1 /* 2 * Register map access API 3 * 4 * Copyright 2011 Wolfson Microelectronics plc 5 * 6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/mutex.h> 17 #include <linux/err.h> 18 #include <linux/rbtree.h> 19 #include <linux/sched.h> 20 21 #define CREATE_TRACE_POINTS 22 #include <trace/events/regmap.h> 23 24 #include "internal.h" 25 26 /* 27 * Sometimes for failures during very early init the trace 28 * infrastructure isn't available early enough to be used. For this 29 * sort of problem defining LOG_DEVICE will add printks for basic 30 * register I/O on a specific device. 31 */ 32 #undef LOG_DEVICE 33 34 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 35 unsigned int mask, unsigned int val, 36 bool *change); 37 38 static int _regmap_bus_read(void *context, unsigned int reg, 39 unsigned int *val); 40 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 41 unsigned int val); 42 static int _regmap_bus_raw_write(void *context, unsigned int reg, 43 unsigned int val); 44 45 bool regmap_reg_in_ranges(unsigned int reg, 46 const struct regmap_range *ranges, 47 unsigned int nranges) 48 { 49 const struct regmap_range *r; 50 int i; 51 52 for (i = 0, r = ranges; i < nranges; i++, r++) 53 if (regmap_reg_in_range(reg, r)) 54 return true; 55 return false; 56 } 57 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 58 59 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 60 const struct regmap_access_table *table) 61 { 62 /* Check "no ranges" first */ 63 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 64 return false; 65 66 /* In case zero "yes ranges" are supplied, any reg is OK */ 67 if (!table->n_yes_ranges) 68 return true; 69 70 return regmap_reg_in_ranges(reg, table->yes_ranges, 71 table->n_yes_ranges); 72 } 73 EXPORT_SYMBOL_GPL(regmap_check_range_table); 74 75 bool regmap_writeable(struct regmap *map, unsigned int reg) 76 { 77 if (map->max_register && reg > map->max_register) 78 return false; 79 80 if (map->writeable_reg) 81 return map->writeable_reg(map->dev, reg); 82 83 if (map->wr_table) 84 return regmap_check_range_table(map, reg, map->wr_table); 85 86 return true; 87 } 88 89 bool regmap_readable(struct regmap *map, unsigned int reg) 90 { 91 if (map->max_register && reg > map->max_register) 92 return false; 93 94 if (map->format.format_write) 95 return false; 96 97 if (map->readable_reg) 98 return map->readable_reg(map->dev, reg); 99 100 if (map->rd_table) 101 return regmap_check_range_table(map, reg, map->rd_table); 102 103 return true; 104 } 105 106 bool regmap_volatile(struct regmap *map, unsigned int reg) 107 { 108 if (!regmap_readable(map, reg)) 109 return false; 110 111 if (map->volatile_reg) 112 return map->volatile_reg(map->dev, reg); 113 114 if (map->volatile_table) 115 return regmap_check_range_table(map, reg, map->volatile_table); 116 117 if (map->cache_ops) 118 return false; 119 else 120 return true; 121 } 122 123 bool regmap_precious(struct regmap *map, unsigned int reg) 124 { 125 if (!regmap_readable(map, reg)) 126 return false; 127 128 if (map->precious_reg) 129 return map->precious_reg(map->dev, reg); 130 131 if (map->precious_table) 132 return regmap_check_range_table(map, reg, map->precious_table); 133 134 return false; 135 } 136 137 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 138 size_t num) 139 { 140 unsigned int i; 141 142 for (i = 0; i < num; i++) 143 if (!regmap_volatile(map, reg + i)) 144 return false; 145 146 return true; 147 } 148 149 static void regmap_format_2_6_write(struct regmap *map, 150 unsigned int reg, unsigned int val) 151 { 152 u8 *out = map->work_buf; 153 154 *out = (reg << 6) | val; 155 } 156 157 static void regmap_format_4_12_write(struct regmap *map, 158 unsigned int reg, unsigned int val) 159 { 160 __be16 *out = map->work_buf; 161 *out = cpu_to_be16((reg << 12) | val); 162 } 163 164 static void regmap_format_7_9_write(struct regmap *map, 165 unsigned int reg, unsigned int val) 166 { 167 __be16 *out = map->work_buf; 168 *out = cpu_to_be16((reg << 9) | val); 169 } 170 171 static void regmap_format_10_14_write(struct regmap *map, 172 unsigned int reg, unsigned int val) 173 { 174 u8 *out = map->work_buf; 175 176 out[2] = val; 177 out[1] = (val >> 8) | (reg << 6); 178 out[0] = reg >> 2; 179 } 180 181 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 182 { 183 u8 *b = buf; 184 185 b[0] = val << shift; 186 } 187 188 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 189 { 190 __be16 *b = buf; 191 192 b[0] = cpu_to_be16(val << shift); 193 } 194 195 static void regmap_format_16_native(void *buf, unsigned int val, 196 unsigned int shift) 197 { 198 *(u16 *)buf = val << shift; 199 } 200 201 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift) 202 { 203 u8 *b = buf; 204 205 val <<= shift; 206 207 b[0] = val >> 16; 208 b[1] = val >> 8; 209 b[2] = val; 210 } 211 212 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 213 { 214 __be32 *b = buf; 215 216 b[0] = cpu_to_be32(val << shift); 217 } 218 219 static void regmap_format_32_native(void *buf, unsigned int val, 220 unsigned int shift) 221 { 222 *(u32 *)buf = val << shift; 223 } 224 225 static void regmap_parse_inplace_noop(void *buf) 226 { 227 } 228 229 static unsigned int regmap_parse_8(const void *buf) 230 { 231 const u8 *b = buf; 232 233 return b[0]; 234 } 235 236 static unsigned int regmap_parse_16_be(const void *buf) 237 { 238 const __be16 *b = buf; 239 240 return be16_to_cpu(b[0]); 241 } 242 243 static void regmap_parse_16_be_inplace(void *buf) 244 { 245 __be16 *b = buf; 246 247 b[0] = be16_to_cpu(b[0]); 248 } 249 250 static unsigned int regmap_parse_16_native(const void *buf) 251 { 252 return *(u16 *)buf; 253 } 254 255 static unsigned int regmap_parse_24(const void *buf) 256 { 257 const u8 *b = buf; 258 unsigned int ret = b[2]; 259 ret |= ((unsigned int)b[1]) << 8; 260 ret |= ((unsigned int)b[0]) << 16; 261 262 return ret; 263 } 264 265 static unsigned int regmap_parse_32_be(const void *buf) 266 { 267 const __be32 *b = buf; 268 269 return be32_to_cpu(b[0]); 270 } 271 272 static void regmap_parse_32_be_inplace(void *buf) 273 { 274 __be32 *b = buf; 275 276 b[0] = be32_to_cpu(b[0]); 277 } 278 279 static unsigned int regmap_parse_32_native(const void *buf) 280 { 281 return *(u32 *)buf; 282 } 283 284 static void regmap_lock_mutex(void *__map) 285 { 286 struct regmap *map = __map; 287 mutex_lock(&map->mutex); 288 } 289 290 static void regmap_unlock_mutex(void *__map) 291 { 292 struct regmap *map = __map; 293 mutex_unlock(&map->mutex); 294 } 295 296 static void regmap_lock_spinlock(void *__map) 297 __acquires(&map->spinlock) 298 { 299 struct regmap *map = __map; 300 unsigned long flags; 301 302 spin_lock_irqsave(&map->spinlock, flags); 303 map->spinlock_flags = flags; 304 } 305 306 static void regmap_unlock_spinlock(void *__map) 307 __releases(&map->spinlock) 308 { 309 struct regmap *map = __map; 310 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 311 } 312 313 static void dev_get_regmap_release(struct device *dev, void *res) 314 { 315 /* 316 * We don't actually have anything to do here; the goal here 317 * is not to manage the regmap but to provide a simple way to 318 * get the regmap back given a struct device. 319 */ 320 } 321 322 static bool _regmap_range_add(struct regmap *map, 323 struct regmap_range_node *data) 324 { 325 struct rb_root *root = &map->range_tree; 326 struct rb_node **new = &(root->rb_node), *parent = NULL; 327 328 while (*new) { 329 struct regmap_range_node *this = 330 container_of(*new, struct regmap_range_node, node); 331 332 parent = *new; 333 if (data->range_max < this->range_min) 334 new = &((*new)->rb_left); 335 else if (data->range_min > this->range_max) 336 new = &((*new)->rb_right); 337 else 338 return false; 339 } 340 341 rb_link_node(&data->node, parent, new); 342 rb_insert_color(&data->node, root); 343 344 return true; 345 } 346 347 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 348 unsigned int reg) 349 { 350 struct rb_node *node = map->range_tree.rb_node; 351 352 while (node) { 353 struct regmap_range_node *this = 354 container_of(node, struct regmap_range_node, node); 355 356 if (reg < this->range_min) 357 node = node->rb_left; 358 else if (reg > this->range_max) 359 node = node->rb_right; 360 else 361 return this; 362 } 363 364 return NULL; 365 } 366 367 static void regmap_range_exit(struct regmap *map) 368 { 369 struct rb_node *next; 370 struct regmap_range_node *range_node; 371 372 next = rb_first(&map->range_tree); 373 while (next) { 374 range_node = rb_entry(next, struct regmap_range_node, node); 375 next = rb_next(&range_node->node); 376 rb_erase(&range_node->node, &map->range_tree); 377 kfree(range_node); 378 } 379 380 kfree(map->selector_work_buf); 381 } 382 383 /** 384 * regmap_init(): Initialise register map 385 * 386 * @dev: Device that will be interacted with 387 * @bus: Bus-specific callbacks to use with device 388 * @bus_context: Data passed to bus-specific callbacks 389 * @config: Configuration for register map 390 * 391 * The return value will be an ERR_PTR() on error or a valid pointer to 392 * a struct regmap. This function should generally not be called 393 * directly, it should be called by bus-specific init functions. 394 */ 395 struct regmap *regmap_init(struct device *dev, 396 const struct regmap_bus *bus, 397 void *bus_context, 398 const struct regmap_config *config) 399 { 400 struct regmap *map, **m; 401 int ret = -EINVAL; 402 enum regmap_endian reg_endian, val_endian; 403 int i, j; 404 405 if (!config) 406 goto err; 407 408 map = kzalloc(sizeof(*map), GFP_KERNEL); 409 if (map == NULL) { 410 ret = -ENOMEM; 411 goto err; 412 } 413 414 if (config->lock && config->unlock) { 415 map->lock = config->lock; 416 map->unlock = config->unlock; 417 map->lock_arg = config->lock_arg; 418 } else { 419 if ((bus && bus->fast_io) || 420 config->fast_io) { 421 spin_lock_init(&map->spinlock); 422 map->lock = regmap_lock_spinlock; 423 map->unlock = regmap_unlock_spinlock; 424 } else { 425 mutex_init(&map->mutex); 426 map->lock = regmap_lock_mutex; 427 map->unlock = regmap_unlock_mutex; 428 } 429 map->lock_arg = map; 430 } 431 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); 432 map->format.pad_bytes = config->pad_bits / 8; 433 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); 434 map->format.buf_size = DIV_ROUND_UP(config->reg_bits + 435 config->val_bits + config->pad_bits, 8); 436 map->reg_shift = config->pad_bits % 8; 437 if (config->reg_stride) 438 map->reg_stride = config->reg_stride; 439 else 440 map->reg_stride = 1; 441 map->use_single_rw = config->use_single_rw; 442 map->dev = dev; 443 map->bus = bus; 444 map->bus_context = bus_context; 445 map->max_register = config->max_register; 446 map->wr_table = config->wr_table; 447 map->rd_table = config->rd_table; 448 map->volatile_table = config->volatile_table; 449 map->precious_table = config->precious_table; 450 map->writeable_reg = config->writeable_reg; 451 map->readable_reg = config->readable_reg; 452 map->volatile_reg = config->volatile_reg; 453 map->precious_reg = config->precious_reg; 454 map->cache_type = config->cache_type; 455 map->name = config->name; 456 457 spin_lock_init(&map->async_lock); 458 INIT_LIST_HEAD(&map->async_list); 459 INIT_LIST_HEAD(&map->async_free); 460 init_waitqueue_head(&map->async_waitq); 461 462 if (config->read_flag_mask || config->write_flag_mask) { 463 map->read_flag_mask = config->read_flag_mask; 464 map->write_flag_mask = config->write_flag_mask; 465 } else if (bus) { 466 map->read_flag_mask = bus->read_flag_mask; 467 } 468 469 if (!bus) { 470 map->reg_read = config->reg_read; 471 map->reg_write = config->reg_write; 472 473 map->defer_caching = false; 474 goto skip_format_initialization; 475 } else { 476 map->reg_read = _regmap_bus_read; 477 } 478 479 reg_endian = config->reg_format_endian; 480 if (reg_endian == REGMAP_ENDIAN_DEFAULT) 481 reg_endian = bus->reg_format_endian_default; 482 if (reg_endian == REGMAP_ENDIAN_DEFAULT) 483 reg_endian = REGMAP_ENDIAN_BIG; 484 485 val_endian = config->val_format_endian; 486 if (val_endian == REGMAP_ENDIAN_DEFAULT) 487 val_endian = bus->val_format_endian_default; 488 if (val_endian == REGMAP_ENDIAN_DEFAULT) 489 val_endian = REGMAP_ENDIAN_BIG; 490 491 switch (config->reg_bits + map->reg_shift) { 492 case 2: 493 switch (config->val_bits) { 494 case 6: 495 map->format.format_write = regmap_format_2_6_write; 496 break; 497 default: 498 goto err_map; 499 } 500 break; 501 502 case 4: 503 switch (config->val_bits) { 504 case 12: 505 map->format.format_write = regmap_format_4_12_write; 506 break; 507 default: 508 goto err_map; 509 } 510 break; 511 512 case 7: 513 switch (config->val_bits) { 514 case 9: 515 map->format.format_write = regmap_format_7_9_write; 516 break; 517 default: 518 goto err_map; 519 } 520 break; 521 522 case 10: 523 switch (config->val_bits) { 524 case 14: 525 map->format.format_write = regmap_format_10_14_write; 526 break; 527 default: 528 goto err_map; 529 } 530 break; 531 532 case 8: 533 map->format.format_reg = regmap_format_8; 534 break; 535 536 case 16: 537 switch (reg_endian) { 538 case REGMAP_ENDIAN_BIG: 539 map->format.format_reg = regmap_format_16_be; 540 break; 541 case REGMAP_ENDIAN_NATIVE: 542 map->format.format_reg = regmap_format_16_native; 543 break; 544 default: 545 goto err_map; 546 } 547 break; 548 549 case 24: 550 if (reg_endian != REGMAP_ENDIAN_BIG) 551 goto err_map; 552 map->format.format_reg = regmap_format_24; 553 break; 554 555 case 32: 556 switch (reg_endian) { 557 case REGMAP_ENDIAN_BIG: 558 map->format.format_reg = regmap_format_32_be; 559 break; 560 case REGMAP_ENDIAN_NATIVE: 561 map->format.format_reg = regmap_format_32_native; 562 break; 563 default: 564 goto err_map; 565 } 566 break; 567 568 default: 569 goto err_map; 570 } 571 572 if (val_endian == REGMAP_ENDIAN_NATIVE) 573 map->format.parse_inplace = regmap_parse_inplace_noop; 574 575 switch (config->val_bits) { 576 case 8: 577 map->format.format_val = regmap_format_8; 578 map->format.parse_val = regmap_parse_8; 579 map->format.parse_inplace = regmap_parse_inplace_noop; 580 break; 581 case 16: 582 switch (val_endian) { 583 case REGMAP_ENDIAN_BIG: 584 map->format.format_val = regmap_format_16_be; 585 map->format.parse_val = regmap_parse_16_be; 586 map->format.parse_inplace = regmap_parse_16_be_inplace; 587 break; 588 case REGMAP_ENDIAN_NATIVE: 589 map->format.format_val = regmap_format_16_native; 590 map->format.parse_val = regmap_parse_16_native; 591 break; 592 default: 593 goto err_map; 594 } 595 break; 596 case 24: 597 if (val_endian != REGMAP_ENDIAN_BIG) 598 goto err_map; 599 map->format.format_val = regmap_format_24; 600 map->format.parse_val = regmap_parse_24; 601 break; 602 case 32: 603 switch (val_endian) { 604 case REGMAP_ENDIAN_BIG: 605 map->format.format_val = regmap_format_32_be; 606 map->format.parse_val = regmap_parse_32_be; 607 map->format.parse_inplace = regmap_parse_32_be_inplace; 608 break; 609 case REGMAP_ENDIAN_NATIVE: 610 map->format.format_val = regmap_format_32_native; 611 map->format.parse_val = regmap_parse_32_native; 612 break; 613 default: 614 goto err_map; 615 } 616 break; 617 } 618 619 if (map->format.format_write) { 620 if ((reg_endian != REGMAP_ENDIAN_BIG) || 621 (val_endian != REGMAP_ENDIAN_BIG)) 622 goto err_map; 623 map->use_single_rw = true; 624 } 625 626 if (!map->format.format_write && 627 !(map->format.format_reg && map->format.format_val)) 628 goto err_map; 629 630 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 631 if (map->work_buf == NULL) { 632 ret = -ENOMEM; 633 goto err_map; 634 } 635 636 if (map->format.format_write) { 637 map->defer_caching = false; 638 map->reg_write = _regmap_bus_formatted_write; 639 } else if (map->format.format_val) { 640 map->defer_caching = true; 641 map->reg_write = _regmap_bus_raw_write; 642 } 643 644 skip_format_initialization: 645 646 map->range_tree = RB_ROOT; 647 for (i = 0; i < config->num_ranges; i++) { 648 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 649 struct regmap_range_node *new; 650 651 /* Sanity check */ 652 if (range_cfg->range_max < range_cfg->range_min) { 653 dev_err(map->dev, "Invalid range %d: %d < %d\n", i, 654 range_cfg->range_max, range_cfg->range_min); 655 goto err_range; 656 } 657 658 if (range_cfg->range_max > map->max_register) { 659 dev_err(map->dev, "Invalid range %d: %d > %d\n", i, 660 range_cfg->range_max, map->max_register); 661 goto err_range; 662 } 663 664 if (range_cfg->selector_reg > map->max_register) { 665 dev_err(map->dev, 666 "Invalid range %d: selector out of map\n", i); 667 goto err_range; 668 } 669 670 if (range_cfg->window_len == 0) { 671 dev_err(map->dev, "Invalid range %d: window_len 0\n", 672 i); 673 goto err_range; 674 } 675 676 /* Make sure, that this register range has no selector 677 or data window within its boundary */ 678 for (j = 0; j < config->num_ranges; j++) { 679 unsigned sel_reg = config->ranges[j].selector_reg; 680 unsigned win_min = config->ranges[j].window_start; 681 unsigned win_max = win_min + 682 config->ranges[j].window_len - 1; 683 684 /* Allow data window inside its own virtual range */ 685 if (j == i) 686 continue; 687 688 if (range_cfg->range_min <= sel_reg && 689 sel_reg <= range_cfg->range_max) { 690 dev_err(map->dev, 691 "Range %d: selector for %d in window\n", 692 i, j); 693 goto err_range; 694 } 695 696 if (!(win_max < range_cfg->range_min || 697 win_min > range_cfg->range_max)) { 698 dev_err(map->dev, 699 "Range %d: window for %d in window\n", 700 i, j); 701 goto err_range; 702 } 703 } 704 705 new = kzalloc(sizeof(*new), GFP_KERNEL); 706 if (new == NULL) { 707 ret = -ENOMEM; 708 goto err_range; 709 } 710 711 new->map = map; 712 new->name = range_cfg->name; 713 new->range_min = range_cfg->range_min; 714 new->range_max = range_cfg->range_max; 715 new->selector_reg = range_cfg->selector_reg; 716 new->selector_mask = range_cfg->selector_mask; 717 new->selector_shift = range_cfg->selector_shift; 718 new->window_start = range_cfg->window_start; 719 new->window_len = range_cfg->window_len; 720 721 if (_regmap_range_add(map, new) == false) { 722 dev_err(map->dev, "Failed to add range %d\n", i); 723 kfree(new); 724 goto err_range; 725 } 726 727 if (map->selector_work_buf == NULL) { 728 map->selector_work_buf = 729 kzalloc(map->format.buf_size, GFP_KERNEL); 730 if (map->selector_work_buf == NULL) { 731 ret = -ENOMEM; 732 goto err_range; 733 } 734 } 735 } 736 737 regmap_debugfs_init(map, config->name); 738 739 ret = regcache_init(map, config); 740 if (ret != 0) 741 goto err_range; 742 743 /* Add a devres resource for dev_get_regmap() */ 744 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 745 if (!m) { 746 ret = -ENOMEM; 747 goto err_debugfs; 748 } 749 *m = map; 750 devres_add(dev, m); 751 752 return map; 753 754 err_debugfs: 755 regmap_debugfs_exit(map); 756 regcache_exit(map); 757 err_range: 758 regmap_range_exit(map); 759 kfree(map->work_buf); 760 err_map: 761 kfree(map); 762 err: 763 return ERR_PTR(ret); 764 } 765 EXPORT_SYMBOL_GPL(regmap_init); 766 767 static void devm_regmap_release(struct device *dev, void *res) 768 { 769 regmap_exit(*(struct regmap **)res); 770 } 771 772 /** 773 * devm_regmap_init(): Initialise managed register map 774 * 775 * @dev: Device that will be interacted with 776 * @bus: Bus-specific callbacks to use with device 777 * @bus_context: Data passed to bus-specific callbacks 778 * @config: Configuration for register map 779 * 780 * The return value will be an ERR_PTR() on error or a valid pointer 781 * to a struct regmap. This function should generally not be called 782 * directly, it should be called by bus-specific init functions. The 783 * map will be automatically freed by the device management code. 784 */ 785 struct regmap *devm_regmap_init(struct device *dev, 786 const struct regmap_bus *bus, 787 void *bus_context, 788 const struct regmap_config *config) 789 { 790 struct regmap **ptr, *regmap; 791 792 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 793 if (!ptr) 794 return ERR_PTR(-ENOMEM); 795 796 regmap = regmap_init(dev, bus, bus_context, config); 797 if (!IS_ERR(regmap)) { 798 *ptr = regmap; 799 devres_add(dev, ptr); 800 } else { 801 devres_free(ptr); 802 } 803 804 return regmap; 805 } 806 EXPORT_SYMBOL_GPL(devm_regmap_init); 807 808 static void regmap_field_init(struct regmap_field *rm_field, 809 struct regmap *regmap, struct reg_field reg_field) 810 { 811 int field_bits = reg_field.msb - reg_field.lsb + 1; 812 rm_field->regmap = regmap; 813 rm_field->reg = reg_field.reg; 814 rm_field->shift = reg_field.lsb; 815 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb); 816 rm_field->id_size = reg_field.id_size; 817 rm_field->id_offset = reg_field.id_offset; 818 } 819 820 /** 821 * devm_regmap_field_alloc(): Allocate and initialise a register field 822 * in a register map. 823 * 824 * @dev: Device that will be interacted with 825 * @regmap: regmap bank in which this register field is located. 826 * @reg_field: Register field with in the bank. 827 * 828 * The return value will be an ERR_PTR() on error or a valid pointer 829 * to a struct regmap_field. The regmap_field will be automatically freed 830 * by the device management code. 831 */ 832 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 833 struct regmap *regmap, struct reg_field reg_field) 834 { 835 struct regmap_field *rm_field = devm_kzalloc(dev, 836 sizeof(*rm_field), GFP_KERNEL); 837 if (!rm_field) 838 return ERR_PTR(-ENOMEM); 839 840 regmap_field_init(rm_field, regmap, reg_field); 841 842 return rm_field; 843 844 } 845 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 846 847 /** 848 * devm_regmap_field_free(): Free register field allocated using 849 * devm_regmap_field_alloc. Usally drivers need not call this function, 850 * as the memory allocated via devm will be freed as per device-driver 851 * life-cyle. 852 * 853 * @dev: Device that will be interacted with 854 * @field: regmap field which should be freed. 855 */ 856 void devm_regmap_field_free(struct device *dev, 857 struct regmap_field *field) 858 { 859 devm_kfree(dev, field); 860 } 861 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 862 863 /** 864 * regmap_field_alloc(): Allocate and initialise a register field 865 * in a register map. 866 * 867 * @regmap: regmap bank in which this register field is located. 868 * @reg_field: Register field with in the bank. 869 * 870 * The return value will be an ERR_PTR() on error or a valid pointer 871 * to a struct regmap_field. The regmap_field should be freed by the 872 * user once its finished working with it using regmap_field_free(). 873 */ 874 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 875 struct reg_field reg_field) 876 { 877 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 878 879 if (!rm_field) 880 return ERR_PTR(-ENOMEM); 881 882 regmap_field_init(rm_field, regmap, reg_field); 883 884 return rm_field; 885 } 886 EXPORT_SYMBOL_GPL(regmap_field_alloc); 887 888 /** 889 * regmap_field_free(): Free register field allocated using regmap_field_alloc 890 * 891 * @field: regmap field which should be freed. 892 */ 893 void regmap_field_free(struct regmap_field *field) 894 { 895 kfree(field); 896 } 897 EXPORT_SYMBOL_GPL(regmap_field_free); 898 899 /** 900 * regmap_reinit_cache(): Reinitialise the current register cache 901 * 902 * @map: Register map to operate on. 903 * @config: New configuration. Only the cache data will be used. 904 * 905 * Discard any existing register cache for the map and initialize a 906 * new cache. This can be used to restore the cache to defaults or to 907 * update the cache configuration to reflect runtime discovery of the 908 * hardware. 909 * 910 * No explicit locking is done here, the user needs to ensure that 911 * this function will not race with other calls to regmap. 912 */ 913 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 914 { 915 regcache_exit(map); 916 regmap_debugfs_exit(map); 917 918 map->max_register = config->max_register; 919 map->writeable_reg = config->writeable_reg; 920 map->readable_reg = config->readable_reg; 921 map->volatile_reg = config->volatile_reg; 922 map->precious_reg = config->precious_reg; 923 map->cache_type = config->cache_type; 924 925 regmap_debugfs_init(map, config->name); 926 927 map->cache_bypass = false; 928 map->cache_only = false; 929 930 return regcache_init(map, config); 931 } 932 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 933 934 /** 935 * regmap_exit(): Free a previously allocated register map 936 */ 937 void regmap_exit(struct regmap *map) 938 { 939 struct regmap_async *async; 940 941 regcache_exit(map); 942 regmap_debugfs_exit(map); 943 regmap_range_exit(map); 944 if (map->bus && map->bus->free_context) 945 map->bus->free_context(map->bus_context); 946 kfree(map->work_buf); 947 while (!list_empty(&map->async_free)) { 948 async = list_first_entry_or_null(&map->async_free, 949 struct regmap_async, 950 list); 951 list_del(&async->list); 952 kfree(async->work_buf); 953 kfree(async); 954 } 955 kfree(map); 956 } 957 EXPORT_SYMBOL_GPL(regmap_exit); 958 959 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 960 { 961 struct regmap **r = res; 962 if (!r || !*r) { 963 WARN_ON(!r || !*r); 964 return 0; 965 } 966 967 /* If the user didn't specify a name match any */ 968 if (data) 969 return (*r)->name == data; 970 else 971 return 1; 972 } 973 974 /** 975 * dev_get_regmap(): Obtain the regmap (if any) for a device 976 * 977 * @dev: Device to retrieve the map for 978 * @name: Optional name for the register map, usually NULL. 979 * 980 * Returns the regmap for the device if one is present, or NULL. If 981 * name is specified then it must match the name specified when 982 * registering the device, if it is NULL then the first regmap found 983 * will be used. Devices with multiple register maps are very rare, 984 * generic code should normally not need to specify a name. 985 */ 986 struct regmap *dev_get_regmap(struct device *dev, const char *name) 987 { 988 struct regmap **r = devres_find(dev, dev_get_regmap_release, 989 dev_get_regmap_match, (void *)name); 990 991 if (!r) 992 return NULL; 993 return *r; 994 } 995 EXPORT_SYMBOL_GPL(dev_get_regmap); 996 997 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 998 struct regmap_range_node *range, 999 unsigned int val_num) 1000 { 1001 void *orig_work_buf; 1002 unsigned int win_offset; 1003 unsigned int win_page; 1004 bool page_chg; 1005 int ret; 1006 1007 win_offset = (*reg - range->range_min) % range->window_len; 1008 win_page = (*reg - range->range_min) / range->window_len; 1009 1010 if (val_num > 1) { 1011 /* Bulk write shouldn't cross range boundary */ 1012 if (*reg + val_num - 1 > range->range_max) 1013 return -EINVAL; 1014 1015 /* ... or single page boundary */ 1016 if (val_num > range->window_len - win_offset) 1017 return -EINVAL; 1018 } 1019 1020 /* It is possible to have selector register inside data window. 1021 In that case, selector register is located on every page and 1022 it needs no page switching, when accessed alone. */ 1023 if (val_num > 1 || 1024 range->window_start + win_offset != range->selector_reg) { 1025 /* Use separate work_buf during page switching */ 1026 orig_work_buf = map->work_buf; 1027 map->work_buf = map->selector_work_buf; 1028 1029 ret = _regmap_update_bits(map, range->selector_reg, 1030 range->selector_mask, 1031 win_page << range->selector_shift, 1032 &page_chg); 1033 1034 map->work_buf = orig_work_buf; 1035 1036 if (ret != 0) 1037 return ret; 1038 } 1039 1040 *reg = range->window_start + win_offset; 1041 1042 return 0; 1043 } 1044 1045 int _regmap_raw_write(struct regmap *map, unsigned int reg, 1046 const void *val, size_t val_len) 1047 { 1048 struct regmap_range_node *range; 1049 unsigned long flags; 1050 u8 *u8 = map->work_buf; 1051 void *work_val = map->work_buf + map->format.reg_bytes + 1052 map->format.pad_bytes; 1053 void *buf; 1054 int ret = -ENOTSUPP; 1055 size_t len; 1056 int i; 1057 1058 WARN_ON(!map->bus); 1059 1060 /* Check for unwritable registers before we start */ 1061 if (map->writeable_reg) 1062 for (i = 0; i < val_len / map->format.val_bytes; i++) 1063 if (!map->writeable_reg(map->dev, 1064 reg + (i * map->reg_stride))) 1065 return -EINVAL; 1066 1067 if (!map->cache_bypass && map->format.parse_val) { 1068 unsigned int ival; 1069 int val_bytes = map->format.val_bytes; 1070 for (i = 0; i < val_len / val_bytes; i++) { 1071 ival = map->format.parse_val(val + (i * val_bytes)); 1072 ret = regcache_write(map, reg + (i * map->reg_stride), 1073 ival); 1074 if (ret) { 1075 dev_err(map->dev, 1076 "Error in caching of register: %x ret: %d\n", 1077 reg + i, ret); 1078 return ret; 1079 } 1080 } 1081 if (map->cache_only) { 1082 map->cache_dirty = true; 1083 return 0; 1084 } 1085 } 1086 1087 range = _regmap_range_lookup(map, reg); 1088 if (range) { 1089 int val_num = val_len / map->format.val_bytes; 1090 int win_offset = (reg - range->range_min) % range->window_len; 1091 int win_residue = range->window_len - win_offset; 1092 1093 /* If the write goes beyond the end of the window split it */ 1094 while (val_num > win_residue) { 1095 dev_dbg(map->dev, "Writing window %d/%zu\n", 1096 win_residue, val_len / map->format.val_bytes); 1097 ret = _regmap_raw_write(map, reg, val, win_residue * 1098 map->format.val_bytes); 1099 if (ret != 0) 1100 return ret; 1101 1102 reg += win_residue; 1103 val_num -= win_residue; 1104 val += win_residue * map->format.val_bytes; 1105 val_len -= win_residue * map->format.val_bytes; 1106 1107 win_offset = (reg - range->range_min) % 1108 range->window_len; 1109 win_residue = range->window_len - win_offset; 1110 } 1111 1112 ret = _regmap_select_page(map, ®, range, val_num); 1113 if (ret != 0) 1114 return ret; 1115 } 1116 1117 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1118 1119 u8[0] |= map->write_flag_mask; 1120 1121 /* 1122 * Essentially all I/O mechanisms will be faster with a single 1123 * buffer to write. Since register syncs often generate raw 1124 * writes of single registers optimise that case. 1125 */ 1126 if (val != work_val && val_len == map->format.val_bytes) { 1127 memcpy(work_val, val, map->format.val_bytes); 1128 val = work_val; 1129 } 1130 1131 if (map->async && map->bus->async_write) { 1132 struct regmap_async *async; 1133 1134 trace_regmap_async_write_start(map->dev, reg, val_len); 1135 1136 spin_lock_irqsave(&map->async_lock, flags); 1137 async = list_first_entry_or_null(&map->async_free, 1138 struct regmap_async, 1139 list); 1140 if (async) 1141 list_del(&async->list); 1142 spin_unlock_irqrestore(&map->async_lock, flags); 1143 1144 if (!async) { 1145 async = map->bus->async_alloc(); 1146 if (!async) 1147 return -ENOMEM; 1148 1149 async->work_buf = kzalloc(map->format.buf_size, 1150 GFP_KERNEL | GFP_DMA); 1151 if (!async->work_buf) { 1152 kfree(async); 1153 return -ENOMEM; 1154 } 1155 } 1156 1157 async->map = map; 1158 1159 /* If the caller supplied the value we can use it safely. */ 1160 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1161 map->format.reg_bytes + map->format.val_bytes); 1162 1163 spin_lock_irqsave(&map->async_lock, flags); 1164 list_add_tail(&async->list, &map->async_list); 1165 spin_unlock_irqrestore(&map->async_lock, flags); 1166 1167 if (val != work_val) 1168 ret = map->bus->async_write(map->bus_context, 1169 async->work_buf, 1170 map->format.reg_bytes + 1171 map->format.pad_bytes, 1172 val, val_len, async); 1173 else 1174 ret = map->bus->async_write(map->bus_context, 1175 async->work_buf, 1176 map->format.reg_bytes + 1177 map->format.pad_bytes + 1178 val_len, NULL, 0, async); 1179 1180 if (ret != 0) { 1181 dev_err(map->dev, "Failed to schedule write: %d\n", 1182 ret); 1183 1184 spin_lock_irqsave(&map->async_lock, flags); 1185 list_move(&async->list, &map->async_free); 1186 spin_unlock_irqrestore(&map->async_lock, flags); 1187 } 1188 1189 return ret; 1190 } 1191 1192 trace_regmap_hw_write_start(map->dev, reg, 1193 val_len / map->format.val_bytes); 1194 1195 /* If we're doing a single register write we can probably just 1196 * send the work_buf directly, otherwise try to do a gather 1197 * write. 1198 */ 1199 if (val == work_val) 1200 ret = map->bus->write(map->bus_context, map->work_buf, 1201 map->format.reg_bytes + 1202 map->format.pad_bytes + 1203 val_len); 1204 else if (map->bus->gather_write) 1205 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1206 map->format.reg_bytes + 1207 map->format.pad_bytes, 1208 val, val_len); 1209 1210 /* If that didn't work fall back on linearising by hand. */ 1211 if (ret == -ENOTSUPP) { 1212 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1213 buf = kzalloc(len, GFP_KERNEL); 1214 if (!buf) 1215 return -ENOMEM; 1216 1217 memcpy(buf, map->work_buf, map->format.reg_bytes); 1218 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1219 val, val_len); 1220 ret = map->bus->write(map->bus_context, buf, len); 1221 1222 kfree(buf); 1223 } 1224 1225 trace_regmap_hw_write_done(map->dev, reg, 1226 val_len / map->format.val_bytes); 1227 1228 return ret; 1229 } 1230 1231 /** 1232 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1233 * 1234 * @map: Map to check. 1235 */ 1236 bool regmap_can_raw_write(struct regmap *map) 1237 { 1238 return map->bus && map->format.format_val && map->format.format_reg; 1239 } 1240 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1241 1242 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1243 unsigned int val) 1244 { 1245 int ret; 1246 struct regmap_range_node *range; 1247 struct regmap *map = context; 1248 1249 WARN_ON(!map->bus || !map->format.format_write); 1250 1251 range = _regmap_range_lookup(map, reg); 1252 if (range) { 1253 ret = _regmap_select_page(map, ®, range, 1); 1254 if (ret != 0) 1255 return ret; 1256 } 1257 1258 map->format.format_write(map, reg, val); 1259 1260 trace_regmap_hw_write_start(map->dev, reg, 1); 1261 1262 ret = map->bus->write(map->bus_context, map->work_buf, 1263 map->format.buf_size); 1264 1265 trace_regmap_hw_write_done(map->dev, reg, 1); 1266 1267 return ret; 1268 } 1269 1270 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1271 unsigned int val) 1272 { 1273 struct regmap *map = context; 1274 1275 WARN_ON(!map->bus || !map->format.format_val); 1276 1277 map->format.format_val(map->work_buf + map->format.reg_bytes 1278 + map->format.pad_bytes, val, 0); 1279 return _regmap_raw_write(map, reg, 1280 map->work_buf + 1281 map->format.reg_bytes + 1282 map->format.pad_bytes, 1283 map->format.val_bytes); 1284 } 1285 1286 static inline void *_regmap_map_get_context(struct regmap *map) 1287 { 1288 return (map->bus) ? map : map->bus_context; 1289 } 1290 1291 int _regmap_write(struct regmap *map, unsigned int reg, 1292 unsigned int val) 1293 { 1294 int ret; 1295 void *context = _regmap_map_get_context(map); 1296 1297 if (!regmap_writeable(map, reg)) 1298 return -EIO; 1299 1300 if (!map->cache_bypass && !map->defer_caching) { 1301 ret = regcache_write(map, reg, val); 1302 if (ret != 0) 1303 return ret; 1304 if (map->cache_only) { 1305 map->cache_dirty = true; 1306 return 0; 1307 } 1308 } 1309 1310 #ifdef LOG_DEVICE 1311 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0) 1312 dev_info(map->dev, "%x <= %x\n", reg, val); 1313 #endif 1314 1315 trace_regmap_reg_write(map->dev, reg, val); 1316 1317 return map->reg_write(context, reg, val); 1318 } 1319 1320 /** 1321 * regmap_write(): Write a value to a single register 1322 * 1323 * @map: Register map to write to 1324 * @reg: Register to write to 1325 * @val: Value to be written 1326 * 1327 * A value of zero will be returned on success, a negative errno will 1328 * be returned in error cases. 1329 */ 1330 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 1331 { 1332 int ret; 1333 1334 if (reg % map->reg_stride) 1335 return -EINVAL; 1336 1337 map->lock(map->lock_arg); 1338 1339 ret = _regmap_write(map, reg, val); 1340 1341 map->unlock(map->lock_arg); 1342 1343 return ret; 1344 } 1345 EXPORT_SYMBOL_GPL(regmap_write); 1346 1347 /** 1348 * regmap_write_async(): Write a value to a single register asynchronously 1349 * 1350 * @map: Register map to write to 1351 * @reg: Register to write to 1352 * @val: Value to be written 1353 * 1354 * A value of zero will be returned on success, a negative errno will 1355 * be returned in error cases. 1356 */ 1357 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 1358 { 1359 int ret; 1360 1361 if (reg % map->reg_stride) 1362 return -EINVAL; 1363 1364 map->lock(map->lock_arg); 1365 1366 map->async = true; 1367 1368 ret = _regmap_write(map, reg, val); 1369 1370 map->async = false; 1371 1372 map->unlock(map->lock_arg); 1373 1374 return ret; 1375 } 1376 EXPORT_SYMBOL_GPL(regmap_write_async); 1377 1378 /** 1379 * regmap_raw_write(): Write raw values to one or more registers 1380 * 1381 * @map: Register map to write to 1382 * @reg: Initial register to write to 1383 * @val: Block of data to be written, laid out for direct transmission to the 1384 * device 1385 * @val_len: Length of data pointed to by val. 1386 * 1387 * This function is intended to be used for things like firmware 1388 * download where a large block of data needs to be transferred to the 1389 * device. No formatting will be done on the data provided. 1390 * 1391 * A value of zero will be returned on success, a negative errno will 1392 * be returned in error cases. 1393 */ 1394 int regmap_raw_write(struct regmap *map, unsigned int reg, 1395 const void *val, size_t val_len) 1396 { 1397 int ret; 1398 1399 if (!regmap_can_raw_write(map)) 1400 return -EINVAL; 1401 if (val_len % map->format.val_bytes) 1402 return -EINVAL; 1403 1404 map->lock(map->lock_arg); 1405 1406 ret = _regmap_raw_write(map, reg, val, val_len); 1407 1408 map->unlock(map->lock_arg); 1409 1410 return ret; 1411 } 1412 EXPORT_SYMBOL_GPL(regmap_raw_write); 1413 1414 /** 1415 * regmap_field_write(): Write a value to a single register field 1416 * 1417 * @field: Register field to write to 1418 * @val: Value to be written 1419 * 1420 * A value of zero will be returned on success, a negative errno will 1421 * be returned in error cases. 1422 */ 1423 int regmap_field_write(struct regmap_field *field, unsigned int val) 1424 { 1425 return regmap_update_bits(field->regmap, field->reg, 1426 field->mask, val << field->shift); 1427 } 1428 EXPORT_SYMBOL_GPL(regmap_field_write); 1429 1430 /** 1431 * regmap_field_update_bits(): Perform a read/modify/write cycle 1432 * on the register field 1433 * 1434 * @field: Register field to write to 1435 * @mask: Bitmask to change 1436 * @val: Value to be written 1437 * 1438 * A value of zero will be returned on success, a negative errno will 1439 * be returned in error cases. 1440 */ 1441 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val) 1442 { 1443 mask = (mask << field->shift) & field->mask; 1444 1445 return regmap_update_bits(field->regmap, field->reg, 1446 mask, val << field->shift); 1447 } 1448 EXPORT_SYMBOL_GPL(regmap_field_update_bits); 1449 1450 /** 1451 * regmap_fields_write(): Write a value to a single register field with port ID 1452 * 1453 * @field: Register field to write to 1454 * @id: port ID 1455 * @val: Value to be written 1456 * 1457 * A value of zero will be returned on success, a negative errno will 1458 * be returned in error cases. 1459 */ 1460 int regmap_fields_write(struct regmap_field *field, unsigned int id, 1461 unsigned int val) 1462 { 1463 if (id >= field->id_size) 1464 return -EINVAL; 1465 1466 return regmap_update_bits(field->regmap, 1467 field->reg + (field->id_offset * id), 1468 field->mask, val << field->shift); 1469 } 1470 EXPORT_SYMBOL_GPL(regmap_fields_write); 1471 1472 /** 1473 * regmap_fields_update_bits(): Perform a read/modify/write cycle 1474 * on the register field 1475 * 1476 * @field: Register field to write to 1477 * @id: port ID 1478 * @mask: Bitmask to change 1479 * @val: Value to be written 1480 * 1481 * A value of zero will be returned on success, a negative errno will 1482 * be returned in error cases. 1483 */ 1484 int regmap_fields_update_bits(struct regmap_field *field, unsigned int id, 1485 unsigned int mask, unsigned int val) 1486 { 1487 if (id >= field->id_size) 1488 return -EINVAL; 1489 1490 mask = (mask << field->shift) & field->mask; 1491 1492 return regmap_update_bits(field->regmap, 1493 field->reg + (field->id_offset * id), 1494 mask, val << field->shift); 1495 } 1496 EXPORT_SYMBOL_GPL(regmap_fields_update_bits); 1497 1498 /* 1499 * regmap_bulk_write(): Write multiple registers to the device 1500 * 1501 * @map: Register map to write to 1502 * @reg: First register to be write from 1503 * @val: Block of data to be written, in native register size for device 1504 * @val_count: Number of registers to write 1505 * 1506 * This function is intended to be used for writing a large block of 1507 * data to the device either in single transfer or multiple transfer. 1508 * 1509 * A value of zero will be returned on success, a negative errno will 1510 * be returned in error cases. 1511 */ 1512 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 1513 size_t val_count) 1514 { 1515 int ret = 0, i; 1516 size_t val_bytes = map->format.val_bytes; 1517 void *wval; 1518 1519 if (!map->bus) 1520 return -EINVAL; 1521 if (!map->format.parse_inplace) 1522 return -EINVAL; 1523 if (reg % map->reg_stride) 1524 return -EINVAL; 1525 1526 map->lock(map->lock_arg); 1527 1528 /* No formatting is require if val_byte is 1 */ 1529 if (val_bytes == 1) { 1530 wval = (void *)val; 1531 } else { 1532 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL); 1533 if (!wval) { 1534 ret = -ENOMEM; 1535 dev_err(map->dev, "Error in memory allocation\n"); 1536 goto out; 1537 } 1538 for (i = 0; i < val_count * val_bytes; i += val_bytes) 1539 map->format.parse_inplace(wval + i); 1540 } 1541 /* 1542 * Some devices does not support bulk write, for 1543 * them we have a series of single write operations. 1544 */ 1545 if (map->use_single_rw) { 1546 for (i = 0; i < val_count; i++) { 1547 ret = _regmap_raw_write(map, 1548 reg + (i * map->reg_stride), 1549 val + (i * val_bytes), 1550 val_bytes); 1551 if (ret != 0) 1552 goto out; 1553 } 1554 } else { 1555 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count); 1556 } 1557 1558 if (val_bytes != 1) 1559 kfree(wval); 1560 1561 out: 1562 map->unlock(map->lock_arg); 1563 return ret; 1564 } 1565 EXPORT_SYMBOL_GPL(regmap_bulk_write); 1566 1567 /* 1568 * regmap_multi_reg_write(): Write multiple registers to the device 1569 * 1570 * where the set of register are supplied in any order 1571 * 1572 * @map: Register map to write to 1573 * @regs: Array of structures containing register,value to be written 1574 * @num_regs: Number of registers to write 1575 * 1576 * This function is intended to be used for writing a large block of data 1577 * atomically to the device in single transfer for those I2C client devices 1578 * that implement this alternative block write mode. 1579 * 1580 * A value of zero will be returned on success, a negative errno will 1581 * be returned in error cases. 1582 */ 1583 int regmap_multi_reg_write(struct regmap *map, struct reg_default *regs, 1584 int num_regs) 1585 { 1586 int ret = 0, i; 1587 1588 for (i = 0; i < num_regs; i++) { 1589 int reg = regs[i].reg; 1590 if (reg % map->reg_stride) 1591 return -EINVAL; 1592 } 1593 1594 map->lock(map->lock_arg); 1595 1596 for (i = 0; i < num_regs; i++) { 1597 ret = _regmap_write(map, regs[i].reg, regs[i].def); 1598 if (ret != 0) 1599 goto out; 1600 } 1601 out: 1602 map->unlock(map->lock_arg); 1603 1604 return ret; 1605 } 1606 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 1607 1608 /** 1609 * regmap_raw_write_async(): Write raw values to one or more registers 1610 * asynchronously 1611 * 1612 * @map: Register map to write to 1613 * @reg: Initial register to write to 1614 * @val: Block of data to be written, laid out for direct transmission to the 1615 * device. Must be valid until regmap_async_complete() is called. 1616 * @val_len: Length of data pointed to by val. 1617 * 1618 * This function is intended to be used for things like firmware 1619 * download where a large block of data needs to be transferred to the 1620 * device. No formatting will be done on the data provided. 1621 * 1622 * If supported by the underlying bus the write will be scheduled 1623 * asynchronously, helping maximise I/O speed on higher speed buses 1624 * like SPI. regmap_async_complete() can be called to ensure that all 1625 * asynchrnous writes have been completed. 1626 * 1627 * A value of zero will be returned on success, a negative errno will 1628 * be returned in error cases. 1629 */ 1630 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 1631 const void *val, size_t val_len) 1632 { 1633 int ret; 1634 1635 if (val_len % map->format.val_bytes) 1636 return -EINVAL; 1637 if (reg % map->reg_stride) 1638 return -EINVAL; 1639 1640 map->lock(map->lock_arg); 1641 1642 map->async = true; 1643 1644 ret = _regmap_raw_write(map, reg, val, val_len); 1645 1646 map->async = false; 1647 1648 map->unlock(map->lock_arg); 1649 1650 return ret; 1651 } 1652 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 1653 1654 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 1655 unsigned int val_len) 1656 { 1657 struct regmap_range_node *range; 1658 u8 *u8 = map->work_buf; 1659 int ret; 1660 1661 WARN_ON(!map->bus); 1662 1663 range = _regmap_range_lookup(map, reg); 1664 if (range) { 1665 ret = _regmap_select_page(map, ®, range, 1666 val_len / map->format.val_bytes); 1667 if (ret != 0) 1668 return ret; 1669 } 1670 1671 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1672 1673 /* 1674 * Some buses or devices flag reads by setting the high bits in the 1675 * register addresss; since it's always the high bits for all 1676 * current formats we can do this here rather than in 1677 * formatting. This may break if we get interesting formats. 1678 */ 1679 u8[0] |= map->read_flag_mask; 1680 1681 trace_regmap_hw_read_start(map->dev, reg, 1682 val_len / map->format.val_bytes); 1683 1684 ret = map->bus->read(map->bus_context, map->work_buf, 1685 map->format.reg_bytes + map->format.pad_bytes, 1686 val, val_len); 1687 1688 trace_regmap_hw_read_done(map->dev, reg, 1689 val_len / map->format.val_bytes); 1690 1691 return ret; 1692 } 1693 1694 static int _regmap_bus_read(void *context, unsigned int reg, 1695 unsigned int *val) 1696 { 1697 int ret; 1698 struct regmap *map = context; 1699 1700 if (!map->format.parse_val) 1701 return -EINVAL; 1702 1703 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes); 1704 if (ret == 0) 1705 *val = map->format.parse_val(map->work_buf); 1706 1707 return ret; 1708 } 1709 1710 static int _regmap_read(struct regmap *map, unsigned int reg, 1711 unsigned int *val) 1712 { 1713 int ret; 1714 void *context = _regmap_map_get_context(map); 1715 1716 WARN_ON(!map->reg_read); 1717 1718 if (!map->cache_bypass) { 1719 ret = regcache_read(map, reg, val); 1720 if (ret == 0) 1721 return 0; 1722 } 1723 1724 if (map->cache_only) 1725 return -EBUSY; 1726 1727 ret = map->reg_read(context, reg, val); 1728 if (ret == 0) { 1729 #ifdef LOG_DEVICE 1730 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0) 1731 dev_info(map->dev, "%x => %x\n", reg, *val); 1732 #endif 1733 1734 trace_regmap_reg_read(map->dev, reg, *val); 1735 1736 if (!map->cache_bypass) 1737 regcache_write(map, reg, *val); 1738 } 1739 1740 return ret; 1741 } 1742 1743 /** 1744 * regmap_read(): Read a value from a single register 1745 * 1746 * @map: Register map to read from 1747 * @reg: Register to be read from 1748 * @val: Pointer to store read value 1749 * 1750 * A value of zero will be returned on success, a negative errno will 1751 * be returned in error cases. 1752 */ 1753 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 1754 { 1755 int ret; 1756 1757 if (reg % map->reg_stride) 1758 return -EINVAL; 1759 1760 map->lock(map->lock_arg); 1761 1762 ret = _regmap_read(map, reg, val); 1763 1764 map->unlock(map->lock_arg); 1765 1766 return ret; 1767 } 1768 EXPORT_SYMBOL_GPL(regmap_read); 1769 1770 /** 1771 * regmap_raw_read(): Read raw data from the device 1772 * 1773 * @map: Register map to read from 1774 * @reg: First register to be read from 1775 * @val: Pointer to store read value 1776 * @val_len: Size of data to read 1777 * 1778 * A value of zero will be returned on success, a negative errno will 1779 * be returned in error cases. 1780 */ 1781 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 1782 size_t val_len) 1783 { 1784 size_t val_bytes = map->format.val_bytes; 1785 size_t val_count = val_len / val_bytes; 1786 unsigned int v; 1787 int ret, i; 1788 1789 if (!map->bus) 1790 return -EINVAL; 1791 if (val_len % map->format.val_bytes) 1792 return -EINVAL; 1793 if (reg % map->reg_stride) 1794 return -EINVAL; 1795 1796 map->lock(map->lock_arg); 1797 1798 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 1799 map->cache_type == REGCACHE_NONE) { 1800 /* Physical block read if there's no cache involved */ 1801 ret = _regmap_raw_read(map, reg, val, val_len); 1802 1803 } else { 1804 /* Otherwise go word by word for the cache; should be low 1805 * cost as we expect to hit the cache. 1806 */ 1807 for (i = 0; i < val_count; i++) { 1808 ret = _regmap_read(map, reg + (i * map->reg_stride), 1809 &v); 1810 if (ret != 0) 1811 goto out; 1812 1813 map->format.format_val(val + (i * val_bytes), v, 0); 1814 } 1815 } 1816 1817 out: 1818 map->unlock(map->lock_arg); 1819 1820 return ret; 1821 } 1822 EXPORT_SYMBOL_GPL(regmap_raw_read); 1823 1824 /** 1825 * regmap_field_read(): Read a value to a single register field 1826 * 1827 * @field: Register field to read from 1828 * @val: Pointer to store read value 1829 * 1830 * A value of zero will be returned on success, a negative errno will 1831 * be returned in error cases. 1832 */ 1833 int regmap_field_read(struct regmap_field *field, unsigned int *val) 1834 { 1835 int ret; 1836 unsigned int reg_val; 1837 ret = regmap_read(field->regmap, field->reg, ®_val); 1838 if (ret != 0) 1839 return ret; 1840 1841 reg_val &= field->mask; 1842 reg_val >>= field->shift; 1843 *val = reg_val; 1844 1845 return ret; 1846 } 1847 EXPORT_SYMBOL_GPL(regmap_field_read); 1848 1849 /** 1850 * regmap_fields_read(): Read a value to a single register field with port ID 1851 * 1852 * @field: Register field to read from 1853 * @id: port ID 1854 * @val: Pointer to store read value 1855 * 1856 * A value of zero will be returned on success, a negative errno will 1857 * be returned in error cases. 1858 */ 1859 int regmap_fields_read(struct regmap_field *field, unsigned int id, 1860 unsigned int *val) 1861 { 1862 int ret; 1863 unsigned int reg_val; 1864 1865 if (id >= field->id_size) 1866 return -EINVAL; 1867 1868 ret = regmap_read(field->regmap, 1869 field->reg + (field->id_offset * id), 1870 ®_val); 1871 if (ret != 0) 1872 return ret; 1873 1874 reg_val &= field->mask; 1875 reg_val >>= field->shift; 1876 *val = reg_val; 1877 1878 return ret; 1879 } 1880 EXPORT_SYMBOL_GPL(regmap_fields_read); 1881 1882 /** 1883 * regmap_bulk_read(): Read multiple registers from the device 1884 * 1885 * @map: Register map to read from 1886 * @reg: First register to be read from 1887 * @val: Pointer to store read value, in native register size for device 1888 * @val_count: Number of registers to read 1889 * 1890 * A value of zero will be returned on success, a negative errno will 1891 * be returned in error cases. 1892 */ 1893 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 1894 size_t val_count) 1895 { 1896 int ret, i; 1897 size_t val_bytes = map->format.val_bytes; 1898 bool vol = regmap_volatile_range(map, reg, val_count); 1899 1900 if (!map->bus) 1901 return -EINVAL; 1902 if (!map->format.parse_inplace) 1903 return -EINVAL; 1904 if (reg % map->reg_stride) 1905 return -EINVAL; 1906 1907 if (vol || map->cache_type == REGCACHE_NONE) { 1908 /* 1909 * Some devices does not support bulk read, for 1910 * them we have a series of single read operations. 1911 */ 1912 if (map->use_single_rw) { 1913 for (i = 0; i < val_count; i++) { 1914 ret = regmap_raw_read(map, 1915 reg + (i * map->reg_stride), 1916 val + (i * val_bytes), 1917 val_bytes); 1918 if (ret != 0) 1919 return ret; 1920 } 1921 } else { 1922 ret = regmap_raw_read(map, reg, val, 1923 val_bytes * val_count); 1924 if (ret != 0) 1925 return ret; 1926 } 1927 1928 for (i = 0; i < val_count * val_bytes; i += val_bytes) 1929 map->format.parse_inplace(val + i); 1930 } else { 1931 for (i = 0; i < val_count; i++) { 1932 unsigned int ival; 1933 ret = regmap_read(map, reg + (i * map->reg_stride), 1934 &ival); 1935 if (ret != 0) 1936 return ret; 1937 memcpy(val + (i * val_bytes), &ival, val_bytes); 1938 } 1939 } 1940 1941 return 0; 1942 } 1943 EXPORT_SYMBOL_GPL(regmap_bulk_read); 1944 1945 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 1946 unsigned int mask, unsigned int val, 1947 bool *change) 1948 { 1949 int ret; 1950 unsigned int tmp, orig; 1951 1952 ret = _regmap_read(map, reg, &orig); 1953 if (ret != 0) 1954 return ret; 1955 1956 tmp = orig & ~mask; 1957 tmp |= val & mask; 1958 1959 if (tmp != orig) { 1960 ret = _regmap_write(map, reg, tmp); 1961 *change = true; 1962 } else { 1963 *change = false; 1964 } 1965 1966 return ret; 1967 } 1968 1969 /** 1970 * regmap_update_bits: Perform a read/modify/write cycle on the register map 1971 * 1972 * @map: Register map to update 1973 * @reg: Register to update 1974 * @mask: Bitmask to change 1975 * @val: New value for bitmask 1976 * 1977 * Returns zero for success, a negative number on error. 1978 */ 1979 int regmap_update_bits(struct regmap *map, unsigned int reg, 1980 unsigned int mask, unsigned int val) 1981 { 1982 bool change; 1983 int ret; 1984 1985 map->lock(map->lock_arg); 1986 ret = _regmap_update_bits(map, reg, mask, val, &change); 1987 map->unlock(map->lock_arg); 1988 1989 return ret; 1990 } 1991 EXPORT_SYMBOL_GPL(regmap_update_bits); 1992 1993 /** 1994 * regmap_update_bits_async: Perform a read/modify/write cycle on the register 1995 * map asynchronously 1996 * 1997 * @map: Register map to update 1998 * @reg: Register to update 1999 * @mask: Bitmask to change 2000 * @val: New value for bitmask 2001 * 2002 * With most buses the read must be done synchronously so this is most 2003 * useful for devices with a cache which do not need to interact with 2004 * the hardware to determine the current register value. 2005 * 2006 * Returns zero for success, a negative number on error. 2007 */ 2008 int regmap_update_bits_async(struct regmap *map, unsigned int reg, 2009 unsigned int mask, unsigned int val) 2010 { 2011 bool change; 2012 int ret; 2013 2014 map->lock(map->lock_arg); 2015 2016 map->async = true; 2017 2018 ret = _regmap_update_bits(map, reg, mask, val, &change); 2019 2020 map->async = false; 2021 2022 map->unlock(map->lock_arg); 2023 2024 return ret; 2025 } 2026 EXPORT_SYMBOL_GPL(regmap_update_bits_async); 2027 2028 /** 2029 * regmap_update_bits_check: Perform a read/modify/write cycle on the 2030 * register map and report if updated 2031 * 2032 * @map: Register map to update 2033 * @reg: Register to update 2034 * @mask: Bitmask to change 2035 * @val: New value for bitmask 2036 * @change: Boolean indicating if a write was done 2037 * 2038 * Returns zero for success, a negative number on error. 2039 */ 2040 int regmap_update_bits_check(struct regmap *map, unsigned int reg, 2041 unsigned int mask, unsigned int val, 2042 bool *change) 2043 { 2044 int ret; 2045 2046 map->lock(map->lock_arg); 2047 ret = _regmap_update_bits(map, reg, mask, val, change); 2048 map->unlock(map->lock_arg); 2049 return ret; 2050 } 2051 EXPORT_SYMBOL_GPL(regmap_update_bits_check); 2052 2053 /** 2054 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the 2055 * register map asynchronously and report if 2056 * updated 2057 * 2058 * @map: Register map to update 2059 * @reg: Register to update 2060 * @mask: Bitmask to change 2061 * @val: New value for bitmask 2062 * @change: Boolean indicating if a write was done 2063 * 2064 * With most buses the read must be done synchronously so this is most 2065 * useful for devices with a cache which do not need to interact with 2066 * the hardware to determine the current register value. 2067 * 2068 * Returns zero for success, a negative number on error. 2069 */ 2070 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg, 2071 unsigned int mask, unsigned int val, 2072 bool *change) 2073 { 2074 int ret; 2075 2076 map->lock(map->lock_arg); 2077 2078 map->async = true; 2079 2080 ret = _regmap_update_bits(map, reg, mask, val, change); 2081 2082 map->async = false; 2083 2084 map->unlock(map->lock_arg); 2085 2086 return ret; 2087 } 2088 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async); 2089 2090 void regmap_async_complete_cb(struct regmap_async *async, int ret) 2091 { 2092 struct regmap *map = async->map; 2093 bool wake; 2094 2095 trace_regmap_async_io_complete(map->dev); 2096 2097 spin_lock(&map->async_lock); 2098 list_move(&async->list, &map->async_free); 2099 wake = list_empty(&map->async_list); 2100 2101 if (ret != 0) 2102 map->async_ret = ret; 2103 2104 spin_unlock(&map->async_lock); 2105 2106 if (wake) 2107 wake_up(&map->async_waitq); 2108 } 2109 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 2110 2111 static int regmap_async_is_done(struct regmap *map) 2112 { 2113 unsigned long flags; 2114 int ret; 2115 2116 spin_lock_irqsave(&map->async_lock, flags); 2117 ret = list_empty(&map->async_list); 2118 spin_unlock_irqrestore(&map->async_lock, flags); 2119 2120 return ret; 2121 } 2122 2123 /** 2124 * regmap_async_complete: Ensure all asynchronous I/O has completed. 2125 * 2126 * @map: Map to operate on. 2127 * 2128 * Blocks until any pending asynchronous I/O has completed. Returns 2129 * an error code for any failed I/O operations. 2130 */ 2131 int regmap_async_complete(struct regmap *map) 2132 { 2133 unsigned long flags; 2134 int ret; 2135 2136 /* Nothing to do with no async support */ 2137 if (!map->bus || !map->bus->async_write) 2138 return 0; 2139 2140 trace_regmap_async_complete_start(map->dev); 2141 2142 wait_event(map->async_waitq, regmap_async_is_done(map)); 2143 2144 spin_lock_irqsave(&map->async_lock, flags); 2145 ret = map->async_ret; 2146 map->async_ret = 0; 2147 spin_unlock_irqrestore(&map->async_lock, flags); 2148 2149 trace_regmap_async_complete_done(map->dev); 2150 2151 return ret; 2152 } 2153 EXPORT_SYMBOL_GPL(regmap_async_complete); 2154 2155 /** 2156 * regmap_register_patch: Register and apply register updates to be applied 2157 * on device initialistion 2158 * 2159 * @map: Register map to apply updates to. 2160 * @regs: Values to update. 2161 * @num_regs: Number of entries in regs. 2162 * 2163 * Register a set of register updates to be applied to the device 2164 * whenever the device registers are synchronised with the cache and 2165 * apply them immediately. Typically this is used to apply 2166 * corrections to be applied to the device defaults on startup, such 2167 * as the updates some vendors provide to undocumented registers. 2168 */ 2169 int regmap_register_patch(struct regmap *map, const struct reg_default *regs, 2170 int num_regs) 2171 { 2172 struct reg_default *p; 2173 int i, ret; 2174 bool bypass; 2175 2176 map->lock(map->lock_arg); 2177 2178 bypass = map->cache_bypass; 2179 2180 map->cache_bypass = true; 2181 map->async = true; 2182 2183 /* Write out first; it's useful to apply even if we fail later. */ 2184 for (i = 0; i < num_regs; i++) { 2185 ret = _regmap_write(map, regs[i].reg, regs[i].def); 2186 if (ret != 0) { 2187 dev_err(map->dev, "Failed to write %x = %x: %d\n", 2188 regs[i].reg, regs[i].def, ret); 2189 goto out; 2190 } 2191 } 2192 2193 p = krealloc(map->patch, 2194 sizeof(struct reg_default) * (map->patch_regs + num_regs), 2195 GFP_KERNEL); 2196 if (p) { 2197 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 2198 map->patch = p; 2199 map->patch_regs += num_regs; 2200 } else { 2201 ret = -ENOMEM; 2202 } 2203 2204 out: 2205 map->async = false; 2206 map->cache_bypass = bypass; 2207 2208 map->unlock(map->lock_arg); 2209 2210 regmap_async_complete(map); 2211 2212 return ret; 2213 } 2214 EXPORT_SYMBOL_GPL(regmap_register_patch); 2215 2216 /* 2217 * regmap_get_val_bytes(): Report the size of a register value 2218 * 2219 * Report the size of a register value, mainly intended to for use by 2220 * generic infrastructure built on top of regmap. 2221 */ 2222 int regmap_get_val_bytes(struct regmap *map) 2223 { 2224 if (map->format.format_write) 2225 return -EINVAL; 2226 2227 return map->format.val_bytes; 2228 } 2229 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 2230 2231 static int __init regmap_initcall(void) 2232 { 2233 regmap_debugfs_initcall(); 2234 2235 return 0; 2236 } 2237 postcore_initcall(regmap_initcall); 2238