xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 	put_unaligned_be24(val << shift, buf);
294 }
295 
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 	put_unaligned_be32(val << shift, buf);
299 }
300 
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 	put_unaligned_le32(val << shift, buf);
304 }
305 
306 static void regmap_format_32_native(void *buf, unsigned int val,
307 				    unsigned int shift)
308 {
309 	u32 v = val << shift;
310 
311 	memcpy(buf, &v, sizeof(v));
312 }
313 
314 #ifdef CONFIG_64BIT
315 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
316 {
317 	put_unaligned_be64((u64) val << shift, buf);
318 }
319 
320 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
321 {
322 	put_unaligned_le64((u64) val << shift, buf);
323 }
324 
325 static void regmap_format_64_native(void *buf, unsigned int val,
326 				    unsigned int shift)
327 {
328 	u64 v = (u64) val << shift;
329 
330 	memcpy(buf, &v, sizeof(v));
331 }
332 #endif
333 
334 static void regmap_parse_inplace_noop(void *buf)
335 {
336 }
337 
338 static unsigned int regmap_parse_8(const void *buf)
339 {
340 	const u8 *b = buf;
341 
342 	return b[0];
343 }
344 
345 static unsigned int regmap_parse_16_be(const void *buf)
346 {
347 	return get_unaligned_be16(buf);
348 }
349 
350 static unsigned int regmap_parse_16_le(const void *buf)
351 {
352 	return get_unaligned_le16(buf);
353 }
354 
355 static void regmap_parse_16_be_inplace(void *buf)
356 {
357 	u16 v = get_unaligned_be16(buf);
358 
359 	memcpy(buf, &v, sizeof(v));
360 }
361 
362 static void regmap_parse_16_le_inplace(void *buf)
363 {
364 	u16 v = get_unaligned_le16(buf);
365 
366 	memcpy(buf, &v, sizeof(v));
367 }
368 
369 static unsigned int regmap_parse_16_native(const void *buf)
370 {
371 	u16 v;
372 
373 	memcpy(&v, buf, sizeof(v));
374 	return v;
375 }
376 
377 static unsigned int regmap_parse_24_be(const void *buf)
378 {
379 	return get_unaligned_be24(buf);
380 }
381 
382 static unsigned int regmap_parse_32_be(const void *buf)
383 {
384 	return get_unaligned_be32(buf);
385 }
386 
387 static unsigned int regmap_parse_32_le(const void *buf)
388 {
389 	return get_unaligned_le32(buf);
390 }
391 
392 static void regmap_parse_32_be_inplace(void *buf)
393 {
394 	u32 v = get_unaligned_be32(buf);
395 
396 	memcpy(buf, &v, sizeof(v));
397 }
398 
399 static void regmap_parse_32_le_inplace(void *buf)
400 {
401 	u32 v = get_unaligned_le32(buf);
402 
403 	memcpy(buf, &v, sizeof(v));
404 }
405 
406 static unsigned int regmap_parse_32_native(const void *buf)
407 {
408 	u32 v;
409 
410 	memcpy(&v, buf, sizeof(v));
411 	return v;
412 }
413 
414 #ifdef CONFIG_64BIT
415 static unsigned int regmap_parse_64_be(const void *buf)
416 {
417 	return get_unaligned_be64(buf);
418 }
419 
420 static unsigned int regmap_parse_64_le(const void *buf)
421 {
422 	return get_unaligned_le64(buf);
423 }
424 
425 static void regmap_parse_64_be_inplace(void *buf)
426 {
427 	u64 v =  get_unaligned_be64(buf);
428 
429 	memcpy(buf, &v, sizeof(v));
430 }
431 
432 static void regmap_parse_64_le_inplace(void *buf)
433 {
434 	u64 v = get_unaligned_le64(buf);
435 
436 	memcpy(buf, &v, sizeof(v));
437 }
438 
439 static unsigned int regmap_parse_64_native(const void *buf)
440 {
441 	u64 v;
442 
443 	memcpy(&v, buf, sizeof(v));
444 	return v;
445 }
446 #endif
447 
448 static void regmap_lock_hwlock(void *__map)
449 {
450 	struct regmap *map = __map;
451 
452 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
453 }
454 
455 static void regmap_lock_hwlock_irq(void *__map)
456 {
457 	struct regmap *map = __map;
458 
459 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
460 }
461 
462 static void regmap_lock_hwlock_irqsave(void *__map)
463 {
464 	struct regmap *map = __map;
465 
466 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
467 				    &map->spinlock_flags);
468 }
469 
470 static void regmap_unlock_hwlock(void *__map)
471 {
472 	struct regmap *map = __map;
473 
474 	hwspin_unlock(map->hwlock);
475 }
476 
477 static void regmap_unlock_hwlock_irq(void *__map)
478 {
479 	struct regmap *map = __map;
480 
481 	hwspin_unlock_irq(map->hwlock);
482 }
483 
484 static void regmap_unlock_hwlock_irqrestore(void *__map)
485 {
486 	struct regmap *map = __map;
487 
488 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
489 }
490 
491 static void regmap_lock_unlock_none(void *__map)
492 {
493 
494 }
495 
496 static void regmap_lock_mutex(void *__map)
497 {
498 	struct regmap *map = __map;
499 	mutex_lock(&map->mutex);
500 }
501 
502 static void regmap_unlock_mutex(void *__map)
503 {
504 	struct regmap *map = __map;
505 	mutex_unlock(&map->mutex);
506 }
507 
508 static void regmap_lock_spinlock(void *__map)
509 __acquires(&map->spinlock)
510 {
511 	struct regmap *map = __map;
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&map->spinlock, flags);
515 	map->spinlock_flags = flags;
516 }
517 
518 static void regmap_unlock_spinlock(void *__map)
519 __releases(&map->spinlock)
520 {
521 	struct regmap *map = __map;
522 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
523 }
524 
525 static void regmap_lock_raw_spinlock(void *__map)
526 __acquires(&map->raw_spinlock)
527 {
528 	struct regmap *map = __map;
529 	unsigned long flags;
530 
531 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
532 	map->raw_spinlock_flags = flags;
533 }
534 
535 static void regmap_unlock_raw_spinlock(void *__map)
536 __releases(&map->raw_spinlock)
537 {
538 	struct regmap *map = __map;
539 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
540 }
541 
542 static void dev_get_regmap_release(struct device *dev, void *res)
543 {
544 	/*
545 	 * We don't actually have anything to do here; the goal here
546 	 * is not to manage the regmap but to provide a simple way to
547 	 * get the regmap back given a struct device.
548 	 */
549 }
550 
551 static bool _regmap_range_add(struct regmap *map,
552 			      struct regmap_range_node *data)
553 {
554 	struct rb_root *root = &map->range_tree;
555 	struct rb_node **new = &(root->rb_node), *parent = NULL;
556 
557 	while (*new) {
558 		struct regmap_range_node *this =
559 			rb_entry(*new, struct regmap_range_node, node);
560 
561 		parent = *new;
562 		if (data->range_max < this->range_min)
563 			new = &((*new)->rb_left);
564 		else if (data->range_min > this->range_max)
565 			new = &((*new)->rb_right);
566 		else
567 			return false;
568 	}
569 
570 	rb_link_node(&data->node, parent, new);
571 	rb_insert_color(&data->node, root);
572 
573 	return true;
574 }
575 
576 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
577 						      unsigned int reg)
578 {
579 	struct rb_node *node = map->range_tree.rb_node;
580 
581 	while (node) {
582 		struct regmap_range_node *this =
583 			rb_entry(node, struct regmap_range_node, node);
584 
585 		if (reg < this->range_min)
586 			node = node->rb_left;
587 		else if (reg > this->range_max)
588 			node = node->rb_right;
589 		else
590 			return this;
591 	}
592 
593 	return NULL;
594 }
595 
596 static void regmap_range_exit(struct regmap *map)
597 {
598 	struct rb_node *next;
599 	struct regmap_range_node *range_node;
600 
601 	next = rb_first(&map->range_tree);
602 	while (next) {
603 		range_node = rb_entry(next, struct regmap_range_node, node);
604 		next = rb_next(&range_node->node);
605 		rb_erase(&range_node->node, &map->range_tree);
606 		kfree(range_node);
607 	}
608 
609 	kfree(map->selector_work_buf);
610 }
611 
612 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
613 {
614 	if (config->name) {
615 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
616 
617 		if (!name)
618 			return -ENOMEM;
619 
620 		kfree_const(map->name);
621 		map->name = name;
622 	}
623 
624 	return 0;
625 }
626 
627 int regmap_attach_dev(struct device *dev, struct regmap *map,
628 		      const struct regmap_config *config)
629 {
630 	struct regmap **m;
631 	int ret;
632 
633 	map->dev = dev;
634 
635 	ret = regmap_set_name(map, config);
636 	if (ret)
637 		return ret;
638 
639 	regmap_debugfs_exit(map);
640 	regmap_debugfs_init(map);
641 
642 	/* Add a devres resource for dev_get_regmap() */
643 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
644 	if (!m) {
645 		regmap_debugfs_exit(map);
646 		return -ENOMEM;
647 	}
648 	*m = map;
649 	devres_add(dev, m);
650 
651 	return 0;
652 }
653 EXPORT_SYMBOL_GPL(regmap_attach_dev);
654 
655 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
656 					const struct regmap_config *config)
657 {
658 	enum regmap_endian endian;
659 
660 	/* Retrieve the endianness specification from the regmap config */
661 	endian = config->reg_format_endian;
662 
663 	/* If the regmap config specified a non-default value, use that */
664 	if (endian != REGMAP_ENDIAN_DEFAULT)
665 		return endian;
666 
667 	/* Retrieve the endianness specification from the bus config */
668 	if (bus && bus->reg_format_endian_default)
669 		endian = bus->reg_format_endian_default;
670 
671 	/* If the bus specified a non-default value, use that */
672 	if (endian != REGMAP_ENDIAN_DEFAULT)
673 		return endian;
674 
675 	/* Use this if no other value was found */
676 	return REGMAP_ENDIAN_BIG;
677 }
678 
679 enum regmap_endian regmap_get_val_endian(struct device *dev,
680 					 const struct regmap_bus *bus,
681 					 const struct regmap_config *config)
682 {
683 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
684 	enum regmap_endian endian;
685 
686 	/* Retrieve the endianness specification from the regmap config */
687 	endian = config->val_format_endian;
688 
689 	/* If the regmap config specified a non-default value, use that */
690 	if (endian != REGMAP_ENDIAN_DEFAULT)
691 		return endian;
692 
693 	/* If the firmware node exist try to get endianness from it */
694 	if (fwnode_property_read_bool(fwnode, "big-endian"))
695 		endian = REGMAP_ENDIAN_BIG;
696 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
697 		endian = REGMAP_ENDIAN_LITTLE;
698 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
699 		endian = REGMAP_ENDIAN_NATIVE;
700 
701 	/* If the endianness was specified in fwnode, use that */
702 	if (endian != REGMAP_ENDIAN_DEFAULT)
703 		return endian;
704 
705 	/* Retrieve the endianness specification from the bus config */
706 	if (bus && bus->val_format_endian_default)
707 		endian = bus->val_format_endian_default;
708 
709 	/* If the bus specified a non-default value, use that */
710 	if (endian != REGMAP_ENDIAN_DEFAULT)
711 		return endian;
712 
713 	/* Use this if no other value was found */
714 	return REGMAP_ENDIAN_BIG;
715 }
716 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
717 
718 struct regmap *__regmap_init(struct device *dev,
719 			     const struct regmap_bus *bus,
720 			     void *bus_context,
721 			     const struct regmap_config *config,
722 			     struct lock_class_key *lock_key,
723 			     const char *lock_name)
724 {
725 	struct regmap *map;
726 	int ret = -EINVAL;
727 	enum regmap_endian reg_endian, val_endian;
728 	int i, j;
729 
730 	if (!config)
731 		goto err;
732 
733 	map = kzalloc(sizeof(*map), GFP_KERNEL);
734 	if (map == NULL) {
735 		ret = -ENOMEM;
736 		goto err;
737 	}
738 
739 	ret = regmap_set_name(map, config);
740 	if (ret)
741 		goto err_map;
742 
743 	ret = -EINVAL; /* Later error paths rely on this */
744 
745 	if (config->disable_locking) {
746 		map->lock = map->unlock = regmap_lock_unlock_none;
747 		map->can_sleep = config->can_sleep;
748 		regmap_debugfs_disable(map);
749 	} else if (config->lock && config->unlock) {
750 		map->lock = config->lock;
751 		map->unlock = config->unlock;
752 		map->lock_arg = config->lock_arg;
753 		map->can_sleep = config->can_sleep;
754 	} else if (config->use_hwlock) {
755 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
756 		if (!map->hwlock) {
757 			ret = -ENXIO;
758 			goto err_name;
759 		}
760 
761 		switch (config->hwlock_mode) {
762 		case HWLOCK_IRQSTATE:
763 			map->lock = regmap_lock_hwlock_irqsave;
764 			map->unlock = regmap_unlock_hwlock_irqrestore;
765 			break;
766 		case HWLOCK_IRQ:
767 			map->lock = regmap_lock_hwlock_irq;
768 			map->unlock = regmap_unlock_hwlock_irq;
769 			break;
770 		default:
771 			map->lock = regmap_lock_hwlock;
772 			map->unlock = regmap_unlock_hwlock;
773 			break;
774 		}
775 
776 		map->lock_arg = map;
777 	} else {
778 		if ((bus && bus->fast_io) ||
779 		    config->fast_io) {
780 			if (config->use_raw_spinlock) {
781 				raw_spin_lock_init(&map->raw_spinlock);
782 				map->lock = regmap_lock_raw_spinlock;
783 				map->unlock = regmap_unlock_raw_spinlock;
784 				lockdep_set_class_and_name(&map->raw_spinlock,
785 							   lock_key, lock_name);
786 			} else {
787 				spin_lock_init(&map->spinlock);
788 				map->lock = regmap_lock_spinlock;
789 				map->unlock = regmap_unlock_spinlock;
790 				lockdep_set_class_and_name(&map->spinlock,
791 							   lock_key, lock_name);
792 			}
793 		} else {
794 			mutex_init(&map->mutex);
795 			map->lock = regmap_lock_mutex;
796 			map->unlock = regmap_unlock_mutex;
797 			map->can_sleep = true;
798 			lockdep_set_class_and_name(&map->mutex,
799 						   lock_key, lock_name);
800 		}
801 		map->lock_arg = map;
802 	}
803 
804 	/*
805 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
806 	 * scratch buffers with sleeping allocations.
807 	 */
808 	if ((bus && bus->fast_io) || config->fast_io)
809 		map->alloc_flags = GFP_ATOMIC;
810 	else
811 		map->alloc_flags = GFP_KERNEL;
812 
813 	map->reg_base = config->reg_base;
814 
815 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
816 	map->format.pad_bytes = config->pad_bits / 8;
817 	map->format.reg_shift = config->reg_shift;
818 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
819 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
820 			config->val_bits + config->pad_bits, 8);
821 	map->reg_shift = config->pad_bits % 8;
822 	if (config->reg_stride)
823 		map->reg_stride = config->reg_stride;
824 	else
825 		map->reg_stride = 1;
826 	if (is_power_of_2(map->reg_stride))
827 		map->reg_stride_order = ilog2(map->reg_stride);
828 	else
829 		map->reg_stride_order = -1;
830 	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
831 	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
832 	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
833 	if (bus) {
834 		map->max_raw_read = bus->max_raw_read;
835 		map->max_raw_write = bus->max_raw_write;
836 	} else if (config->max_raw_read && config->max_raw_write) {
837 		map->max_raw_read = config->max_raw_read;
838 		map->max_raw_write = config->max_raw_write;
839 	}
840 	map->dev = dev;
841 	map->bus = bus;
842 	map->bus_context = bus_context;
843 	map->max_register = config->max_register;
844 	map->wr_table = config->wr_table;
845 	map->rd_table = config->rd_table;
846 	map->volatile_table = config->volatile_table;
847 	map->precious_table = config->precious_table;
848 	map->wr_noinc_table = config->wr_noinc_table;
849 	map->rd_noinc_table = config->rd_noinc_table;
850 	map->writeable_reg = config->writeable_reg;
851 	map->readable_reg = config->readable_reg;
852 	map->volatile_reg = config->volatile_reg;
853 	map->precious_reg = config->precious_reg;
854 	map->writeable_noinc_reg = config->writeable_noinc_reg;
855 	map->readable_noinc_reg = config->readable_noinc_reg;
856 	map->cache_type = config->cache_type;
857 
858 	spin_lock_init(&map->async_lock);
859 	INIT_LIST_HEAD(&map->async_list);
860 	INIT_LIST_HEAD(&map->async_free);
861 	init_waitqueue_head(&map->async_waitq);
862 
863 	if (config->read_flag_mask ||
864 	    config->write_flag_mask ||
865 	    config->zero_flag_mask) {
866 		map->read_flag_mask = config->read_flag_mask;
867 		map->write_flag_mask = config->write_flag_mask;
868 	} else if (bus) {
869 		map->read_flag_mask = bus->read_flag_mask;
870 	}
871 
872 	if (config && config->read && config->write) {
873 		map->reg_read  = _regmap_bus_read;
874 		if (config->reg_update_bits)
875 			map->reg_update_bits = config->reg_update_bits;
876 
877 		/* Bulk read/write */
878 		map->read = config->read;
879 		map->write = config->write;
880 
881 		reg_endian = REGMAP_ENDIAN_NATIVE;
882 		val_endian = REGMAP_ENDIAN_NATIVE;
883 	} else if (!bus) {
884 		map->reg_read  = config->reg_read;
885 		map->reg_write = config->reg_write;
886 		map->reg_update_bits = config->reg_update_bits;
887 
888 		map->defer_caching = false;
889 		goto skip_format_initialization;
890 	} else if (!bus->read || !bus->write) {
891 		map->reg_read = _regmap_bus_reg_read;
892 		map->reg_write = _regmap_bus_reg_write;
893 		map->reg_update_bits = bus->reg_update_bits;
894 
895 		map->defer_caching = false;
896 		goto skip_format_initialization;
897 	} else {
898 		map->reg_read  = _regmap_bus_read;
899 		map->reg_update_bits = bus->reg_update_bits;
900 		/* Bulk read/write */
901 		map->read = bus->read;
902 		map->write = bus->write;
903 
904 		reg_endian = regmap_get_reg_endian(bus, config);
905 		val_endian = regmap_get_val_endian(dev, bus, config);
906 	}
907 
908 	switch (config->reg_bits + map->reg_shift) {
909 	case 2:
910 		switch (config->val_bits) {
911 		case 6:
912 			map->format.format_write = regmap_format_2_6_write;
913 			break;
914 		default:
915 			goto err_hwlock;
916 		}
917 		break;
918 
919 	case 4:
920 		switch (config->val_bits) {
921 		case 12:
922 			map->format.format_write = regmap_format_4_12_write;
923 			break;
924 		default:
925 			goto err_hwlock;
926 		}
927 		break;
928 
929 	case 7:
930 		switch (config->val_bits) {
931 		case 9:
932 			map->format.format_write = regmap_format_7_9_write;
933 			break;
934 		case 17:
935 			map->format.format_write = regmap_format_7_17_write;
936 			break;
937 		default:
938 			goto err_hwlock;
939 		}
940 		break;
941 
942 	case 10:
943 		switch (config->val_bits) {
944 		case 14:
945 			map->format.format_write = regmap_format_10_14_write;
946 			break;
947 		default:
948 			goto err_hwlock;
949 		}
950 		break;
951 
952 	case 12:
953 		switch (config->val_bits) {
954 		case 20:
955 			map->format.format_write = regmap_format_12_20_write;
956 			break;
957 		default:
958 			goto err_hwlock;
959 		}
960 		break;
961 
962 	case 8:
963 		map->format.format_reg = regmap_format_8;
964 		break;
965 
966 	case 16:
967 		switch (reg_endian) {
968 		case REGMAP_ENDIAN_BIG:
969 			map->format.format_reg = regmap_format_16_be;
970 			break;
971 		case REGMAP_ENDIAN_LITTLE:
972 			map->format.format_reg = regmap_format_16_le;
973 			break;
974 		case REGMAP_ENDIAN_NATIVE:
975 			map->format.format_reg = regmap_format_16_native;
976 			break;
977 		default:
978 			goto err_hwlock;
979 		}
980 		break;
981 
982 	case 24:
983 		switch (reg_endian) {
984 		case REGMAP_ENDIAN_BIG:
985 			map->format.format_reg = regmap_format_24_be;
986 			break;
987 		default:
988 			goto err_hwlock;
989 		}
990 		break;
991 
992 	case 32:
993 		switch (reg_endian) {
994 		case REGMAP_ENDIAN_BIG:
995 			map->format.format_reg = regmap_format_32_be;
996 			break;
997 		case REGMAP_ENDIAN_LITTLE:
998 			map->format.format_reg = regmap_format_32_le;
999 			break;
1000 		case REGMAP_ENDIAN_NATIVE:
1001 			map->format.format_reg = regmap_format_32_native;
1002 			break;
1003 		default:
1004 			goto err_hwlock;
1005 		}
1006 		break;
1007 
1008 #ifdef CONFIG_64BIT
1009 	case 64:
1010 		switch (reg_endian) {
1011 		case REGMAP_ENDIAN_BIG:
1012 			map->format.format_reg = regmap_format_64_be;
1013 			break;
1014 		case REGMAP_ENDIAN_LITTLE:
1015 			map->format.format_reg = regmap_format_64_le;
1016 			break;
1017 		case REGMAP_ENDIAN_NATIVE:
1018 			map->format.format_reg = regmap_format_64_native;
1019 			break;
1020 		default:
1021 			goto err_hwlock;
1022 		}
1023 		break;
1024 #endif
1025 
1026 	default:
1027 		goto err_hwlock;
1028 	}
1029 
1030 	if (val_endian == REGMAP_ENDIAN_NATIVE)
1031 		map->format.parse_inplace = regmap_parse_inplace_noop;
1032 
1033 	switch (config->val_bits) {
1034 	case 8:
1035 		map->format.format_val = regmap_format_8;
1036 		map->format.parse_val = regmap_parse_8;
1037 		map->format.parse_inplace = regmap_parse_inplace_noop;
1038 		break;
1039 	case 16:
1040 		switch (val_endian) {
1041 		case REGMAP_ENDIAN_BIG:
1042 			map->format.format_val = regmap_format_16_be;
1043 			map->format.parse_val = regmap_parse_16_be;
1044 			map->format.parse_inplace = regmap_parse_16_be_inplace;
1045 			break;
1046 		case REGMAP_ENDIAN_LITTLE:
1047 			map->format.format_val = regmap_format_16_le;
1048 			map->format.parse_val = regmap_parse_16_le;
1049 			map->format.parse_inplace = regmap_parse_16_le_inplace;
1050 			break;
1051 		case REGMAP_ENDIAN_NATIVE:
1052 			map->format.format_val = regmap_format_16_native;
1053 			map->format.parse_val = regmap_parse_16_native;
1054 			break;
1055 		default:
1056 			goto err_hwlock;
1057 		}
1058 		break;
1059 	case 24:
1060 		switch (val_endian) {
1061 		case REGMAP_ENDIAN_BIG:
1062 			map->format.format_val = regmap_format_24_be;
1063 			map->format.parse_val = regmap_parse_24_be;
1064 			break;
1065 		default:
1066 			goto err_hwlock;
1067 		}
1068 		break;
1069 	case 32:
1070 		switch (val_endian) {
1071 		case REGMAP_ENDIAN_BIG:
1072 			map->format.format_val = regmap_format_32_be;
1073 			map->format.parse_val = regmap_parse_32_be;
1074 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1075 			break;
1076 		case REGMAP_ENDIAN_LITTLE:
1077 			map->format.format_val = regmap_format_32_le;
1078 			map->format.parse_val = regmap_parse_32_le;
1079 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1080 			break;
1081 		case REGMAP_ENDIAN_NATIVE:
1082 			map->format.format_val = regmap_format_32_native;
1083 			map->format.parse_val = regmap_parse_32_native;
1084 			break;
1085 		default:
1086 			goto err_hwlock;
1087 		}
1088 		break;
1089 #ifdef CONFIG_64BIT
1090 	case 64:
1091 		switch (val_endian) {
1092 		case REGMAP_ENDIAN_BIG:
1093 			map->format.format_val = regmap_format_64_be;
1094 			map->format.parse_val = regmap_parse_64_be;
1095 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1096 			break;
1097 		case REGMAP_ENDIAN_LITTLE:
1098 			map->format.format_val = regmap_format_64_le;
1099 			map->format.parse_val = regmap_parse_64_le;
1100 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1101 			break;
1102 		case REGMAP_ENDIAN_NATIVE:
1103 			map->format.format_val = regmap_format_64_native;
1104 			map->format.parse_val = regmap_parse_64_native;
1105 			break;
1106 		default:
1107 			goto err_hwlock;
1108 		}
1109 		break;
1110 #endif
1111 	}
1112 
1113 	if (map->format.format_write) {
1114 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1115 		    (val_endian != REGMAP_ENDIAN_BIG))
1116 			goto err_hwlock;
1117 		map->use_single_write = true;
1118 	}
1119 
1120 	if (!map->format.format_write &&
1121 	    !(map->format.format_reg && map->format.format_val))
1122 		goto err_hwlock;
1123 
1124 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1125 	if (map->work_buf == NULL) {
1126 		ret = -ENOMEM;
1127 		goto err_hwlock;
1128 	}
1129 
1130 	if (map->format.format_write) {
1131 		map->defer_caching = false;
1132 		map->reg_write = _regmap_bus_formatted_write;
1133 	} else if (map->format.format_val) {
1134 		map->defer_caching = true;
1135 		map->reg_write = _regmap_bus_raw_write;
1136 	}
1137 
1138 skip_format_initialization:
1139 
1140 	map->range_tree = RB_ROOT;
1141 	for (i = 0; i < config->num_ranges; i++) {
1142 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1143 		struct regmap_range_node *new;
1144 
1145 		/* Sanity check */
1146 		if (range_cfg->range_max < range_cfg->range_min) {
1147 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1148 				range_cfg->range_max, range_cfg->range_min);
1149 			goto err_range;
1150 		}
1151 
1152 		if (range_cfg->range_max > map->max_register) {
1153 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1154 				range_cfg->range_max, map->max_register);
1155 			goto err_range;
1156 		}
1157 
1158 		if (range_cfg->selector_reg > map->max_register) {
1159 			dev_err(map->dev,
1160 				"Invalid range %d: selector out of map\n", i);
1161 			goto err_range;
1162 		}
1163 
1164 		if (range_cfg->window_len == 0) {
1165 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1166 				i);
1167 			goto err_range;
1168 		}
1169 
1170 		/* Make sure, that this register range has no selector
1171 		   or data window within its boundary */
1172 		for (j = 0; j < config->num_ranges; j++) {
1173 			unsigned int sel_reg = config->ranges[j].selector_reg;
1174 			unsigned int win_min = config->ranges[j].window_start;
1175 			unsigned int win_max = win_min +
1176 					       config->ranges[j].window_len - 1;
1177 
1178 			/* Allow data window inside its own virtual range */
1179 			if (j == i)
1180 				continue;
1181 
1182 			if (range_cfg->range_min <= sel_reg &&
1183 			    sel_reg <= range_cfg->range_max) {
1184 				dev_err(map->dev,
1185 					"Range %d: selector for %d in window\n",
1186 					i, j);
1187 				goto err_range;
1188 			}
1189 
1190 			if (!(win_max < range_cfg->range_min ||
1191 			      win_min > range_cfg->range_max)) {
1192 				dev_err(map->dev,
1193 					"Range %d: window for %d in window\n",
1194 					i, j);
1195 				goto err_range;
1196 			}
1197 		}
1198 
1199 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1200 		if (new == NULL) {
1201 			ret = -ENOMEM;
1202 			goto err_range;
1203 		}
1204 
1205 		new->map = map;
1206 		new->name = range_cfg->name;
1207 		new->range_min = range_cfg->range_min;
1208 		new->range_max = range_cfg->range_max;
1209 		new->selector_reg = range_cfg->selector_reg;
1210 		new->selector_mask = range_cfg->selector_mask;
1211 		new->selector_shift = range_cfg->selector_shift;
1212 		new->window_start = range_cfg->window_start;
1213 		new->window_len = range_cfg->window_len;
1214 
1215 		if (!_regmap_range_add(map, new)) {
1216 			dev_err(map->dev, "Failed to add range %d\n", i);
1217 			kfree(new);
1218 			goto err_range;
1219 		}
1220 
1221 		if (map->selector_work_buf == NULL) {
1222 			map->selector_work_buf =
1223 				kzalloc(map->format.buf_size, GFP_KERNEL);
1224 			if (map->selector_work_buf == NULL) {
1225 				ret = -ENOMEM;
1226 				goto err_range;
1227 			}
1228 		}
1229 	}
1230 
1231 	ret = regcache_init(map, config);
1232 	if (ret != 0)
1233 		goto err_range;
1234 
1235 	if (dev) {
1236 		ret = regmap_attach_dev(dev, map, config);
1237 		if (ret != 0)
1238 			goto err_regcache;
1239 	} else {
1240 		regmap_debugfs_init(map);
1241 	}
1242 
1243 	return map;
1244 
1245 err_regcache:
1246 	regcache_exit(map);
1247 err_range:
1248 	regmap_range_exit(map);
1249 	kfree(map->work_buf);
1250 err_hwlock:
1251 	if (map->hwlock)
1252 		hwspin_lock_free(map->hwlock);
1253 err_name:
1254 	kfree_const(map->name);
1255 err_map:
1256 	kfree(map);
1257 err:
1258 	return ERR_PTR(ret);
1259 }
1260 EXPORT_SYMBOL_GPL(__regmap_init);
1261 
1262 static void devm_regmap_release(struct device *dev, void *res)
1263 {
1264 	regmap_exit(*(struct regmap **)res);
1265 }
1266 
1267 struct regmap *__devm_regmap_init(struct device *dev,
1268 				  const struct regmap_bus *bus,
1269 				  void *bus_context,
1270 				  const struct regmap_config *config,
1271 				  struct lock_class_key *lock_key,
1272 				  const char *lock_name)
1273 {
1274 	struct regmap **ptr, *regmap;
1275 
1276 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1277 	if (!ptr)
1278 		return ERR_PTR(-ENOMEM);
1279 
1280 	regmap = __regmap_init(dev, bus, bus_context, config,
1281 			       lock_key, lock_name);
1282 	if (!IS_ERR(regmap)) {
1283 		*ptr = regmap;
1284 		devres_add(dev, ptr);
1285 	} else {
1286 		devres_free(ptr);
1287 	}
1288 
1289 	return regmap;
1290 }
1291 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1292 
1293 static void regmap_field_init(struct regmap_field *rm_field,
1294 	struct regmap *regmap, struct reg_field reg_field)
1295 {
1296 	rm_field->regmap = regmap;
1297 	rm_field->reg = reg_field.reg;
1298 	rm_field->shift = reg_field.lsb;
1299 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1300 
1301 	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1302 
1303 	rm_field->id_size = reg_field.id_size;
1304 	rm_field->id_offset = reg_field.id_offset;
1305 }
1306 
1307 /**
1308  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1309  *
1310  * @dev: Device that will be interacted with
1311  * @regmap: regmap bank in which this register field is located.
1312  * @reg_field: Register field with in the bank.
1313  *
1314  * The return value will be an ERR_PTR() on error or a valid pointer
1315  * to a struct regmap_field. The regmap_field will be automatically freed
1316  * by the device management code.
1317  */
1318 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1319 		struct regmap *regmap, struct reg_field reg_field)
1320 {
1321 	struct regmap_field *rm_field = devm_kzalloc(dev,
1322 					sizeof(*rm_field), GFP_KERNEL);
1323 	if (!rm_field)
1324 		return ERR_PTR(-ENOMEM);
1325 
1326 	regmap_field_init(rm_field, regmap, reg_field);
1327 
1328 	return rm_field;
1329 
1330 }
1331 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1332 
1333 
1334 /**
1335  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1336  *
1337  * @regmap: regmap bank in which this register field is located.
1338  * @rm_field: regmap register fields within the bank.
1339  * @reg_field: Register fields within the bank.
1340  * @num_fields: Number of register fields.
1341  *
1342  * The return value will be an -ENOMEM on error or zero for success.
1343  * Newly allocated regmap_fields should be freed by calling
1344  * regmap_field_bulk_free()
1345  */
1346 int regmap_field_bulk_alloc(struct regmap *regmap,
1347 			    struct regmap_field **rm_field,
1348 			    const struct reg_field *reg_field,
1349 			    int num_fields)
1350 {
1351 	struct regmap_field *rf;
1352 	int i;
1353 
1354 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1355 	if (!rf)
1356 		return -ENOMEM;
1357 
1358 	for (i = 0; i < num_fields; i++) {
1359 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1360 		rm_field[i] = &rf[i];
1361 	}
1362 
1363 	return 0;
1364 }
1365 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1366 
1367 /**
1368  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1369  * fields.
1370  *
1371  * @dev: Device that will be interacted with
1372  * @regmap: regmap bank in which this register field is located.
1373  * @rm_field: regmap register fields within the bank.
1374  * @reg_field: Register fields within the bank.
1375  * @num_fields: Number of register fields.
1376  *
1377  * The return value will be an -ENOMEM on error or zero for success.
1378  * Newly allocated regmap_fields will be automatically freed by the
1379  * device management code.
1380  */
1381 int devm_regmap_field_bulk_alloc(struct device *dev,
1382 				 struct regmap *regmap,
1383 				 struct regmap_field **rm_field,
1384 				 const struct reg_field *reg_field,
1385 				 int num_fields)
1386 {
1387 	struct regmap_field *rf;
1388 	int i;
1389 
1390 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1391 	if (!rf)
1392 		return -ENOMEM;
1393 
1394 	for (i = 0; i < num_fields; i++) {
1395 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1396 		rm_field[i] = &rf[i];
1397 	}
1398 
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1402 
1403 /**
1404  * regmap_field_bulk_free() - Free register field allocated using
1405  *                       regmap_field_bulk_alloc.
1406  *
1407  * @field: regmap fields which should be freed.
1408  */
1409 void regmap_field_bulk_free(struct regmap_field *field)
1410 {
1411 	kfree(field);
1412 }
1413 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1414 
1415 /**
1416  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1417  *                            devm_regmap_field_bulk_alloc.
1418  *
1419  * @dev: Device that will be interacted with
1420  * @field: regmap field which should be freed.
1421  *
1422  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1423  * drivers need not call this function, as the memory allocated via devm
1424  * will be freed as per device-driver life-cycle.
1425  */
1426 void devm_regmap_field_bulk_free(struct device *dev,
1427 				 struct regmap_field *field)
1428 {
1429 	devm_kfree(dev, field);
1430 }
1431 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1432 
1433 /**
1434  * devm_regmap_field_free() - Free a register field allocated using
1435  *                            devm_regmap_field_alloc.
1436  *
1437  * @dev: Device that will be interacted with
1438  * @field: regmap field which should be freed.
1439  *
1440  * Free register field allocated using devm_regmap_field_alloc(). Usually
1441  * drivers need not call this function, as the memory allocated via devm
1442  * will be freed as per device-driver life-cyle.
1443  */
1444 void devm_regmap_field_free(struct device *dev,
1445 	struct regmap_field *field)
1446 {
1447 	devm_kfree(dev, field);
1448 }
1449 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1450 
1451 /**
1452  * regmap_field_alloc() - Allocate and initialise a register field.
1453  *
1454  * @regmap: regmap bank in which this register field is located.
1455  * @reg_field: Register field with in the bank.
1456  *
1457  * The return value will be an ERR_PTR() on error or a valid pointer
1458  * to a struct regmap_field. The regmap_field should be freed by the
1459  * user once its finished working with it using regmap_field_free().
1460  */
1461 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1462 		struct reg_field reg_field)
1463 {
1464 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1465 
1466 	if (!rm_field)
1467 		return ERR_PTR(-ENOMEM);
1468 
1469 	regmap_field_init(rm_field, regmap, reg_field);
1470 
1471 	return rm_field;
1472 }
1473 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1474 
1475 /**
1476  * regmap_field_free() - Free register field allocated using
1477  *                       regmap_field_alloc.
1478  *
1479  * @field: regmap field which should be freed.
1480  */
1481 void regmap_field_free(struct regmap_field *field)
1482 {
1483 	kfree(field);
1484 }
1485 EXPORT_SYMBOL_GPL(regmap_field_free);
1486 
1487 /**
1488  * regmap_reinit_cache() - Reinitialise the current register cache
1489  *
1490  * @map: Register map to operate on.
1491  * @config: New configuration.  Only the cache data will be used.
1492  *
1493  * Discard any existing register cache for the map and initialize a
1494  * new cache.  This can be used to restore the cache to defaults or to
1495  * update the cache configuration to reflect runtime discovery of the
1496  * hardware.
1497  *
1498  * No explicit locking is done here, the user needs to ensure that
1499  * this function will not race with other calls to regmap.
1500  */
1501 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1502 {
1503 	int ret;
1504 
1505 	regcache_exit(map);
1506 	regmap_debugfs_exit(map);
1507 
1508 	map->max_register = config->max_register;
1509 	map->writeable_reg = config->writeable_reg;
1510 	map->readable_reg = config->readable_reg;
1511 	map->volatile_reg = config->volatile_reg;
1512 	map->precious_reg = config->precious_reg;
1513 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1514 	map->readable_noinc_reg = config->readable_noinc_reg;
1515 	map->cache_type = config->cache_type;
1516 
1517 	ret = regmap_set_name(map, config);
1518 	if (ret)
1519 		return ret;
1520 
1521 	regmap_debugfs_init(map);
1522 
1523 	map->cache_bypass = false;
1524 	map->cache_only = false;
1525 
1526 	return regcache_init(map, config);
1527 }
1528 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1529 
1530 /**
1531  * regmap_exit() - Free a previously allocated register map
1532  *
1533  * @map: Register map to operate on.
1534  */
1535 void regmap_exit(struct regmap *map)
1536 {
1537 	struct regmap_async *async;
1538 
1539 	regcache_exit(map);
1540 	regmap_debugfs_exit(map);
1541 	regmap_range_exit(map);
1542 	if (map->bus && map->bus->free_context)
1543 		map->bus->free_context(map->bus_context);
1544 	kfree(map->work_buf);
1545 	while (!list_empty(&map->async_free)) {
1546 		async = list_first_entry_or_null(&map->async_free,
1547 						 struct regmap_async,
1548 						 list);
1549 		list_del(&async->list);
1550 		kfree(async->work_buf);
1551 		kfree(async);
1552 	}
1553 	if (map->hwlock)
1554 		hwspin_lock_free(map->hwlock);
1555 	if (map->lock == regmap_lock_mutex)
1556 		mutex_destroy(&map->mutex);
1557 	kfree_const(map->name);
1558 	kfree(map->patch);
1559 	if (map->bus && map->bus->free_on_exit)
1560 		kfree(map->bus);
1561 	kfree(map);
1562 }
1563 EXPORT_SYMBOL_GPL(regmap_exit);
1564 
1565 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1566 {
1567 	struct regmap **r = res;
1568 	if (!r || !*r) {
1569 		WARN_ON(!r || !*r);
1570 		return 0;
1571 	}
1572 
1573 	/* If the user didn't specify a name match any */
1574 	if (data)
1575 		return !strcmp((*r)->name, data);
1576 	else
1577 		return 1;
1578 }
1579 
1580 /**
1581  * dev_get_regmap() - Obtain the regmap (if any) for a device
1582  *
1583  * @dev: Device to retrieve the map for
1584  * @name: Optional name for the register map, usually NULL.
1585  *
1586  * Returns the regmap for the device if one is present, or NULL.  If
1587  * name is specified then it must match the name specified when
1588  * registering the device, if it is NULL then the first regmap found
1589  * will be used.  Devices with multiple register maps are very rare,
1590  * generic code should normally not need to specify a name.
1591  */
1592 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1593 {
1594 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1595 					dev_get_regmap_match, (void *)name);
1596 
1597 	if (!r)
1598 		return NULL;
1599 	return *r;
1600 }
1601 EXPORT_SYMBOL_GPL(dev_get_regmap);
1602 
1603 /**
1604  * regmap_get_device() - Obtain the device from a regmap
1605  *
1606  * @map: Register map to operate on.
1607  *
1608  * Returns the underlying device that the regmap has been created for.
1609  */
1610 struct device *regmap_get_device(struct regmap *map)
1611 {
1612 	return map->dev;
1613 }
1614 EXPORT_SYMBOL_GPL(regmap_get_device);
1615 
1616 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1617 			       struct regmap_range_node *range,
1618 			       unsigned int val_num)
1619 {
1620 	void *orig_work_buf;
1621 	unsigned int win_offset;
1622 	unsigned int win_page;
1623 	bool page_chg;
1624 	int ret;
1625 
1626 	win_offset = (*reg - range->range_min) % range->window_len;
1627 	win_page = (*reg - range->range_min) / range->window_len;
1628 
1629 	if (val_num > 1) {
1630 		/* Bulk write shouldn't cross range boundary */
1631 		if (*reg + val_num - 1 > range->range_max)
1632 			return -EINVAL;
1633 
1634 		/* ... or single page boundary */
1635 		if (val_num > range->window_len - win_offset)
1636 			return -EINVAL;
1637 	}
1638 
1639 	/* It is possible to have selector register inside data window.
1640 	   In that case, selector register is located on every page and
1641 	   it needs no page switching, when accessed alone. */
1642 	if (val_num > 1 ||
1643 	    range->window_start + win_offset != range->selector_reg) {
1644 		/* Use separate work_buf during page switching */
1645 		orig_work_buf = map->work_buf;
1646 		map->work_buf = map->selector_work_buf;
1647 
1648 		ret = _regmap_update_bits(map, range->selector_reg,
1649 					  range->selector_mask,
1650 					  win_page << range->selector_shift,
1651 					  &page_chg, false);
1652 
1653 		map->work_buf = orig_work_buf;
1654 
1655 		if (ret != 0)
1656 			return ret;
1657 	}
1658 
1659 	*reg = range->window_start + win_offset;
1660 
1661 	return 0;
1662 }
1663 
1664 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1665 					  unsigned long mask)
1666 {
1667 	u8 *buf;
1668 	int i;
1669 
1670 	if (!mask || !map->work_buf)
1671 		return;
1672 
1673 	buf = map->work_buf;
1674 
1675 	for (i = 0; i < max_bytes; i++)
1676 		buf[i] |= (mask >> (8 * i)) & 0xff;
1677 }
1678 
1679 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1680 {
1681 	reg += map->reg_base;
1682 
1683 	if (map->format.reg_shift > 0)
1684 		reg >>= map->format.reg_shift;
1685 	else if (map->format.reg_shift < 0)
1686 		reg <<= -(map->format.reg_shift);
1687 
1688 	return reg;
1689 }
1690 
1691 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1692 				  const void *val, size_t val_len, bool noinc)
1693 {
1694 	struct regmap_range_node *range;
1695 	unsigned long flags;
1696 	void *work_val = map->work_buf + map->format.reg_bytes +
1697 		map->format.pad_bytes;
1698 	void *buf;
1699 	int ret = -ENOTSUPP;
1700 	size_t len;
1701 	int i;
1702 
1703 	/* Check for unwritable or noinc registers in range
1704 	 * before we start
1705 	 */
1706 	if (!regmap_writeable_noinc(map, reg)) {
1707 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1708 			unsigned int element =
1709 				reg + regmap_get_offset(map, i);
1710 			if (!regmap_writeable(map, element) ||
1711 				regmap_writeable_noinc(map, element))
1712 				return -EINVAL;
1713 		}
1714 	}
1715 
1716 	if (!map->cache_bypass && map->format.parse_val) {
1717 		unsigned int ival;
1718 		int val_bytes = map->format.val_bytes;
1719 		for (i = 0; i < val_len / val_bytes; i++) {
1720 			ival = map->format.parse_val(val + (i * val_bytes));
1721 			ret = regcache_write(map,
1722 					     reg + regmap_get_offset(map, i),
1723 					     ival);
1724 			if (ret) {
1725 				dev_err(map->dev,
1726 					"Error in caching of register: %x ret: %d\n",
1727 					reg + regmap_get_offset(map, i), ret);
1728 				return ret;
1729 			}
1730 		}
1731 		if (map->cache_only) {
1732 			map->cache_dirty = true;
1733 			return 0;
1734 		}
1735 	}
1736 
1737 	range = _regmap_range_lookup(map, reg);
1738 	if (range) {
1739 		int val_num = val_len / map->format.val_bytes;
1740 		int win_offset = (reg - range->range_min) % range->window_len;
1741 		int win_residue = range->window_len - win_offset;
1742 
1743 		/* If the write goes beyond the end of the window split it */
1744 		while (val_num > win_residue) {
1745 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1746 				win_residue, val_len / map->format.val_bytes);
1747 			ret = _regmap_raw_write_impl(map, reg, val,
1748 						     win_residue *
1749 						     map->format.val_bytes, noinc);
1750 			if (ret != 0)
1751 				return ret;
1752 
1753 			reg += win_residue;
1754 			val_num -= win_residue;
1755 			val += win_residue * map->format.val_bytes;
1756 			val_len -= win_residue * map->format.val_bytes;
1757 
1758 			win_offset = (reg - range->range_min) %
1759 				range->window_len;
1760 			win_residue = range->window_len - win_offset;
1761 		}
1762 
1763 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1764 		if (ret != 0)
1765 			return ret;
1766 	}
1767 
1768 	reg = regmap_reg_addr(map, reg);
1769 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1770 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1771 				      map->write_flag_mask);
1772 
1773 	/*
1774 	 * Essentially all I/O mechanisms will be faster with a single
1775 	 * buffer to write.  Since register syncs often generate raw
1776 	 * writes of single registers optimise that case.
1777 	 */
1778 	if (val != work_val && val_len == map->format.val_bytes) {
1779 		memcpy(work_val, val, map->format.val_bytes);
1780 		val = work_val;
1781 	}
1782 
1783 	if (map->async && map->bus && map->bus->async_write) {
1784 		struct regmap_async *async;
1785 
1786 		trace_regmap_async_write_start(map, reg, val_len);
1787 
1788 		spin_lock_irqsave(&map->async_lock, flags);
1789 		async = list_first_entry_or_null(&map->async_free,
1790 						 struct regmap_async,
1791 						 list);
1792 		if (async)
1793 			list_del(&async->list);
1794 		spin_unlock_irqrestore(&map->async_lock, flags);
1795 
1796 		if (!async) {
1797 			async = map->bus->async_alloc();
1798 			if (!async)
1799 				return -ENOMEM;
1800 
1801 			async->work_buf = kzalloc(map->format.buf_size,
1802 						  GFP_KERNEL | GFP_DMA);
1803 			if (!async->work_buf) {
1804 				kfree(async);
1805 				return -ENOMEM;
1806 			}
1807 		}
1808 
1809 		async->map = map;
1810 
1811 		/* If the caller supplied the value we can use it safely. */
1812 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1813 		       map->format.reg_bytes + map->format.val_bytes);
1814 
1815 		spin_lock_irqsave(&map->async_lock, flags);
1816 		list_add_tail(&async->list, &map->async_list);
1817 		spin_unlock_irqrestore(&map->async_lock, flags);
1818 
1819 		if (val != work_val)
1820 			ret = map->bus->async_write(map->bus_context,
1821 						    async->work_buf,
1822 						    map->format.reg_bytes +
1823 						    map->format.pad_bytes,
1824 						    val, val_len, async);
1825 		else
1826 			ret = map->bus->async_write(map->bus_context,
1827 						    async->work_buf,
1828 						    map->format.reg_bytes +
1829 						    map->format.pad_bytes +
1830 						    val_len, NULL, 0, async);
1831 
1832 		if (ret != 0) {
1833 			dev_err(map->dev, "Failed to schedule write: %d\n",
1834 				ret);
1835 
1836 			spin_lock_irqsave(&map->async_lock, flags);
1837 			list_move(&async->list, &map->async_free);
1838 			spin_unlock_irqrestore(&map->async_lock, flags);
1839 		}
1840 
1841 		return ret;
1842 	}
1843 
1844 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1845 
1846 	/* If we're doing a single register write we can probably just
1847 	 * send the work_buf directly, otherwise try to do a gather
1848 	 * write.
1849 	 */
1850 	if (val == work_val)
1851 		ret = map->write(map->bus_context, map->work_buf,
1852 				 map->format.reg_bytes +
1853 				 map->format.pad_bytes +
1854 				 val_len);
1855 	else if (map->bus && map->bus->gather_write)
1856 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1857 					     map->format.reg_bytes +
1858 					     map->format.pad_bytes,
1859 					     val, val_len);
1860 	else
1861 		ret = -ENOTSUPP;
1862 
1863 	/* If that didn't work fall back on linearising by hand. */
1864 	if (ret == -ENOTSUPP) {
1865 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1866 		buf = kzalloc(len, GFP_KERNEL);
1867 		if (!buf)
1868 			return -ENOMEM;
1869 
1870 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1871 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1872 		       val, val_len);
1873 		ret = map->write(map->bus_context, buf, len);
1874 
1875 		kfree(buf);
1876 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1877 		/* regcache_drop_region() takes lock that we already have,
1878 		 * thus call map->cache_ops->drop() directly
1879 		 */
1880 		if (map->cache_ops && map->cache_ops->drop)
1881 			map->cache_ops->drop(map, reg, reg + 1);
1882 	}
1883 
1884 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1885 
1886 	return ret;
1887 }
1888 
1889 /**
1890  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1891  *
1892  * @map: Map to check.
1893  */
1894 bool regmap_can_raw_write(struct regmap *map)
1895 {
1896 	return map->write && map->format.format_val && map->format.format_reg;
1897 }
1898 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1899 
1900 /**
1901  * regmap_get_raw_read_max - Get the maximum size we can read
1902  *
1903  * @map: Map to check.
1904  */
1905 size_t regmap_get_raw_read_max(struct regmap *map)
1906 {
1907 	return map->max_raw_read;
1908 }
1909 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1910 
1911 /**
1912  * regmap_get_raw_write_max - Get the maximum size we can read
1913  *
1914  * @map: Map to check.
1915  */
1916 size_t regmap_get_raw_write_max(struct regmap *map)
1917 {
1918 	return map->max_raw_write;
1919 }
1920 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1921 
1922 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1923 				       unsigned int val)
1924 {
1925 	int ret;
1926 	struct regmap_range_node *range;
1927 	struct regmap *map = context;
1928 
1929 	WARN_ON(!map->format.format_write);
1930 
1931 	range = _regmap_range_lookup(map, reg);
1932 	if (range) {
1933 		ret = _regmap_select_page(map, &reg, range, 1);
1934 		if (ret != 0)
1935 			return ret;
1936 	}
1937 
1938 	reg = regmap_reg_addr(map, reg);
1939 	map->format.format_write(map, reg, val);
1940 
1941 	trace_regmap_hw_write_start(map, reg, 1);
1942 
1943 	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1944 
1945 	trace_regmap_hw_write_done(map, reg, 1);
1946 
1947 	return ret;
1948 }
1949 
1950 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1951 				 unsigned int val)
1952 {
1953 	struct regmap *map = context;
1954 	struct regmap_range_node *range;
1955 	int ret;
1956 
1957 	range = _regmap_range_lookup(map, reg);
1958 	if (range) {
1959 		ret = _regmap_select_page(map, &reg, range, 1);
1960 		if (ret != 0)
1961 			return ret;
1962 	}
1963 
1964 	reg = regmap_reg_addr(map, reg);
1965 	return map->bus->reg_write(map->bus_context, reg, val);
1966 }
1967 
1968 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1969 				 unsigned int val)
1970 {
1971 	struct regmap *map = context;
1972 
1973 	WARN_ON(!map->format.format_val);
1974 
1975 	map->format.format_val(map->work_buf + map->format.reg_bytes
1976 			       + map->format.pad_bytes, val, 0);
1977 	return _regmap_raw_write_impl(map, reg,
1978 				      map->work_buf +
1979 				      map->format.reg_bytes +
1980 				      map->format.pad_bytes,
1981 				      map->format.val_bytes,
1982 				      false);
1983 }
1984 
1985 static inline void *_regmap_map_get_context(struct regmap *map)
1986 {
1987 	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1988 }
1989 
1990 int _regmap_write(struct regmap *map, unsigned int reg,
1991 		  unsigned int val)
1992 {
1993 	int ret;
1994 	void *context = _regmap_map_get_context(map);
1995 
1996 	if (!regmap_writeable(map, reg))
1997 		return -EIO;
1998 
1999 	if (!map->cache_bypass && !map->defer_caching) {
2000 		ret = regcache_write(map, reg, val);
2001 		if (ret != 0)
2002 			return ret;
2003 		if (map->cache_only) {
2004 			map->cache_dirty = true;
2005 			return 0;
2006 		}
2007 	}
2008 
2009 	ret = map->reg_write(context, reg, val);
2010 	if (ret == 0) {
2011 		if (regmap_should_log(map))
2012 			dev_info(map->dev, "%x <= %x\n", reg, val);
2013 
2014 		trace_regmap_reg_write(map, reg, val);
2015 	}
2016 
2017 	return ret;
2018 }
2019 
2020 /**
2021  * regmap_write() - Write a value to a single register
2022  *
2023  * @map: Register map to write to
2024  * @reg: Register to write to
2025  * @val: Value to be written
2026  *
2027  * A value of zero will be returned on success, a negative errno will
2028  * be returned in error cases.
2029  */
2030 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2031 {
2032 	int ret;
2033 
2034 	if (!IS_ALIGNED(reg, map->reg_stride))
2035 		return -EINVAL;
2036 
2037 	map->lock(map->lock_arg);
2038 
2039 	ret = _regmap_write(map, reg, val);
2040 
2041 	map->unlock(map->lock_arg);
2042 
2043 	return ret;
2044 }
2045 EXPORT_SYMBOL_GPL(regmap_write);
2046 
2047 /**
2048  * regmap_write_async() - Write a value to a single register asynchronously
2049  *
2050  * @map: Register map to write to
2051  * @reg: Register to write to
2052  * @val: Value to be written
2053  *
2054  * A value of zero will be returned on success, a negative errno will
2055  * be returned in error cases.
2056  */
2057 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2058 {
2059 	int ret;
2060 
2061 	if (!IS_ALIGNED(reg, map->reg_stride))
2062 		return -EINVAL;
2063 
2064 	map->lock(map->lock_arg);
2065 
2066 	map->async = true;
2067 
2068 	ret = _regmap_write(map, reg, val);
2069 
2070 	map->async = false;
2071 
2072 	map->unlock(map->lock_arg);
2073 
2074 	return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(regmap_write_async);
2077 
2078 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2079 		      const void *val, size_t val_len, bool noinc)
2080 {
2081 	size_t val_bytes = map->format.val_bytes;
2082 	size_t val_count = val_len / val_bytes;
2083 	size_t chunk_count, chunk_bytes;
2084 	size_t chunk_regs = val_count;
2085 	int ret, i;
2086 
2087 	if (!val_count)
2088 		return -EINVAL;
2089 
2090 	if (map->use_single_write)
2091 		chunk_regs = 1;
2092 	else if (map->max_raw_write && val_len > map->max_raw_write)
2093 		chunk_regs = map->max_raw_write / val_bytes;
2094 
2095 	chunk_count = val_count / chunk_regs;
2096 	chunk_bytes = chunk_regs * val_bytes;
2097 
2098 	/* Write as many bytes as possible with chunk_size */
2099 	for (i = 0; i < chunk_count; i++) {
2100 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2101 		if (ret)
2102 			return ret;
2103 
2104 		reg += regmap_get_offset(map, chunk_regs);
2105 		val += chunk_bytes;
2106 		val_len -= chunk_bytes;
2107 	}
2108 
2109 	/* Write remaining bytes */
2110 	if (val_len)
2111 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2112 
2113 	return ret;
2114 }
2115 
2116 /**
2117  * regmap_raw_write() - Write raw values to one or more registers
2118  *
2119  * @map: Register map to write to
2120  * @reg: Initial register to write to
2121  * @val: Block of data to be written, laid out for direct transmission to the
2122  *       device
2123  * @val_len: Length of data pointed to by val.
2124  *
2125  * This function is intended to be used for things like firmware
2126  * download where a large block of data needs to be transferred to the
2127  * device.  No formatting will be done on the data provided.
2128  *
2129  * A value of zero will be returned on success, a negative errno will
2130  * be returned in error cases.
2131  */
2132 int regmap_raw_write(struct regmap *map, unsigned int reg,
2133 		     const void *val, size_t val_len)
2134 {
2135 	int ret;
2136 
2137 	if (!regmap_can_raw_write(map))
2138 		return -EINVAL;
2139 	if (val_len % map->format.val_bytes)
2140 		return -EINVAL;
2141 
2142 	map->lock(map->lock_arg);
2143 
2144 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2145 
2146 	map->unlock(map->lock_arg);
2147 
2148 	return ret;
2149 }
2150 EXPORT_SYMBOL_GPL(regmap_raw_write);
2151 
2152 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2153 				  void *val, unsigned int val_len, bool write)
2154 {
2155 	size_t val_bytes = map->format.val_bytes;
2156 	size_t val_count = val_len / val_bytes;
2157 	unsigned int lastval;
2158 	u8 *u8p;
2159 	u16 *u16p;
2160 	u32 *u32p;
2161 #ifdef CONFIG_64BIT
2162 	u64 *u64p;
2163 #endif
2164 	int ret;
2165 	int i;
2166 
2167 	switch (val_bytes) {
2168 	case 1:
2169 		u8p = val;
2170 		if (write)
2171 			lastval = (unsigned int)u8p[val_count - 1];
2172 		break;
2173 	case 2:
2174 		u16p = val;
2175 		if (write)
2176 			lastval = (unsigned int)u16p[val_count - 1];
2177 		break;
2178 	case 4:
2179 		u32p = val;
2180 		if (write)
2181 			lastval = (unsigned int)u32p[val_count - 1];
2182 		break;
2183 #ifdef CONFIG_64BIT
2184 	case 8:
2185 		u64p = val;
2186 		if (write)
2187 			lastval = (unsigned int)u64p[val_count - 1];
2188 		break;
2189 #endif
2190 	default:
2191 		return -EINVAL;
2192 	}
2193 
2194 	/*
2195 	 * Update the cache with the last value we write, the rest is just
2196 	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2197 	 * sure a single read from the cache will work.
2198 	 */
2199 	if (write) {
2200 		if (!map->cache_bypass && !map->defer_caching) {
2201 			ret = regcache_write(map, reg, lastval);
2202 			if (ret != 0)
2203 				return ret;
2204 			if (map->cache_only) {
2205 				map->cache_dirty = true;
2206 				return 0;
2207 			}
2208 		}
2209 		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2210 	} else {
2211 		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2212 	}
2213 
2214 	if (!ret && regmap_should_log(map)) {
2215 		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2216 		for (i = 0; i < val_count; i++) {
2217 			switch (val_bytes) {
2218 			case 1:
2219 				pr_cont("%x", u8p[i]);
2220 				break;
2221 			case 2:
2222 				pr_cont("%x", u16p[i]);
2223 				break;
2224 			case 4:
2225 				pr_cont("%x", u32p[i]);
2226 				break;
2227 #ifdef CONFIG_64BIT
2228 			case 8:
2229 				pr_cont("%llx", u64p[i]);
2230 				break;
2231 #endif
2232 			default:
2233 				break;
2234 			}
2235 			if (i == (val_count - 1))
2236 				pr_cont("]\n");
2237 			else
2238 				pr_cont(",");
2239 		}
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 /**
2246  * regmap_noinc_write(): Write data from a register without incrementing the
2247  *			register number
2248  *
2249  * @map: Register map to write to
2250  * @reg: Register to write to
2251  * @val: Pointer to data buffer
2252  * @val_len: Length of output buffer in bytes.
2253  *
2254  * The regmap API usually assumes that bulk bus write operations will write a
2255  * range of registers. Some devices have certain registers for which a write
2256  * operation can write to an internal FIFO.
2257  *
2258  * The target register must be volatile but registers after it can be
2259  * completely unrelated cacheable registers.
2260  *
2261  * This will attempt multiple writes as required to write val_len bytes.
2262  *
2263  * A value of zero will be returned on success, a negative errno will be
2264  * returned in error cases.
2265  */
2266 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2267 		      const void *val, size_t val_len)
2268 {
2269 	size_t write_len;
2270 	int ret;
2271 
2272 	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2273 		return -EINVAL;
2274 	if (val_len % map->format.val_bytes)
2275 		return -EINVAL;
2276 	if (!IS_ALIGNED(reg, map->reg_stride))
2277 		return -EINVAL;
2278 	if (val_len == 0)
2279 		return -EINVAL;
2280 
2281 	map->lock(map->lock_arg);
2282 
2283 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2284 		ret = -EINVAL;
2285 		goto out_unlock;
2286 	}
2287 
2288 	/*
2289 	 * Use the accelerated operation if we can. The val drops the const
2290 	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2291 	 */
2292 	if (map->bus->reg_noinc_write) {
2293 		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2294 		goto out_unlock;
2295 	}
2296 
2297 	while (val_len) {
2298 		if (map->max_raw_write && map->max_raw_write < val_len)
2299 			write_len = map->max_raw_write;
2300 		else
2301 			write_len = val_len;
2302 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2303 		if (ret)
2304 			goto out_unlock;
2305 		val = ((u8 *)val) + write_len;
2306 		val_len -= write_len;
2307 	}
2308 
2309 out_unlock:
2310 	map->unlock(map->lock_arg);
2311 	return ret;
2312 }
2313 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2314 
2315 /**
2316  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2317  *                                   register field.
2318  *
2319  * @field: Register field to write to
2320  * @mask: Bitmask to change
2321  * @val: Value to be written
2322  * @change: Boolean indicating if a write was done
2323  * @async: Boolean indicating asynchronously
2324  * @force: Boolean indicating use force update
2325  *
2326  * Perform a read/modify/write cycle on the register field with change,
2327  * async, force option.
2328  *
2329  * A value of zero will be returned on success, a negative errno will
2330  * be returned in error cases.
2331  */
2332 int regmap_field_update_bits_base(struct regmap_field *field,
2333 				  unsigned int mask, unsigned int val,
2334 				  bool *change, bool async, bool force)
2335 {
2336 	mask = (mask << field->shift) & field->mask;
2337 
2338 	return regmap_update_bits_base(field->regmap, field->reg,
2339 				       mask, val << field->shift,
2340 				       change, async, force);
2341 }
2342 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2343 
2344 /**
2345  * regmap_field_test_bits() - Check if all specified bits are set in a
2346  *                            register field.
2347  *
2348  * @field: Register field to operate on
2349  * @bits: Bits to test
2350  *
2351  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2352  * tested bits is not set and 1 if all tested bits are set.
2353  */
2354 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2355 {
2356 	unsigned int val, ret;
2357 
2358 	ret = regmap_field_read(field, &val);
2359 	if (ret)
2360 		return ret;
2361 
2362 	return (val & bits) == bits;
2363 }
2364 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2365 
2366 /**
2367  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2368  *                                    register field with port ID
2369  *
2370  * @field: Register field to write to
2371  * @id: port ID
2372  * @mask: Bitmask to change
2373  * @val: Value to be written
2374  * @change: Boolean indicating if a write was done
2375  * @async: Boolean indicating asynchronously
2376  * @force: Boolean indicating use force update
2377  *
2378  * A value of zero will be returned on success, a negative errno will
2379  * be returned in error cases.
2380  */
2381 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2382 				   unsigned int mask, unsigned int val,
2383 				   bool *change, bool async, bool force)
2384 {
2385 	if (id >= field->id_size)
2386 		return -EINVAL;
2387 
2388 	mask = (mask << field->shift) & field->mask;
2389 
2390 	return regmap_update_bits_base(field->regmap,
2391 				       field->reg + (field->id_offset * id),
2392 				       mask, val << field->shift,
2393 				       change, async, force);
2394 }
2395 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2396 
2397 /**
2398  * regmap_bulk_write() - Write multiple registers to the device
2399  *
2400  * @map: Register map to write to
2401  * @reg: First register to be write from
2402  * @val: Block of data to be written, in native register size for device
2403  * @val_count: Number of registers to write
2404  *
2405  * This function is intended to be used for writing a large block of
2406  * data to the device either in single transfer or multiple transfer.
2407  *
2408  * A value of zero will be returned on success, a negative errno will
2409  * be returned in error cases.
2410  */
2411 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2412 		     size_t val_count)
2413 {
2414 	int ret = 0, i;
2415 	size_t val_bytes = map->format.val_bytes;
2416 
2417 	if (!IS_ALIGNED(reg, map->reg_stride))
2418 		return -EINVAL;
2419 
2420 	/*
2421 	 * Some devices don't support bulk write, for them we have a series of
2422 	 * single write operations.
2423 	 */
2424 	if (!map->write || !map->format.parse_inplace) {
2425 		map->lock(map->lock_arg);
2426 		for (i = 0; i < val_count; i++) {
2427 			unsigned int ival;
2428 
2429 			switch (val_bytes) {
2430 			case 1:
2431 				ival = *(u8 *)(val + (i * val_bytes));
2432 				break;
2433 			case 2:
2434 				ival = *(u16 *)(val + (i * val_bytes));
2435 				break;
2436 			case 4:
2437 				ival = *(u32 *)(val + (i * val_bytes));
2438 				break;
2439 #ifdef CONFIG_64BIT
2440 			case 8:
2441 				ival = *(u64 *)(val + (i * val_bytes));
2442 				break;
2443 #endif
2444 			default:
2445 				ret = -EINVAL;
2446 				goto out;
2447 			}
2448 
2449 			ret = _regmap_write(map,
2450 					    reg + regmap_get_offset(map, i),
2451 					    ival);
2452 			if (ret != 0)
2453 				goto out;
2454 		}
2455 out:
2456 		map->unlock(map->lock_arg);
2457 	} else {
2458 		void *wval;
2459 
2460 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2461 		if (!wval)
2462 			return -ENOMEM;
2463 
2464 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2465 			map->format.parse_inplace(wval + i);
2466 
2467 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2468 
2469 		kfree(wval);
2470 	}
2471 
2472 	if (!ret)
2473 		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2474 
2475 	return ret;
2476 }
2477 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2478 
2479 /*
2480  * _regmap_raw_multi_reg_write()
2481  *
2482  * the (register,newvalue) pairs in regs have not been formatted, but
2483  * they are all in the same page and have been changed to being page
2484  * relative. The page register has been written if that was necessary.
2485  */
2486 static int _regmap_raw_multi_reg_write(struct regmap *map,
2487 				       const struct reg_sequence *regs,
2488 				       size_t num_regs)
2489 {
2490 	int ret;
2491 	void *buf;
2492 	int i;
2493 	u8 *u8;
2494 	size_t val_bytes = map->format.val_bytes;
2495 	size_t reg_bytes = map->format.reg_bytes;
2496 	size_t pad_bytes = map->format.pad_bytes;
2497 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2498 	size_t len = pair_size * num_regs;
2499 
2500 	if (!len)
2501 		return -EINVAL;
2502 
2503 	buf = kzalloc(len, GFP_KERNEL);
2504 	if (!buf)
2505 		return -ENOMEM;
2506 
2507 	/* We have to linearise by hand. */
2508 
2509 	u8 = buf;
2510 
2511 	for (i = 0; i < num_regs; i++) {
2512 		unsigned int reg = regs[i].reg;
2513 		unsigned int val = regs[i].def;
2514 		trace_regmap_hw_write_start(map, reg, 1);
2515 		reg = regmap_reg_addr(map, reg);
2516 		map->format.format_reg(u8, reg, map->reg_shift);
2517 		u8 += reg_bytes + pad_bytes;
2518 		map->format.format_val(u8, val, 0);
2519 		u8 += val_bytes;
2520 	}
2521 	u8 = buf;
2522 	*u8 |= map->write_flag_mask;
2523 
2524 	ret = map->write(map->bus_context, buf, len);
2525 
2526 	kfree(buf);
2527 
2528 	for (i = 0; i < num_regs; i++) {
2529 		int reg = regs[i].reg;
2530 		trace_regmap_hw_write_done(map, reg, 1);
2531 	}
2532 	return ret;
2533 }
2534 
2535 static unsigned int _regmap_register_page(struct regmap *map,
2536 					  unsigned int reg,
2537 					  struct regmap_range_node *range)
2538 {
2539 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2540 
2541 	return win_page;
2542 }
2543 
2544 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2545 					       struct reg_sequence *regs,
2546 					       size_t num_regs)
2547 {
2548 	int ret;
2549 	int i, n;
2550 	struct reg_sequence *base;
2551 	unsigned int this_page = 0;
2552 	unsigned int page_change = 0;
2553 	/*
2554 	 * the set of registers are not neccessarily in order, but
2555 	 * since the order of write must be preserved this algorithm
2556 	 * chops the set each time the page changes. This also applies
2557 	 * if there is a delay required at any point in the sequence.
2558 	 */
2559 	base = regs;
2560 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2561 		unsigned int reg = regs[i].reg;
2562 		struct regmap_range_node *range;
2563 
2564 		range = _regmap_range_lookup(map, reg);
2565 		if (range) {
2566 			unsigned int win_page = _regmap_register_page(map, reg,
2567 								      range);
2568 
2569 			if (i == 0)
2570 				this_page = win_page;
2571 			if (win_page != this_page) {
2572 				this_page = win_page;
2573 				page_change = 1;
2574 			}
2575 		}
2576 
2577 		/* If we have both a page change and a delay make sure to
2578 		 * write the regs and apply the delay before we change the
2579 		 * page.
2580 		 */
2581 
2582 		if (page_change || regs[i].delay_us) {
2583 
2584 				/* For situations where the first write requires
2585 				 * a delay we need to make sure we don't call
2586 				 * raw_multi_reg_write with n=0
2587 				 * This can't occur with page breaks as we
2588 				 * never write on the first iteration
2589 				 */
2590 				if (regs[i].delay_us && i == 0)
2591 					n = 1;
2592 
2593 				ret = _regmap_raw_multi_reg_write(map, base, n);
2594 				if (ret != 0)
2595 					return ret;
2596 
2597 				if (regs[i].delay_us) {
2598 					if (map->can_sleep)
2599 						fsleep(regs[i].delay_us);
2600 					else
2601 						udelay(regs[i].delay_us);
2602 				}
2603 
2604 				base += n;
2605 				n = 0;
2606 
2607 				if (page_change) {
2608 					ret = _regmap_select_page(map,
2609 								  &base[n].reg,
2610 								  range, 1);
2611 					if (ret != 0)
2612 						return ret;
2613 
2614 					page_change = 0;
2615 				}
2616 
2617 		}
2618 
2619 	}
2620 	if (n > 0)
2621 		return _regmap_raw_multi_reg_write(map, base, n);
2622 	return 0;
2623 }
2624 
2625 static int _regmap_multi_reg_write(struct regmap *map,
2626 				   const struct reg_sequence *regs,
2627 				   size_t num_regs)
2628 {
2629 	int i;
2630 	int ret;
2631 
2632 	if (!map->can_multi_write) {
2633 		for (i = 0; i < num_regs; i++) {
2634 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2635 			if (ret != 0)
2636 				return ret;
2637 
2638 			if (regs[i].delay_us) {
2639 				if (map->can_sleep)
2640 					fsleep(regs[i].delay_us);
2641 				else
2642 					udelay(regs[i].delay_us);
2643 			}
2644 		}
2645 		return 0;
2646 	}
2647 
2648 	if (!map->format.parse_inplace)
2649 		return -EINVAL;
2650 
2651 	if (map->writeable_reg)
2652 		for (i = 0; i < num_regs; i++) {
2653 			int reg = regs[i].reg;
2654 			if (!map->writeable_reg(map->dev, reg))
2655 				return -EINVAL;
2656 			if (!IS_ALIGNED(reg, map->reg_stride))
2657 				return -EINVAL;
2658 		}
2659 
2660 	if (!map->cache_bypass) {
2661 		for (i = 0; i < num_regs; i++) {
2662 			unsigned int val = regs[i].def;
2663 			unsigned int reg = regs[i].reg;
2664 			ret = regcache_write(map, reg, val);
2665 			if (ret) {
2666 				dev_err(map->dev,
2667 				"Error in caching of register: %x ret: %d\n",
2668 								reg, ret);
2669 				return ret;
2670 			}
2671 		}
2672 		if (map->cache_only) {
2673 			map->cache_dirty = true;
2674 			return 0;
2675 		}
2676 	}
2677 
2678 	WARN_ON(!map->bus);
2679 
2680 	for (i = 0; i < num_regs; i++) {
2681 		unsigned int reg = regs[i].reg;
2682 		struct regmap_range_node *range;
2683 
2684 		/* Coalesce all the writes between a page break or a delay
2685 		 * in a sequence
2686 		 */
2687 		range = _regmap_range_lookup(map, reg);
2688 		if (range || regs[i].delay_us) {
2689 			size_t len = sizeof(struct reg_sequence)*num_regs;
2690 			struct reg_sequence *base = kmemdup(regs, len,
2691 							   GFP_KERNEL);
2692 			if (!base)
2693 				return -ENOMEM;
2694 			ret = _regmap_range_multi_paged_reg_write(map, base,
2695 								  num_regs);
2696 			kfree(base);
2697 
2698 			return ret;
2699 		}
2700 	}
2701 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2702 }
2703 
2704 /**
2705  * regmap_multi_reg_write() - Write multiple registers to the device
2706  *
2707  * @map: Register map to write to
2708  * @regs: Array of structures containing register,value to be written
2709  * @num_regs: Number of registers to write
2710  *
2711  * Write multiple registers to the device where the set of register, value
2712  * pairs are supplied in any order, possibly not all in a single range.
2713  *
2714  * The 'normal' block write mode will send ultimately send data on the
2715  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2716  * addressed. However, this alternative block multi write mode will send
2717  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2718  * must of course support the mode.
2719  *
2720  * A value of zero will be returned on success, a negative errno will be
2721  * returned in error cases.
2722  */
2723 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2724 			   int num_regs)
2725 {
2726 	int ret;
2727 
2728 	map->lock(map->lock_arg);
2729 
2730 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2731 
2732 	map->unlock(map->lock_arg);
2733 
2734 	return ret;
2735 }
2736 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2737 
2738 /**
2739  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2740  *                                     device but not the cache
2741  *
2742  * @map: Register map to write to
2743  * @regs: Array of structures containing register,value to be written
2744  * @num_regs: Number of registers to write
2745  *
2746  * Write multiple registers to the device but not the cache where the set
2747  * of register are supplied in any order.
2748  *
2749  * This function is intended to be used for writing a large block of data
2750  * atomically to the device in single transfer for those I2C client devices
2751  * that implement this alternative block write mode.
2752  *
2753  * A value of zero will be returned on success, a negative errno will
2754  * be returned in error cases.
2755  */
2756 int regmap_multi_reg_write_bypassed(struct regmap *map,
2757 				    const struct reg_sequence *regs,
2758 				    int num_regs)
2759 {
2760 	int ret;
2761 	bool bypass;
2762 
2763 	map->lock(map->lock_arg);
2764 
2765 	bypass = map->cache_bypass;
2766 	map->cache_bypass = true;
2767 
2768 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2769 
2770 	map->cache_bypass = bypass;
2771 
2772 	map->unlock(map->lock_arg);
2773 
2774 	return ret;
2775 }
2776 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2777 
2778 /**
2779  * regmap_raw_write_async() - Write raw values to one or more registers
2780  *                            asynchronously
2781  *
2782  * @map: Register map to write to
2783  * @reg: Initial register to write to
2784  * @val: Block of data to be written, laid out for direct transmission to the
2785  *       device.  Must be valid until regmap_async_complete() is called.
2786  * @val_len: Length of data pointed to by val.
2787  *
2788  * This function is intended to be used for things like firmware
2789  * download where a large block of data needs to be transferred to the
2790  * device.  No formatting will be done on the data provided.
2791  *
2792  * If supported by the underlying bus the write will be scheduled
2793  * asynchronously, helping maximise I/O speed on higher speed buses
2794  * like SPI.  regmap_async_complete() can be called to ensure that all
2795  * asynchrnous writes have been completed.
2796  *
2797  * A value of zero will be returned on success, a negative errno will
2798  * be returned in error cases.
2799  */
2800 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2801 			   const void *val, size_t val_len)
2802 {
2803 	int ret;
2804 
2805 	if (val_len % map->format.val_bytes)
2806 		return -EINVAL;
2807 	if (!IS_ALIGNED(reg, map->reg_stride))
2808 		return -EINVAL;
2809 
2810 	map->lock(map->lock_arg);
2811 
2812 	map->async = true;
2813 
2814 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2815 
2816 	map->async = false;
2817 
2818 	map->unlock(map->lock_arg);
2819 
2820 	return ret;
2821 }
2822 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2823 
2824 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2825 			    unsigned int val_len, bool noinc)
2826 {
2827 	struct regmap_range_node *range;
2828 	int ret;
2829 
2830 	if (!map->read)
2831 		return -EINVAL;
2832 
2833 	range = _regmap_range_lookup(map, reg);
2834 	if (range) {
2835 		ret = _regmap_select_page(map, &reg, range,
2836 					  noinc ? 1 : val_len / map->format.val_bytes);
2837 		if (ret != 0)
2838 			return ret;
2839 	}
2840 
2841 	reg = regmap_reg_addr(map, reg);
2842 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2843 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2844 				      map->read_flag_mask);
2845 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2846 
2847 	ret = map->read(map->bus_context, map->work_buf,
2848 			map->format.reg_bytes + map->format.pad_bytes,
2849 			val, val_len);
2850 
2851 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2852 
2853 	return ret;
2854 }
2855 
2856 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2857 				unsigned int *val)
2858 {
2859 	struct regmap *map = context;
2860 	struct regmap_range_node *range;
2861 	int ret;
2862 
2863 	range = _regmap_range_lookup(map, reg);
2864 	if (range) {
2865 		ret = _regmap_select_page(map, &reg, range, 1);
2866 		if (ret != 0)
2867 			return ret;
2868 	}
2869 
2870 	reg = regmap_reg_addr(map, reg);
2871 	return map->bus->reg_read(map->bus_context, reg, val);
2872 }
2873 
2874 static int _regmap_bus_read(void *context, unsigned int reg,
2875 			    unsigned int *val)
2876 {
2877 	int ret;
2878 	struct regmap *map = context;
2879 	void *work_val = map->work_buf + map->format.reg_bytes +
2880 		map->format.pad_bytes;
2881 
2882 	if (!map->format.parse_val)
2883 		return -EINVAL;
2884 
2885 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2886 	if (ret == 0)
2887 		*val = map->format.parse_val(work_val);
2888 
2889 	return ret;
2890 }
2891 
2892 static int _regmap_read(struct regmap *map, unsigned int reg,
2893 			unsigned int *val)
2894 {
2895 	int ret;
2896 	void *context = _regmap_map_get_context(map);
2897 
2898 	if (!map->cache_bypass) {
2899 		ret = regcache_read(map, reg, val);
2900 		if (ret == 0)
2901 			return 0;
2902 	}
2903 
2904 	if (map->cache_only)
2905 		return -EBUSY;
2906 
2907 	if (!regmap_readable(map, reg))
2908 		return -EIO;
2909 
2910 	ret = map->reg_read(context, reg, val);
2911 	if (ret == 0) {
2912 		if (regmap_should_log(map))
2913 			dev_info(map->dev, "%x => %x\n", reg, *val);
2914 
2915 		trace_regmap_reg_read(map, reg, *val);
2916 
2917 		if (!map->cache_bypass)
2918 			regcache_write(map, reg, *val);
2919 	}
2920 
2921 	return ret;
2922 }
2923 
2924 /**
2925  * regmap_read() - Read a value from a single register
2926  *
2927  * @map: Register map to read from
2928  * @reg: Register to be read from
2929  * @val: Pointer to store read value
2930  *
2931  * A value of zero will be returned on success, a negative errno will
2932  * be returned in error cases.
2933  */
2934 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2935 {
2936 	int ret;
2937 
2938 	if (!IS_ALIGNED(reg, map->reg_stride))
2939 		return -EINVAL;
2940 
2941 	map->lock(map->lock_arg);
2942 
2943 	ret = _regmap_read(map, reg, val);
2944 
2945 	map->unlock(map->lock_arg);
2946 
2947 	return ret;
2948 }
2949 EXPORT_SYMBOL_GPL(regmap_read);
2950 
2951 /**
2952  * regmap_raw_read() - Read raw data from the device
2953  *
2954  * @map: Register map to read from
2955  * @reg: First register to be read from
2956  * @val: Pointer to store read value
2957  * @val_len: Size of data to read
2958  *
2959  * A value of zero will be returned on success, a negative errno will
2960  * be returned in error cases.
2961  */
2962 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2963 		    size_t val_len)
2964 {
2965 	size_t val_bytes = map->format.val_bytes;
2966 	size_t val_count = val_len / val_bytes;
2967 	unsigned int v;
2968 	int ret, i;
2969 
2970 	if (val_len % map->format.val_bytes)
2971 		return -EINVAL;
2972 	if (!IS_ALIGNED(reg, map->reg_stride))
2973 		return -EINVAL;
2974 	if (val_count == 0)
2975 		return -EINVAL;
2976 
2977 	map->lock(map->lock_arg);
2978 
2979 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2980 	    map->cache_type == REGCACHE_NONE) {
2981 		size_t chunk_count, chunk_bytes;
2982 		size_t chunk_regs = val_count;
2983 
2984 		if (!map->read) {
2985 			ret = -ENOTSUPP;
2986 			goto out;
2987 		}
2988 
2989 		if (map->use_single_read)
2990 			chunk_regs = 1;
2991 		else if (map->max_raw_read && val_len > map->max_raw_read)
2992 			chunk_regs = map->max_raw_read / val_bytes;
2993 
2994 		chunk_count = val_count / chunk_regs;
2995 		chunk_bytes = chunk_regs * val_bytes;
2996 
2997 		/* Read bytes that fit into whole chunks */
2998 		for (i = 0; i < chunk_count; i++) {
2999 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
3000 			if (ret != 0)
3001 				goto out;
3002 
3003 			reg += regmap_get_offset(map, chunk_regs);
3004 			val += chunk_bytes;
3005 			val_len -= chunk_bytes;
3006 		}
3007 
3008 		/* Read remaining bytes */
3009 		if (val_len) {
3010 			ret = _regmap_raw_read(map, reg, val, val_len, false);
3011 			if (ret != 0)
3012 				goto out;
3013 		}
3014 	} else {
3015 		/* Otherwise go word by word for the cache; should be low
3016 		 * cost as we expect to hit the cache.
3017 		 */
3018 		for (i = 0; i < val_count; i++) {
3019 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3020 					   &v);
3021 			if (ret != 0)
3022 				goto out;
3023 
3024 			map->format.format_val(val + (i * val_bytes), v, 0);
3025 		}
3026 	}
3027 
3028  out:
3029 	map->unlock(map->lock_arg);
3030 
3031 	return ret;
3032 }
3033 EXPORT_SYMBOL_GPL(regmap_raw_read);
3034 
3035 /**
3036  * regmap_noinc_read(): Read data from a register without incrementing the
3037  *			register number
3038  *
3039  * @map: Register map to read from
3040  * @reg: Register to read from
3041  * @val: Pointer to data buffer
3042  * @val_len: Length of output buffer in bytes.
3043  *
3044  * The regmap API usually assumes that bulk read operations will read a
3045  * range of registers. Some devices have certain registers for which a read
3046  * operation read will read from an internal FIFO.
3047  *
3048  * The target register must be volatile but registers after it can be
3049  * completely unrelated cacheable registers.
3050  *
3051  * This will attempt multiple reads as required to read val_len bytes.
3052  *
3053  * A value of zero will be returned on success, a negative errno will be
3054  * returned in error cases.
3055  */
3056 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3057 		      void *val, size_t val_len)
3058 {
3059 	size_t read_len;
3060 	int ret;
3061 
3062 	if (!map->read)
3063 		return -ENOTSUPP;
3064 
3065 	if (val_len % map->format.val_bytes)
3066 		return -EINVAL;
3067 	if (!IS_ALIGNED(reg, map->reg_stride))
3068 		return -EINVAL;
3069 	if (val_len == 0)
3070 		return -EINVAL;
3071 
3072 	map->lock(map->lock_arg);
3073 
3074 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3075 		ret = -EINVAL;
3076 		goto out_unlock;
3077 	}
3078 
3079 	/* Use the accelerated operation if we can */
3080 	if (map->bus->reg_noinc_read) {
3081 		/*
3082 		 * We have not defined the FIFO semantics for cache, as the
3083 		 * cache is just one value deep. Should we return the last
3084 		 * written value? Just avoid this by always reading the FIFO
3085 		 * even when using cache. Cache only will not work.
3086 		 */
3087 		if (map->cache_only) {
3088 			ret = -EBUSY;
3089 			goto out_unlock;
3090 		}
3091 		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3092 		goto out_unlock;
3093 	}
3094 
3095 	while (val_len) {
3096 		if (map->max_raw_read && map->max_raw_read < val_len)
3097 			read_len = map->max_raw_read;
3098 		else
3099 			read_len = val_len;
3100 		ret = _regmap_raw_read(map, reg, val, read_len, true);
3101 		if (ret)
3102 			goto out_unlock;
3103 		val = ((u8 *)val) + read_len;
3104 		val_len -= read_len;
3105 	}
3106 
3107 out_unlock:
3108 	map->unlock(map->lock_arg);
3109 	return ret;
3110 }
3111 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3112 
3113 /**
3114  * regmap_field_read(): Read a value to a single register field
3115  *
3116  * @field: Register field to read from
3117  * @val: Pointer to store read value
3118  *
3119  * A value of zero will be returned on success, a negative errno will
3120  * be returned in error cases.
3121  */
3122 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3123 {
3124 	int ret;
3125 	unsigned int reg_val;
3126 	ret = regmap_read(field->regmap, field->reg, &reg_val);
3127 	if (ret != 0)
3128 		return ret;
3129 
3130 	reg_val &= field->mask;
3131 	reg_val >>= field->shift;
3132 	*val = reg_val;
3133 
3134 	return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(regmap_field_read);
3137 
3138 /**
3139  * regmap_fields_read() - Read a value to a single register field with port ID
3140  *
3141  * @field: Register field to read from
3142  * @id: port ID
3143  * @val: Pointer to store read value
3144  *
3145  * A value of zero will be returned on success, a negative errno will
3146  * be returned in error cases.
3147  */
3148 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3149 		       unsigned int *val)
3150 {
3151 	int ret;
3152 	unsigned int reg_val;
3153 
3154 	if (id >= field->id_size)
3155 		return -EINVAL;
3156 
3157 	ret = regmap_read(field->regmap,
3158 			  field->reg + (field->id_offset * id),
3159 			  &reg_val);
3160 	if (ret != 0)
3161 		return ret;
3162 
3163 	reg_val &= field->mask;
3164 	reg_val >>= field->shift;
3165 	*val = reg_val;
3166 
3167 	return ret;
3168 }
3169 EXPORT_SYMBOL_GPL(regmap_fields_read);
3170 
3171 /**
3172  * regmap_bulk_read() - Read multiple registers from the device
3173  *
3174  * @map: Register map to read from
3175  * @reg: First register to be read from
3176  * @val: Pointer to store read value, in native register size for device
3177  * @val_count: Number of registers to read
3178  *
3179  * A value of zero will be returned on success, a negative errno will
3180  * be returned in error cases.
3181  */
3182 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3183 		     size_t val_count)
3184 {
3185 	int ret, i;
3186 	size_t val_bytes = map->format.val_bytes;
3187 	bool vol = regmap_volatile_range(map, reg, val_count);
3188 
3189 	if (!IS_ALIGNED(reg, map->reg_stride))
3190 		return -EINVAL;
3191 	if (val_count == 0)
3192 		return -EINVAL;
3193 
3194 	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3195 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3196 		if (ret != 0)
3197 			return ret;
3198 
3199 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3200 			map->format.parse_inplace(val + i);
3201 	} else {
3202 #ifdef CONFIG_64BIT
3203 		u64 *u64 = val;
3204 #endif
3205 		u32 *u32 = val;
3206 		u16 *u16 = val;
3207 		u8 *u8 = val;
3208 
3209 		map->lock(map->lock_arg);
3210 
3211 		for (i = 0; i < val_count; i++) {
3212 			unsigned int ival;
3213 
3214 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3215 					   &ival);
3216 			if (ret != 0)
3217 				goto out;
3218 
3219 			switch (map->format.val_bytes) {
3220 #ifdef CONFIG_64BIT
3221 			case 8:
3222 				u64[i] = ival;
3223 				break;
3224 #endif
3225 			case 4:
3226 				u32[i] = ival;
3227 				break;
3228 			case 2:
3229 				u16[i] = ival;
3230 				break;
3231 			case 1:
3232 				u8[i] = ival;
3233 				break;
3234 			default:
3235 				ret = -EINVAL;
3236 				goto out;
3237 			}
3238 		}
3239 
3240 out:
3241 		map->unlock(map->lock_arg);
3242 	}
3243 
3244 	if (!ret)
3245 		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3246 
3247 	return ret;
3248 }
3249 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3250 
3251 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3252 			       unsigned int mask, unsigned int val,
3253 			       bool *change, bool force_write)
3254 {
3255 	int ret;
3256 	unsigned int tmp, orig;
3257 
3258 	if (change)
3259 		*change = false;
3260 
3261 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3262 		reg = regmap_reg_addr(map, reg);
3263 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3264 		if (ret == 0 && change)
3265 			*change = true;
3266 	} else {
3267 		ret = _regmap_read(map, reg, &orig);
3268 		if (ret != 0)
3269 			return ret;
3270 
3271 		tmp = orig & ~mask;
3272 		tmp |= val & mask;
3273 
3274 		if (force_write || (tmp != orig)) {
3275 			ret = _regmap_write(map, reg, tmp);
3276 			if (ret == 0 && change)
3277 				*change = true;
3278 		}
3279 	}
3280 
3281 	return ret;
3282 }
3283 
3284 /**
3285  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3286  *
3287  * @map: Register map to update
3288  * @reg: Register to update
3289  * @mask: Bitmask to change
3290  * @val: New value for bitmask
3291  * @change: Boolean indicating if a write was done
3292  * @async: Boolean indicating asynchronously
3293  * @force: Boolean indicating use force update
3294  *
3295  * Perform a read/modify/write cycle on a register map with change, async, force
3296  * options.
3297  *
3298  * If async is true:
3299  *
3300  * With most buses the read must be done synchronously so this is most useful
3301  * for devices with a cache which do not need to interact with the hardware to
3302  * determine the current register value.
3303  *
3304  * Returns zero for success, a negative number on error.
3305  */
3306 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3307 			    unsigned int mask, unsigned int val,
3308 			    bool *change, bool async, bool force)
3309 {
3310 	int ret;
3311 
3312 	map->lock(map->lock_arg);
3313 
3314 	map->async = async;
3315 
3316 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3317 
3318 	map->async = false;
3319 
3320 	map->unlock(map->lock_arg);
3321 
3322 	return ret;
3323 }
3324 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3325 
3326 /**
3327  * regmap_test_bits() - Check if all specified bits are set in a register.
3328  *
3329  * @map: Register map to operate on
3330  * @reg: Register to read from
3331  * @bits: Bits to test
3332  *
3333  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3334  * bits are set and a negative error number if the underlying regmap_read()
3335  * fails.
3336  */
3337 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3338 {
3339 	unsigned int val, ret;
3340 
3341 	ret = regmap_read(map, reg, &val);
3342 	if (ret)
3343 		return ret;
3344 
3345 	return (val & bits) == bits;
3346 }
3347 EXPORT_SYMBOL_GPL(regmap_test_bits);
3348 
3349 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3350 {
3351 	struct regmap *map = async->map;
3352 	bool wake;
3353 
3354 	trace_regmap_async_io_complete(map);
3355 
3356 	spin_lock(&map->async_lock);
3357 	list_move(&async->list, &map->async_free);
3358 	wake = list_empty(&map->async_list);
3359 
3360 	if (ret != 0)
3361 		map->async_ret = ret;
3362 
3363 	spin_unlock(&map->async_lock);
3364 
3365 	if (wake)
3366 		wake_up(&map->async_waitq);
3367 }
3368 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3369 
3370 static int regmap_async_is_done(struct regmap *map)
3371 {
3372 	unsigned long flags;
3373 	int ret;
3374 
3375 	spin_lock_irqsave(&map->async_lock, flags);
3376 	ret = list_empty(&map->async_list);
3377 	spin_unlock_irqrestore(&map->async_lock, flags);
3378 
3379 	return ret;
3380 }
3381 
3382 /**
3383  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3384  *
3385  * @map: Map to operate on.
3386  *
3387  * Blocks until any pending asynchronous I/O has completed.  Returns
3388  * an error code for any failed I/O operations.
3389  */
3390 int regmap_async_complete(struct regmap *map)
3391 {
3392 	unsigned long flags;
3393 	int ret;
3394 
3395 	/* Nothing to do with no async support */
3396 	if (!map->bus || !map->bus->async_write)
3397 		return 0;
3398 
3399 	trace_regmap_async_complete_start(map);
3400 
3401 	wait_event(map->async_waitq, regmap_async_is_done(map));
3402 
3403 	spin_lock_irqsave(&map->async_lock, flags);
3404 	ret = map->async_ret;
3405 	map->async_ret = 0;
3406 	spin_unlock_irqrestore(&map->async_lock, flags);
3407 
3408 	trace_regmap_async_complete_done(map);
3409 
3410 	return ret;
3411 }
3412 EXPORT_SYMBOL_GPL(regmap_async_complete);
3413 
3414 /**
3415  * regmap_register_patch - Register and apply register updates to be applied
3416  *                         on device initialistion
3417  *
3418  * @map: Register map to apply updates to.
3419  * @regs: Values to update.
3420  * @num_regs: Number of entries in regs.
3421  *
3422  * Register a set of register updates to be applied to the device
3423  * whenever the device registers are synchronised with the cache and
3424  * apply them immediately.  Typically this is used to apply
3425  * corrections to be applied to the device defaults on startup, such
3426  * as the updates some vendors provide to undocumented registers.
3427  *
3428  * The caller must ensure that this function cannot be called
3429  * concurrently with either itself or regcache_sync().
3430  */
3431 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3432 			  int num_regs)
3433 {
3434 	struct reg_sequence *p;
3435 	int ret;
3436 	bool bypass;
3437 
3438 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3439 	    num_regs))
3440 		return 0;
3441 
3442 	p = krealloc(map->patch,
3443 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3444 		     GFP_KERNEL);
3445 	if (p) {
3446 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3447 		map->patch = p;
3448 		map->patch_regs += num_regs;
3449 	} else {
3450 		return -ENOMEM;
3451 	}
3452 
3453 	map->lock(map->lock_arg);
3454 
3455 	bypass = map->cache_bypass;
3456 
3457 	map->cache_bypass = true;
3458 	map->async = true;
3459 
3460 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3461 
3462 	map->async = false;
3463 	map->cache_bypass = bypass;
3464 
3465 	map->unlock(map->lock_arg);
3466 
3467 	regmap_async_complete(map);
3468 
3469 	return ret;
3470 }
3471 EXPORT_SYMBOL_GPL(regmap_register_patch);
3472 
3473 /**
3474  * regmap_get_val_bytes() - Report the size of a register value
3475  *
3476  * @map: Register map to operate on.
3477  *
3478  * Report the size of a register value, mainly intended to for use by
3479  * generic infrastructure built on top of regmap.
3480  */
3481 int regmap_get_val_bytes(struct regmap *map)
3482 {
3483 	if (map->format.format_write)
3484 		return -EINVAL;
3485 
3486 	return map->format.val_bytes;
3487 }
3488 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3489 
3490 /**
3491  * regmap_get_max_register() - Report the max register value
3492  *
3493  * @map: Register map to operate on.
3494  *
3495  * Report the max register value, mainly intended to for use by
3496  * generic infrastructure built on top of regmap.
3497  */
3498 int regmap_get_max_register(struct regmap *map)
3499 {
3500 	return map->max_register ? map->max_register : -EINVAL;
3501 }
3502 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3503 
3504 /**
3505  * regmap_get_reg_stride() - Report the register address stride
3506  *
3507  * @map: Register map to operate on.
3508  *
3509  * Report the register address stride, mainly intended to for use by
3510  * generic infrastructure built on top of regmap.
3511  */
3512 int regmap_get_reg_stride(struct regmap *map)
3513 {
3514 	return map->reg_stride;
3515 }
3516 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3517 
3518 /**
3519  * regmap_might_sleep() - Returns whether a regmap access might sleep.
3520  *
3521  * @map: Register map to operate on.
3522  *
3523  * Returns true if an access to the register might sleep, else false.
3524  */
3525 bool regmap_might_sleep(struct regmap *map)
3526 {
3527 	return map->can_sleep;
3528 }
3529 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3530 
3531 int regmap_parse_val(struct regmap *map, const void *buf,
3532 			unsigned int *val)
3533 {
3534 	if (!map->format.parse_val)
3535 		return -EINVAL;
3536 
3537 	*val = map->format.parse_val(buf);
3538 
3539 	return 0;
3540 }
3541 EXPORT_SYMBOL_GPL(regmap_parse_val);
3542 
3543 static int __init regmap_initcall(void)
3544 {
3545 	regmap_debugfs_initcall();
3546 
3547 	return 0;
3548 }
3549 postcore_initcall(regmap_initcall);
3550