg,
1450 		  unsigned int val)
1451 {
1452 	int ret;
1453 	void *context = _regmap_map_get_context(map);
1454 
1455 	if (!regmap_writeable(map, reg))
1456 		return -EIO;
1457 
1458 	if (!map->cache_bypass && !map->defer_caching) {
1459 		ret = regcache_write(map, reg, val);
1460 		if (ret != 0)
1461 			return ret;
1462 		if (map->cache_only) {
1463 			map->cache_dirty = true;
1464 			return 0;
1465 		}
1466 	}
1467 
1468 #ifdef LOG_DEVICE
1469 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1470 		dev_info(map->dev, "%x <= %x\n", reg, val);
1471 #endif
1472 
1473 	trace_regmap_reg_write(map->dev, reg, val);
1474 
1475 	return map->reg_write(context, reg, val);
1476 }
1477 
1478 /**
1479  * regmap_write(): Write a value to a single register
1480  *
1481  * @map: Register map to write to
1482  * @reg: Register to write to
1483  * @val: Value to be written
1484  *
1485  * A value of zero will be returned on success, a negative errno will
1486  * be returned in error cases.
1487  */
1488 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1489 {
1490 	int ret;
1491 
1492 	if (reg % map->reg_stride)
1493 		return -EINVAL;
1494 
1495 	map->lock(map->lock_arg);
1496 
1497 	ret = _regmap_write(map, reg, val);
1498 
1499 	map->unlock(map->lock_arg);
1500 
1501 	return ret;
1502 }
1503 EXPORT_SYMBOL_GPL(regmap_write);
1504 
1505 /**
1506  * regmap_write_async(): Write a value to a single register asynchronously
1507  *
1508  * @map: Register map to write to
1509  * @reg: Register to write to
1510  * @val: Value to be written
1511  *
1512  * A value of zero will be returned on success, a negative errno will
1513  * be returned in error cases.
1514  */
1515 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1516 {
1517 	int ret;
1518 
1519 	if (reg % map->reg_stride)
1520 		return -EINVAL;
1521 
1522 	map->lock(map->lock_arg);
1523 
1524 	map->async = true;
1525 
1526 	ret = _regmap_write(map, reg, val);
1527 
1528 	map->async = false;
1529 
1530 	map->unlock(map->lock_arg);
1531 
1532 	return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(regmap_write_async);
1535 
1536 /**
1537  * regmap_raw_write(): Write raw values to one or more registers
1538  *
1539  * @map: Register map to write to
1540  * @reg: Initial register to write to
1541  * @val: Block of data to be written, laid out for direct transmission to the
1542  *       device
1543  * @val_len: Length of data pointed to by val.
1544  *
1545  * This function is intended to be used for things like firmware
1546  * download where a large block of data needs to be transferred to the
1547  * device.  No formatting will be done on the data provided.
1548  *
1549  * A value of zero will be returned on success, a negative errno will
1550  * be returned in error cases.
1551  */
1552 int regmap_raw_write(struct regmap *map, unsigned int reg,
1553 		     const void *val, size_t val_len)
1554 {
1555 	int ret;
1556 
1557 	if (!regmap_can_raw_write(map))
1558 		return -EINVAL;
1559 	if (val_len % map->format.val_bytes)
1560 		return -EINVAL;
1561 
1562 	map->lock(map->lock_arg);
1563 
1564 	ret = _regmap_raw_write(map, reg, val, val_len);
1565 
1566 	map->unlock(map->lock_arg);
1567 
1568 	return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(regmap_raw_write);
1571 
1572 /**
1573  * regmap_field_write(): Write a value to a single register field
1574  *
1575  * @field: Register field to write to
1576  * @val: Value to be written
1577  *
1578  * A value of zero will be returned on success, a negative errno will
1579  * be returned in error cases.
1580  */
1581 int regmap_field_write(struct regmap_field *field, unsigned int val)
1582 {
1583 	return regmap_update_bits(field->regmap, field->reg,
1584 				field->mask, val << field->shift);
1585 }
1586 EXPORT_SYMBOL_GPL(regmap_field_write);
1587 
1588 /**
1589  * regmap_field_update_bits():	Perform a read/modify/write cycle
1590  *                              on the register field
1591  *
1592  * @field: Register field to write to
1593  * @mask: Bitmask to change
1594  * @val: Value to be written
1595  *
1596  * A value of zero will be returned on success, a negative errno will
1597  * be returned in error cases.
1598  */
1599 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1600 {
1601 	mask = (mask << field->shift) & field->mask;
1602 
1603 	return regmap_update_bits(field->regmap, field->reg,
1604 				  mask, val << field->shift);
1605 }
1606 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1607 
1608 /**
1609  * regmap_fields_write(): Write a value to a single register field with port ID
1610  *
1611  * @field: Register field to write to
1612  * @id: port ID
1613  * @val: Value to be written
1614  *
1615  * A value of zero will be returned on success, a negative errno will
1616  * be returned in error cases.
1617  */
1618 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1619 			unsigned int val)
1620 {
1621 	if (id >= field->id_size)
1622 		return -EINVAL;
1623 
1624 	return regmap_update_bits(field->regmap,
1625 				  field->reg + (field->id_offset * id),
1626 				  field->mask, val << field->shift);
1627 }
1628 EXPORT_SYMBOL_GPL(regmap_fields_write);
1629 
1630 /**
1631  * regmap_fields_update_bits():	Perform a read/modify/write cycle
1632  *                              on the register field
1633  *
1634  * @field: Register field to write to
1635  * @id: port ID
1636  * @mask: Bitmask to change
1637  * @val: Value to be written
1638  *
1639  * A value of zero will be returned on success, a negative errno will
1640  * be returned in error cases.
1641  */
1642 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1643 			      unsigned int mask, unsigned int val)
1644 {
1645 	if (id >= field->id_size)
1646 		return -EINVAL;
1647 
1648 	mask = (mask << field->shift) & field->mask;
1649 
1650 	return regmap_update_bits(field->regmap,
1651 				  field->reg + (field->id_offset * id),
1652 				  mask, val << field->shift);
1653 }
1654 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1655 
1656 /*
1657  * regmap_bulk_write(): Write multiple registers to the device
1658  *
1659  * @map: Register map to write to
1660  * @reg: First register to be write from
1661  * @val: Block of data to be written, in native register size for device
1662  * @val_count: Number of registers to write
1663  *
1664  * This function is intended to be used for writing a large block of
1665  * data to the device either in single transfer or multiple transfer.
1666  *
1667  * A value of zero will be returned on success, a negative errno will
1668  * be returned in error cases.
1669  */
1670 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1671 		     size_t val_count)
1672 {
1673 	int ret = 0, i;
1674 	size_t val_bytes = map->format.val_bytes;
1675 
1676 	if (map->bus && !map->format.parse_inplace)
1677 		return -EINVAL;
1678 	if (reg % map->reg_stride)
1679 		return -EINVAL;
1680 
1681 	/*
1682 	 * Some devices don't support bulk write, for
1683 	 * them we have a series of single write operations.
1684 	 */
1685 	if (!map->bus || map->use_single_rw) {
1686 		map->lock(map->lock_arg);
1687 		for (i = 0; i < val_count; i++) {
1688 			unsigned int ival;
1689 
1690 			switch (val_bytes) {
1691 			case 1:
1692 				ival = *(u8 *)(val + (i * val_bytes));
1693 				break;
1694 			case 2:
1695 				ival = *(u16 *)(val + (i * val_bytes));
1696 				break;
1697 			case 4:
1698 				ival = *(u32 *)(val + (i * val_bytes));
1699 				break;
1700 #ifdef CONFIG_64BIT
1701 			case 8:
1702 				ival = *(u64 *)(val + (i * val_bytes));
1703 				break;
1704 #endif
1705 			default:
1706 				ret = -EINVAL;
1707 				goto out;
1708 			}
1709 
1710 			ret = _regmap_write(map, reg + (i * map->reg_stride),
1711 					ival);
1712 			if (ret != 0)
1713 				goto out;
1714 		}
1715 out:
1716 		map->unlock(map->lock_arg);
1717 	} else {
1718 		void *wval;
1719 
1720 		if (!val_count)
1721 			return -EINVAL;
1722 
1723 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1724 		if (!wval) {
1725 			dev_err(map->dev, "Error in memory allocation\n");
1726 			return -ENOMEM;
1727 		}
1728 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1729 			map->format.parse_inplace(wval + i);
1730 
1731 		map->lock(map->lock_arg);
1732 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1733 		map->unlock(map->lock_arg);
1734 
1735 		kfree(wval);
1736 	}
1737 	return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1740 
1741 /*
1742  * _regmap_raw_multi_reg_write()
1743  *
1744  * the (register,newvalue) pairs in regs have not been formatted, but
1745  * they are all in the same page and have been changed to being page
1746  * relative. The page register has been written if that was neccessary.
1747  */
1748 static int _regmap_raw_multi_reg_write(struct regmap *map,
1749 				       const struct reg_default *regs,
1750 				       size_t num_regs)
1751 {
1752 	int ret;
1753 	void *buf;
1754 	int i;
1755 	u8 *u8;
1756 	size_t val_bytes = map->format.val_bytes;
1757 	size_t reg_bytes = map->format.reg_bytes;
1758 	size_t pad_bytes = map->format.pad_bytes;
1759 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1760 	size_t len = pair_size * num_regs;
1761 
1762 	if (!len)
1763 		return -EINVAL;
1764 
1765 	buf = kzalloc(len, GFP_KERNEL);
1766 	if (!buf)
1767 		return -ENOMEM;
1768 
1769 	/* We have to linearise by hand. */
1770 
1771 	u8 = buf;
1772 
1773 	for (i = 0; i < num_regs; i++) {
1774 		int reg = regs[i].reg;
1775 		int val = regs[i].def;
1776 		trace_regmap_hw_write_start(map->dev, reg, 1);
1777 		map->format.format_reg(u8, reg, map->reg_shift);
1778 		u8 += reg_bytes + pad_bytes;
1779 		map->format.format_val(u8, val, 0);
1780 		u8 += val_bytes;
1781 	}
1782 	u8 = buf;
1783 	*u8 |= map->write_flag_mask;
1784 
1785 	ret = map->bus->write(map->bus_context, buf, len);
1786 
1787 	kfree(buf);
1788 
1789 	for (i = 0; i < num_regs; i++) {
1790 		int reg = regs[i].reg;
1791 		trace_regmap_hw_write_done(map->dev, reg, 1);
1792 	}
1793 	return ret;
1794 }
1795 
1796 static unsigned int _regmap_register_page(struct regmap *map,
1797 					  unsigned int reg,
1798 					  struct regmap_range_node *range)
1799 {
1800 	unsigned int win_page = (reg - range->range_min) / range->window_len;
1801 
1802 	return win_page;
1803 }
1804 
1805 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1806 					       struct reg_default *regs,
1807 					       size_t num_regs)
1808 {
1809 	int ret;
1810 	int i, n;
1811 	struct reg_default *base;
1812 	unsigned int this_page = 0;
1813 	/*
1814 	 * the set of registers are not neccessarily in order, but
1815 	 * since the order of write must be preserved this algorithm
1816 	 * chops the set each time the page changes
1817 	 */
1818 	base = regs;
1819 	for (i = 0, n = 0; i < num_regs; i++, n++) {
1820 		unsigned int reg = regs[i].reg;
1821 		struct regmap_range_node *range;
1822 
1823 		range = _regmap_range_lookup(map, reg);
1824 		if (range) {
1825 			unsigned int win_page = _regmap_register_page(map, reg,
1826 								      range);
1827 
1828 			if (i == 0)
1829 				this_page = win_page;
1830 			if (win_page != this_page) {
1831 				this_page = win_page;
1832 				ret = _regmap_raw_multi_reg_write(map, base, n);
1833 				if (ret != 0)
1834 					return ret;
1835 				base += n;
1836 				n = 0;
1837 			}
1838 			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1839 			if (ret != 0)
1840 				return ret;
1841 		}
1842 	}
1843 	if (n > 0)
1844 		return _regmap_raw_multi_reg_write(map, base, n);
1845 	return 0;
1846 }
1847 
1848 static int _regmap_multi_reg_write(struct regmap *map,
1849 				   const struct reg_default *regs,
1850 				   size_t num_regs)
1851 {
1852 	int i;
1853 	int ret;
1854 
1855 	if (!map->can_multi_write) {
1856 		for (i = 0; i < num_regs; i++) {
1857 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1858 			if (ret != 0)
1859 				return ret;
1860 		}
1861 		return 0;
1862 	}
1863 
1864 	if (!map->format.parse_inplace)
1865 		return -EINVAL;
1866 
1867 	if (map->writeable_reg)
1868 		for (i = 0; i < num_regs; i++) {
1869 			int reg = regs[i].reg;
1870 			if (!map->writeable_reg(map->dev, reg))
1871 				return -EINVAL;
1872 			if (reg % map->reg_stride)
1873 				return -EINVAL;
1874 		}
1875 
1876 	if (!map->cache_bypass) {
1877 		for (i = 0; i < num_regs; i++) {
1878 			unsigned int val = regs[i].def;
1879 			unsigned int reg = regs[i].reg;
1880 			ret = regcache_write(map, reg, val);
1881 			if (ret) {
1882 				dev_err(map->dev,
1883 				"Error in caching of register: %x ret: %d\n",
1884 								reg, ret);
1885 				return ret;
1886 			}
1887 		}
1888 		if (map->cache_only) {
1889 			map->cache_dirty = true;
1890 			return 0;
1891 		}
1892 	}
1893 
1894 	WARN_ON(!map->bus);
1895 
1896 	for (i = 0; i < num_regs; i++) {
1897 		unsigned int reg = regs[i].reg;
1898 		struct regmap_range_node *range;
1899 		range = _regmap_range_lookup(map, reg);
1900 		if (range) {
1901 			size_t len = sizeof(struct reg_default)*num_regs;
1902 			struct reg_default *base = kmemdup(regs, len,
1903 							   GFP_KERNEL);
1904 			if (!base)
1905 				return -ENOMEM;
1906 			ret = _regmap_range_multi_paged_reg_write(map, base,
1907 								  num_regs);
1908 			kfree(base);
1909 
1910 			return ret;
1911 		}
1912 	}
1913 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1914 }
1915 
1916 /*
1917  * regmap_multi_reg_write(): Write multiple registers to the device
1918  *
1919  * where the set of register,value pairs are supplied in any order,
1920  * possibly not all in a single range.
1921  *
1922  * @map: Register map to write to
1923  * @regs: Array of structures containing register,value to be written
1924  * @num_regs: Number of registers to write
1925  *
1926  * The 'normal' block write mode will send ultimately send data on the
1927  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1928  * addressed. However, this alternative block multi write mode will send
1929  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1930  * must of course support the mode.
1931  *
1932  * A value of zero will be returned on success, a negative errno will be
1933  * returned in error cases.
1934  */
1935 int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1936 			   int num_regs)
1937 {
1938 	int ret;
1939 
1940 	map->lock(map->lock_arg);
1941 
1942 	ret = _regmap_multi_reg_write(map, regs, num_regs);
1943 
1944 	map->unlock(map->lock_arg);
1945 
1946 	return ret;
1947 }
1948 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1949 
1950 /*
1951  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1952  *                                    device but not the cache
1953  *
1954  * where the set of register are supplied in any order
1955  *
1956  * @map: Register map to write to
1957  * @regs: Array of structures containing register,value to be written
1958  * @num_regs: Number of registers to write
1959  *
1960  * This function is intended to be used for writing a large block of data
1961  * atomically to the device in single transfer for those I2C client devices
1962  * that implement this alternative block write mode.
1963  *
1964  * A value of zero will be returned on success, a negative errno will
1965  * be returned in error cases.
1966  */
1967 int regmap_multi_reg_write_bypassed(struct regmap *map,
1968 				    const struct reg_default *regs,
1969 				    int num_regs)
1970 {
1971 	int ret;
1972 	bool bypass;
1973 
1974 	map->lock(map->lock_arg);
1975 
1976 	bypass = map->cache_bypass;
1977 	map->cache_bypass = true;
1978 
1979 	ret = _regmap_multi_reg_write(map, regs, num_regs);
1980 
1981 	map->cache_bypass = bypass;
1982 
1983 	map->unlock(map->lock_arg);
1984 
1985 	return ret;
1986 }
1987 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1988 
1989 /**
1990  * regmap_raw_write_async(): Write raw values to one or more registers
1991  *                           asynchronously
1992  *
1993  * @map: Register map to write to
1994  * @reg: Initial register to write to
1995  * @val: Block of data to be written, laid out for direct transmission to the
1996  *       device.  Must be valid until regmap_async_complete() is called.
1997  * @val_len: Length of data pointed to by val.
1998  *
1999  * This function is intended to be used for things like firmware
2000  * download where a large block of data needs to be transferred to the
2001  * device.  No formatting will be done on the data provided.
2002  *
2003  * If supported by the underlying bus the write will be scheduled
2004  * asynchronously, helping maximise I/O speed on higher speed buses
2005  * like SPI.  regmap_async_complete() can be called to ensure that all
2006  * asynchrnous writes have been completed.
2007  *
2008  * A value of zero will be returned on success, a negative errno will
2009  * be returned in error cases.
2010  */
2011 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2012 			   const void *val, size_t val_len)
2013 {
2014 	int ret;
2015 
2016 	if (val_len % map->format.val_bytes)
2017 		return -EINVAL;
2018 	if (reg % map->reg_stride)
2019 		return -EINVAL;
2020 
2021 	map->lock(map->lock_arg);
2022 
2023 	map->async = true;
2024 
2025 	ret = _regmap_raw_write(map, reg, val, val_len);
2026 
2027 	map->async = false;
2028 
2029 	map->unlock(map->lock_arg);
2030 
2031 	return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2034 
2035 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2036 			    unsigned int val_len)
2037 {
2038 	struct regmap_range_node *range;
2039 	u8 *u8 = map->work_buf;
2040 	int ret;
2041 
2042 	WARN_ON(!map->bus);
2043 
2044 	range = _regmap_range_lookup(map, reg);
2045 	if (range) {
2046 		ret = _regmap_select_page(map, &reg, range,
2047 					  val_len / map->format.val_bytes);
2048 		if (ret != 0)
2049 			return ret;
2050 	}
2051 
2052 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2053 
2054 	/*
2055 	 * Some buses or devices flag reads by setting the high bits in the
2056 	 * register addresss; since it's always the high bits for all
2057 	 * current formats we can do this here rather than in
2058 	 * formatting.  This may break if we get interesting formats.
2059 	 */
2060 	u8[0] |= map->read_flag_mask;
2061 
2062 	trace_regmap_hw_read_start(map->dev, reg,
2063 				   val_len / map->format.val_bytes);
2064 
2065 	ret = map->bus->read(map->bus_context, map->work_buf,
2066 			     map->format.reg_bytes + map->format.pad_bytes,
2067 			     val, val_len);
2068 
2069 	trace_regmap_hw_read_done(map->dev, reg,
2070 				  val_len / map->format.val_bytes);
2071 
2072 	return ret;
2073 }
2074 
2075 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2076 				unsigned int *val)
2077 {
2078 	struct regmap *map = context;
2079 
2080 	return map->bus->reg_read(map->bus_context, reg, val);
2081 }
2082 
2083 static int _regmap_bus_read(void *context, unsigned int reg,
2084 			    unsigned int *val)
2085 {
2086 	int ret;
2087 	struct regmap *map = context;
2088 
2089 	if (!map->format.parse_val)
2090 		return -EINVAL;
2091 
2092 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2093 	if (ret == 0)
2094 		*val = map->format.parse_val(map->work_buf);
2095 
2096 	return ret;
2097 }
2098 
2099 static int _regmap_read(struct regmap *map, unsigned int reg,
2100 			unsigned int *val)
2101 {
2102 	int ret;
2103 	void *context = _regmap_map_get_context(map);
2104 
2105 	WARN_ON(!map->reg_read);
2106 
2107 	if (!map->cache_bypass) {
2108 		ret = regcache_read(map, reg, val);
2109 		if (ret == 0)
2110 			return 0;
2111 	}
2112 
2113 	if (map->cache_only)
2114 		return -EBUSY;
2115 
2116 	if (!regmap_readable(map, reg))
2117 		return -EIO;
2118 
2119 	ret = map->reg_read(context, reg, val);
2120 	if (ret == 0) {
2121 #ifdef LOG_DEVICE
2122 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2123 			dev_info(map->dev, "%x => %x\n", reg, *val);
2124 #endif
2125 
2126 		trace_regmap_reg_read(map->dev, reg, *val);
2127 
2128 		if (!map->cache_bypass)
2129 			regcache_write(map, reg, *val);
2130 	}
2131 
2132 	return ret;
2133 }
2134 
2135 /**
2136  * regmap_read(): Read a value from a single register
2137  *
2138  * @map: Register map to read from
2139  * @reg: Register to be read from
2140  * @val: Pointer to store read value
2141  *
2142  * A value of zero will be returned on success, a negative errno will
2143  * be returned in error cases.
2144  */
2145 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2146 {
2147 	int ret;
2148 
2149 	if (reg % map->reg_stride)
2150 		return -EINVAL;
2151 
2152 	map->lock(map->lock_arg);
2153 
2154 	ret = _regmap_read(map, reg, val);
2155 
2156 	map->unlock(map->lock_arg);
2157 
2158 	return ret;
2159 }
2160 EXPORT_SYMBOL_GPL(regmap_read);
2161 
2162 /**
2163  * regmap_raw_read(): Read raw data from the device
2164  *
2165  * @map: Register map to read from
2166  * @reg: First register to be read from
2167  * @val: Pointer to store read value
2168  * @val_len: Size of data to read
2169  *
2170  * A value of zero will be returned on success, a negative errno will
2171  * be returned in error cases.
2172  */
2173 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2174 		    size_t val_len)
2175 {
2176 	size_t val_bytes = map->format.val_bytes;
2177 	size_t val_count = val_len / val_bytes;
2178 	unsigned int v;
2179 	int ret, i;
2180 
2181 	if (!map->bus)
2182 		return -EINVAL;
2183 	if (val_len % map->format.val_bytes)
2184 		return -EINVAL;
2185 	if (reg % map->reg_stride)
2186 		return -EINVAL;
2187 
2188 	map->lock(map->lock_arg);
2189 
2190 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2191 	    map->cache_type == REGCACHE_NONE) {
2192 		/* Physical block read if there's no cache involved */
2193 		ret = _regmap_raw_read(map, reg, val, val_len);
2194 
2195 	} else {
2196 		/* Otherwise go word by word for the cache; should be low
2197 		 * cost as we expect to hit the cache.
2198 		 */
2199 		for (i = 0; i < val_count; i++) {
2200 			ret = _regmap_read(map, reg + (i * map->reg_stride),
2201 					   &v);
2202 			if (ret != 0)
2203 				goto out;
2204 
2205 			map->format.format_val(val + (i * val_bytes), v, 0);
2206 		}
2207 	}
2208 
2209  out:
2210 	map->unlock(map->lock_arg);
2211 
2212 	return ret;
2213 }
2214 EXPORT_SYMBOL_GPL(regmap_raw_read);
2215 
2216 /**
2217  * regmap_field_read(): Read a value to a single register field
2218  *
2219  * @field: Register field to read from
2220  * @val: Pointer to store read value
2221  *
2222  * A value of zero will be returned on success, a negative errno will
2223  * be returned in error cases.
2224  */
2225 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2226 {
2227 	int ret;
2228 	unsigned int reg_val;
2229 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2230 	if (ret != 0)
2231 		return ret;
2232 
2233 	reg_val &= field->mask;
2234 	reg_val >>= field->shift;
2235 	*val = reg_val;
2236 
2237 	return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(regmap_field_read);
2240 
2241 /**
2242  * regmap_fields_read(): Read a value to a single register field with port ID
2243  *
2244  * @field: Register field to read from
2245  * @id: port ID
2246  * @val: Pointer to store read value
2247  *
2248  * A value of zero will be returned on success, a negative errno will
2249  * be returned in error cases.
2250  */
2251 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2252 		       unsigned int *val)
2253 {
2254 	int ret;
2255 	unsigned int reg_val;
2256 
2257 	if (id >= field->id_size)
2258 		return -EINVAL;
2259 
2260 	ret = regmap_read(field->regmap,
2261 			  field->reg + (field->id_offset * id),
2262 			  &reg_val);
2263 	if (ret != 0)
2264 		return ret;
2265 
2266 	reg_val &= field->mask;
2267 	reg_val >>= field->shift;
2268 	*val = reg_val;
2269 
2270 	return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(regmap_fields_read);
2273 
2274 /**
2275  * regmap_bulk_read(): Read multiple registers from the device
2276  *
2277  * @map: Register map to read from
2278  * @reg: First register to be read from
2279  * @val: Pointer to store read value, in native register size for device
2280  * @val_count: Number of registers to read
2281  *
2282  * A value of zero will be returned on success, a negative errno will
2283  * be returned in error cases.
2284  */
2285 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2286 		     size_t val_count)
2287 {
2288 	int ret, i;
2289 	size_t val_bytes = map->format.val_bytes;
2290 	bool vol = regmap_volatile_range(map, reg, val_count);
2291 
2292 	if (reg % map->reg_stride)
2293 		return -EINVAL;
2294 
2295 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2296 		/*
2297 		 * Some devices does not support bulk read, for
2298 		 * them we have a series of single read operations.
2299 		 */
2300 		if (map->use_single_rw) {
2301 			for (i = 0; i < val_count; i++) {
2302 				ret = regmap_raw_read(map,
2303 						reg + (i * map->reg_stride),
2304 						val + (i * val_bytes),
2305 						val_bytes);
2306 				if (ret != 0)
2307 					return ret;
2308 			}
2309 		} else {
2310 			ret = regmap_raw_read(map, reg, val,
2311 					      val_bytes * val_count);
2312 			if (ret != 0)
2313 				return ret;
2314 		}
2315 
2316 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2317 			map->format.parse_inplace(val + i);
2318 	} else {
2319 		for (i = 0; i < val_count; i++) {
2320 			unsigned int ival;
2321 			ret = regmap_read(map, reg + (i * map->reg_stride),
2322 					  &ival);
2323 			if (ret != 0)
2324 				return ret;
2325 			memcpy(val + (i * val_bytes), &ival, val_bytes);
2326 		}
2327 	}
2328 
2329 	return 0;
2330 }
2331 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2332 
2333 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2334 			       unsigned int mask, unsigned int val,
2335 			       bool *change)
2336 {
2337 	int ret;
2338 	unsigned int tmp, orig;
2339 
2340 	ret = _regmap_read(map, reg, &orig);
2341 	if (ret != 0)
2342 		return ret;
2343 
2344 	tmp = orig & ~mask;
2345 	tmp |= val & mask;
2346 
2347 	if (tmp != orig) {
2348 		ret = _regmap_write(map, reg, tmp);
2349 		if (change)
2350 			*change = true;
2351 	} else {
2352 		if (change)
2353 			*change = false;
2354 	}
2355 
2356 	return ret;
2357 }
2358 
2359 /**
2360  * regmap_update_bits: Perform a read/modify/write cycle on the register map
2361  *
2362  * @map: Register map to update
2363  * @reg: Register to update
2364  * @mask: Bitmask to change
2365  * @val: New value for bitmask
2366  *
2367  * Returns zero for success, a negative number on error.
2368  */
2369 int regmap_update_bits(struct regmap *map, unsigned int reg,
2370 		       unsigned int mask, unsigned int val)
2371 {
2372 	int ret;
2373 
2374 	map->lock(map->lock_arg);
2375 	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2376 	map->unlock(map->lock_arg);
2377 
2378 	return ret;
2379 }
2380 EXPORT_SYMBOL_GPL(regmap_update_bits);
2381 
2382 /**
2383  * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2384  *                           map asynchronously
2385  *
2386  * @map: Register map to update
2387  * @reg: Register to update
2388  * @mask: Bitmask to change
2389  * @val: New value for bitmask
2390  *
2391  * With most buses the read must be done synchronously so this is most
2392  * useful for devices with a cache which do not need to interact with
2393  * the hardware to determine the current register value.
2394  *
2395  * Returns zero for success, a negative number on error.
2396  */
2397 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2398 			     unsigned int mask, unsigned int val)
2399 {
2400 	int ret;
2401 
2402 	map->lock(map->lock_arg);
2403 
2404 	map->async = true;
2405 
2406 	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2407 
2408 	map->async = false;
2409 
2410 	map->unlock(map->lock_arg);
2411 
2412 	return ret;
2413 }
2414 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2415 
2416 /**
2417  * regmap_update_bits_check: Perform a read/modify/write cycle on the
2418  *                           register map and report if updated
2419  *
2420  * @map: Register map to update
2421  * @reg: Register to update
2422  * @mask: Bitmask to change
2423  * @val: New value for bitmask
2424  * @change: Boolean indicating if a write was done
2425  *
2426  * Returns zero for success, a negative number on error.
2427  */
2428 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2429 			     unsigned int mask, unsigned int val,
2430 			     bool *change)
2431 {
2432 	int ret;
2433 
2434 	map->lock(map->lock_arg);
2435 	ret = _regmap_update_bits(map, reg, mask, val, change);
2436 	map->unlock(map->lock_arg);
2437 	return ret;
2438 }
2439 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2440 
2441 /**
2442  * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2443  *                                 register map asynchronously and report if
2444  *                                 updated
2445  *
2446  * @map: Register map to update
2447  * @reg: Register to update
2448  * @mask: Bitmask to change
2449  * @val: New value for bitmask
2450  * @change: Boolean indicating if a write was done
2451  *
2452  * With most buses the read must be done synchronously so this is most
2453  * useful for devices with a cache which do not need to interact with
2454  * the hardware to determine the current register value.
2455  *
2456  * Returns zero for success, a negative number on error.
2457  */
2458 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2459 				   unsigned int mask, unsigned int val,
2460 				   bool *change)
2461 {
2462 	int ret;
2463 
2464 	map->lock(map->lock_arg);
2465 
2466 	map->async = true;
2467 
2468 	ret = _regmap_update_bits(map, reg, mask, val, change);
2469 
2470 	map->async = false;
2471 
2472 	map->unlock(map->lock_arg);
2473 
2474 	return ret;
2475 }
2476 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2477 
2478 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2479 {
2480 	struct regmap *map = async->map;
2481 	bool wake;
2482 
2483 	trace_regmap_async_io_complete(map->dev);
2484 
2485 	spin_lock(&map->async_lock);
2486 	list_move(&async->list, &map->async_free);
2487 	wake = list_empty(&map->async_list);
2488 
2489 	if (ret != 0)
2490 		map->async_ret = ret;
2491 
2492 	spin_unlock(&map->async_lock);
2493 
2494 	if (wake)
2495 		wake_up(&map->async_waitq);
2496 }
2497 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2498 
2499 static int regmap_async_is_done(struct regmap *map)
2500 {
2501 	unsigned long flags;
2502 	int ret;
2503 
2504 	spin_lock_irqsave(&map->async_lock, flags);
2505 	ret = list_empty(&map->async_list);
2506 	spin_unlock_irqrestore(&map->async_lock, flags);
2507 
2508 	return ret;
2509 }
2510 
2511 /**
2512  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2513  *
2514  * @map: Map to operate on.
2515  *
2516  * Blocks until any pending asynchronous I/O has completed.  Returns
2517  * an error code for any failed I/O operations.
2518  */
2519 int regmap_async_complete(struct regmap *map)
2520 {
2521 	unsigned long flags;
2522 	int ret;
2523 
2524 	/* Nothing to do with no async support */
2525 	if (!map->bus || !map->bus->async_write)
2526 		return 0;
2527 
2528 	trace_regmap_async_complete_start(map->dev);
2529 
2530 	wait_event(map->async_waitq, regmap_async_is_done(map));
2531 
2532 	spin_lock_irqsave(&map->async_lock, flags);
2533 	ret = map->async_ret;
2534 	map->async_ret = 0;
2535 	spin_unlock_irqrestore(&map->async_lock, flags);
2536 
2537 	trace_regmap_async_complete_done(map->dev);
2538 
2539 	return ret;
2540 }
2541 EXPORT_SYMBOL_GPL(regmap_async_complete);
2542 
2543 /**
2544  * regmap_register_patch: Register and apply register updates to be applied
2545  *                        on device initialistion
2546  *
2547  * @map: Register map to apply updates to.
2548  * @regs: Values to update.
2549  * @num_regs: Number of entries in regs.
2550  *
2551  * Register a set of register updates to be applied to the device
2552  * whenever the device registers are synchronised with the cache and
2553  * apply them immediately.  Typically this is used to apply
2554  * corrections to be applied to the device defaults on startup, such
2555  * as the updates some vendors provide to undocumented registers.
2556  *
2557  * The caller must ensure that this function cannot be called
2558  * concurrently with either itself or regcache_sync().
2559  */
2560 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2561 			  int num_regs)
2562 {
2563 	struct reg_default *p;
2564 	int ret;
2565 	bool bypass;
2566 
2567 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2568 	    num_regs))
2569 		return 0;
2570 
2571 	p = krealloc(map->patch,
2572 		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2573 		     GFP_KERNEL);
2574 	if (p) {
2575 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2576 		map->patch = p;
2577 		map->patch_regs += num_regs;
2578 	} else {
2579 		return -ENOMEM;
2580 	}
2581 
2582 	map->lock(map->lock_arg);
2583 
2584 	bypass = map->cache_bypass;
2585 
2586 	map->cache_bypass = true;
2587 	map->async = true;
2588 
2589 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2590 	if (ret != 0)
2591 		goto out;
2592 
2593 out:
2594 	map->async = false;
2595 	map->cache_bypass = bypass;
2596 
2597 	map->unlock(map->lock_arg);
2598 
2599 	regmap_async_complete(map);
2600 
2601 	return ret;
2602 }
2603 EXPORT_SYMBOL_GPL(regmap_register_patch);
2604 
2605 /*
2606  * regmap_get_val_bytes(): Report the size of a register value
2607  *
2608  * Report the size of a register value, mainly intended to for use by
2609  * generic infrastructure built on top of regmap.
2610  */
2611 int regmap_get_val_bytes(struct regmap *map)
2612 {
2613 	if (map->format.format_write)
2614 		return -EINVAL;
2615 
2616 	return map->format.val_bytes;
2617 }
2618 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2619 
2620 int regmap_parse_val(struct regmap *map, const void *buf,
2621 			unsigned int *val)
2622 {
2623 	if (!map->format.parse_val)
2624 		return -EINVAL;
2625 
2626 	*val = map->format.parse_val(buf);
2627 
2628 	return 0;
2629 }
2630 EXPORT_SYMBOL_GPL(regmap_parse_val);
2631 
2632 static int __init regmap_initcall(void)
2633 {
2634 	regmap_debugfs_initcall();
2635 
2636 	return 0;
2637 }
2638 postcore_initcall(regmap_initcall);
2639