xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 80ecbd24)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23 
24 #include "internal.h"
25 
26 /*
27  * Sometimes for failures during very early init the trace
28  * infrastructure isn't available early enough to be used.  For this
29  * sort of problem defining LOG_DEVICE will add printks for basic
30  * register I/O on a specific device.
31  */
32 #undef LOG_DEVICE
33 
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 			       unsigned int mask, unsigned int val,
36 			       bool *change);
37 
38 static int _regmap_bus_read(void *context, unsigned int reg,
39 			    unsigned int *val);
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 				       unsigned int val);
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 				 unsigned int val);
44 
45 static void async_cleanup(struct work_struct *work)
46 {
47 	struct regmap_async *async = container_of(work, struct regmap_async,
48 						  cleanup);
49 
50 	kfree(async->work_buf);
51 	kfree(async);
52 }
53 
54 bool regmap_reg_in_ranges(unsigned int reg,
55 			  const struct regmap_range *ranges,
56 			  unsigned int nranges)
57 {
58 	const struct regmap_range *r;
59 	int i;
60 
61 	for (i = 0, r = ranges; i < nranges; i++, r++)
62 		if (regmap_reg_in_range(reg, r))
63 			return true;
64 	return false;
65 }
66 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
67 
68 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
69 			      const struct regmap_access_table *table)
70 {
71 	/* Check "no ranges" first */
72 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
73 		return false;
74 
75 	/* In case zero "yes ranges" are supplied, any reg is OK */
76 	if (!table->n_yes_ranges)
77 		return true;
78 
79 	return regmap_reg_in_ranges(reg, table->yes_ranges,
80 				    table->n_yes_ranges);
81 }
82 EXPORT_SYMBOL_GPL(regmap_check_range_table);
83 
84 bool regmap_writeable(struct regmap *map, unsigned int reg)
85 {
86 	if (map->max_register && reg > map->max_register)
87 		return false;
88 
89 	if (map->writeable_reg)
90 		return map->writeable_reg(map->dev, reg);
91 
92 	if (map->wr_table)
93 		return regmap_check_range_table(map, reg, map->wr_table);
94 
95 	return true;
96 }
97 
98 bool regmap_readable(struct regmap *map, unsigned int reg)
99 {
100 	if (map->max_register && reg > map->max_register)
101 		return false;
102 
103 	if (map->format.format_write)
104 		return false;
105 
106 	if (map->readable_reg)
107 		return map->readable_reg(map->dev, reg);
108 
109 	if (map->rd_table)
110 		return regmap_check_range_table(map, reg, map->rd_table);
111 
112 	return true;
113 }
114 
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117 	if (!regmap_readable(map, reg))
118 		return false;
119 
120 	if (map->volatile_reg)
121 		return map->volatile_reg(map->dev, reg);
122 
123 	if (map->volatile_table)
124 		return regmap_check_range_table(map, reg, map->volatile_table);
125 
126 	if (map->cache_ops)
127 		return false;
128 	else
129 		return true;
130 }
131 
132 bool regmap_precious(struct regmap *map, unsigned int reg)
133 {
134 	if (!regmap_readable(map, reg))
135 		return false;
136 
137 	if (map->precious_reg)
138 		return map->precious_reg(map->dev, reg);
139 
140 	if (map->precious_table)
141 		return regmap_check_range_table(map, reg, map->precious_table);
142 
143 	return false;
144 }
145 
146 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
147 	size_t num)
148 {
149 	unsigned int i;
150 
151 	for (i = 0; i < num; i++)
152 		if (!regmap_volatile(map, reg + i))
153 			return false;
154 
155 	return true;
156 }
157 
158 static void regmap_format_2_6_write(struct regmap *map,
159 				     unsigned int reg, unsigned int val)
160 {
161 	u8 *out = map->work_buf;
162 
163 	*out = (reg << 6) | val;
164 }
165 
166 static void regmap_format_4_12_write(struct regmap *map,
167 				     unsigned int reg, unsigned int val)
168 {
169 	__be16 *out = map->work_buf;
170 	*out = cpu_to_be16((reg << 12) | val);
171 }
172 
173 static void regmap_format_7_9_write(struct regmap *map,
174 				    unsigned int reg, unsigned int val)
175 {
176 	__be16 *out = map->work_buf;
177 	*out = cpu_to_be16((reg << 9) | val);
178 }
179 
180 static void regmap_format_10_14_write(struct regmap *map,
181 				    unsigned int reg, unsigned int val)
182 {
183 	u8 *out = map->work_buf;
184 
185 	out[2] = val;
186 	out[1] = (val >> 8) | (reg << 6);
187 	out[0] = reg >> 2;
188 }
189 
190 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 {
192 	u8 *b = buf;
193 
194 	b[0] = val << shift;
195 }
196 
197 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 {
199 	__be16 *b = buf;
200 
201 	b[0] = cpu_to_be16(val << shift);
202 }
203 
204 static void regmap_format_16_native(void *buf, unsigned int val,
205 				    unsigned int shift)
206 {
207 	*(u16 *)buf = val << shift;
208 }
209 
210 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
211 {
212 	u8 *b = buf;
213 
214 	val <<= shift;
215 
216 	b[0] = val >> 16;
217 	b[1] = val >> 8;
218 	b[2] = val;
219 }
220 
221 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
222 {
223 	__be32 *b = buf;
224 
225 	b[0] = cpu_to_be32(val << shift);
226 }
227 
228 static void regmap_format_32_native(void *buf, unsigned int val,
229 				    unsigned int shift)
230 {
231 	*(u32 *)buf = val << shift;
232 }
233 
234 static void regmap_parse_inplace_noop(void *buf)
235 {
236 }
237 
238 static unsigned int regmap_parse_8(const void *buf)
239 {
240 	const u8 *b = buf;
241 
242 	return b[0];
243 }
244 
245 static unsigned int regmap_parse_16_be(const void *buf)
246 {
247 	const __be16 *b = buf;
248 
249 	return be16_to_cpu(b[0]);
250 }
251 
252 static void regmap_parse_16_be_inplace(void *buf)
253 {
254 	__be16 *b = buf;
255 
256 	b[0] = be16_to_cpu(b[0]);
257 }
258 
259 static unsigned int regmap_parse_16_native(const void *buf)
260 {
261 	return *(u16 *)buf;
262 }
263 
264 static unsigned int regmap_parse_24(const void *buf)
265 {
266 	const u8 *b = buf;
267 	unsigned int ret = b[2];
268 	ret |= ((unsigned int)b[1]) << 8;
269 	ret |= ((unsigned int)b[0]) << 16;
270 
271 	return ret;
272 }
273 
274 static unsigned int regmap_parse_32_be(const void *buf)
275 {
276 	const __be32 *b = buf;
277 
278 	return be32_to_cpu(b[0]);
279 }
280 
281 static void regmap_parse_32_be_inplace(void *buf)
282 {
283 	__be32 *b = buf;
284 
285 	b[0] = be32_to_cpu(b[0]);
286 }
287 
288 static unsigned int regmap_parse_32_native(const void *buf)
289 {
290 	return *(u32 *)buf;
291 }
292 
293 static void regmap_lock_mutex(void *__map)
294 {
295 	struct regmap *map = __map;
296 	mutex_lock(&map->mutex);
297 }
298 
299 static void regmap_unlock_mutex(void *__map)
300 {
301 	struct regmap *map = __map;
302 	mutex_unlock(&map->mutex);
303 }
304 
305 static void regmap_lock_spinlock(void *__map)
306 {
307 	struct regmap *map = __map;
308 	unsigned long flags;
309 
310 	spin_lock_irqsave(&map->spinlock, flags);
311 	map->spinlock_flags = flags;
312 }
313 
314 static void regmap_unlock_spinlock(void *__map)
315 {
316 	struct regmap *map = __map;
317 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
318 }
319 
320 static void dev_get_regmap_release(struct device *dev, void *res)
321 {
322 	/*
323 	 * We don't actually have anything to do here; the goal here
324 	 * is not to manage the regmap but to provide a simple way to
325 	 * get the regmap back given a struct device.
326 	 */
327 }
328 
329 static bool _regmap_range_add(struct regmap *map,
330 			      struct regmap_range_node *data)
331 {
332 	struct rb_root *root = &map->range_tree;
333 	struct rb_node **new = &(root->rb_node), *parent = NULL;
334 
335 	while (*new) {
336 		struct regmap_range_node *this =
337 			container_of(*new, struct regmap_range_node, node);
338 
339 		parent = *new;
340 		if (data->range_max < this->range_min)
341 			new = &((*new)->rb_left);
342 		else if (data->range_min > this->range_max)
343 			new = &((*new)->rb_right);
344 		else
345 			return false;
346 	}
347 
348 	rb_link_node(&data->node, parent, new);
349 	rb_insert_color(&data->node, root);
350 
351 	return true;
352 }
353 
354 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
355 						      unsigned int reg)
356 {
357 	struct rb_node *node = map->range_tree.rb_node;
358 
359 	while (node) {
360 		struct regmap_range_node *this =
361 			container_of(node, struct regmap_range_node, node);
362 
363 		if (reg < this->range_min)
364 			node = node->rb_left;
365 		else if (reg > this->range_max)
366 			node = node->rb_right;
367 		else
368 			return this;
369 	}
370 
371 	return NULL;
372 }
373 
374 static void regmap_range_exit(struct regmap *map)
375 {
376 	struct rb_node *next;
377 	struct regmap_range_node *range_node;
378 
379 	next = rb_first(&map->range_tree);
380 	while (next) {
381 		range_node = rb_entry(next, struct regmap_range_node, node);
382 		next = rb_next(&range_node->node);
383 		rb_erase(&range_node->node, &map->range_tree);
384 		kfree(range_node);
385 	}
386 
387 	kfree(map->selector_work_buf);
388 }
389 
390 /**
391  * regmap_init(): Initialise register map
392  *
393  * @dev: Device that will be interacted with
394  * @bus: Bus-specific callbacks to use with device
395  * @bus_context: Data passed to bus-specific callbacks
396  * @config: Configuration for register map
397  *
398  * The return value will be an ERR_PTR() on error or a valid pointer to
399  * a struct regmap.  This function should generally not be called
400  * directly, it should be called by bus-specific init functions.
401  */
402 struct regmap *regmap_init(struct device *dev,
403 			   const struct regmap_bus *bus,
404 			   void *bus_context,
405 			   const struct regmap_config *config)
406 {
407 	struct regmap *map, **m;
408 	int ret = -EINVAL;
409 	enum regmap_endian reg_endian, val_endian;
410 	int i, j;
411 
412 	if (!config)
413 		goto err;
414 
415 	map = kzalloc(sizeof(*map), GFP_KERNEL);
416 	if (map == NULL) {
417 		ret = -ENOMEM;
418 		goto err;
419 	}
420 
421 	if (config->lock && config->unlock) {
422 		map->lock = config->lock;
423 		map->unlock = config->unlock;
424 		map->lock_arg = config->lock_arg;
425 	} else {
426 		if ((bus && bus->fast_io) ||
427 		    config->fast_io) {
428 			spin_lock_init(&map->spinlock);
429 			map->lock = regmap_lock_spinlock;
430 			map->unlock = regmap_unlock_spinlock;
431 		} else {
432 			mutex_init(&map->mutex);
433 			map->lock = regmap_lock_mutex;
434 			map->unlock = regmap_unlock_mutex;
435 		}
436 		map->lock_arg = map;
437 	}
438 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
439 	map->format.pad_bytes = config->pad_bits / 8;
440 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
441 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
442 			config->val_bits + config->pad_bits, 8);
443 	map->reg_shift = config->pad_bits % 8;
444 	if (config->reg_stride)
445 		map->reg_stride = config->reg_stride;
446 	else
447 		map->reg_stride = 1;
448 	map->use_single_rw = config->use_single_rw;
449 	map->dev = dev;
450 	map->bus = bus;
451 	map->bus_context = bus_context;
452 	map->max_register = config->max_register;
453 	map->wr_table = config->wr_table;
454 	map->rd_table = config->rd_table;
455 	map->volatile_table = config->volatile_table;
456 	map->precious_table = config->precious_table;
457 	map->writeable_reg = config->writeable_reg;
458 	map->readable_reg = config->readable_reg;
459 	map->volatile_reg = config->volatile_reg;
460 	map->precious_reg = config->precious_reg;
461 	map->cache_type = config->cache_type;
462 	map->name = config->name;
463 
464 	spin_lock_init(&map->async_lock);
465 	INIT_LIST_HEAD(&map->async_list);
466 	init_waitqueue_head(&map->async_waitq);
467 
468 	if (config->read_flag_mask || config->write_flag_mask) {
469 		map->read_flag_mask = config->read_flag_mask;
470 		map->write_flag_mask = config->write_flag_mask;
471 	} else if (bus) {
472 		map->read_flag_mask = bus->read_flag_mask;
473 	}
474 
475 	if (!bus) {
476 		map->reg_read  = config->reg_read;
477 		map->reg_write = config->reg_write;
478 
479 		map->defer_caching = false;
480 		goto skip_format_initialization;
481 	} else {
482 		map->reg_read  = _regmap_bus_read;
483 	}
484 
485 	reg_endian = config->reg_format_endian;
486 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
487 		reg_endian = bus->reg_format_endian_default;
488 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
489 		reg_endian = REGMAP_ENDIAN_BIG;
490 
491 	val_endian = config->val_format_endian;
492 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
493 		val_endian = bus->val_format_endian_default;
494 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
495 		val_endian = REGMAP_ENDIAN_BIG;
496 
497 	switch (config->reg_bits + map->reg_shift) {
498 	case 2:
499 		switch (config->val_bits) {
500 		case 6:
501 			map->format.format_write = regmap_format_2_6_write;
502 			break;
503 		default:
504 			goto err_map;
505 		}
506 		break;
507 
508 	case 4:
509 		switch (config->val_bits) {
510 		case 12:
511 			map->format.format_write = regmap_format_4_12_write;
512 			break;
513 		default:
514 			goto err_map;
515 		}
516 		break;
517 
518 	case 7:
519 		switch (config->val_bits) {
520 		case 9:
521 			map->format.format_write = regmap_format_7_9_write;
522 			break;
523 		default:
524 			goto err_map;
525 		}
526 		break;
527 
528 	case 10:
529 		switch (config->val_bits) {
530 		case 14:
531 			map->format.format_write = regmap_format_10_14_write;
532 			break;
533 		default:
534 			goto err_map;
535 		}
536 		break;
537 
538 	case 8:
539 		map->format.format_reg = regmap_format_8;
540 		break;
541 
542 	case 16:
543 		switch (reg_endian) {
544 		case REGMAP_ENDIAN_BIG:
545 			map->format.format_reg = regmap_format_16_be;
546 			break;
547 		case REGMAP_ENDIAN_NATIVE:
548 			map->format.format_reg = regmap_format_16_native;
549 			break;
550 		default:
551 			goto err_map;
552 		}
553 		break;
554 
555 	case 24:
556 		if (reg_endian != REGMAP_ENDIAN_BIG)
557 			goto err_map;
558 		map->format.format_reg = regmap_format_24;
559 		break;
560 
561 	case 32:
562 		switch (reg_endian) {
563 		case REGMAP_ENDIAN_BIG:
564 			map->format.format_reg = regmap_format_32_be;
565 			break;
566 		case REGMAP_ENDIAN_NATIVE:
567 			map->format.format_reg = regmap_format_32_native;
568 			break;
569 		default:
570 			goto err_map;
571 		}
572 		break;
573 
574 	default:
575 		goto err_map;
576 	}
577 
578 	if (val_endian == REGMAP_ENDIAN_NATIVE)
579 		map->format.parse_inplace = regmap_parse_inplace_noop;
580 
581 	switch (config->val_bits) {
582 	case 8:
583 		map->format.format_val = regmap_format_8;
584 		map->format.parse_val = regmap_parse_8;
585 		map->format.parse_inplace = regmap_parse_inplace_noop;
586 		break;
587 	case 16:
588 		switch (val_endian) {
589 		case REGMAP_ENDIAN_BIG:
590 			map->format.format_val = regmap_format_16_be;
591 			map->format.parse_val = regmap_parse_16_be;
592 			map->format.parse_inplace = regmap_parse_16_be_inplace;
593 			break;
594 		case REGMAP_ENDIAN_NATIVE:
595 			map->format.format_val = regmap_format_16_native;
596 			map->format.parse_val = regmap_parse_16_native;
597 			break;
598 		default:
599 			goto err_map;
600 		}
601 		break;
602 	case 24:
603 		if (val_endian != REGMAP_ENDIAN_BIG)
604 			goto err_map;
605 		map->format.format_val = regmap_format_24;
606 		map->format.parse_val = regmap_parse_24;
607 		break;
608 	case 32:
609 		switch (val_endian) {
610 		case REGMAP_ENDIAN_BIG:
611 			map->format.format_val = regmap_format_32_be;
612 			map->format.parse_val = regmap_parse_32_be;
613 			map->format.parse_inplace = regmap_parse_32_be_inplace;
614 			break;
615 		case REGMAP_ENDIAN_NATIVE:
616 			map->format.format_val = regmap_format_32_native;
617 			map->format.parse_val = regmap_parse_32_native;
618 			break;
619 		default:
620 			goto err_map;
621 		}
622 		break;
623 	}
624 
625 	if (map->format.format_write) {
626 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
627 		    (val_endian != REGMAP_ENDIAN_BIG))
628 			goto err_map;
629 		map->use_single_rw = true;
630 	}
631 
632 	if (!map->format.format_write &&
633 	    !(map->format.format_reg && map->format.format_val))
634 		goto err_map;
635 
636 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
637 	if (map->work_buf == NULL) {
638 		ret = -ENOMEM;
639 		goto err_map;
640 	}
641 
642 	if (map->format.format_write) {
643 		map->defer_caching = false;
644 		map->reg_write = _regmap_bus_formatted_write;
645 	} else if (map->format.format_val) {
646 		map->defer_caching = true;
647 		map->reg_write = _regmap_bus_raw_write;
648 	}
649 
650 skip_format_initialization:
651 
652 	map->range_tree = RB_ROOT;
653 	for (i = 0; i < config->num_ranges; i++) {
654 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
655 		struct regmap_range_node *new;
656 
657 		/* Sanity check */
658 		if (range_cfg->range_max < range_cfg->range_min) {
659 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
660 				range_cfg->range_max, range_cfg->range_min);
661 			goto err_range;
662 		}
663 
664 		if (range_cfg->range_max > map->max_register) {
665 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
666 				range_cfg->range_max, map->max_register);
667 			goto err_range;
668 		}
669 
670 		if (range_cfg->selector_reg > map->max_register) {
671 			dev_err(map->dev,
672 				"Invalid range %d: selector out of map\n", i);
673 			goto err_range;
674 		}
675 
676 		if (range_cfg->window_len == 0) {
677 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
678 				i);
679 			goto err_range;
680 		}
681 
682 		/* Make sure, that this register range has no selector
683 		   or data window within its boundary */
684 		for (j = 0; j < config->num_ranges; j++) {
685 			unsigned sel_reg = config->ranges[j].selector_reg;
686 			unsigned win_min = config->ranges[j].window_start;
687 			unsigned win_max = win_min +
688 					   config->ranges[j].window_len - 1;
689 
690 			if (range_cfg->range_min <= sel_reg &&
691 			    sel_reg <= range_cfg->range_max) {
692 				dev_err(map->dev,
693 					"Range %d: selector for %d in window\n",
694 					i, j);
695 				goto err_range;
696 			}
697 
698 			if (!(win_max < range_cfg->range_min ||
699 			      win_min > range_cfg->range_max)) {
700 				dev_err(map->dev,
701 					"Range %d: window for %d in window\n",
702 					i, j);
703 				goto err_range;
704 			}
705 		}
706 
707 		new = kzalloc(sizeof(*new), GFP_KERNEL);
708 		if (new == NULL) {
709 			ret = -ENOMEM;
710 			goto err_range;
711 		}
712 
713 		new->map = map;
714 		new->name = range_cfg->name;
715 		new->range_min = range_cfg->range_min;
716 		new->range_max = range_cfg->range_max;
717 		new->selector_reg = range_cfg->selector_reg;
718 		new->selector_mask = range_cfg->selector_mask;
719 		new->selector_shift = range_cfg->selector_shift;
720 		new->window_start = range_cfg->window_start;
721 		new->window_len = range_cfg->window_len;
722 
723 		if (_regmap_range_add(map, new) == false) {
724 			dev_err(map->dev, "Failed to add range %d\n", i);
725 			kfree(new);
726 			goto err_range;
727 		}
728 
729 		if (map->selector_work_buf == NULL) {
730 			map->selector_work_buf =
731 				kzalloc(map->format.buf_size, GFP_KERNEL);
732 			if (map->selector_work_buf == NULL) {
733 				ret = -ENOMEM;
734 				goto err_range;
735 			}
736 		}
737 	}
738 
739 	regmap_debugfs_init(map, config->name);
740 
741 	ret = regcache_init(map, config);
742 	if (ret != 0)
743 		goto err_range;
744 
745 	/* Add a devres resource for dev_get_regmap() */
746 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
747 	if (!m) {
748 		ret = -ENOMEM;
749 		goto err_debugfs;
750 	}
751 	*m = map;
752 	devres_add(dev, m);
753 
754 	return map;
755 
756 err_debugfs:
757 	regmap_debugfs_exit(map);
758 	regcache_exit(map);
759 err_range:
760 	regmap_range_exit(map);
761 	kfree(map->work_buf);
762 err_map:
763 	kfree(map);
764 err:
765 	return ERR_PTR(ret);
766 }
767 EXPORT_SYMBOL_GPL(regmap_init);
768 
769 static void devm_regmap_release(struct device *dev, void *res)
770 {
771 	regmap_exit(*(struct regmap **)res);
772 }
773 
774 /**
775  * devm_regmap_init(): Initialise managed register map
776  *
777  * @dev: Device that will be interacted with
778  * @bus: Bus-specific callbacks to use with device
779  * @bus_context: Data passed to bus-specific callbacks
780  * @config: Configuration for register map
781  *
782  * The return value will be an ERR_PTR() on error or a valid pointer
783  * to a struct regmap.  This function should generally not be called
784  * directly, it should be called by bus-specific init functions.  The
785  * map will be automatically freed by the device management code.
786  */
787 struct regmap *devm_regmap_init(struct device *dev,
788 				const struct regmap_bus *bus,
789 				void *bus_context,
790 				const struct regmap_config *config)
791 {
792 	struct regmap **ptr, *regmap;
793 
794 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
795 	if (!ptr)
796 		return ERR_PTR(-ENOMEM);
797 
798 	regmap = regmap_init(dev, bus, bus_context, config);
799 	if (!IS_ERR(regmap)) {
800 		*ptr = regmap;
801 		devres_add(dev, ptr);
802 	} else {
803 		devres_free(ptr);
804 	}
805 
806 	return regmap;
807 }
808 EXPORT_SYMBOL_GPL(devm_regmap_init);
809 
810 static void regmap_field_init(struct regmap_field *rm_field,
811 	struct regmap *regmap, struct reg_field reg_field)
812 {
813 	int field_bits = reg_field.msb - reg_field.lsb + 1;
814 	rm_field->regmap = regmap;
815 	rm_field->reg = reg_field.reg;
816 	rm_field->shift = reg_field.lsb;
817 	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
818 }
819 
820 /**
821  * devm_regmap_field_alloc(): Allocate and initialise a register field
822  * in a register map.
823  *
824  * @dev: Device that will be interacted with
825  * @regmap: regmap bank in which this register field is located.
826  * @reg_field: Register field with in the bank.
827  *
828  * The return value will be an ERR_PTR() on error or a valid pointer
829  * to a struct regmap_field. The regmap_field will be automatically freed
830  * by the device management code.
831  */
832 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
833 		struct regmap *regmap, struct reg_field reg_field)
834 {
835 	struct regmap_field *rm_field = devm_kzalloc(dev,
836 					sizeof(*rm_field), GFP_KERNEL);
837 	if (!rm_field)
838 		return ERR_PTR(-ENOMEM);
839 
840 	regmap_field_init(rm_field, regmap, reg_field);
841 
842 	return rm_field;
843 
844 }
845 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
846 
847 /**
848  * devm_regmap_field_free(): Free register field allocated using
849  * devm_regmap_field_alloc. Usally drivers need not call this function,
850  * as the memory allocated via devm will be freed as per device-driver
851  * life-cyle.
852  *
853  * @dev: Device that will be interacted with
854  * @field: regmap field which should be freed.
855  */
856 void devm_regmap_field_free(struct device *dev,
857 	struct regmap_field *field)
858 {
859 	devm_kfree(dev, field);
860 }
861 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
862 
863 /**
864  * regmap_field_alloc(): Allocate and initialise a register field
865  * in a register map.
866  *
867  * @regmap: regmap bank in which this register field is located.
868  * @reg_field: Register field with in the bank.
869  *
870  * The return value will be an ERR_PTR() on error or a valid pointer
871  * to a struct regmap_field. The regmap_field should be freed by the
872  * user once its finished working with it using regmap_field_free().
873  */
874 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
875 		struct reg_field reg_field)
876 {
877 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
878 
879 	if (!rm_field)
880 		return ERR_PTR(-ENOMEM);
881 
882 	regmap_field_init(rm_field, regmap, reg_field);
883 
884 	return rm_field;
885 }
886 EXPORT_SYMBOL_GPL(regmap_field_alloc);
887 
888 /**
889  * regmap_field_free(): Free register field allocated using regmap_field_alloc
890  *
891  * @field: regmap field which should be freed.
892  */
893 void regmap_field_free(struct regmap_field *field)
894 {
895 	kfree(field);
896 }
897 EXPORT_SYMBOL_GPL(regmap_field_free);
898 
899 /**
900  * regmap_reinit_cache(): Reinitialise the current register cache
901  *
902  * @map: Register map to operate on.
903  * @config: New configuration.  Only the cache data will be used.
904  *
905  * Discard any existing register cache for the map and initialize a
906  * new cache.  This can be used to restore the cache to defaults or to
907  * update the cache configuration to reflect runtime discovery of the
908  * hardware.
909  *
910  * No explicit locking is done here, the user needs to ensure that
911  * this function will not race with other calls to regmap.
912  */
913 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
914 {
915 	regcache_exit(map);
916 	regmap_debugfs_exit(map);
917 
918 	map->max_register = config->max_register;
919 	map->writeable_reg = config->writeable_reg;
920 	map->readable_reg = config->readable_reg;
921 	map->volatile_reg = config->volatile_reg;
922 	map->precious_reg = config->precious_reg;
923 	map->cache_type = config->cache_type;
924 
925 	regmap_debugfs_init(map, config->name);
926 
927 	map->cache_bypass = false;
928 	map->cache_only = false;
929 
930 	return regcache_init(map, config);
931 }
932 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
933 
934 /**
935  * regmap_exit(): Free a previously allocated register map
936  */
937 void regmap_exit(struct regmap *map)
938 {
939 	regcache_exit(map);
940 	regmap_debugfs_exit(map);
941 	regmap_range_exit(map);
942 	if (map->bus && map->bus->free_context)
943 		map->bus->free_context(map->bus_context);
944 	kfree(map->work_buf);
945 	kfree(map);
946 }
947 EXPORT_SYMBOL_GPL(regmap_exit);
948 
949 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
950 {
951 	struct regmap **r = res;
952 	if (!r || !*r) {
953 		WARN_ON(!r || !*r);
954 		return 0;
955 	}
956 
957 	/* If the user didn't specify a name match any */
958 	if (data)
959 		return (*r)->name == data;
960 	else
961 		return 1;
962 }
963 
964 /**
965  * dev_get_regmap(): Obtain the regmap (if any) for a device
966  *
967  * @dev: Device to retrieve the map for
968  * @name: Optional name for the register map, usually NULL.
969  *
970  * Returns the regmap for the device if one is present, or NULL.  If
971  * name is specified then it must match the name specified when
972  * registering the device, if it is NULL then the first regmap found
973  * will be used.  Devices with multiple register maps are very rare,
974  * generic code should normally not need to specify a name.
975  */
976 struct regmap *dev_get_regmap(struct device *dev, const char *name)
977 {
978 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
979 					dev_get_regmap_match, (void *)name);
980 
981 	if (!r)
982 		return NULL;
983 	return *r;
984 }
985 EXPORT_SYMBOL_GPL(dev_get_regmap);
986 
987 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
988 			       struct regmap_range_node *range,
989 			       unsigned int val_num)
990 {
991 	void *orig_work_buf;
992 	unsigned int win_offset;
993 	unsigned int win_page;
994 	bool page_chg;
995 	int ret;
996 
997 	win_offset = (*reg - range->range_min) % range->window_len;
998 	win_page = (*reg - range->range_min) / range->window_len;
999 
1000 	if (val_num > 1) {
1001 		/* Bulk write shouldn't cross range boundary */
1002 		if (*reg + val_num - 1 > range->range_max)
1003 			return -EINVAL;
1004 
1005 		/* ... or single page boundary */
1006 		if (val_num > range->window_len - win_offset)
1007 			return -EINVAL;
1008 	}
1009 
1010 	/* It is possible to have selector register inside data window.
1011 	   In that case, selector register is located on every page and
1012 	   it needs no page switching, when accessed alone. */
1013 	if (val_num > 1 ||
1014 	    range->window_start + win_offset != range->selector_reg) {
1015 		/* Use separate work_buf during page switching */
1016 		orig_work_buf = map->work_buf;
1017 		map->work_buf = map->selector_work_buf;
1018 
1019 		ret = _regmap_update_bits(map, range->selector_reg,
1020 					  range->selector_mask,
1021 					  win_page << range->selector_shift,
1022 					  &page_chg);
1023 
1024 		map->work_buf = orig_work_buf;
1025 
1026 		if (ret != 0)
1027 			return ret;
1028 	}
1029 
1030 	*reg = range->window_start + win_offset;
1031 
1032 	return 0;
1033 }
1034 
1035 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1036 		      const void *val, size_t val_len, bool async)
1037 {
1038 	struct regmap_range_node *range;
1039 	unsigned long flags;
1040 	u8 *u8 = map->work_buf;
1041 	void *work_val = map->work_buf + map->format.reg_bytes +
1042 		map->format.pad_bytes;
1043 	void *buf;
1044 	int ret = -ENOTSUPP;
1045 	size_t len;
1046 	int i;
1047 
1048 	WARN_ON(!map->bus);
1049 
1050 	/* Check for unwritable registers before we start */
1051 	if (map->writeable_reg)
1052 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1053 			if (!map->writeable_reg(map->dev,
1054 						reg + (i * map->reg_stride)))
1055 				return -EINVAL;
1056 
1057 	if (!map->cache_bypass && map->format.parse_val) {
1058 		unsigned int ival;
1059 		int val_bytes = map->format.val_bytes;
1060 		for (i = 0; i < val_len / val_bytes; i++) {
1061 			ival = map->format.parse_val(val + (i * val_bytes));
1062 			ret = regcache_write(map, reg + (i * map->reg_stride),
1063 					     ival);
1064 			if (ret) {
1065 				dev_err(map->dev,
1066 					"Error in caching of register: %x ret: %d\n",
1067 					reg + i, ret);
1068 				return ret;
1069 			}
1070 		}
1071 		if (map->cache_only) {
1072 			map->cache_dirty = true;
1073 			return 0;
1074 		}
1075 	}
1076 
1077 	range = _regmap_range_lookup(map, reg);
1078 	if (range) {
1079 		int val_num = val_len / map->format.val_bytes;
1080 		int win_offset = (reg - range->range_min) % range->window_len;
1081 		int win_residue = range->window_len - win_offset;
1082 
1083 		/* If the write goes beyond the end of the window split it */
1084 		while (val_num > win_residue) {
1085 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1086 				win_residue, val_len / map->format.val_bytes);
1087 			ret = _regmap_raw_write(map, reg, val, win_residue *
1088 						map->format.val_bytes, async);
1089 			if (ret != 0)
1090 				return ret;
1091 
1092 			reg += win_residue;
1093 			val_num -= win_residue;
1094 			val += win_residue * map->format.val_bytes;
1095 			val_len -= win_residue * map->format.val_bytes;
1096 
1097 			win_offset = (reg - range->range_min) %
1098 				range->window_len;
1099 			win_residue = range->window_len - win_offset;
1100 		}
1101 
1102 		ret = _regmap_select_page(map, &reg, range, val_num);
1103 		if (ret != 0)
1104 			return ret;
1105 	}
1106 
1107 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1108 
1109 	u8[0] |= map->write_flag_mask;
1110 
1111 	if (async && map->bus->async_write) {
1112 		struct regmap_async *async = map->bus->async_alloc();
1113 		if (!async)
1114 			return -ENOMEM;
1115 
1116 		trace_regmap_async_write_start(map->dev, reg, val_len);
1117 
1118 		async->work_buf = kzalloc(map->format.buf_size,
1119 					  GFP_KERNEL | GFP_DMA);
1120 		if (!async->work_buf) {
1121 			kfree(async);
1122 			return -ENOMEM;
1123 		}
1124 
1125 		INIT_WORK(&async->cleanup, async_cleanup);
1126 		async->map = map;
1127 
1128 		/* If the caller supplied the value we can use it safely. */
1129 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1130 		       map->format.reg_bytes + map->format.val_bytes);
1131 		if (val == work_val)
1132 			val = async->work_buf + map->format.pad_bytes +
1133 				map->format.reg_bytes;
1134 
1135 		spin_lock_irqsave(&map->async_lock, flags);
1136 		list_add_tail(&async->list, &map->async_list);
1137 		spin_unlock_irqrestore(&map->async_lock, flags);
1138 
1139 		ret = map->bus->async_write(map->bus_context, async->work_buf,
1140 					    map->format.reg_bytes +
1141 					    map->format.pad_bytes,
1142 					    val, val_len, async);
1143 
1144 		if (ret != 0) {
1145 			dev_err(map->dev, "Failed to schedule write: %d\n",
1146 				ret);
1147 
1148 			spin_lock_irqsave(&map->async_lock, flags);
1149 			list_del(&async->list);
1150 			spin_unlock_irqrestore(&map->async_lock, flags);
1151 
1152 			kfree(async->work_buf);
1153 			kfree(async);
1154 		}
1155 
1156 		return ret;
1157 	}
1158 
1159 	trace_regmap_hw_write_start(map->dev, reg,
1160 				    val_len / map->format.val_bytes);
1161 
1162 	/* If we're doing a single register write we can probably just
1163 	 * send the work_buf directly, otherwise try to do a gather
1164 	 * write.
1165 	 */
1166 	if (val == work_val)
1167 		ret = map->bus->write(map->bus_context, map->work_buf,
1168 				      map->format.reg_bytes +
1169 				      map->format.pad_bytes +
1170 				      val_len);
1171 	else if (map->bus->gather_write)
1172 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1173 					     map->format.reg_bytes +
1174 					     map->format.pad_bytes,
1175 					     val, val_len);
1176 
1177 	/* If that didn't work fall back on linearising by hand. */
1178 	if (ret == -ENOTSUPP) {
1179 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1180 		buf = kzalloc(len, GFP_KERNEL);
1181 		if (!buf)
1182 			return -ENOMEM;
1183 
1184 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1185 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1186 		       val, val_len);
1187 		ret = map->bus->write(map->bus_context, buf, len);
1188 
1189 		kfree(buf);
1190 	}
1191 
1192 	trace_regmap_hw_write_done(map->dev, reg,
1193 				   val_len / map->format.val_bytes);
1194 
1195 	return ret;
1196 }
1197 
1198 /**
1199  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1200  *
1201  * @map: Map to check.
1202  */
1203 bool regmap_can_raw_write(struct regmap *map)
1204 {
1205 	return map->bus && map->format.format_val && map->format.format_reg;
1206 }
1207 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1208 
1209 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1210 				       unsigned int val)
1211 {
1212 	int ret;
1213 	struct regmap_range_node *range;
1214 	struct regmap *map = context;
1215 
1216 	WARN_ON(!map->bus || !map->format.format_write);
1217 
1218 	range = _regmap_range_lookup(map, reg);
1219 	if (range) {
1220 		ret = _regmap_select_page(map, &reg, range, 1);
1221 		if (ret != 0)
1222 			return ret;
1223 	}
1224 
1225 	map->format.format_write(map, reg, val);
1226 
1227 	trace_regmap_hw_write_start(map->dev, reg, 1);
1228 
1229 	ret = map->bus->write(map->bus_context, map->work_buf,
1230 			      map->format.buf_size);
1231 
1232 	trace_regmap_hw_write_done(map->dev, reg, 1);
1233 
1234 	return ret;
1235 }
1236 
1237 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1238 				 unsigned int val)
1239 {
1240 	struct regmap *map = context;
1241 
1242 	WARN_ON(!map->bus || !map->format.format_val);
1243 
1244 	map->format.format_val(map->work_buf + map->format.reg_bytes
1245 			       + map->format.pad_bytes, val, 0);
1246 	return _regmap_raw_write(map, reg,
1247 				 map->work_buf +
1248 				 map->format.reg_bytes +
1249 				 map->format.pad_bytes,
1250 				 map->format.val_bytes, false);
1251 }
1252 
1253 static inline void *_regmap_map_get_context(struct regmap *map)
1254 {
1255 	return (map->bus) ? map : map->bus_context;
1256 }
1257 
1258 int _regmap_write(struct regmap *map, unsigned int reg,
1259 		  unsigned int val)
1260 {
1261 	int ret;
1262 	void *context = _regmap_map_get_context(map);
1263 
1264 	if (!map->cache_bypass && !map->defer_caching) {
1265 		ret = regcache_write(map, reg, val);
1266 		if (ret != 0)
1267 			return ret;
1268 		if (map->cache_only) {
1269 			map->cache_dirty = true;
1270 			return 0;
1271 		}
1272 	}
1273 
1274 #ifdef LOG_DEVICE
1275 	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1276 		dev_info(map->dev, "%x <= %x\n", reg, val);
1277 #endif
1278 
1279 	trace_regmap_reg_write(map->dev, reg, val);
1280 
1281 	return map->reg_write(context, reg, val);
1282 }
1283 
1284 /**
1285  * regmap_write(): Write a value to a single register
1286  *
1287  * @map: Register map to write to
1288  * @reg: Register to write to
1289  * @val: Value to be written
1290  *
1291  * A value of zero will be returned on success, a negative errno will
1292  * be returned in error cases.
1293  */
1294 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1295 {
1296 	int ret;
1297 
1298 	if (reg % map->reg_stride)
1299 		return -EINVAL;
1300 
1301 	map->lock(map->lock_arg);
1302 
1303 	ret = _regmap_write(map, reg, val);
1304 
1305 	map->unlock(map->lock_arg);
1306 
1307 	return ret;
1308 }
1309 EXPORT_SYMBOL_GPL(regmap_write);
1310 
1311 /**
1312  * regmap_raw_write(): Write raw values to one or more registers
1313  *
1314  * @map: Register map to write to
1315  * @reg: Initial register to write to
1316  * @val: Block of data to be written, laid out for direct transmission to the
1317  *       device
1318  * @val_len: Length of data pointed to by val.
1319  *
1320  * This function is intended to be used for things like firmware
1321  * download where a large block of data needs to be transferred to the
1322  * device.  No formatting will be done on the data provided.
1323  *
1324  * A value of zero will be returned on success, a negative errno will
1325  * be returned in error cases.
1326  */
1327 int regmap_raw_write(struct regmap *map, unsigned int reg,
1328 		     const void *val, size_t val_len)
1329 {
1330 	int ret;
1331 
1332 	if (!regmap_can_raw_write(map))
1333 		return -EINVAL;
1334 	if (val_len % map->format.val_bytes)
1335 		return -EINVAL;
1336 
1337 	map->lock(map->lock_arg);
1338 
1339 	ret = _regmap_raw_write(map, reg, val, val_len, false);
1340 
1341 	map->unlock(map->lock_arg);
1342 
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL_GPL(regmap_raw_write);
1346 
1347 /**
1348  * regmap_field_write(): Write a value to a single register field
1349  *
1350  * @field: Register field to write to
1351  * @val: Value to be written
1352  *
1353  * A value of zero will be returned on success, a negative errno will
1354  * be returned in error cases.
1355  */
1356 int regmap_field_write(struct regmap_field *field, unsigned int val)
1357 {
1358 	return regmap_update_bits(field->regmap, field->reg,
1359 				field->mask, val << field->shift);
1360 }
1361 EXPORT_SYMBOL_GPL(regmap_field_write);
1362 
1363 /*
1364  * regmap_bulk_write(): Write multiple registers to the device
1365  *
1366  * @map: Register map to write to
1367  * @reg: First register to be write from
1368  * @val: Block of data to be written, in native register size for device
1369  * @val_count: Number of registers to write
1370  *
1371  * This function is intended to be used for writing a large block of
1372  * data to the device either in single transfer or multiple transfer.
1373  *
1374  * A value of zero will be returned on success, a negative errno will
1375  * be returned in error cases.
1376  */
1377 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1378 		     size_t val_count)
1379 {
1380 	int ret = 0, i;
1381 	size_t val_bytes = map->format.val_bytes;
1382 	void *wval;
1383 
1384 	if (!map->bus)
1385 		return -EINVAL;
1386 	if (!map->format.parse_inplace)
1387 		return -EINVAL;
1388 	if (reg % map->reg_stride)
1389 		return -EINVAL;
1390 
1391 	map->lock(map->lock_arg);
1392 
1393 	/* No formatting is require if val_byte is 1 */
1394 	if (val_bytes == 1) {
1395 		wval = (void *)val;
1396 	} else {
1397 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1398 		if (!wval) {
1399 			ret = -ENOMEM;
1400 			dev_err(map->dev, "Error in memory allocation\n");
1401 			goto out;
1402 		}
1403 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1404 			map->format.parse_inplace(wval + i);
1405 	}
1406 	/*
1407 	 * Some devices does not support bulk write, for
1408 	 * them we have a series of single write operations.
1409 	 */
1410 	if (map->use_single_rw) {
1411 		for (i = 0; i < val_count; i++) {
1412 			ret = regmap_raw_write(map,
1413 					       reg + (i * map->reg_stride),
1414 					       val + (i * val_bytes),
1415 					       val_bytes);
1416 			if (ret != 0)
1417 				return ret;
1418 		}
1419 	} else {
1420 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count,
1421 					false);
1422 	}
1423 
1424 	if (val_bytes != 1)
1425 		kfree(wval);
1426 
1427 out:
1428 	map->unlock(map->lock_arg);
1429 	return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1432 
1433 /**
1434  * regmap_raw_write_async(): Write raw values to one or more registers
1435  *                           asynchronously
1436  *
1437  * @map: Register map to write to
1438  * @reg: Initial register to write to
1439  * @val: Block of data to be written, laid out for direct transmission to the
1440  *       device.  Must be valid until regmap_async_complete() is called.
1441  * @val_len: Length of data pointed to by val.
1442  *
1443  * This function is intended to be used for things like firmware
1444  * download where a large block of data needs to be transferred to the
1445  * device.  No formatting will be done on the data provided.
1446  *
1447  * If supported by the underlying bus the write will be scheduled
1448  * asynchronously, helping maximise I/O speed on higher speed buses
1449  * like SPI.  regmap_async_complete() can be called to ensure that all
1450  * asynchrnous writes have been completed.
1451  *
1452  * A value of zero will be returned on success, a negative errno will
1453  * be returned in error cases.
1454  */
1455 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1456 			   const void *val, size_t val_len)
1457 {
1458 	int ret;
1459 
1460 	if (val_len % map->format.val_bytes)
1461 		return -EINVAL;
1462 	if (reg % map->reg_stride)
1463 		return -EINVAL;
1464 
1465 	map->lock(map->lock_arg);
1466 
1467 	ret = _regmap_raw_write(map, reg, val, val_len, true);
1468 
1469 	map->unlock(map->lock_arg);
1470 
1471 	return ret;
1472 }
1473 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1474 
1475 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1476 			    unsigned int val_len)
1477 {
1478 	struct regmap_range_node *range;
1479 	u8 *u8 = map->work_buf;
1480 	int ret;
1481 
1482 	WARN_ON(!map->bus);
1483 
1484 	range = _regmap_range_lookup(map, reg);
1485 	if (range) {
1486 		ret = _regmap_select_page(map, &reg, range,
1487 					  val_len / map->format.val_bytes);
1488 		if (ret != 0)
1489 			return ret;
1490 	}
1491 
1492 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1493 
1494 	/*
1495 	 * Some buses or devices flag reads by setting the high bits in the
1496 	 * register addresss; since it's always the high bits for all
1497 	 * current formats we can do this here rather than in
1498 	 * formatting.  This may break if we get interesting formats.
1499 	 */
1500 	u8[0] |= map->read_flag_mask;
1501 
1502 	trace_regmap_hw_read_start(map->dev, reg,
1503 				   val_len / map->format.val_bytes);
1504 
1505 	ret = map->bus->read(map->bus_context, map->work_buf,
1506 			     map->format.reg_bytes + map->format.pad_bytes,
1507 			     val, val_len);
1508 
1509 	trace_regmap_hw_read_done(map->dev, reg,
1510 				  val_len / map->format.val_bytes);
1511 
1512 	return ret;
1513 }
1514 
1515 static int _regmap_bus_read(void *context, unsigned int reg,
1516 			    unsigned int *val)
1517 {
1518 	int ret;
1519 	struct regmap *map = context;
1520 
1521 	if (!map->format.parse_val)
1522 		return -EINVAL;
1523 
1524 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1525 	if (ret == 0)
1526 		*val = map->format.parse_val(map->work_buf);
1527 
1528 	return ret;
1529 }
1530 
1531 static int _regmap_read(struct regmap *map, unsigned int reg,
1532 			unsigned int *val)
1533 {
1534 	int ret;
1535 	void *context = _regmap_map_get_context(map);
1536 
1537 	WARN_ON(!map->reg_read);
1538 
1539 	if (!map->cache_bypass) {
1540 		ret = regcache_read(map, reg, val);
1541 		if (ret == 0)
1542 			return 0;
1543 	}
1544 
1545 	if (map->cache_only)
1546 		return -EBUSY;
1547 
1548 	ret = map->reg_read(context, reg, val);
1549 	if (ret == 0) {
1550 #ifdef LOG_DEVICE
1551 		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1552 			dev_info(map->dev, "%x => %x\n", reg, *val);
1553 #endif
1554 
1555 		trace_regmap_reg_read(map->dev, reg, *val);
1556 
1557 		if (!map->cache_bypass)
1558 			regcache_write(map, reg, *val);
1559 	}
1560 
1561 	return ret;
1562 }
1563 
1564 /**
1565  * regmap_read(): Read a value from a single register
1566  *
1567  * @map: Register map to write to
1568  * @reg: Register to be read from
1569  * @val: Pointer to store read value
1570  *
1571  * A value of zero will be returned on success, a negative errno will
1572  * be returned in error cases.
1573  */
1574 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1575 {
1576 	int ret;
1577 
1578 	if (reg % map->reg_stride)
1579 		return -EINVAL;
1580 
1581 	map->lock(map->lock_arg);
1582 
1583 	ret = _regmap_read(map, reg, val);
1584 
1585 	map->unlock(map->lock_arg);
1586 
1587 	return ret;
1588 }
1589 EXPORT_SYMBOL_GPL(regmap_read);
1590 
1591 /**
1592  * regmap_raw_read(): Read raw data from the device
1593  *
1594  * @map: Register map to write to
1595  * @reg: First register to be read from
1596  * @val: Pointer to store read value
1597  * @val_len: Size of data to read
1598  *
1599  * A value of zero will be returned on success, a negative errno will
1600  * be returned in error cases.
1601  */
1602 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1603 		    size_t val_len)
1604 {
1605 	size_t val_bytes = map->format.val_bytes;
1606 	size_t val_count = val_len / val_bytes;
1607 	unsigned int v;
1608 	int ret, i;
1609 
1610 	if (!map->bus)
1611 		return -EINVAL;
1612 	if (val_len % map->format.val_bytes)
1613 		return -EINVAL;
1614 	if (reg % map->reg_stride)
1615 		return -EINVAL;
1616 
1617 	map->lock(map->lock_arg);
1618 
1619 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1620 	    map->cache_type == REGCACHE_NONE) {
1621 		/* Physical block read if there's no cache involved */
1622 		ret = _regmap_raw_read(map, reg, val, val_len);
1623 
1624 	} else {
1625 		/* Otherwise go word by word for the cache; should be low
1626 		 * cost as we expect to hit the cache.
1627 		 */
1628 		for (i = 0; i < val_count; i++) {
1629 			ret = _regmap_read(map, reg + (i * map->reg_stride),
1630 					   &v);
1631 			if (ret != 0)
1632 				goto out;
1633 
1634 			map->format.format_val(val + (i * val_bytes), v, 0);
1635 		}
1636 	}
1637 
1638  out:
1639 	map->unlock(map->lock_arg);
1640 
1641 	return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(regmap_raw_read);
1644 
1645 /**
1646  * regmap_field_read(): Read a value to a single register field
1647  *
1648  * @field: Register field to read from
1649  * @val: Pointer to store read value
1650  *
1651  * A value of zero will be returned on success, a negative errno will
1652  * be returned in error cases.
1653  */
1654 int regmap_field_read(struct regmap_field *field, unsigned int *val)
1655 {
1656 	int ret;
1657 	unsigned int reg_val;
1658 	ret = regmap_read(field->regmap, field->reg, &reg_val);
1659 	if (ret != 0)
1660 		return ret;
1661 
1662 	reg_val &= field->mask;
1663 	reg_val >>= field->shift;
1664 	*val = reg_val;
1665 
1666 	return ret;
1667 }
1668 EXPORT_SYMBOL_GPL(regmap_field_read);
1669 
1670 /**
1671  * regmap_bulk_read(): Read multiple registers from the device
1672  *
1673  * @map: Register map to write to
1674  * @reg: First register to be read from
1675  * @val: Pointer to store read value, in native register size for device
1676  * @val_count: Number of registers to read
1677  *
1678  * A value of zero will be returned on success, a negative errno will
1679  * be returned in error cases.
1680  */
1681 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1682 		     size_t val_count)
1683 {
1684 	int ret, i;
1685 	size_t val_bytes = map->format.val_bytes;
1686 	bool vol = regmap_volatile_range(map, reg, val_count);
1687 
1688 	if (!map->bus)
1689 		return -EINVAL;
1690 	if (!map->format.parse_inplace)
1691 		return -EINVAL;
1692 	if (reg % map->reg_stride)
1693 		return -EINVAL;
1694 
1695 	if (vol || map->cache_type == REGCACHE_NONE) {
1696 		/*
1697 		 * Some devices does not support bulk read, for
1698 		 * them we have a series of single read operations.
1699 		 */
1700 		if (map->use_single_rw) {
1701 			for (i = 0; i < val_count; i++) {
1702 				ret = regmap_raw_read(map,
1703 						reg + (i * map->reg_stride),
1704 						val + (i * val_bytes),
1705 						val_bytes);
1706 				if (ret != 0)
1707 					return ret;
1708 			}
1709 		} else {
1710 			ret = regmap_raw_read(map, reg, val,
1711 					      val_bytes * val_count);
1712 			if (ret != 0)
1713 				return ret;
1714 		}
1715 
1716 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1717 			map->format.parse_inplace(val + i);
1718 	} else {
1719 		for (i = 0; i < val_count; i++) {
1720 			unsigned int ival;
1721 			ret = regmap_read(map, reg + (i * map->reg_stride),
1722 					  &ival);
1723 			if (ret != 0)
1724 				return ret;
1725 			memcpy(val + (i * val_bytes), &ival, val_bytes);
1726 		}
1727 	}
1728 
1729 	return 0;
1730 }
1731 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1732 
1733 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1734 			       unsigned int mask, unsigned int val,
1735 			       bool *change)
1736 {
1737 	int ret;
1738 	unsigned int tmp, orig;
1739 
1740 	ret = _regmap_read(map, reg, &orig);
1741 	if (ret != 0)
1742 		return ret;
1743 
1744 	tmp = orig & ~mask;
1745 	tmp |= val & mask;
1746 
1747 	if (tmp != orig) {
1748 		ret = _regmap_write(map, reg, tmp);
1749 		*change = true;
1750 	} else {
1751 		*change = false;
1752 	}
1753 
1754 	return ret;
1755 }
1756 
1757 /**
1758  * regmap_update_bits: Perform a read/modify/write cycle on the register map
1759  *
1760  * @map: Register map to update
1761  * @reg: Register to update
1762  * @mask: Bitmask to change
1763  * @val: New value for bitmask
1764  *
1765  * Returns zero for success, a negative number on error.
1766  */
1767 int regmap_update_bits(struct regmap *map, unsigned int reg,
1768 		       unsigned int mask, unsigned int val)
1769 {
1770 	bool change;
1771 	int ret;
1772 
1773 	map->lock(map->lock_arg);
1774 	ret = _regmap_update_bits(map, reg, mask, val, &change);
1775 	map->unlock(map->lock_arg);
1776 
1777 	return ret;
1778 }
1779 EXPORT_SYMBOL_GPL(regmap_update_bits);
1780 
1781 /**
1782  * regmap_update_bits_check: Perform a read/modify/write cycle on the
1783  *                           register map and report if updated
1784  *
1785  * @map: Register map to update
1786  * @reg: Register to update
1787  * @mask: Bitmask to change
1788  * @val: New value for bitmask
1789  * @change: Boolean indicating if a write was done
1790  *
1791  * Returns zero for success, a negative number on error.
1792  */
1793 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1794 			     unsigned int mask, unsigned int val,
1795 			     bool *change)
1796 {
1797 	int ret;
1798 
1799 	map->lock(map->lock_arg);
1800 	ret = _regmap_update_bits(map, reg, mask, val, change);
1801 	map->unlock(map->lock_arg);
1802 	return ret;
1803 }
1804 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1805 
1806 void regmap_async_complete_cb(struct regmap_async *async, int ret)
1807 {
1808 	struct regmap *map = async->map;
1809 	bool wake;
1810 
1811 	trace_regmap_async_io_complete(map->dev);
1812 
1813 	spin_lock(&map->async_lock);
1814 
1815 	list_del(&async->list);
1816 	wake = list_empty(&map->async_list);
1817 
1818 	if (ret != 0)
1819 		map->async_ret = ret;
1820 
1821 	spin_unlock(&map->async_lock);
1822 
1823 	schedule_work(&async->cleanup);
1824 
1825 	if (wake)
1826 		wake_up(&map->async_waitq);
1827 }
1828 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
1829 
1830 static int regmap_async_is_done(struct regmap *map)
1831 {
1832 	unsigned long flags;
1833 	int ret;
1834 
1835 	spin_lock_irqsave(&map->async_lock, flags);
1836 	ret = list_empty(&map->async_list);
1837 	spin_unlock_irqrestore(&map->async_lock, flags);
1838 
1839 	return ret;
1840 }
1841 
1842 /**
1843  * regmap_async_complete: Ensure all asynchronous I/O has completed.
1844  *
1845  * @map: Map to operate on.
1846  *
1847  * Blocks until any pending asynchronous I/O has completed.  Returns
1848  * an error code for any failed I/O operations.
1849  */
1850 int regmap_async_complete(struct regmap *map)
1851 {
1852 	unsigned long flags;
1853 	int ret;
1854 
1855 	/* Nothing to do with no async support */
1856 	if (!map->bus || !map->bus->async_write)
1857 		return 0;
1858 
1859 	trace_regmap_async_complete_start(map->dev);
1860 
1861 	wait_event(map->async_waitq, regmap_async_is_done(map));
1862 
1863 	spin_lock_irqsave(&map->async_lock, flags);
1864 	ret = map->async_ret;
1865 	map->async_ret = 0;
1866 	spin_unlock_irqrestore(&map->async_lock, flags);
1867 
1868 	trace_regmap_async_complete_done(map->dev);
1869 
1870 	return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(regmap_async_complete);
1873 
1874 /**
1875  * regmap_register_patch: Register and apply register updates to be applied
1876  *                        on device initialistion
1877  *
1878  * @map: Register map to apply updates to.
1879  * @regs: Values to update.
1880  * @num_regs: Number of entries in regs.
1881  *
1882  * Register a set of register updates to be applied to the device
1883  * whenever the device registers are synchronised with the cache and
1884  * apply them immediately.  Typically this is used to apply
1885  * corrections to be applied to the device defaults on startup, such
1886  * as the updates some vendors provide to undocumented registers.
1887  */
1888 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1889 			  int num_regs)
1890 {
1891 	int i, ret;
1892 	bool bypass;
1893 
1894 	/* If needed the implementation can be extended to support this */
1895 	if (map->patch)
1896 		return -EBUSY;
1897 
1898 	map->lock(map->lock_arg);
1899 
1900 	bypass = map->cache_bypass;
1901 
1902 	map->cache_bypass = true;
1903 
1904 	/* Write out first; it's useful to apply even if we fail later. */
1905 	for (i = 0; i < num_regs; i++) {
1906 		ret = _regmap_write(map, regs[i].reg, regs[i].def);
1907 		if (ret != 0) {
1908 			dev_err(map->dev, "Failed to write %x = %x: %d\n",
1909 				regs[i].reg, regs[i].def, ret);
1910 			goto out;
1911 		}
1912 	}
1913 
1914 	map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL);
1915 	if (map->patch != NULL) {
1916 		memcpy(map->patch, regs,
1917 		       num_regs * sizeof(struct reg_default));
1918 		map->patch_regs = num_regs;
1919 	} else {
1920 		ret = -ENOMEM;
1921 	}
1922 
1923 out:
1924 	map->cache_bypass = bypass;
1925 
1926 	map->unlock(map->lock_arg);
1927 
1928 	return ret;
1929 }
1930 EXPORT_SYMBOL_GPL(regmap_register_patch);
1931 
1932 /*
1933  * regmap_get_val_bytes(): Report the size of a register value
1934  *
1935  * Report the size of a register value, mainly intended to for use by
1936  * generic infrastructure built on top of regmap.
1937  */
1938 int regmap_get_val_bytes(struct regmap *map)
1939 {
1940 	if (map->format.format_write)
1941 		return -EINVAL;
1942 
1943 	return map->format.val_bytes;
1944 }
1945 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1946 
1947 static int __init regmap_initcall(void)
1948 {
1949 	regmap_debugfs_initcall();
1950 
1951 	return 0;
1952 }
1953 postcore_initcall(regmap_initcall);
1954