xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 77d84ff8)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23 
24 #include "internal.h"
25 
26 /*
27  * Sometimes for failures during very early init the trace
28  * infrastructure isn't available early enough to be used.  For this
29  * sort of problem defining LOG_DEVICE will add printks for basic
30  * register I/O on a specific device.
31  */
32 #undef LOG_DEVICE
33 
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 			       unsigned int mask, unsigned int val,
36 			       bool *change);
37 
38 static int _regmap_bus_read(void *context, unsigned int reg,
39 			    unsigned int *val);
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 				       unsigned int val);
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 				 unsigned int val);
44 
45 bool regmap_reg_in_ranges(unsigned int reg,
46 			  const struct regmap_range *ranges,
47 			  unsigned int nranges)
48 {
49 	const struct regmap_range *r;
50 	int i;
51 
52 	for (i = 0, r = ranges; i < nranges; i++, r++)
53 		if (regmap_reg_in_range(reg, r))
54 			return true;
55 	return false;
56 }
57 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
58 
59 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
60 			      const struct regmap_access_table *table)
61 {
62 	/* Check "no ranges" first */
63 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
64 		return false;
65 
66 	/* In case zero "yes ranges" are supplied, any reg is OK */
67 	if (!table->n_yes_ranges)
68 		return true;
69 
70 	return regmap_reg_in_ranges(reg, table->yes_ranges,
71 				    table->n_yes_ranges);
72 }
73 EXPORT_SYMBOL_GPL(regmap_check_range_table);
74 
75 bool regmap_writeable(struct regmap *map, unsigned int reg)
76 {
77 	if (map->max_register && reg > map->max_register)
78 		return false;
79 
80 	if (map->writeable_reg)
81 		return map->writeable_reg(map->dev, reg);
82 
83 	if (map->wr_table)
84 		return regmap_check_range_table(map, reg, map->wr_table);
85 
86 	return true;
87 }
88 
89 bool regmap_readable(struct regmap *map, unsigned int reg)
90 {
91 	if (map->max_register && reg > map->max_register)
92 		return false;
93 
94 	if (map->format.format_write)
95 		return false;
96 
97 	if (map->readable_reg)
98 		return map->readable_reg(map->dev, reg);
99 
100 	if (map->rd_table)
101 		return regmap_check_range_table(map, reg, map->rd_table);
102 
103 	return true;
104 }
105 
106 bool regmap_volatile(struct regmap *map, unsigned int reg)
107 {
108 	if (!regmap_readable(map, reg))
109 		return false;
110 
111 	if (map->volatile_reg)
112 		return map->volatile_reg(map->dev, reg);
113 
114 	if (map->volatile_table)
115 		return regmap_check_range_table(map, reg, map->volatile_table);
116 
117 	if (map->cache_ops)
118 		return false;
119 	else
120 		return true;
121 }
122 
123 bool regmap_precious(struct regmap *map, unsigned int reg)
124 {
125 	if (!regmap_readable(map, reg))
126 		return false;
127 
128 	if (map->precious_reg)
129 		return map->precious_reg(map->dev, reg);
130 
131 	if (map->precious_table)
132 		return regmap_check_range_table(map, reg, map->precious_table);
133 
134 	return false;
135 }
136 
137 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
138 	size_t num)
139 {
140 	unsigned int i;
141 
142 	for (i = 0; i < num; i++)
143 		if (!regmap_volatile(map, reg + i))
144 			return false;
145 
146 	return true;
147 }
148 
149 static void regmap_format_2_6_write(struct regmap *map,
150 				     unsigned int reg, unsigned int val)
151 {
152 	u8 *out = map->work_buf;
153 
154 	*out = (reg << 6) | val;
155 }
156 
157 static void regmap_format_4_12_write(struct regmap *map,
158 				     unsigned int reg, unsigned int val)
159 {
160 	__be16 *out = map->work_buf;
161 	*out = cpu_to_be16((reg << 12) | val);
162 }
163 
164 static void regmap_format_7_9_write(struct regmap *map,
165 				    unsigned int reg, unsigned int val)
166 {
167 	__be16 *out = map->work_buf;
168 	*out = cpu_to_be16((reg << 9) | val);
169 }
170 
171 static void regmap_format_10_14_write(struct regmap *map,
172 				    unsigned int reg, unsigned int val)
173 {
174 	u8 *out = map->work_buf;
175 
176 	out[2] = val;
177 	out[1] = (val >> 8) | (reg << 6);
178 	out[0] = reg >> 2;
179 }
180 
181 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
182 {
183 	u8 *b = buf;
184 
185 	b[0] = val << shift;
186 }
187 
188 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
189 {
190 	__be16 *b = buf;
191 
192 	b[0] = cpu_to_be16(val << shift);
193 }
194 
195 static void regmap_format_16_native(void *buf, unsigned int val,
196 				    unsigned int shift)
197 {
198 	*(u16 *)buf = val << shift;
199 }
200 
201 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
202 {
203 	u8 *b = buf;
204 
205 	val <<= shift;
206 
207 	b[0] = val >> 16;
208 	b[1] = val >> 8;
209 	b[2] = val;
210 }
211 
212 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
213 {
214 	__be32 *b = buf;
215 
216 	b[0] = cpu_to_be32(val << shift);
217 }
218 
219 static void regmap_format_32_native(void *buf, unsigned int val,
220 				    unsigned int shift)
221 {
222 	*(u32 *)buf = val << shift;
223 }
224 
225 static void regmap_parse_inplace_noop(void *buf)
226 {
227 }
228 
229 static unsigned int regmap_parse_8(const void *buf)
230 {
231 	const u8 *b = buf;
232 
233 	return b[0];
234 }
235 
236 static unsigned int regmap_parse_16_be(const void *buf)
237 {
238 	const __be16 *b = buf;
239 
240 	return be16_to_cpu(b[0]);
241 }
242 
243 static void regmap_parse_16_be_inplace(void *buf)
244 {
245 	__be16 *b = buf;
246 
247 	b[0] = be16_to_cpu(b[0]);
248 }
249 
250 static unsigned int regmap_parse_16_native(const void *buf)
251 {
252 	return *(u16 *)buf;
253 }
254 
255 static unsigned int regmap_parse_24(const void *buf)
256 {
257 	const u8 *b = buf;
258 	unsigned int ret = b[2];
259 	ret |= ((unsigned int)b[1]) << 8;
260 	ret |= ((unsigned int)b[0]) << 16;
261 
262 	return ret;
263 }
264 
265 static unsigned int regmap_parse_32_be(const void *buf)
266 {
267 	const __be32 *b = buf;
268 
269 	return be32_to_cpu(b[0]);
270 }
271 
272 static void regmap_parse_32_be_inplace(void *buf)
273 {
274 	__be32 *b = buf;
275 
276 	b[0] = be32_to_cpu(b[0]);
277 }
278 
279 static unsigned int regmap_parse_32_native(const void *buf)
280 {
281 	return *(u32 *)buf;
282 }
283 
284 static void regmap_lock_mutex(void *__map)
285 {
286 	struct regmap *map = __map;
287 	mutex_lock(&map->mutex);
288 }
289 
290 static void regmap_unlock_mutex(void *__map)
291 {
292 	struct regmap *map = __map;
293 	mutex_unlock(&map->mutex);
294 }
295 
296 static void regmap_lock_spinlock(void *__map)
297 __acquires(&map->spinlock)
298 {
299 	struct regmap *map = __map;
300 	unsigned long flags;
301 
302 	spin_lock_irqsave(&map->spinlock, flags);
303 	map->spinlock_flags = flags;
304 }
305 
306 static void regmap_unlock_spinlock(void *__map)
307 __releases(&map->spinlock)
308 {
309 	struct regmap *map = __map;
310 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
311 }
312 
313 static void dev_get_regmap_release(struct device *dev, void *res)
314 {
315 	/*
316 	 * We don't actually have anything to do here; the goal here
317 	 * is not to manage the regmap but to provide a simple way to
318 	 * get the regmap back given a struct device.
319 	 */
320 }
321 
322 static bool _regmap_range_add(struct regmap *map,
323 			      struct regmap_range_node *data)
324 {
325 	struct rb_root *root = &map->range_tree;
326 	struct rb_node **new = &(root->rb_node), *parent = NULL;
327 
328 	while (*new) {
329 		struct regmap_range_node *this =
330 			container_of(*new, struct regmap_range_node, node);
331 
332 		parent = *new;
333 		if (data->range_max < this->range_min)
334 			new = &((*new)->rb_left);
335 		else if (data->range_min > this->range_max)
336 			new = &((*new)->rb_right);
337 		else
338 			return false;
339 	}
340 
341 	rb_link_node(&data->node, parent, new);
342 	rb_insert_color(&data->node, root);
343 
344 	return true;
345 }
346 
347 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
348 						      unsigned int reg)
349 {
350 	struct rb_node *node = map->range_tree.rb_node;
351 
352 	while (node) {
353 		struct regmap_range_node *this =
354 			container_of(node, struct regmap_range_node, node);
355 
356 		if (reg < this->range_min)
357 			node = node->rb_left;
358 		else if (reg > this->range_max)
359 			node = node->rb_right;
360 		else
361 			return this;
362 	}
363 
364 	return NULL;
365 }
366 
367 static void regmap_range_exit(struct regmap *map)
368 {
369 	struct rb_node *next;
370 	struct regmap_range_node *range_node;
371 
372 	next = rb_first(&map->range_tree);
373 	while (next) {
374 		range_node = rb_entry(next, struct regmap_range_node, node);
375 		next = rb_next(&range_node->node);
376 		rb_erase(&range_node->node, &map->range_tree);
377 		kfree(range_node);
378 	}
379 
380 	kfree(map->selector_work_buf);
381 }
382 
383 /**
384  * regmap_init(): Initialise register map
385  *
386  * @dev: Device that will be interacted with
387  * @bus: Bus-specific callbacks to use with device
388  * @bus_context: Data passed to bus-specific callbacks
389  * @config: Configuration for register map
390  *
391  * The return value will be an ERR_PTR() on error or a valid pointer to
392  * a struct regmap.  This function should generally not be called
393  * directly, it should be called by bus-specific init functions.
394  */
395 struct regmap *regmap_init(struct device *dev,
396 			   const struct regmap_bus *bus,
397 			   void *bus_context,
398 			   const struct regmap_config *config)
399 {
400 	struct regmap *map, **m;
401 	int ret = -EINVAL;
402 	enum regmap_endian reg_endian, val_endian;
403 	int i, j;
404 
405 	if (!config)
406 		goto err;
407 
408 	map = kzalloc(sizeof(*map), GFP_KERNEL);
409 	if (map == NULL) {
410 		ret = -ENOMEM;
411 		goto err;
412 	}
413 
414 	if (config->lock && config->unlock) {
415 		map->lock = config->lock;
416 		map->unlock = config->unlock;
417 		map->lock_arg = config->lock_arg;
418 	} else {
419 		if ((bus && bus->fast_io) ||
420 		    config->fast_io) {
421 			spin_lock_init(&map->spinlock);
422 			map->lock = regmap_lock_spinlock;
423 			map->unlock = regmap_unlock_spinlock;
424 		} else {
425 			mutex_init(&map->mutex);
426 			map->lock = regmap_lock_mutex;
427 			map->unlock = regmap_unlock_mutex;
428 		}
429 		map->lock_arg = map;
430 	}
431 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
432 	map->format.pad_bytes = config->pad_bits / 8;
433 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
434 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
435 			config->val_bits + config->pad_bits, 8);
436 	map->reg_shift = config->pad_bits % 8;
437 	if (config->reg_stride)
438 		map->reg_stride = config->reg_stride;
439 	else
440 		map->reg_stride = 1;
441 	map->use_single_rw = config->use_single_rw;
442 	map->dev = dev;
443 	map->bus = bus;
444 	map->bus_context = bus_context;
445 	map->max_register = config->max_register;
446 	map->wr_table = config->wr_table;
447 	map->rd_table = config->rd_table;
448 	map->volatile_table = config->volatile_table;
449 	map->precious_table = config->precious_table;
450 	map->writeable_reg = config->writeable_reg;
451 	map->readable_reg = config->readable_reg;
452 	map->volatile_reg = config->volatile_reg;
453 	map->precious_reg = config->precious_reg;
454 	map->cache_type = config->cache_type;
455 	map->name = config->name;
456 
457 	spin_lock_init(&map->async_lock);
458 	INIT_LIST_HEAD(&map->async_list);
459 	INIT_LIST_HEAD(&map->async_free);
460 	init_waitqueue_head(&map->async_waitq);
461 
462 	if (config->read_flag_mask || config->write_flag_mask) {
463 		map->read_flag_mask = config->read_flag_mask;
464 		map->write_flag_mask = config->write_flag_mask;
465 	} else if (bus) {
466 		map->read_flag_mask = bus->read_flag_mask;
467 	}
468 
469 	if (!bus) {
470 		map->reg_read  = config->reg_read;
471 		map->reg_write = config->reg_write;
472 
473 		map->defer_caching = false;
474 		goto skip_format_initialization;
475 	} else {
476 		map->reg_read  = _regmap_bus_read;
477 	}
478 
479 	reg_endian = config->reg_format_endian;
480 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
481 		reg_endian = bus->reg_format_endian_default;
482 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
483 		reg_endian = REGMAP_ENDIAN_BIG;
484 
485 	val_endian = config->val_format_endian;
486 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
487 		val_endian = bus->val_format_endian_default;
488 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
489 		val_endian = REGMAP_ENDIAN_BIG;
490 
491 	switch (config->reg_bits + map->reg_shift) {
492 	case 2:
493 		switch (config->val_bits) {
494 		case 6:
495 			map->format.format_write = regmap_format_2_6_write;
496 			break;
497 		default:
498 			goto err_map;
499 		}
500 		break;
501 
502 	case 4:
503 		switch (config->val_bits) {
504 		case 12:
505 			map->format.format_write = regmap_format_4_12_write;
506 			break;
507 		default:
508 			goto err_map;
509 		}
510 		break;
511 
512 	case 7:
513 		switch (config->val_bits) {
514 		case 9:
515 			map->format.format_write = regmap_format_7_9_write;
516 			break;
517 		default:
518 			goto err_map;
519 		}
520 		break;
521 
522 	case 10:
523 		switch (config->val_bits) {
524 		case 14:
525 			map->format.format_write = regmap_format_10_14_write;
526 			break;
527 		default:
528 			goto err_map;
529 		}
530 		break;
531 
532 	case 8:
533 		map->format.format_reg = regmap_format_8;
534 		break;
535 
536 	case 16:
537 		switch (reg_endian) {
538 		case REGMAP_ENDIAN_BIG:
539 			map->format.format_reg = regmap_format_16_be;
540 			break;
541 		case REGMAP_ENDIAN_NATIVE:
542 			map->format.format_reg = regmap_format_16_native;
543 			break;
544 		default:
545 			goto err_map;
546 		}
547 		break;
548 
549 	case 24:
550 		if (reg_endian != REGMAP_ENDIAN_BIG)
551 			goto err_map;
552 		map->format.format_reg = regmap_format_24;
553 		break;
554 
555 	case 32:
556 		switch (reg_endian) {
557 		case REGMAP_ENDIAN_BIG:
558 			map->format.format_reg = regmap_format_32_be;
559 			break;
560 		case REGMAP_ENDIAN_NATIVE:
561 			map->format.format_reg = regmap_format_32_native;
562 			break;
563 		default:
564 			goto err_map;
565 		}
566 		break;
567 
568 	default:
569 		goto err_map;
570 	}
571 
572 	if (val_endian == REGMAP_ENDIAN_NATIVE)
573 		map->format.parse_inplace = regmap_parse_inplace_noop;
574 
575 	switch (config->val_bits) {
576 	case 8:
577 		map->format.format_val = regmap_format_8;
578 		map->format.parse_val = regmap_parse_8;
579 		map->format.parse_inplace = regmap_parse_inplace_noop;
580 		break;
581 	case 16:
582 		switch (val_endian) {
583 		case REGMAP_ENDIAN_BIG:
584 			map->format.format_val = regmap_format_16_be;
585 			map->format.parse_val = regmap_parse_16_be;
586 			map->format.parse_inplace = regmap_parse_16_be_inplace;
587 			break;
588 		case REGMAP_ENDIAN_NATIVE:
589 			map->format.format_val = regmap_format_16_native;
590 			map->format.parse_val = regmap_parse_16_native;
591 			break;
592 		default:
593 			goto err_map;
594 		}
595 		break;
596 	case 24:
597 		if (val_endian != REGMAP_ENDIAN_BIG)
598 			goto err_map;
599 		map->format.format_val = regmap_format_24;
600 		map->format.parse_val = regmap_parse_24;
601 		break;
602 	case 32:
603 		switch (val_endian) {
604 		case REGMAP_ENDIAN_BIG:
605 			map->format.format_val = regmap_format_32_be;
606 			map->format.parse_val = regmap_parse_32_be;
607 			map->format.parse_inplace = regmap_parse_32_be_inplace;
608 			break;
609 		case REGMAP_ENDIAN_NATIVE:
610 			map->format.format_val = regmap_format_32_native;
611 			map->format.parse_val = regmap_parse_32_native;
612 			break;
613 		default:
614 			goto err_map;
615 		}
616 		break;
617 	}
618 
619 	if (map->format.format_write) {
620 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
621 		    (val_endian != REGMAP_ENDIAN_BIG))
622 			goto err_map;
623 		map->use_single_rw = true;
624 	}
625 
626 	if (!map->format.format_write &&
627 	    !(map->format.format_reg && map->format.format_val))
628 		goto err_map;
629 
630 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
631 	if (map->work_buf == NULL) {
632 		ret = -ENOMEM;
633 		goto err_map;
634 	}
635 
636 	if (map->format.format_write) {
637 		map->defer_caching = false;
638 		map->reg_write = _regmap_bus_formatted_write;
639 	} else if (map->format.format_val) {
640 		map->defer_caching = true;
641 		map->reg_write = _regmap_bus_raw_write;
642 	}
643 
644 skip_format_initialization:
645 
646 	map->range_tree = RB_ROOT;
647 	for (i = 0; i < config->num_ranges; i++) {
648 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
649 		struct regmap_range_node *new;
650 
651 		/* Sanity check */
652 		if (range_cfg->range_max < range_cfg->range_min) {
653 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
654 				range_cfg->range_max, range_cfg->range_min);
655 			goto err_range;
656 		}
657 
658 		if (range_cfg->range_max > map->max_register) {
659 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
660 				range_cfg->range_max, map->max_register);
661 			goto err_range;
662 		}
663 
664 		if (range_cfg->selector_reg > map->max_register) {
665 			dev_err(map->dev,
666 				"Invalid range %d: selector out of map\n", i);
667 			goto err_range;
668 		}
669 
670 		if (range_cfg->window_len == 0) {
671 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
672 				i);
673 			goto err_range;
674 		}
675 
676 		/* Make sure, that this register range has no selector
677 		   or data window within its boundary */
678 		for (j = 0; j < config->num_ranges; j++) {
679 			unsigned sel_reg = config->ranges[j].selector_reg;
680 			unsigned win_min = config->ranges[j].window_start;
681 			unsigned win_max = win_min +
682 					   config->ranges[j].window_len - 1;
683 
684 			/* Allow data window inside its own virtual range */
685 			if (j == i)
686 				continue;
687 
688 			if (range_cfg->range_min <= sel_reg &&
689 			    sel_reg <= range_cfg->range_max) {
690 				dev_err(map->dev,
691 					"Range %d: selector for %d in window\n",
692 					i, j);
693 				goto err_range;
694 			}
695 
696 			if (!(win_max < range_cfg->range_min ||
697 			      win_min > range_cfg->range_max)) {
698 				dev_err(map->dev,
699 					"Range %d: window for %d in window\n",
700 					i, j);
701 				goto err_range;
702 			}
703 		}
704 
705 		new = kzalloc(sizeof(*new), GFP_KERNEL);
706 		if (new == NULL) {
707 			ret = -ENOMEM;
708 			goto err_range;
709 		}
710 
711 		new->map = map;
712 		new->name = range_cfg->name;
713 		new->range_min = range_cfg->range_min;
714 		new->range_max = range_cfg->range_max;
715 		new->selector_reg = range_cfg->selector_reg;
716 		new->selector_mask = range_cfg->selector_mask;
717 		new->selector_shift = range_cfg->selector_shift;
718 		new->window_start = range_cfg->window_start;
719 		new->window_len = range_cfg->window_len;
720 
721 		if (_regmap_range_add(map, new) == false) {
722 			dev_err(map->dev, "Failed to add range %d\n", i);
723 			kfree(new);
724 			goto err_range;
725 		}
726 
727 		if (map->selector_work_buf == NULL) {
728 			map->selector_work_buf =
729 				kzalloc(map->format.buf_size, GFP_KERNEL);
730 			if (map->selector_work_buf == NULL) {
731 				ret = -ENOMEM;
732 				goto err_range;
733 			}
734 		}
735 	}
736 
737 	regmap_debugfs_init(map, config->name);
738 
739 	ret = regcache_init(map, config);
740 	if (ret != 0)
741 		goto err_range;
742 
743 	/* Add a devres resource for dev_get_regmap() */
744 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
745 	if (!m) {
746 		ret = -ENOMEM;
747 		goto err_debugfs;
748 	}
749 	*m = map;
750 	devres_add(dev, m);
751 
752 	return map;
753 
754 err_debugfs:
755 	regmap_debugfs_exit(map);
756 	regcache_exit(map);
757 err_range:
758 	regmap_range_exit(map);
759 	kfree(map->work_buf);
760 err_map:
761 	kfree(map);
762 err:
763 	return ERR_PTR(ret);
764 }
765 EXPORT_SYMBOL_GPL(regmap_init);
766 
767 static void devm_regmap_release(struct device *dev, void *res)
768 {
769 	regmap_exit(*(struct regmap **)res);
770 }
771 
772 /**
773  * devm_regmap_init(): Initialise managed register map
774  *
775  * @dev: Device that will be interacted with
776  * @bus: Bus-specific callbacks to use with device
777  * @bus_context: Data passed to bus-specific callbacks
778  * @config: Configuration for register map
779  *
780  * The return value will be an ERR_PTR() on error or a valid pointer
781  * to a struct regmap.  This function should generally not be called
782  * directly, it should be called by bus-specific init functions.  The
783  * map will be automatically freed by the device management code.
784  */
785 struct regmap *devm_regmap_init(struct device *dev,
786 				const struct regmap_bus *bus,
787 				void *bus_context,
788 				const struct regmap_config *config)
789 {
790 	struct regmap **ptr, *regmap;
791 
792 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
793 	if (!ptr)
794 		return ERR_PTR(-ENOMEM);
795 
796 	regmap = regmap_init(dev, bus, bus_context, config);
797 	if (!IS_ERR(regmap)) {
798 		*ptr = regmap;
799 		devres_add(dev, ptr);
800 	} else {
801 		devres_free(ptr);
802 	}
803 
804 	return regmap;
805 }
806 EXPORT_SYMBOL_GPL(devm_regmap_init);
807 
808 static void regmap_field_init(struct regmap_field *rm_field,
809 	struct regmap *regmap, struct reg_field reg_field)
810 {
811 	int field_bits = reg_field.msb - reg_field.lsb + 1;
812 	rm_field->regmap = regmap;
813 	rm_field->reg = reg_field.reg;
814 	rm_field->shift = reg_field.lsb;
815 	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
816 	rm_field->id_size = reg_field.id_size;
817 	rm_field->id_offset = reg_field.id_offset;
818 }
819 
820 /**
821  * devm_regmap_field_alloc(): Allocate and initialise a register field
822  * in a register map.
823  *
824  * @dev: Device that will be interacted with
825  * @regmap: regmap bank in which this register field is located.
826  * @reg_field: Register field with in the bank.
827  *
828  * The return value will be an ERR_PTR() on error or a valid pointer
829  * to a struct regmap_field. The regmap_field will be automatically freed
830  * by the device management code.
831  */
832 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
833 		struct regmap *regmap, struct reg_field reg_field)
834 {
835 	struct regmap_field *rm_field = devm_kzalloc(dev,
836 					sizeof(*rm_field), GFP_KERNEL);
837 	if (!rm_field)
838 		return ERR_PTR(-ENOMEM);
839 
840 	regmap_field_init(rm_field, regmap, reg_field);
841 
842 	return rm_field;
843 
844 }
845 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
846 
847 /**
848  * devm_regmap_field_free(): Free register field allocated using
849  * devm_regmap_field_alloc. Usally drivers need not call this function,
850  * as the memory allocated via devm will be freed as per device-driver
851  * life-cyle.
852  *
853  * @dev: Device that will be interacted with
854  * @field: regmap field which should be freed.
855  */
856 void devm_regmap_field_free(struct device *dev,
857 	struct regmap_field *field)
858 {
859 	devm_kfree(dev, field);
860 }
861 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
862 
863 /**
864  * regmap_field_alloc(): Allocate and initialise a register field
865  * in a register map.
866  *
867  * @regmap: regmap bank in which this register field is located.
868  * @reg_field: Register field with in the bank.
869  *
870  * The return value will be an ERR_PTR() on error or a valid pointer
871  * to a struct regmap_field. The regmap_field should be freed by the
872  * user once its finished working with it using regmap_field_free().
873  */
874 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
875 		struct reg_field reg_field)
876 {
877 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
878 
879 	if (!rm_field)
880 		return ERR_PTR(-ENOMEM);
881 
882 	regmap_field_init(rm_field, regmap, reg_field);
883 
884 	return rm_field;
885 }
886 EXPORT_SYMBOL_GPL(regmap_field_alloc);
887 
888 /**
889  * regmap_field_free(): Free register field allocated using regmap_field_alloc
890  *
891  * @field: regmap field which should be freed.
892  */
893 void regmap_field_free(struct regmap_field *field)
894 {
895 	kfree(field);
896 }
897 EXPORT_SYMBOL_GPL(regmap_field_free);
898 
899 /**
900  * regmap_reinit_cache(): Reinitialise the current register cache
901  *
902  * @map: Register map to operate on.
903  * @config: New configuration.  Only the cache data will be used.
904  *
905  * Discard any existing register cache for the map and initialize a
906  * new cache.  This can be used to restore the cache to defaults or to
907  * update the cache configuration to reflect runtime discovery of the
908  * hardware.
909  *
910  * No explicit locking is done here, the user needs to ensure that
911  * this function will not race with other calls to regmap.
912  */
913 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
914 {
915 	regcache_exit(map);
916 	regmap_debugfs_exit(map);
917 
918 	map->max_register = config->max_register;
919 	map->writeable_reg = config->writeable_reg;
920 	map->readable_reg = config->readable_reg;
921 	map->volatile_reg = config->volatile_reg;
922 	map->precious_reg = config->precious_reg;
923 	map->cache_type = config->cache_type;
924 
925 	regmap_debugfs_init(map, config->name);
926 
927 	map->cache_bypass = false;
928 	map->cache_only = false;
929 
930 	return regcache_init(map, config);
931 }
932 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
933 
934 /**
935  * regmap_exit(): Free a previously allocated register map
936  */
937 void regmap_exit(struct regmap *map)
938 {
939 	struct regmap_async *async;
940 
941 	regcache_exit(map);
942 	regmap_debugfs_exit(map);
943 	regmap_range_exit(map);
944 	if (map->bus && map->bus->free_context)
945 		map->bus->free_context(map->bus_context);
946 	kfree(map->work_buf);
947 	while (!list_empty(&map->async_free)) {
948 		async = list_first_entry_or_null(&map->async_free,
949 						 struct regmap_async,
950 						 list);
951 		list_del(&async->list);
952 		kfree(async->work_buf);
953 		kfree(async);
954 	}
955 	kfree(map);
956 }
957 EXPORT_SYMBOL_GPL(regmap_exit);
958 
959 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
960 {
961 	struct regmap **r = res;
962 	if (!r || !*r) {
963 		WARN_ON(!r || !*r);
964 		return 0;
965 	}
966 
967 	/* If the user didn't specify a name match any */
968 	if (data)
969 		return (*r)->name == data;
970 	else
971 		return 1;
972 }
973 
974 /**
975  * dev_get_regmap(): Obtain the regmap (if any) for a device
976  *
977  * @dev: Device to retrieve the map for
978  * @name: Optional name for the register map, usually NULL.
979  *
980  * Returns the regmap for the device if one is present, or NULL.  If
981  * name is specified then it must match the name specified when
982  * registering the device, if it is NULL then the first regmap found
983  * will be used.  Devices with multiple register maps are very rare,
984  * generic code should normally not need to specify a name.
985  */
986 struct regmap *dev_get_regmap(struct device *dev, const char *name)
987 {
988 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
989 					dev_get_regmap_match, (void *)name);
990 
991 	if (!r)
992 		return NULL;
993 	return *r;
994 }
995 EXPORT_SYMBOL_GPL(dev_get_regmap);
996 
997 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
998 			       struct regmap_range_node *range,
999 			       unsigned int val_num)
1000 {
1001 	void *orig_work_buf;
1002 	unsigned int win_offset;
1003 	unsigned int win_page;
1004 	bool page_chg;
1005 	int ret;
1006 
1007 	win_offset = (*reg - range->range_min) % range->window_len;
1008 	win_page = (*reg - range->range_min) / range->window_len;
1009 
1010 	if (val_num > 1) {
1011 		/* Bulk write shouldn't cross range boundary */
1012 		if (*reg + val_num - 1 > range->range_max)
1013 			return -EINVAL;
1014 
1015 		/* ... or single page boundary */
1016 		if (val_num > range->window_len - win_offset)
1017 			return -EINVAL;
1018 	}
1019 
1020 	/* It is possible to have selector register inside data window.
1021 	   In that case, selector register is located on every page and
1022 	   it needs no page switching, when accessed alone. */
1023 	if (val_num > 1 ||
1024 	    range->window_start + win_offset != range->selector_reg) {
1025 		/* Use separate work_buf during page switching */
1026 		orig_work_buf = map->work_buf;
1027 		map->work_buf = map->selector_work_buf;
1028 
1029 		ret = _regmap_update_bits(map, range->selector_reg,
1030 					  range->selector_mask,
1031 					  win_page << range->selector_shift,
1032 					  &page_chg);
1033 
1034 		map->work_buf = orig_work_buf;
1035 
1036 		if (ret != 0)
1037 			return ret;
1038 	}
1039 
1040 	*reg = range->window_start + win_offset;
1041 
1042 	return 0;
1043 }
1044 
1045 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1046 		      const void *val, size_t val_len)
1047 {
1048 	struct regmap_range_node *range;
1049 	unsigned long flags;
1050 	u8 *u8 = map->work_buf;
1051 	void *work_val = map->work_buf + map->format.reg_bytes +
1052 		map->format.pad_bytes;
1053 	void *buf;
1054 	int ret = -ENOTSUPP;
1055 	size_t len;
1056 	int i;
1057 
1058 	WARN_ON(!map->bus);
1059 
1060 	/* Check for unwritable registers before we start */
1061 	if (map->writeable_reg)
1062 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1063 			if (!map->writeable_reg(map->dev,
1064 						reg + (i * map->reg_stride)))
1065 				return -EINVAL;
1066 
1067 	if (!map->cache_bypass && map->format.parse_val) {
1068 		unsigned int ival;
1069 		int val_bytes = map->format.val_bytes;
1070 		for (i = 0; i < val_len / val_bytes; i++) {
1071 			ival = map->format.parse_val(val + (i * val_bytes));
1072 			ret = regcache_write(map, reg + (i * map->reg_stride),
1073 					     ival);
1074 			if (ret) {
1075 				dev_err(map->dev,
1076 					"Error in caching of register: %x ret: %d\n",
1077 					reg + i, ret);
1078 				return ret;
1079 			}
1080 		}
1081 		if (map->cache_only) {
1082 			map->cache_dirty = true;
1083 			return 0;
1084 		}
1085 	}
1086 
1087 	range = _regmap_range_lookup(map, reg);
1088 	if (range) {
1089 		int val_num = val_len / map->format.val_bytes;
1090 		int win_offset = (reg - range->range_min) % range->window_len;
1091 		int win_residue = range->window_len - win_offset;
1092 
1093 		/* If the write goes beyond the end of the window split it */
1094 		while (val_num > win_residue) {
1095 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1096 				win_residue, val_len / map->format.val_bytes);
1097 			ret = _regmap_raw_write(map, reg, val, win_residue *
1098 						map->format.val_bytes);
1099 			if (ret != 0)
1100 				return ret;
1101 
1102 			reg += win_residue;
1103 			val_num -= win_residue;
1104 			val += win_residue * map->format.val_bytes;
1105 			val_len -= win_residue * map->format.val_bytes;
1106 
1107 			win_offset = (reg - range->range_min) %
1108 				range->window_len;
1109 			win_residue = range->window_len - win_offset;
1110 		}
1111 
1112 		ret = _regmap_select_page(map, &reg, range, val_num);
1113 		if (ret != 0)
1114 			return ret;
1115 	}
1116 
1117 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1118 
1119 	u8[0] |= map->write_flag_mask;
1120 
1121 	/*
1122 	 * Essentially all I/O mechanisms will be faster with a single
1123 	 * buffer to write.  Since register syncs often generate raw
1124 	 * writes of single registers optimise that case.
1125 	 */
1126 	if (val != work_val && val_len == map->format.val_bytes) {
1127 		memcpy(work_val, val, map->format.val_bytes);
1128 		val = work_val;
1129 	}
1130 
1131 	if (map->async && map->bus->async_write) {
1132 		struct regmap_async *async;
1133 
1134 		trace_regmap_async_write_start(map->dev, reg, val_len);
1135 
1136 		spin_lock_irqsave(&map->async_lock, flags);
1137 		async = list_first_entry_or_null(&map->async_free,
1138 						 struct regmap_async,
1139 						 list);
1140 		if (async)
1141 			list_del(&async->list);
1142 		spin_unlock_irqrestore(&map->async_lock, flags);
1143 
1144 		if (!async) {
1145 			async = map->bus->async_alloc();
1146 			if (!async)
1147 				return -ENOMEM;
1148 
1149 			async->work_buf = kzalloc(map->format.buf_size,
1150 						  GFP_KERNEL | GFP_DMA);
1151 			if (!async->work_buf) {
1152 				kfree(async);
1153 				return -ENOMEM;
1154 			}
1155 		}
1156 
1157 		async->map = map;
1158 
1159 		/* If the caller supplied the value we can use it safely. */
1160 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1161 		       map->format.reg_bytes + map->format.val_bytes);
1162 
1163 		spin_lock_irqsave(&map->async_lock, flags);
1164 		list_add_tail(&async->list, &map->async_list);
1165 		spin_unlock_irqrestore(&map->async_lock, flags);
1166 
1167 		if (val != work_val)
1168 			ret = map->bus->async_write(map->bus_context,
1169 						    async->work_buf,
1170 						    map->format.reg_bytes +
1171 						    map->format.pad_bytes,
1172 						    val, val_len, async);
1173 		else
1174 			ret = map->bus->async_write(map->bus_context,
1175 						    async->work_buf,
1176 						    map->format.reg_bytes +
1177 						    map->format.pad_bytes +
1178 						    val_len, NULL, 0, async);
1179 
1180 		if (ret != 0) {
1181 			dev_err(map->dev, "Failed to schedule write: %d\n",
1182 				ret);
1183 
1184 			spin_lock_irqsave(&map->async_lock, flags);
1185 			list_move(&async->list, &map->async_free);
1186 			spin_unlock_irqrestore(&map->async_lock, flags);
1187 		}
1188 
1189 		return ret;
1190 	}
1191 
1192 	trace_regmap_hw_write_start(map->dev, reg,
1193 				    val_len / map->format.val_bytes);
1194 
1195 	/* If we're doing a single register write we can probably just
1196 	 * send the work_buf directly, otherwise try to do a gather
1197 	 * write.
1198 	 */
1199 	if (val == work_val)
1200 		ret = map->bus->write(map->bus_context, map->work_buf,
1201 				      map->format.reg_bytes +
1202 				      map->format.pad_bytes +
1203 				      val_len);
1204 	else if (map->bus->gather_write)
1205 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1206 					     map->format.reg_bytes +
1207 					     map->format.pad_bytes,
1208 					     val, val_len);
1209 
1210 	/* If that didn't work fall back on linearising by hand. */
1211 	if (ret == -ENOTSUPP) {
1212 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1213 		buf = kzalloc(len, GFP_KERNEL);
1214 		if (!buf)
1215 			return -ENOMEM;
1216 
1217 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1218 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1219 		       val, val_len);
1220 		ret = map->bus->write(map->bus_context, buf, len);
1221 
1222 		kfree(buf);
1223 	}
1224 
1225 	trace_regmap_hw_write_done(map->dev, reg,
1226 				   val_len / map->format.val_bytes);
1227 
1228 	return ret;
1229 }
1230 
1231 /**
1232  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1233  *
1234  * @map: Map to check.
1235  */
1236 bool regmap_can_raw_write(struct regmap *map)
1237 {
1238 	return map->bus && map->format.format_val && map->format.format_reg;
1239 }
1240 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1241 
1242 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1243 				       unsigned int val)
1244 {
1245 	int ret;
1246 	struct regmap_range_node *range;
1247 	struct regmap *map = context;
1248 
1249 	WARN_ON(!map->bus || !map->format.format_write);
1250 
1251 	range = _regmap_range_lookup(map, reg);
1252 	if (range) {
1253 		ret = _regmap_select_page(map, &reg, range, 1);
1254 		if (ret != 0)
1255 			return ret;
1256 	}
1257 
1258 	map->format.format_write(map, reg, val);
1259 
1260 	trace_regmap_hw_write_start(map->dev, reg, 1);
1261 
1262 	ret = map->bus->write(map->bus_context, map->work_buf,
1263 			      map->format.buf_size);
1264 
1265 	trace_regmap_hw_write_done(map->dev, reg, 1);
1266 
1267 	return ret;
1268 }
1269 
1270 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1271 				 unsigned int val)
1272 {
1273 	struct regmap *map = context;
1274 
1275 	WARN_ON(!map->bus || !map->format.format_val);
1276 
1277 	map->format.format_val(map->work_buf + map->format.reg_bytes
1278 			       + map->format.pad_bytes, val, 0);
1279 	return _regmap_raw_write(map, reg,
1280 				 map->work_buf +
1281 				 map->format.reg_bytes +
1282 				 map->format.pad_bytes,
1283 				 map->format.val_bytes);
1284 }
1285 
1286 static inline void *_regmap_map_get_context(struct regmap *map)
1287 {
1288 	return (map->bus) ? map : map->bus_context;
1289 }
1290 
1291 int _regmap_write(struct regmap *map, unsigned int reg,
1292 		  unsigned int val)
1293 {
1294 	int ret;
1295 	void *context = _regmap_map_get_context(map);
1296 
1297 	if (!regmap_writeable(map, reg))
1298 		return -EIO;
1299 
1300 	if (!map->cache_bypass && !map->defer_caching) {
1301 		ret = regcache_write(map, reg, val);
1302 		if (ret != 0)
1303 			return ret;
1304 		if (map->cache_only) {
1305 			map->cache_dirty = true;
1306 			return 0;
1307 		}
1308 	}
1309 
1310 #ifdef LOG_DEVICE
1311 	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1312 		dev_info(map->dev, "%x <= %x\n", reg, val);
1313 #endif
1314 
1315 	trace_regmap_reg_write(map->dev, reg, val);
1316 
1317 	return map->reg_write(context, reg, val);
1318 }
1319 
1320 /**
1321  * regmap_write(): Write a value to a single register
1322  *
1323  * @map: Register map to write to
1324  * @reg: Register to write to
1325  * @val: Value to be written
1326  *
1327  * A value of zero will be returned on success, a negative errno will
1328  * be returned in error cases.
1329  */
1330 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1331 {
1332 	int ret;
1333 
1334 	if (reg % map->reg_stride)
1335 		return -EINVAL;
1336 
1337 	map->lock(map->lock_arg);
1338 
1339 	ret = _regmap_write(map, reg, val);
1340 
1341 	map->unlock(map->lock_arg);
1342 
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL_GPL(regmap_write);
1346 
1347 /**
1348  * regmap_write_async(): Write a value to a single register asynchronously
1349  *
1350  * @map: Register map to write to
1351  * @reg: Register to write to
1352  * @val: Value to be written
1353  *
1354  * A value of zero will be returned on success, a negative errno will
1355  * be returned in error cases.
1356  */
1357 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1358 {
1359 	int ret;
1360 
1361 	if (reg % map->reg_stride)
1362 		return -EINVAL;
1363 
1364 	map->lock(map->lock_arg);
1365 
1366 	map->async = true;
1367 
1368 	ret = _regmap_write(map, reg, val);
1369 
1370 	map->async = false;
1371 
1372 	map->unlock(map->lock_arg);
1373 
1374 	return ret;
1375 }
1376 EXPORT_SYMBOL_GPL(regmap_write_async);
1377 
1378 /**
1379  * regmap_raw_write(): Write raw values to one or more registers
1380  *
1381  * @map: Register map to write to
1382  * @reg: Initial register to write to
1383  * @val: Block of data to be written, laid out for direct transmission to the
1384  *       device
1385  * @val_len: Length of data pointed to by val.
1386  *
1387  * This function is intended to be used for things like firmware
1388  * download where a large block of data needs to be transferred to the
1389  * device.  No formatting will be done on the data provided.
1390  *
1391  * A value of zero will be returned on success, a negative errno will
1392  * be returned in error cases.
1393  */
1394 int regmap_raw_write(struct regmap *map, unsigned int reg,
1395 		     const void *val, size_t val_len)
1396 {
1397 	int ret;
1398 
1399 	if (!regmap_can_raw_write(map))
1400 		return -EINVAL;
1401 	if (val_len % map->format.val_bytes)
1402 		return -EINVAL;
1403 
1404 	map->lock(map->lock_arg);
1405 
1406 	ret = _regmap_raw_write(map, reg, val, val_len);
1407 
1408 	map->unlock(map->lock_arg);
1409 
1410 	return ret;
1411 }
1412 EXPORT_SYMBOL_GPL(regmap_raw_write);
1413 
1414 /**
1415  * regmap_field_write(): Write a value to a single register field
1416  *
1417  * @field: Register field to write to
1418  * @val: Value to be written
1419  *
1420  * A value of zero will be returned on success, a negative errno will
1421  * be returned in error cases.
1422  */
1423 int regmap_field_write(struct regmap_field *field, unsigned int val)
1424 {
1425 	return regmap_update_bits(field->regmap, field->reg,
1426 				field->mask, val << field->shift);
1427 }
1428 EXPORT_SYMBOL_GPL(regmap_field_write);
1429 
1430 /**
1431  * regmap_field_update_bits():	Perform a read/modify/write cycle
1432  *                              on the register field
1433  *
1434  * @field: Register field to write to
1435  * @mask: Bitmask to change
1436  * @val: Value to be written
1437  *
1438  * A value of zero will be returned on success, a negative errno will
1439  * be returned in error cases.
1440  */
1441 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1442 {
1443 	mask = (mask << field->shift) & field->mask;
1444 
1445 	return regmap_update_bits(field->regmap, field->reg,
1446 				  mask, val << field->shift);
1447 }
1448 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1449 
1450 /**
1451  * regmap_fields_write(): Write a value to a single register field with port ID
1452  *
1453  * @field: Register field to write to
1454  * @id: port ID
1455  * @val: Value to be written
1456  *
1457  * A value of zero will be returned on success, a negative errno will
1458  * be returned in error cases.
1459  */
1460 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1461 			unsigned int val)
1462 {
1463 	if (id >= field->id_size)
1464 		return -EINVAL;
1465 
1466 	return regmap_update_bits(field->regmap,
1467 				  field->reg + (field->id_offset * id),
1468 				  field->mask, val << field->shift);
1469 }
1470 EXPORT_SYMBOL_GPL(regmap_fields_write);
1471 
1472 /**
1473  * regmap_fields_update_bits():	Perform a read/modify/write cycle
1474  *                              on the register field
1475  *
1476  * @field: Register field to write to
1477  * @id: port ID
1478  * @mask: Bitmask to change
1479  * @val: Value to be written
1480  *
1481  * A value of zero will be returned on success, a negative errno will
1482  * be returned in error cases.
1483  */
1484 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1485 			      unsigned int mask, unsigned int val)
1486 {
1487 	if (id >= field->id_size)
1488 		return -EINVAL;
1489 
1490 	mask = (mask << field->shift) & field->mask;
1491 
1492 	return regmap_update_bits(field->regmap,
1493 				  field->reg + (field->id_offset * id),
1494 				  mask, val << field->shift);
1495 }
1496 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1497 
1498 /*
1499  * regmap_bulk_write(): Write multiple registers to the device
1500  *
1501  * @map: Register map to write to
1502  * @reg: First register to be write from
1503  * @val: Block of data to be written, in native register size for device
1504  * @val_count: Number of registers to write
1505  *
1506  * This function is intended to be used for writing a large block of
1507  * data to the device either in single transfer or multiple transfer.
1508  *
1509  * A value of zero will be returned on success, a negative errno will
1510  * be returned in error cases.
1511  */
1512 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1513 		     size_t val_count)
1514 {
1515 	int ret = 0, i;
1516 	size_t val_bytes = map->format.val_bytes;
1517 	void *wval;
1518 
1519 	if (!map->bus)
1520 		return -EINVAL;
1521 	if (!map->format.parse_inplace)
1522 		return -EINVAL;
1523 	if (reg % map->reg_stride)
1524 		return -EINVAL;
1525 
1526 	map->lock(map->lock_arg);
1527 
1528 	/* No formatting is require if val_byte is 1 */
1529 	if (val_bytes == 1) {
1530 		wval = (void *)val;
1531 	} else {
1532 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1533 		if (!wval) {
1534 			ret = -ENOMEM;
1535 			dev_err(map->dev, "Error in memory allocation\n");
1536 			goto out;
1537 		}
1538 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1539 			map->format.parse_inplace(wval + i);
1540 	}
1541 	/*
1542 	 * Some devices does not support bulk write, for
1543 	 * them we have a series of single write operations.
1544 	 */
1545 	if (map->use_single_rw) {
1546 		for (i = 0; i < val_count; i++) {
1547 			ret = _regmap_raw_write(map,
1548 						reg + (i * map->reg_stride),
1549 						val + (i * val_bytes),
1550 						val_bytes);
1551 			if (ret != 0)
1552 				goto out;
1553 		}
1554 	} else {
1555 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1556 	}
1557 
1558 	if (val_bytes != 1)
1559 		kfree(wval);
1560 
1561 out:
1562 	map->unlock(map->lock_arg);
1563 	return ret;
1564 }
1565 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1566 
1567 /*
1568  * regmap_multi_reg_write(): Write multiple registers to the device
1569  *
1570  * where the set of register are supplied in any order
1571  *
1572  * @map: Register map to write to
1573  * @regs: Array of structures containing register,value to be written
1574  * @num_regs: Number of registers to write
1575  *
1576  * This function is intended to be used for writing a large block of data
1577  * atomically to the device in single transfer for those I2C client devices
1578  * that implement this alternative block write mode.
1579  *
1580  * A value of zero will be returned on success, a negative errno will
1581  * be returned in error cases.
1582  */
1583 int regmap_multi_reg_write(struct regmap *map, struct reg_default *regs,
1584 				int num_regs)
1585 {
1586 	int ret = 0, i;
1587 
1588 	for (i = 0; i < num_regs; i++) {
1589 		int reg = regs[i].reg;
1590 		if (reg % map->reg_stride)
1591 			return -EINVAL;
1592 	}
1593 
1594 	map->lock(map->lock_arg);
1595 
1596 	for (i = 0; i < num_regs; i++) {
1597 		ret = _regmap_write(map, regs[i].reg, regs[i].def);
1598 		if (ret != 0)
1599 			goto out;
1600 	}
1601 out:
1602 	map->unlock(map->lock_arg);
1603 
1604 	return ret;
1605 }
1606 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1607 
1608 /**
1609  * regmap_raw_write_async(): Write raw values to one or more registers
1610  *                           asynchronously
1611  *
1612  * @map: Register map to write to
1613  * @reg: Initial register to write to
1614  * @val: Block of data to be written, laid out for direct transmission to the
1615  *       device.  Must be valid until regmap_async_complete() is called.
1616  * @val_len: Length of data pointed to by val.
1617  *
1618  * This function is intended to be used for things like firmware
1619  * download where a large block of data needs to be transferred to the
1620  * device.  No formatting will be done on the data provided.
1621  *
1622  * If supported by the underlying bus the write will be scheduled
1623  * asynchronously, helping maximise I/O speed on higher speed buses
1624  * like SPI.  regmap_async_complete() can be called to ensure that all
1625  * asynchrnous writes have been completed.
1626  *
1627  * A value of zero will be returned on success, a negative errno will
1628  * be returned in error cases.
1629  */
1630 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1631 			   const void *val, size_t val_len)
1632 {
1633 	int ret;
1634 
1635 	if (val_len % map->format.val_bytes)
1636 		return -EINVAL;
1637 	if (reg % map->reg_stride)
1638 		return -EINVAL;
1639 
1640 	map->lock(map->lock_arg);
1641 
1642 	map->async = true;
1643 
1644 	ret = _regmap_raw_write(map, reg, val, val_len);
1645 
1646 	map->async = false;
1647 
1648 	map->unlock(map->lock_arg);
1649 
1650 	return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1653 
1654 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1655 			    unsigned int val_len)
1656 {
1657 	struct regmap_range_node *range;
1658 	u8 *u8 = map->work_buf;
1659 	int ret;
1660 
1661 	WARN_ON(!map->bus);
1662 
1663 	range = _regmap_range_lookup(map, reg);
1664 	if (range) {
1665 		ret = _regmap_select_page(map, &reg, range,
1666 					  val_len / map->format.val_bytes);
1667 		if (ret != 0)
1668 			return ret;
1669 	}
1670 
1671 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1672 
1673 	/*
1674 	 * Some buses or devices flag reads by setting the high bits in the
1675 	 * register addresss; since it's always the high bits for all
1676 	 * current formats we can do this here rather than in
1677 	 * formatting.  This may break if we get interesting formats.
1678 	 */
1679 	u8[0] |= map->read_flag_mask;
1680 
1681 	trace_regmap_hw_read_start(map->dev, reg,
1682 				   val_len / map->format.val_bytes);
1683 
1684 	ret = map->bus->read(map->bus_context, map->work_buf,
1685 			     map->format.reg_bytes + map->format.pad_bytes,
1686 			     val, val_len);
1687 
1688 	trace_regmap_hw_read_done(map->dev, reg,
1689 				  val_len / map->format.val_bytes);
1690 
1691 	return ret;
1692 }
1693 
1694 static int _regmap_bus_read(void *context, unsigned int reg,
1695 			    unsigned int *val)
1696 {
1697 	int ret;
1698 	struct regmap *map = context;
1699 
1700 	if (!map->format.parse_val)
1701 		return -EINVAL;
1702 
1703 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1704 	if (ret == 0)
1705 		*val = map->format.parse_val(map->work_buf);
1706 
1707 	return ret;
1708 }
1709 
1710 static int _regmap_read(struct regmap *map, unsigned int reg,
1711 			unsigned int *val)
1712 {
1713 	int ret;
1714 	void *context = _regmap_map_get_context(map);
1715 
1716 	WARN_ON(!map->reg_read);
1717 
1718 	if (!map->cache_bypass) {
1719 		ret = regcache_read(map, reg, val);
1720 		if (ret == 0)
1721 			return 0;
1722 	}
1723 
1724 	if (map->cache_only)
1725 		return -EBUSY;
1726 
1727 	ret = map->reg_read(context, reg, val);
1728 	if (ret == 0) {
1729 #ifdef LOG_DEVICE
1730 		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1731 			dev_info(map->dev, "%x => %x\n", reg, *val);
1732 #endif
1733 
1734 		trace_regmap_reg_read(map->dev, reg, *val);
1735 
1736 		if (!map->cache_bypass)
1737 			regcache_write(map, reg, *val);
1738 	}
1739 
1740 	return ret;
1741 }
1742 
1743 /**
1744  * regmap_read(): Read a value from a single register
1745  *
1746  * @map: Register map to read from
1747  * @reg: Register to be read from
1748  * @val: Pointer to store read value
1749  *
1750  * A value of zero will be returned on success, a negative errno will
1751  * be returned in error cases.
1752  */
1753 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1754 {
1755 	int ret;
1756 
1757 	if (reg % map->reg_stride)
1758 		return -EINVAL;
1759 
1760 	map->lock(map->lock_arg);
1761 
1762 	ret = _regmap_read(map, reg, val);
1763 
1764 	map->unlock(map->lock_arg);
1765 
1766 	return ret;
1767 }
1768 EXPORT_SYMBOL_GPL(regmap_read);
1769 
1770 /**
1771  * regmap_raw_read(): Read raw data from the device
1772  *
1773  * @map: Register map to read from
1774  * @reg: First register to be read from
1775  * @val: Pointer to store read value
1776  * @val_len: Size of data to read
1777  *
1778  * A value of zero will be returned on success, a negative errno will
1779  * be returned in error cases.
1780  */
1781 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1782 		    size_t val_len)
1783 {
1784 	size_t val_bytes = map->format.val_bytes;
1785 	size_t val_count = val_len / val_bytes;
1786 	unsigned int v;
1787 	int ret, i;
1788 
1789 	if (!map->bus)
1790 		return -EINVAL;
1791 	if (val_len % map->format.val_bytes)
1792 		return -EINVAL;
1793 	if (reg % map->reg_stride)
1794 		return -EINVAL;
1795 
1796 	map->lock(map->lock_arg);
1797 
1798 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1799 	    map->cache_type == REGCACHE_NONE) {
1800 		/* Physical block read if there's no cache involved */
1801 		ret = _regmap_raw_read(map, reg, val, val_len);
1802 
1803 	} else {
1804 		/* Otherwise go word by word for the cache; should be low
1805 		 * cost as we expect to hit the cache.
1806 		 */
1807 		for (i = 0; i < val_count; i++) {
1808 			ret = _regmap_read(map, reg + (i * map->reg_stride),
1809 					   &v);
1810 			if (ret != 0)
1811 				goto out;
1812 
1813 			map->format.format_val(val + (i * val_bytes), v, 0);
1814 		}
1815 	}
1816 
1817  out:
1818 	map->unlock(map->lock_arg);
1819 
1820 	return ret;
1821 }
1822 EXPORT_SYMBOL_GPL(regmap_raw_read);
1823 
1824 /**
1825  * regmap_field_read(): Read a value to a single register field
1826  *
1827  * @field: Register field to read from
1828  * @val: Pointer to store read value
1829  *
1830  * A value of zero will be returned on success, a negative errno will
1831  * be returned in error cases.
1832  */
1833 int regmap_field_read(struct regmap_field *field, unsigned int *val)
1834 {
1835 	int ret;
1836 	unsigned int reg_val;
1837 	ret = regmap_read(field->regmap, field->reg, &reg_val);
1838 	if (ret != 0)
1839 		return ret;
1840 
1841 	reg_val &= field->mask;
1842 	reg_val >>= field->shift;
1843 	*val = reg_val;
1844 
1845 	return ret;
1846 }
1847 EXPORT_SYMBOL_GPL(regmap_field_read);
1848 
1849 /**
1850  * regmap_fields_read(): Read a value to a single register field with port ID
1851  *
1852  * @field: Register field to read from
1853  * @id: port ID
1854  * @val: Pointer to store read value
1855  *
1856  * A value of zero will be returned on success, a negative errno will
1857  * be returned in error cases.
1858  */
1859 int regmap_fields_read(struct regmap_field *field, unsigned int id,
1860 		       unsigned int *val)
1861 {
1862 	int ret;
1863 	unsigned int reg_val;
1864 
1865 	if (id >= field->id_size)
1866 		return -EINVAL;
1867 
1868 	ret = regmap_read(field->regmap,
1869 			  field->reg + (field->id_offset * id),
1870 			  &reg_val);
1871 	if (ret != 0)
1872 		return ret;
1873 
1874 	reg_val &= field->mask;
1875 	reg_val >>= field->shift;
1876 	*val = reg_val;
1877 
1878 	return ret;
1879 }
1880 EXPORT_SYMBOL_GPL(regmap_fields_read);
1881 
1882 /**
1883  * regmap_bulk_read(): Read multiple registers from the device
1884  *
1885  * @map: Register map to read from
1886  * @reg: First register to be read from
1887  * @val: Pointer to store read value, in native register size for device
1888  * @val_count: Number of registers to read
1889  *
1890  * A value of zero will be returned on success, a negative errno will
1891  * be returned in error cases.
1892  */
1893 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1894 		     size_t val_count)
1895 {
1896 	int ret, i;
1897 	size_t val_bytes = map->format.val_bytes;
1898 	bool vol = regmap_volatile_range(map, reg, val_count);
1899 
1900 	if (!map->bus)
1901 		return -EINVAL;
1902 	if (!map->format.parse_inplace)
1903 		return -EINVAL;
1904 	if (reg % map->reg_stride)
1905 		return -EINVAL;
1906 
1907 	if (vol || map->cache_type == REGCACHE_NONE) {
1908 		/*
1909 		 * Some devices does not support bulk read, for
1910 		 * them we have a series of single read operations.
1911 		 */
1912 		if (map->use_single_rw) {
1913 			for (i = 0; i < val_count; i++) {
1914 				ret = regmap_raw_read(map,
1915 						reg + (i * map->reg_stride),
1916 						val + (i * val_bytes),
1917 						val_bytes);
1918 				if (ret != 0)
1919 					return ret;
1920 			}
1921 		} else {
1922 			ret = regmap_raw_read(map, reg, val,
1923 					      val_bytes * val_count);
1924 			if (ret != 0)
1925 				return ret;
1926 		}
1927 
1928 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1929 			map->format.parse_inplace(val + i);
1930 	} else {
1931 		for (i = 0; i < val_count; i++) {
1932 			unsigned int ival;
1933 			ret = regmap_read(map, reg + (i * map->reg_stride),
1934 					  &ival);
1935 			if (ret != 0)
1936 				return ret;
1937 			memcpy(val + (i * val_bytes), &ival, val_bytes);
1938 		}
1939 	}
1940 
1941 	return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1944 
1945 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1946 			       unsigned int mask, unsigned int val,
1947 			       bool *change)
1948 {
1949 	int ret;
1950 	unsigned int tmp, orig;
1951 
1952 	ret = _regmap_read(map, reg, &orig);
1953 	if (ret != 0)
1954 		return ret;
1955 
1956 	tmp = orig & ~mask;
1957 	tmp |= val & mask;
1958 
1959 	if (tmp != orig) {
1960 		ret = _regmap_write(map, reg, tmp);
1961 		*change = true;
1962 	} else {
1963 		*change = false;
1964 	}
1965 
1966 	return ret;
1967 }
1968 
1969 /**
1970  * regmap_update_bits: Perform a read/modify/write cycle on the register map
1971  *
1972  * @map: Register map to update
1973  * @reg: Register to update
1974  * @mask: Bitmask to change
1975  * @val: New value for bitmask
1976  *
1977  * Returns zero for success, a negative number on error.
1978  */
1979 int regmap_update_bits(struct regmap *map, unsigned int reg,
1980 		       unsigned int mask, unsigned int val)
1981 {
1982 	bool change;
1983 	int ret;
1984 
1985 	map->lock(map->lock_arg);
1986 	ret = _regmap_update_bits(map, reg, mask, val, &change);
1987 	map->unlock(map->lock_arg);
1988 
1989 	return ret;
1990 }
1991 EXPORT_SYMBOL_GPL(regmap_update_bits);
1992 
1993 /**
1994  * regmap_update_bits_async: Perform a read/modify/write cycle on the register
1995  *                           map asynchronously
1996  *
1997  * @map: Register map to update
1998  * @reg: Register to update
1999  * @mask: Bitmask to change
2000  * @val: New value for bitmask
2001  *
2002  * With most buses the read must be done synchronously so this is most
2003  * useful for devices with a cache which do not need to interact with
2004  * the hardware to determine the current register value.
2005  *
2006  * Returns zero for success, a negative number on error.
2007  */
2008 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2009 			     unsigned int mask, unsigned int val)
2010 {
2011 	bool change;
2012 	int ret;
2013 
2014 	map->lock(map->lock_arg);
2015 
2016 	map->async = true;
2017 
2018 	ret = _regmap_update_bits(map, reg, mask, val, &change);
2019 
2020 	map->async = false;
2021 
2022 	map->unlock(map->lock_arg);
2023 
2024 	return ret;
2025 }
2026 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2027 
2028 /**
2029  * regmap_update_bits_check: Perform a read/modify/write cycle on the
2030  *                           register map and report if updated
2031  *
2032  * @map: Register map to update
2033  * @reg: Register to update
2034  * @mask: Bitmask to change
2035  * @val: New value for bitmask
2036  * @change: Boolean indicating if a write was done
2037  *
2038  * Returns zero for success, a negative number on error.
2039  */
2040 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2041 			     unsigned int mask, unsigned int val,
2042 			     bool *change)
2043 {
2044 	int ret;
2045 
2046 	map->lock(map->lock_arg);
2047 	ret = _regmap_update_bits(map, reg, mask, val, change);
2048 	map->unlock(map->lock_arg);
2049 	return ret;
2050 }
2051 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2052 
2053 /**
2054  * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2055  *                                 register map asynchronously and report if
2056  *                                 updated
2057  *
2058  * @map: Register map to update
2059  * @reg: Register to update
2060  * @mask: Bitmask to change
2061  * @val: New value for bitmask
2062  * @change: Boolean indicating if a write was done
2063  *
2064  * With most buses the read must be done synchronously so this is most
2065  * useful for devices with a cache which do not need to interact with
2066  * the hardware to determine the current register value.
2067  *
2068  * Returns zero for success, a negative number on error.
2069  */
2070 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2071 				   unsigned int mask, unsigned int val,
2072 				   bool *change)
2073 {
2074 	int ret;
2075 
2076 	map->lock(map->lock_arg);
2077 
2078 	map->async = true;
2079 
2080 	ret = _regmap_update_bits(map, reg, mask, val, change);
2081 
2082 	map->async = false;
2083 
2084 	map->unlock(map->lock_arg);
2085 
2086 	return ret;
2087 }
2088 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2089 
2090 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2091 {
2092 	struct regmap *map = async->map;
2093 	bool wake;
2094 
2095 	trace_regmap_async_io_complete(map->dev);
2096 
2097 	spin_lock(&map->async_lock);
2098 	list_move(&async->list, &map->async_free);
2099 	wake = list_empty(&map->async_list);
2100 
2101 	if (ret != 0)
2102 		map->async_ret = ret;
2103 
2104 	spin_unlock(&map->async_lock);
2105 
2106 	if (wake)
2107 		wake_up(&map->async_waitq);
2108 }
2109 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2110 
2111 static int regmap_async_is_done(struct regmap *map)
2112 {
2113 	unsigned long flags;
2114 	int ret;
2115 
2116 	spin_lock_irqsave(&map->async_lock, flags);
2117 	ret = list_empty(&map->async_list);
2118 	spin_unlock_irqrestore(&map->async_lock, flags);
2119 
2120 	return ret;
2121 }
2122 
2123 /**
2124  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2125  *
2126  * @map: Map to operate on.
2127  *
2128  * Blocks until any pending asynchronous I/O has completed.  Returns
2129  * an error code for any failed I/O operations.
2130  */
2131 int regmap_async_complete(struct regmap *map)
2132 {
2133 	unsigned long flags;
2134 	int ret;
2135 
2136 	/* Nothing to do with no async support */
2137 	if (!map->bus || !map->bus->async_write)
2138 		return 0;
2139 
2140 	trace_regmap_async_complete_start(map->dev);
2141 
2142 	wait_event(map->async_waitq, regmap_async_is_done(map));
2143 
2144 	spin_lock_irqsave(&map->async_lock, flags);
2145 	ret = map->async_ret;
2146 	map->async_ret = 0;
2147 	spin_unlock_irqrestore(&map->async_lock, flags);
2148 
2149 	trace_regmap_async_complete_done(map->dev);
2150 
2151 	return ret;
2152 }
2153 EXPORT_SYMBOL_GPL(regmap_async_complete);
2154 
2155 /**
2156  * regmap_register_patch: Register and apply register updates to be applied
2157  *                        on device initialistion
2158  *
2159  * @map: Register map to apply updates to.
2160  * @regs: Values to update.
2161  * @num_regs: Number of entries in regs.
2162  *
2163  * Register a set of register updates to be applied to the device
2164  * whenever the device registers are synchronised with the cache and
2165  * apply them immediately.  Typically this is used to apply
2166  * corrections to be applied to the device defaults on startup, such
2167  * as the updates some vendors provide to undocumented registers.
2168  */
2169 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2170 			  int num_regs)
2171 {
2172 	struct reg_default *p;
2173 	int i, ret;
2174 	bool bypass;
2175 
2176 	map->lock(map->lock_arg);
2177 
2178 	bypass = map->cache_bypass;
2179 
2180 	map->cache_bypass = true;
2181 	map->async = true;
2182 
2183 	/* Write out first; it's useful to apply even if we fail later. */
2184 	for (i = 0; i < num_regs; i++) {
2185 		ret = _regmap_write(map, regs[i].reg, regs[i].def);
2186 		if (ret != 0) {
2187 			dev_err(map->dev, "Failed to write %x = %x: %d\n",
2188 				regs[i].reg, regs[i].def, ret);
2189 			goto out;
2190 		}
2191 	}
2192 
2193 	p = krealloc(map->patch,
2194 		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2195 		     GFP_KERNEL);
2196 	if (p) {
2197 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2198 		map->patch = p;
2199 		map->patch_regs += num_regs;
2200 	} else {
2201 		ret = -ENOMEM;
2202 	}
2203 
2204 out:
2205 	map->async = false;
2206 	map->cache_bypass = bypass;
2207 
2208 	map->unlock(map->lock_arg);
2209 
2210 	regmap_async_complete(map);
2211 
2212 	return ret;
2213 }
2214 EXPORT_SYMBOL_GPL(regmap_register_patch);
2215 
2216 /*
2217  * regmap_get_val_bytes(): Report the size of a register value
2218  *
2219  * Report the size of a register value, mainly intended to for use by
2220  * generic infrastructure built on top of regmap.
2221  */
2222 int regmap_get_val_bytes(struct regmap *map)
2223 {
2224 	if (map->format.format_write)
2225 		return -EINVAL;
2226 
2227 	return map->format.val_bytes;
2228 }
2229 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2230 
2231 static int __init regmap_initcall(void)
2232 {
2233 	regmap_debugfs_initcall();
2234 
2235 	return 0;
2236 }
2237 postcore_initcall(regmap_initcall);
2238