1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Register map access API 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/export.h> 12 #include <linux/mutex.h> 13 #include <linux/err.h> 14 #include <linux/property.h> 15 #include <linux/rbtree.h> 16 #include <linux/sched.h> 17 #include <linux/delay.h> 18 #include <linux/log2.h> 19 #include <linux/hwspinlock.h> 20 #include <asm/unaligned.h> 21 22 #define CREATE_TRACE_POINTS 23 #include "trace.h" 24 25 #include "internal.h" 26 27 /* 28 * Sometimes for failures during very early init the trace 29 * infrastructure isn't available early enough to be used. For this 30 * sort of problem defining LOG_DEVICE will add printks for basic 31 * register I/O on a specific device. 32 */ 33 #undef LOG_DEVICE 34 35 #ifdef LOG_DEVICE 36 static inline bool regmap_should_log(struct regmap *map) 37 { 38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0); 39 } 40 #else 41 static inline bool regmap_should_log(struct regmap *map) { return false; } 42 #endif 43 44 45 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 46 unsigned int mask, unsigned int val, 47 bool *change, bool force_write); 48 49 static int _regmap_bus_reg_read(void *context, unsigned int reg, 50 unsigned int *val); 51 static int _regmap_bus_read(void *context, unsigned int reg, 52 unsigned int *val); 53 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 54 unsigned int val); 55 static int _regmap_bus_reg_write(void *context, unsigned int reg, 56 unsigned int val); 57 static int _regmap_bus_raw_write(void *context, unsigned int reg, 58 unsigned int val); 59 60 bool regmap_reg_in_ranges(unsigned int reg, 61 const struct regmap_range *ranges, 62 unsigned int nranges) 63 { 64 const struct regmap_range *r; 65 int i; 66 67 for (i = 0, r = ranges; i < nranges; i++, r++) 68 if (regmap_reg_in_range(reg, r)) 69 return true; 70 return false; 71 } 72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 73 74 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 75 const struct regmap_access_table *table) 76 { 77 /* Check "no ranges" first */ 78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 79 return false; 80 81 /* In case zero "yes ranges" are supplied, any reg is OK */ 82 if (!table->n_yes_ranges) 83 return true; 84 85 return regmap_reg_in_ranges(reg, table->yes_ranges, 86 table->n_yes_ranges); 87 } 88 EXPORT_SYMBOL_GPL(regmap_check_range_table); 89 90 bool regmap_writeable(struct regmap *map, unsigned int reg) 91 { 92 if (map->max_register && reg > map->max_register) 93 return false; 94 95 if (map->writeable_reg) 96 return map->writeable_reg(map->dev, reg); 97 98 if (map->wr_table) 99 return regmap_check_range_table(map, reg, map->wr_table); 100 101 return true; 102 } 103 104 bool regmap_cached(struct regmap *map, unsigned int reg) 105 { 106 int ret; 107 unsigned int val; 108 109 if (map->cache_type == REGCACHE_NONE) 110 return false; 111 112 if (!map->cache_ops) 113 return false; 114 115 if (map->max_register && reg > map->max_register) 116 return false; 117 118 map->lock(map->lock_arg); 119 ret = regcache_read(map, reg, &val); 120 map->unlock(map->lock_arg); 121 if (ret) 122 return false; 123 124 return true; 125 } 126 127 bool regmap_readable(struct regmap *map, unsigned int reg) 128 { 129 if (!map->reg_read) 130 return false; 131 132 if (map->max_register && reg > map->max_register) 133 return false; 134 135 if (map->format.format_write) 136 return false; 137 138 if (map->readable_reg) 139 return map->readable_reg(map->dev, reg); 140 141 if (map->rd_table) 142 return regmap_check_range_table(map, reg, map->rd_table); 143 144 return true; 145 } 146 147 bool regmap_volatile(struct regmap *map, unsigned int reg) 148 { 149 if (!map->format.format_write && !regmap_readable(map, reg)) 150 return false; 151 152 if (map->volatile_reg) 153 return map->volatile_reg(map->dev, reg); 154 155 if (map->volatile_table) 156 return regmap_check_range_table(map, reg, map->volatile_table); 157 158 if (map->cache_ops) 159 return false; 160 else 161 return true; 162 } 163 164 bool regmap_precious(struct regmap *map, unsigned int reg) 165 { 166 if (!regmap_readable(map, reg)) 167 return false; 168 169 if (map->precious_reg) 170 return map->precious_reg(map->dev, reg); 171 172 if (map->precious_table) 173 return regmap_check_range_table(map, reg, map->precious_table); 174 175 return false; 176 } 177 178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg) 179 { 180 if (map->writeable_noinc_reg) 181 return map->writeable_noinc_reg(map->dev, reg); 182 183 if (map->wr_noinc_table) 184 return regmap_check_range_table(map, reg, map->wr_noinc_table); 185 186 return true; 187 } 188 189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg) 190 { 191 if (map->readable_noinc_reg) 192 return map->readable_noinc_reg(map->dev, reg); 193 194 if (map->rd_noinc_table) 195 return regmap_check_range_table(map, reg, map->rd_noinc_table); 196 197 return true; 198 } 199 200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 201 size_t num) 202 { 203 unsigned int i; 204 205 for (i = 0; i < num; i++) 206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i))) 207 return false; 208 209 return true; 210 } 211 212 static void regmap_format_12_20_write(struct regmap *map, 213 unsigned int reg, unsigned int val) 214 { 215 u8 *out = map->work_buf; 216 217 out[0] = reg >> 4; 218 out[1] = (reg << 4) | (val >> 16); 219 out[2] = val >> 8; 220 out[3] = val; 221 } 222 223 224 static void regmap_format_2_6_write(struct regmap *map, 225 unsigned int reg, unsigned int val) 226 { 227 u8 *out = map->work_buf; 228 229 *out = (reg << 6) | val; 230 } 231 232 static void regmap_format_4_12_write(struct regmap *map, 233 unsigned int reg, unsigned int val) 234 { 235 __be16 *out = map->work_buf; 236 *out = cpu_to_be16((reg << 12) | val); 237 } 238 239 static void regmap_format_7_9_write(struct regmap *map, 240 unsigned int reg, unsigned int val) 241 { 242 __be16 *out = map->work_buf; 243 *out = cpu_to_be16((reg << 9) | val); 244 } 245 246 static void regmap_format_7_17_write(struct regmap *map, 247 unsigned int reg, unsigned int val) 248 { 249 u8 *out = map->work_buf; 250 251 out[2] = val; 252 out[1] = val >> 8; 253 out[0] = (val >> 16) | (reg << 1); 254 } 255 256 static void regmap_format_10_14_write(struct regmap *map, 257 unsigned int reg, unsigned int val) 258 { 259 u8 *out = map->work_buf; 260 261 out[2] = val; 262 out[1] = (val >> 8) | (reg << 6); 263 out[0] = reg >> 2; 264 } 265 266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 267 { 268 u8 *b = buf; 269 270 b[0] = val << shift; 271 } 272 273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 274 { 275 put_unaligned_be16(val << shift, buf); 276 } 277 278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) 279 { 280 put_unaligned_le16(val << shift, buf); 281 } 282 283 static void regmap_format_16_native(void *buf, unsigned int val, 284 unsigned int shift) 285 { 286 u16 v = val << shift; 287 288 memcpy(buf, &v, sizeof(v)); 289 } 290 291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift) 292 { 293 put_unaligned_be24(val << shift, buf); 294 } 295 296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 297 { 298 put_unaligned_be32(val << shift, buf); 299 } 300 301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) 302 { 303 put_unaligned_le32(val << shift, buf); 304 } 305 306 static void regmap_format_32_native(void *buf, unsigned int val, 307 unsigned int shift) 308 { 309 u32 v = val << shift; 310 311 memcpy(buf, &v, sizeof(v)); 312 } 313 314 static void regmap_parse_inplace_noop(void *buf) 315 { 316 } 317 318 static unsigned int regmap_parse_8(const void *buf) 319 { 320 const u8 *b = buf; 321 322 return b[0]; 323 } 324 325 static unsigned int regmap_parse_16_be(const void *buf) 326 { 327 return get_unaligned_be16(buf); 328 } 329 330 static unsigned int regmap_parse_16_le(const void *buf) 331 { 332 return get_unaligned_le16(buf); 333 } 334 335 static void regmap_parse_16_be_inplace(void *buf) 336 { 337 u16 v = get_unaligned_be16(buf); 338 339 memcpy(buf, &v, sizeof(v)); 340 } 341 342 static void regmap_parse_16_le_inplace(void *buf) 343 { 344 u16 v = get_unaligned_le16(buf); 345 346 memcpy(buf, &v, sizeof(v)); 347 } 348 349 static unsigned int regmap_parse_16_native(const void *buf) 350 { 351 u16 v; 352 353 memcpy(&v, buf, sizeof(v)); 354 return v; 355 } 356 357 static unsigned int regmap_parse_24_be(const void *buf) 358 { 359 return get_unaligned_be24(buf); 360 } 361 362 static unsigned int regmap_parse_32_be(const void *buf) 363 { 364 return get_unaligned_be32(buf); 365 } 366 367 static unsigned int regmap_parse_32_le(const void *buf) 368 { 369 return get_unaligned_le32(buf); 370 } 371 372 static void regmap_parse_32_be_inplace(void *buf) 373 { 374 u32 v = get_unaligned_be32(buf); 375 376 memcpy(buf, &v, sizeof(v)); 377 } 378 379 static void regmap_parse_32_le_inplace(void *buf) 380 { 381 u32 v = get_unaligned_le32(buf); 382 383 memcpy(buf, &v, sizeof(v)); 384 } 385 386 static unsigned int regmap_parse_32_native(const void *buf) 387 { 388 u32 v; 389 390 memcpy(&v, buf, sizeof(v)); 391 return v; 392 } 393 394 static void regmap_lock_hwlock(void *__map) 395 { 396 struct regmap *map = __map; 397 398 hwspin_lock_timeout(map->hwlock, UINT_MAX); 399 } 400 401 static void regmap_lock_hwlock_irq(void *__map) 402 { 403 struct regmap *map = __map; 404 405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX); 406 } 407 408 static void regmap_lock_hwlock_irqsave(void *__map) 409 { 410 struct regmap *map = __map; 411 412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX, 413 &map->spinlock_flags); 414 } 415 416 static void regmap_unlock_hwlock(void *__map) 417 { 418 struct regmap *map = __map; 419 420 hwspin_unlock(map->hwlock); 421 } 422 423 static void regmap_unlock_hwlock_irq(void *__map) 424 { 425 struct regmap *map = __map; 426 427 hwspin_unlock_irq(map->hwlock); 428 } 429 430 static void regmap_unlock_hwlock_irqrestore(void *__map) 431 { 432 struct regmap *map = __map; 433 434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags); 435 } 436 437 static void regmap_lock_unlock_none(void *__map) 438 { 439 440 } 441 442 static void regmap_lock_mutex(void *__map) 443 { 444 struct regmap *map = __map; 445 mutex_lock(&map->mutex); 446 } 447 448 static void regmap_unlock_mutex(void *__map) 449 { 450 struct regmap *map = __map; 451 mutex_unlock(&map->mutex); 452 } 453 454 static void regmap_lock_spinlock(void *__map) 455 __acquires(&map->spinlock) 456 { 457 struct regmap *map = __map; 458 unsigned long flags; 459 460 spin_lock_irqsave(&map->spinlock, flags); 461 map->spinlock_flags = flags; 462 } 463 464 static void regmap_unlock_spinlock(void *__map) 465 __releases(&map->spinlock) 466 { 467 struct regmap *map = __map; 468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 469 } 470 471 static void regmap_lock_raw_spinlock(void *__map) 472 __acquires(&map->raw_spinlock) 473 { 474 struct regmap *map = __map; 475 unsigned long flags; 476 477 raw_spin_lock_irqsave(&map->raw_spinlock, flags); 478 map->raw_spinlock_flags = flags; 479 } 480 481 static void regmap_unlock_raw_spinlock(void *__map) 482 __releases(&map->raw_spinlock) 483 { 484 struct regmap *map = __map; 485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags); 486 } 487 488 static void dev_get_regmap_release(struct device *dev, void *res) 489 { 490 /* 491 * We don't actually have anything to do here; the goal here 492 * is not to manage the regmap but to provide a simple way to 493 * get the regmap back given a struct device. 494 */ 495 } 496 497 static bool _regmap_range_add(struct regmap *map, 498 struct regmap_range_node *data) 499 { 500 struct rb_root *root = &map->range_tree; 501 struct rb_node **new = &(root->rb_node), *parent = NULL; 502 503 while (*new) { 504 struct regmap_range_node *this = 505 rb_entry(*new, struct regmap_range_node, node); 506 507 parent = *new; 508 if (data->range_max < this->range_min) 509 new = &((*new)->rb_left); 510 else if (data->range_min > this->range_max) 511 new = &((*new)->rb_right); 512 else 513 return false; 514 } 515 516 rb_link_node(&data->node, parent, new); 517 rb_insert_color(&data->node, root); 518 519 return true; 520 } 521 522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 523 unsigned int reg) 524 { 525 struct rb_node *node = map->range_tree.rb_node; 526 527 while (node) { 528 struct regmap_range_node *this = 529 rb_entry(node, struct regmap_range_node, node); 530 531 if (reg < this->range_min) 532 node = node->rb_left; 533 else if (reg > this->range_max) 534 node = node->rb_right; 535 else 536 return this; 537 } 538 539 return NULL; 540 } 541 542 static void regmap_range_exit(struct regmap *map) 543 { 544 struct rb_node *next; 545 struct regmap_range_node *range_node; 546 547 next = rb_first(&map->range_tree); 548 while (next) { 549 range_node = rb_entry(next, struct regmap_range_node, node); 550 next = rb_next(&range_node->node); 551 rb_erase(&range_node->node, &map->range_tree); 552 kfree(range_node); 553 } 554 555 kfree(map->selector_work_buf); 556 } 557 558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config) 559 { 560 if (config->name) { 561 const char *name = kstrdup_const(config->name, GFP_KERNEL); 562 563 if (!name) 564 return -ENOMEM; 565 566 kfree_const(map->name); 567 map->name = name; 568 } 569 570 return 0; 571 } 572 573 int regmap_attach_dev(struct device *dev, struct regmap *map, 574 const struct regmap_config *config) 575 { 576 struct regmap **m; 577 int ret; 578 579 map->dev = dev; 580 581 ret = regmap_set_name(map, config); 582 if (ret) 583 return ret; 584 585 regmap_debugfs_exit(map); 586 regmap_debugfs_init(map); 587 588 /* Add a devres resource for dev_get_regmap() */ 589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 590 if (!m) { 591 regmap_debugfs_exit(map); 592 return -ENOMEM; 593 } 594 *m = map; 595 devres_add(dev, m); 596 597 return 0; 598 } 599 EXPORT_SYMBOL_GPL(regmap_attach_dev); 600 601 static int dev_get_regmap_match(struct device *dev, void *res, void *data); 602 603 static int regmap_detach_dev(struct device *dev, struct regmap *map) 604 { 605 if (!dev) 606 return 0; 607 608 return devres_release(dev, dev_get_regmap_release, 609 dev_get_regmap_match, (void *)map->name); 610 } 611 612 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, 613 const struct regmap_config *config) 614 { 615 enum regmap_endian endian; 616 617 /* Retrieve the endianness specification from the regmap config */ 618 endian = config->reg_format_endian; 619 620 /* If the regmap config specified a non-default value, use that */ 621 if (endian != REGMAP_ENDIAN_DEFAULT) 622 return endian; 623 624 /* Retrieve the endianness specification from the bus config */ 625 if (bus && bus->reg_format_endian_default) 626 endian = bus->reg_format_endian_default; 627 628 /* If the bus specified a non-default value, use that */ 629 if (endian != REGMAP_ENDIAN_DEFAULT) 630 return endian; 631 632 /* Use this if no other value was found */ 633 return REGMAP_ENDIAN_BIG; 634 } 635 636 enum regmap_endian regmap_get_val_endian(struct device *dev, 637 const struct regmap_bus *bus, 638 const struct regmap_config *config) 639 { 640 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 641 enum regmap_endian endian; 642 643 /* Retrieve the endianness specification from the regmap config */ 644 endian = config->val_format_endian; 645 646 /* If the regmap config specified a non-default value, use that */ 647 if (endian != REGMAP_ENDIAN_DEFAULT) 648 return endian; 649 650 /* If the firmware node exist try to get endianness from it */ 651 if (fwnode_property_read_bool(fwnode, "big-endian")) 652 endian = REGMAP_ENDIAN_BIG; 653 else if (fwnode_property_read_bool(fwnode, "little-endian")) 654 endian = REGMAP_ENDIAN_LITTLE; 655 else if (fwnode_property_read_bool(fwnode, "native-endian")) 656 endian = REGMAP_ENDIAN_NATIVE; 657 658 /* If the endianness was specified in fwnode, use that */ 659 if (endian != REGMAP_ENDIAN_DEFAULT) 660 return endian; 661 662 /* Retrieve the endianness specification from the bus config */ 663 if (bus && bus->val_format_endian_default) 664 endian = bus->val_format_endian_default; 665 666 /* If the bus specified a non-default value, use that */ 667 if (endian != REGMAP_ENDIAN_DEFAULT) 668 return endian; 669 670 /* Use this if no other value was found */ 671 return REGMAP_ENDIAN_BIG; 672 } 673 EXPORT_SYMBOL_GPL(regmap_get_val_endian); 674 675 struct regmap *__regmap_init(struct device *dev, 676 const struct regmap_bus *bus, 677 void *bus_context, 678 const struct regmap_config *config, 679 struct lock_class_key *lock_key, 680 const char *lock_name) 681 { 682 struct regmap *map; 683 int ret = -EINVAL; 684 enum regmap_endian reg_endian, val_endian; 685 int i, j; 686 687 if (!config) 688 goto err; 689 690 map = kzalloc(sizeof(*map), GFP_KERNEL); 691 if (map == NULL) { 692 ret = -ENOMEM; 693 goto err; 694 } 695 696 ret = regmap_set_name(map, config); 697 if (ret) 698 goto err_map; 699 700 ret = -EINVAL; /* Later error paths rely on this */ 701 702 if (config->disable_locking) { 703 map->lock = map->unlock = regmap_lock_unlock_none; 704 map->can_sleep = config->can_sleep; 705 regmap_debugfs_disable(map); 706 } else if (config->lock && config->unlock) { 707 map->lock = config->lock; 708 map->unlock = config->unlock; 709 map->lock_arg = config->lock_arg; 710 map->can_sleep = config->can_sleep; 711 } else if (config->use_hwlock) { 712 map->hwlock = hwspin_lock_request_specific(config->hwlock_id); 713 if (!map->hwlock) { 714 ret = -ENXIO; 715 goto err_name; 716 } 717 718 switch (config->hwlock_mode) { 719 case HWLOCK_IRQSTATE: 720 map->lock = regmap_lock_hwlock_irqsave; 721 map->unlock = regmap_unlock_hwlock_irqrestore; 722 break; 723 case HWLOCK_IRQ: 724 map->lock = regmap_lock_hwlock_irq; 725 map->unlock = regmap_unlock_hwlock_irq; 726 break; 727 default: 728 map->lock = regmap_lock_hwlock; 729 map->unlock = regmap_unlock_hwlock; 730 break; 731 } 732 733 map->lock_arg = map; 734 } else { 735 if ((bus && bus->fast_io) || 736 config->fast_io) { 737 if (config->use_raw_spinlock) { 738 raw_spin_lock_init(&map->raw_spinlock); 739 map->lock = regmap_lock_raw_spinlock; 740 map->unlock = regmap_unlock_raw_spinlock; 741 lockdep_set_class_and_name(&map->raw_spinlock, 742 lock_key, lock_name); 743 } else { 744 spin_lock_init(&map->spinlock); 745 map->lock = regmap_lock_spinlock; 746 map->unlock = regmap_unlock_spinlock; 747 lockdep_set_class_and_name(&map->spinlock, 748 lock_key, lock_name); 749 } 750 } else { 751 mutex_init(&map->mutex); 752 map->lock = regmap_lock_mutex; 753 map->unlock = regmap_unlock_mutex; 754 map->can_sleep = true; 755 lockdep_set_class_and_name(&map->mutex, 756 lock_key, lock_name); 757 } 758 map->lock_arg = map; 759 map->lock_key = lock_key; 760 } 761 762 /* 763 * When we write in fast-paths with regmap_bulk_write() don't allocate 764 * scratch buffers with sleeping allocations. 765 */ 766 if ((bus && bus->fast_io) || config->fast_io) 767 map->alloc_flags = GFP_ATOMIC; 768 else 769 map->alloc_flags = GFP_KERNEL; 770 771 map->reg_base = config->reg_base; 772 773 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); 774 map->format.pad_bytes = config->pad_bits / 8; 775 map->format.reg_shift = config->reg_shift; 776 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); 777 map->format.buf_size = DIV_ROUND_UP(config->reg_bits + 778 config->val_bits + config->pad_bits, 8); 779 map->reg_shift = config->pad_bits % 8; 780 if (config->reg_stride) 781 map->reg_stride = config->reg_stride; 782 else 783 map->reg_stride = 1; 784 if (is_power_of_2(map->reg_stride)) 785 map->reg_stride_order = ilog2(map->reg_stride); 786 else 787 map->reg_stride_order = -1; 788 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read)); 789 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write)); 790 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write)); 791 if (bus) { 792 map->max_raw_read = bus->max_raw_read; 793 map->max_raw_write = bus->max_raw_write; 794 } else if (config->max_raw_read && config->max_raw_write) { 795 map->max_raw_read = config->max_raw_read; 796 map->max_raw_write = config->max_raw_write; 797 } 798 map->dev = dev; 799 map->bus = bus; 800 map->bus_context = bus_context; 801 map->max_register = config->max_register; 802 map->wr_table = config->wr_table; 803 map->rd_table = config->rd_table; 804 map->volatile_table = config->volatile_table; 805 map->precious_table = config->precious_table; 806 map->wr_noinc_table = config->wr_noinc_table; 807 map->rd_noinc_table = config->rd_noinc_table; 808 map->writeable_reg = config->writeable_reg; 809 map->readable_reg = config->readable_reg; 810 map->volatile_reg = config->volatile_reg; 811 map->precious_reg = config->precious_reg; 812 map->writeable_noinc_reg = config->writeable_noinc_reg; 813 map->readable_noinc_reg = config->readable_noinc_reg; 814 map->cache_type = config->cache_type; 815 816 spin_lock_init(&map->async_lock); 817 INIT_LIST_HEAD(&map->async_list); 818 INIT_LIST_HEAD(&map->async_free); 819 init_waitqueue_head(&map->async_waitq); 820 821 if (config->read_flag_mask || 822 config->write_flag_mask || 823 config->zero_flag_mask) { 824 map->read_flag_mask = config->read_flag_mask; 825 map->write_flag_mask = config->write_flag_mask; 826 } else if (bus) { 827 map->read_flag_mask = bus->read_flag_mask; 828 } 829 830 if (config && config->read && config->write) { 831 map->reg_read = _regmap_bus_read; 832 if (config->reg_update_bits) 833 map->reg_update_bits = config->reg_update_bits; 834 835 /* Bulk read/write */ 836 map->read = config->read; 837 map->write = config->write; 838 839 reg_endian = REGMAP_ENDIAN_NATIVE; 840 val_endian = REGMAP_ENDIAN_NATIVE; 841 } else if (!bus) { 842 map->reg_read = config->reg_read; 843 map->reg_write = config->reg_write; 844 map->reg_update_bits = config->reg_update_bits; 845 846 map->defer_caching = false; 847 goto skip_format_initialization; 848 } else if (!bus->read || !bus->write) { 849 map->reg_read = _regmap_bus_reg_read; 850 map->reg_write = _regmap_bus_reg_write; 851 map->reg_update_bits = bus->reg_update_bits; 852 853 map->defer_caching = false; 854 goto skip_format_initialization; 855 } else { 856 map->reg_read = _regmap_bus_read; 857 map->reg_update_bits = bus->reg_update_bits; 858 /* Bulk read/write */ 859 map->read = bus->read; 860 map->write = bus->write; 861 862 reg_endian = regmap_get_reg_endian(bus, config); 863 val_endian = regmap_get_val_endian(dev, bus, config); 864 } 865 866 switch (config->reg_bits + map->reg_shift) { 867 case 2: 868 switch (config->val_bits) { 869 case 6: 870 map->format.format_write = regmap_format_2_6_write; 871 break; 872 default: 873 goto err_hwlock; 874 } 875 break; 876 877 case 4: 878 switch (config->val_bits) { 879 case 12: 880 map->format.format_write = regmap_format_4_12_write; 881 break; 882 default: 883 goto err_hwlock; 884 } 885 break; 886 887 case 7: 888 switch (config->val_bits) { 889 case 9: 890 map->format.format_write = regmap_format_7_9_write; 891 break; 892 case 17: 893 map->format.format_write = regmap_format_7_17_write; 894 break; 895 default: 896 goto err_hwlock; 897 } 898 break; 899 900 case 10: 901 switch (config->val_bits) { 902 case 14: 903 map->format.format_write = regmap_format_10_14_write; 904 break; 905 default: 906 goto err_hwlock; 907 } 908 break; 909 910 case 12: 911 switch (config->val_bits) { 912 case 20: 913 map->format.format_write = regmap_format_12_20_write; 914 break; 915 default: 916 goto err_hwlock; 917 } 918 break; 919 920 case 8: 921 map->format.format_reg = regmap_format_8; 922 break; 923 924 case 16: 925 switch (reg_endian) { 926 case REGMAP_ENDIAN_BIG: 927 map->format.format_reg = regmap_format_16_be; 928 break; 929 case REGMAP_ENDIAN_LITTLE: 930 map->format.format_reg = regmap_format_16_le; 931 break; 932 case REGMAP_ENDIAN_NATIVE: 933 map->format.format_reg = regmap_format_16_native; 934 break; 935 default: 936 goto err_hwlock; 937 } 938 break; 939 940 case 24: 941 switch (reg_endian) { 942 case REGMAP_ENDIAN_BIG: 943 map->format.format_reg = regmap_format_24_be; 944 break; 945 default: 946 goto err_hwlock; 947 } 948 break; 949 950 case 32: 951 switch (reg_endian) { 952 case REGMAP_ENDIAN_BIG: 953 map->format.format_reg = regmap_format_32_be; 954 break; 955 case REGMAP_ENDIAN_LITTLE: 956 map->format.format_reg = regmap_format_32_le; 957 break; 958 case REGMAP_ENDIAN_NATIVE: 959 map->format.format_reg = regmap_format_32_native; 960 break; 961 default: 962 goto err_hwlock; 963 } 964 break; 965 966 default: 967 goto err_hwlock; 968 } 969 970 if (val_endian == REGMAP_ENDIAN_NATIVE) 971 map->format.parse_inplace = regmap_parse_inplace_noop; 972 973 switch (config->val_bits) { 974 case 8: 975 map->format.format_val = regmap_format_8; 976 map->format.parse_val = regmap_parse_8; 977 map->format.parse_inplace = regmap_parse_inplace_noop; 978 break; 979 case 16: 980 switch (val_endian) { 981 case REGMAP_ENDIAN_BIG: 982 map->format.format_val = regmap_format_16_be; 983 map->format.parse_val = regmap_parse_16_be; 984 map->format.parse_inplace = regmap_parse_16_be_inplace; 985 break; 986 case REGMAP_ENDIAN_LITTLE: 987 map->format.format_val = regmap_format_16_le; 988 map->format.parse_val = regmap_parse_16_le; 989 map->format.parse_inplace = regmap_parse_16_le_inplace; 990 break; 991 case REGMAP_ENDIAN_NATIVE: 992 map->format.format_val = regmap_format_16_native; 993 map->format.parse_val = regmap_parse_16_native; 994 break; 995 default: 996 goto err_hwlock; 997 } 998 break; 999 case 24: 1000 switch (val_endian) { 1001 case REGMAP_ENDIAN_BIG: 1002 map->format.format_val = regmap_format_24_be; 1003 map->format.parse_val = regmap_parse_24_be; 1004 break; 1005 default: 1006 goto err_hwlock; 1007 } 1008 break; 1009 case 32: 1010 switch (val_endian) { 1011 case REGMAP_ENDIAN_BIG: 1012 map->format.format_val = regmap_format_32_be; 1013 map->format.parse_val = regmap_parse_32_be; 1014 map->format.parse_inplace = regmap_parse_32_be_inplace; 1015 break; 1016 case REGMAP_ENDIAN_LITTLE: 1017 map->format.format_val = regmap_format_32_le; 1018 map->format.parse_val = regmap_parse_32_le; 1019 map->format.parse_inplace = regmap_parse_32_le_inplace; 1020 break; 1021 case REGMAP_ENDIAN_NATIVE: 1022 map->format.format_val = regmap_format_32_native; 1023 map->format.parse_val = regmap_parse_32_native; 1024 break; 1025 default: 1026 goto err_hwlock; 1027 } 1028 break; 1029 } 1030 1031 if (map->format.format_write) { 1032 if ((reg_endian != REGMAP_ENDIAN_BIG) || 1033 (val_endian != REGMAP_ENDIAN_BIG)) 1034 goto err_hwlock; 1035 map->use_single_write = true; 1036 } 1037 1038 if (!map->format.format_write && 1039 !(map->format.format_reg && map->format.format_val)) 1040 goto err_hwlock; 1041 1042 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 1043 if (map->work_buf == NULL) { 1044 ret = -ENOMEM; 1045 goto err_hwlock; 1046 } 1047 1048 if (map->format.format_write) { 1049 map->defer_caching = false; 1050 map->reg_write = _regmap_bus_formatted_write; 1051 } else if (map->format.format_val) { 1052 map->defer_caching = true; 1053 map->reg_write = _regmap_bus_raw_write; 1054 } 1055 1056 skip_format_initialization: 1057 1058 map->range_tree = RB_ROOT; 1059 for (i = 0; i < config->num_ranges; i++) { 1060 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 1061 struct regmap_range_node *new; 1062 1063 /* Sanity check */ 1064 if (range_cfg->range_max < range_cfg->range_min) { 1065 dev_err(map->dev, "Invalid range %d: %d < %d\n", i, 1066 range_cfg->range_max, range_cfg->range_min); 1067 goto err_range; 1068 } 1069 1070 if (range_cfg->range_max > map->max_register) { 1071 dev_err(map->dev, "Invalid range %d: %d > %d\n", i, 1072 range_cfg->range_max, map->max_register); 1073 goto err_range; 1074 } 1075 1076 if (range_cfg->selector_reg > map->max_register) { 1077 dev_err(map->dev, 1078 "Invalid range %d: selector out of map\n", i); 1079 goto err_range; 1080 } 1081 1082 if (range_cfg->window_len == 0) { 1083 dev_err(map->dev, "Invalid range %d: window_len 0\n", 1084 i); 1085 goto err_range; 1086 } 1087 1088 /* Make sure, that this register range has no selector 1089 or data window within its boundary */ 1090 for (j = 0; j < config->num_ranges; j++) { 1091 unsigned int sel_reg = config->ranges[j].selector_reg; 1092 unsigned int win_min = config->ranges[j].window_start; 1093 unsigned int win_max = win_min + 1094 config->ranges[j].window_len - 1; 1095 1096 /* Allow data window inside its own virtual range */ 1097 if (j == i) 1098 continue; 1099 1100 if (range_cfg->range_min <= sel_reg && 1101 sel_reg <= range_cfg->range_max) { 1102 dev_err(map->dev, 1103 "Range %d: selector for %d in window\n", 1104 i, j); 1105 goto err_range; 1106 } 1107 1108 if (!(win_max < range_cfg->range_min || 1109 win_min > range_cfg->range_max)) { 1110 dev_err(map->dev, 1111 "Range %d: window for %d in window\n", 1112 i, j); 1113 goto err_range; 1114 } 1115 } 1116 1117 new = kzalloc(sizeof(*new), GFP_KERNEL); 1118 if (new == NULL) { 1119 ret = -ENOMEM; 1120 goto err_range; 1121 } 1122 1123 new->map = map; 1124 new->name = range_cfg->name; 1125 new->range_min = range_cfg->range_min; 1126 new->range_max = range_cfg->range_max; 1127 new->selector_reg = range_cfg->selector_reg; 1128 new->selector_mask = range_cfg->selector_mask; 1129 new->selector_shift = range_cfg->selector_shift; 1130 new->window_start = range_cfg->window_start; 1131 new->window_len = range_cfg->window_len; 1132 1133 if (!_regmap_range_add(map, new)) { 1134 dev_err(map->dev, "Failed to add range %d\n", i); 1135 kfree(new); 1136 goto err_range; 1137 } 1138 1139 if (map->selector_work_buf == NULL) { 1140 map->selector_work_buf = 1141 kzalloc(map->format.buf_size, GFP_KERNEL); 1142 if (map->selector_work_buf == NULL) { 1143 ret = -ENOMEM; 1144 goto err_range; 1145 } 1146 } 1147 } 1148 1149 ret = regcache_init(map, config); 1150 if (ret != 0) 1151 goto err_range; 1152 1153 if (dev) { 1154 ret = regmap_attach_dev(dev, map, config); 1155 if (ret != 0) 1156 goto err_regcache; 1157 } else { 1158 regmap_debugfs_init(map); 1159 } 1160 1161 return map; 1162 1163 err_regcache: 1164 regcache_exit(map); 1165 err_range: 1166 regmap_range_exit(map); 1167 kfree(map->work_buf); 1168 err_hwlock: 1169 if (map->hwlock) 1170 hwspin_lock_free(map->hwlock); 1171 err_name: 1172 kfree_const(map->name); 1173 err_map: 1174 kfree(map); 1175 err: 1176 return ERR_PTR(ret); 1177 } 1178 EXPORT_SYMBOL_GPL(__regmap_init); 1179 1180 static void devm_regmap_release(struct device *dev, void *res) 1181 { 1182 regmap_exit(*(struct regmap **)res); 1183 } 1184 1185 struct regmap *__devm_regmap_init(struct device *dev, 1186 const struct regmap_bus *bus, 1187 void *bus_context, 1188 const struct regmap_config *config, 1189 struct lock_class_key *lock_key, 1190 const char *lock_name) 1191 { 1192 struct regmap **ptr, *regmap; 1193 1194 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 1195 if (!ptr) 1196 return ERR_PTR(-ENOMEM); 1197 1198 regmap = __regmap_init(dev, bus, bus_context, config, 1199 lock_key, lock_name); 1200 if (!IS_ERR(regmap)) { 1201 *ptr = regmap; 1202 devres_add(dev, ptr); 1203 } else { 1204 devres_free(ptr); 1205 } 1206 1207 return regmap; 1208 } 1209 EXPORT_SYMBOL_GPL(__devm_regmap_init); 1210 1211 static void regmap_field_init(struct regmap_field *rm_field, 1212 struct regmap *regmap, struct reg_field reg_field) 1213 { 1214 rm_field->regmap = regmap; 1215 rm_field->reg = reg_field.reg; 1216 rm_field->shift = reg_field.lsb; 1217 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb); 1218 1219 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n"); 1220 1221 rm_field->id_size = reg_field.id_size; 1222 rm_field->id_offset = reg_field.id_offset; 1223 } 1224 1225 /** 1226 * devm_regmap_field_alloc() - Allocate and initialise a register field. 1227 * 1228 * @dev: Device that will be interacted with 1229 * @regmap: regmap bank in which this register field is located. 1230 * @reg_field: Register field with in the bank. 1231 * 1232 * The return value will be an ERR_PTR() on error or a valid pointer 1233 * to a struct regmap_field. The regmap_field will be automatically freed 1234 * by the device management code. 1235 */ 1236 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 1237 struct regmap *regmap, struct reg_field reg_field) 1238 { 1239 struct regmap_field *rm_field = devm_kzalloc(dev, 1240 sizeof(*rm_field), GFP_KERNEL); 1241 if (!rm_field) 1242 return ERR_PTR(-ENOMEM); 1243 1244 regmap_field_init(rm_field, regmap, reg_field); 1245 1246 return rm_field; 1247 1248 } 1249 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 1250 1251 1252 /** 1253 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field. 1254 * 1255 * @regmap: regmap bank in which this register field is located. 1256 * @rm_field: regmap register fields within the bank. 1257 * @reg_field: Register fields within the bank. 1258 * @num_fields: Number of register fields. 1259 * 1260 * The return value will be an -ENOMEM on error or zero for success. 1261 * Newly allocated regmap_fields should be freed by calling 1262 * regmap_field_bulk_free() 1263 */ 1264 int regmap_field_bulk_alloc(struct regmap *regmap, 1265 struct regmap_field **rm_field, 1266 const struct reg_field *reg_field, 1267 int num_fields) 1268 { 1269 struct regmap_field *rf; 1270 int i; 1271 1272 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL); 1273 if (!rf) 1274 return -ENOMEM; 1275 1276 for (i = 0; i < num_fields; i++) { 1277 regmap_field_init(&rf[i], regmap, reg_field[i]); 1278 rm_field[i] = &rf[i]; 1279 } 1280 1281 return 0; 1282 } 1283 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc); 1284 1285 /** 1286 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register 1287 * fields. 1288 * 1289 * @dev: Device that will be interacted with 1290 * @regmap: regmap bank in which this register field is located. 1291 * @rm_field: regmap register fields within the bank. 1292 * @reg_field: Register fields within the bank. 1293 * @num_fields: Number of register fields. 1294 * 1295 * The return value will be an -ENOMEM on error or zero for success. 1296 * Newly allocated regmap_fields will be automatically freed by the 1297 * device management code. 1298 */ 1299 int devm_regmap_field_bulk_alloc(struct device *dev, 1300 struct regmap *regmap, 1301 struct regmap_field **rm_field, 1302 const struct reg_field *reg_field, 1303 int num_fields) 1304 { 1305 struct regmap_field *rf; 1306 int i; 1307 1308 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL); 1309 if (!rf) 1310 return -ENOMEM; 1311 1312 for (i = 0; i < num_fields; i++) { 1313 regmap_field_init(&rf[i], regmap, reg_field[i]); 1314 rm_field[i] = &rf[i]; 1315 } 1316 1317 return 0; 1318 } 1319 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc); 1320 1321 /** 1322 * regmap_field_bulk_free() - Free register field allocated using 1323 * regmap_field_bulk_alloc. 1324 * 1325 * @field: regmap fields which should be freed. 1326 */ 1327 void regmap_field_bulk_free(struct regmap_field *field) 1328 { 1329 kfree(field); 1330 } 1331 EXPORT_SYMBOL_GPL(regmap_field_bulk_free); 1332 1333 /** 1334 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using 1335 * devm_regmap_field_bulk_alloc. 1336 * 1337 * @dev: Device that will be interacted with 1338 * @field: regmap field which should be freed. 1339 * 1340 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually 1341 * drivers need not call this function, as the memory allocated via devm 1342 * will be freed as per device-driver life-cycle. 1343 */ 1344 void devm_regmap_field_bulk_free(struct device *dev, 1345 struct regmap_field *field) 1346 { 1347 devm_kfree(dev, field); 1348 } 1349 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free); 1350 1351 /** 1352 * devm_regmap_field_free() - Free a register field allocated using 1353 * devm_regmap_field_alloc. 1354 * 1355 * @dev: Device that will be interacted with 1356 * @field: regmap field which should be freed. 1357 * 1358 * Free register field allocated using devm_regmap_field_alloc(). Usually 1359 * drivers need not call this function, as the memory allocated via devm 1360 * will be freed as per device-driver life-cyle. 1361 */ 1362 void devm_regmap_field_free(struct device *dev, 1363 struct regmap_field *field) 1364 { 1365 devm_kfree(dev, field); 1366 } 1367 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 1368 1369 /** 1370 * regmap_field_alloc() - Allocate and initialise a register field. 1371 * 1372 * @regmap: regmap bank in which this register field is located. 1373 * @reg_field: Register field with in the bank. 1374 * 1375 * The return value will be an ERR_PTR() on error or a valid pointer 1376 * to a struct regmap_field. The regmap_field should be freed by the 1377 * user once its finished working with it using regmap_field_free(). 1378 */ 1379 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 1380 struct reg_field reg_field) 1381 { 1382 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 1383 1384 if (!rm_field) 1385 return ERR_PTR(-ENOMEM); 1386 1387 regmap_field_init(rm_field, regmap, reg_field); 1388 1389 return rm_field; 1390 } 1391 EXPORT_SYMBOL_GPL(regmap_field_alloc); 1392 1393 /** 1394 * regmap_field_free() - Free register field allocated using 1395 * regmap_field_alloc. 1396 * 1397 * @field: regmap field which should be freed. 1398 */ 1399 void regmap_field_free(struct regmap_field *field) 1400 { 1401 kfree(field); 1402 } 1403 EXPORT_SYMBOL_GPL(regmap_field_free); 1404 1405 /** 1406 * regmap_reinit_cache() - Reinitialise the current register cache 1407 * 1408 * @map: Register map to operate on. 1409 * @config: New configuration. Only the cache data will be used. 1410 * 1411 * Discard any existing register cache for the map and initialize a 1412 * new cache. This can be used to restore the cache to defaults or to 1413 * update the cache configuration to reflect runtime discovery of the 1414 * hardware. 1415 * 1416 * No explicit locking is done here, the user needs to ensure that 1417 * this function will not race with other calls to regmap. 1418 */ 1419 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 1420 { 1421 int ret; 1422 1423 regcache_exit(map); 1424 regmap_debugfs_exit(map); 1425 1426 map->max_register = config->max_register; 1427 map->writeable_reg = config->writeable_reg; 1428 map->readable_reg = config->readable_reg; 1429 map->volatile_reg = config->volatile_reg; 1430 map->precious_reg = config->precious_reg; 1431 map->writeable_noinc_reg = config->writeable_noinc_reg; 1432 map->readable_noinc_reg = config->readable_noinc_reg; 1433 map->cache_type = config->cache_type; 1434 1435 ret = regmap_set_name(map, config); 1436 if (ret) 1437 return ret; 1438 1439 regmap_debugfs_init(map); 1440 1441 map->cache_bypass = false; 1442 map->cache_only = false; 1443 1444 return regcache_init(map, config); 1445 } 1446 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 1447 1448 /** 1449 * regmap_exit() - Free a previously allocated register map 1450 * 1451 * @map: Register map to operate on. 1452 */ 1453 void regmap_exit(struct regmap *map) 1454 { 1455 struct regmap_async *async; 1456 1457 regmap_detach_dev(map->dev, map); 1458 regcache_exit(map); 1459 regmap_debugfs_exit(map); 1460 regmap_range_exit(map); 1461 if (map->bus && map->bus->free_context) 1462 map->bus->free_context(map->bus_context); 1463 kfree(map->work_buf); 1464 while (!list_empty(&map->async_free)) { 1465 async = list_first_entry_or_null(&map->async_free, 1466 struct regmap_async, 1467 list); 1468 list_del(&async->list); 1469 kfree(async->work_buf); 1470 kfree(async); 1471 } 1472 if (map->hwlock) 1473 hwspin_lock_free(map->hwlock); 1474 if (map->lock == regmap_lock_mutex) 1475 mutex_destroy(&map->mutex); 1476 kfree_const(map->name); 1477 kfree(map->patch); 1478 if (map->bus && map->bus->free_on_exit) 1479 kfree(map->bus); 1480 kfree(map); 1481 } 1482 EXPORT_SYMBOL_GPL(regmap_exit); 1483 1484 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 1485 { 1486 struct regmap **r = res; 1487 if (!r || !*r) { 1488 WARN_ON(!r || !*r); 1489 return 0; 1490 } 1491 1492 /* If the user didn't specify a name match any */ 1493 if (data) 1494 return (*r)->name && !strcmp((*r)->name, data); 1495 else 1496 return 1; 1497 } 1498 1499 /** 1500 * dev_get_regmap() - Obtain the regmap (if any) for a device 1501 * 1502 * @dev: Device to retrieve the map for 1503 * @name: Optional name for the register map, usually NULL. 1504 * 1505 * Returns the regmap for the device if one is present, or NULL. If 1506 * name is specified then it must match the name specified when 1507 * registering the device, if it is NULL then the first regmap found 1508 * will be used. Devices with multiple register maps are very rare, 1509 * generic code should normally not need to specify a name. 1510 */ 1511 struct regmap *dev_get_regmap(struct device *dev, const char *name) 1512 { 1513 struct regmap **r = devres_find(dev, dev_get_regmap_release, 1514 dev_get_regmap_match, (void *)name); 1515 1516 if (!r) 1517 return NULL; 1518 return *r; 1519 } 1520 EXPORT_SYMBOL_GPL(dev_get_regmap); 1521 1522 /** 1523 * regmap_get_device() - Obtain the device from a regmap 1524 * 1525 * @map: Register map to operate on. 1526 * 1527 * Returns the underlying device that the regmap has been created for. 1528 */ 1529 struct device *regmap_get_device(struct regmap *map) 1530 { 1531 return map->dev; 1532 } 1533 EXPORT_SYMBOL_GPL(regmap_get_device); 1534 1535 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 1536 struct regmap_range_node *range, 1537 unsigned int val_num) 1538 { 1539 void *orig_work_buf; 1540 unsigned int win_offset; 1541 unsigned int win_page; 1542 bool page_chg; 1543 int ret; 1544 1545 win_offset = (*reg - range->range_min) % range->window_len; 1546 win_page = (*reg - range->range_min) / range->window_len; 1547 1548 if (val_num > 1) { 1549 /* Bulk write shouldn't cross range boundary */ 1550 if (*reg + val_num - 1 > range->range_max) 1551 return -EINVAL; 1552 1553 /* ... or single page boundary */ 1554 if (val_num > range->window_len - win_offset) 1555 return -EINVAL; 1556 } 1557 1558 /* It is possible to have selector register inside data window. 1559 In that case, selector register is located on every page and 1560 it needs no page switching, when accessed alone. */ 1561 if (val_num > 1 || 1562 range->window_start + win_offset != range->selector_reg) { 1563 /* Use separate work_buf during page switching */ 1564 orig_work_buf = map->work_buf; 1565 map->work_buf = map->selector_work_buf; 1566 1567 ret = _regmap_update_bits(map, range->selector_reg, 1568 range->selector_mask, 1569 win_page << range->selector_shift, 1570 &page_chg, false); 1571 1572 map->work_buf = orig_work_buf; 1573 1574 if (ret != 0) 1575 return ret; 1576 } 1577 1578 *reg = range->window_start + win_offset; 1579 1580 return 0; 1581 } 1582 1583 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes, 1584 unsigned long mask) 1585 { 1586 u8 *buf; 1587 int i; 1588 1589 if (!mask || !map->work_buf) 1590 return; 1591 1592 buf = map->work_buf; 1593 1594 for (i = 0; i < max_bytes; i++) 1595 buf[i] |= (mask >> (8 * i)) & 0xff; 1596 } 1597 1598 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg) 1599 { 1600 reg += map->reg_base; 1601 1602 if (map->format.reg_shift > 0) 1603 reg >>= map->format.reg_shift; 1604 else if (map->format.reg_shift < 0) 1605 reg <<= -(map->format.reg_shift); 1606 1607 return reg; 1608 } 1609 1610 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg, 1611 const void *val, size_t val_len, bool noinc) 1612 { 1613 struct regmap_range_node *range; 1614 unsigned long flags; 1615 void *work_val = map->work_buf + map->format.reg_bytes + 1616 map->format.pad_bytes; 1617 void *buf; 1618 int ret = -ENOTSUPP; 1619 size_t len; 1620 int i; 1621 1622 /* Check for unwritable or noinc registers in range 1623 * before we start 1624 */ 1625 if (!regmap_writeable_noinc(map, reg)) { 1626 for (i = 0; i < val_len / map->format.val_bytes; i++) { 1627 unsigned int element = 1628 reg + regmap_get_offset(map, i); 1629 if (!regmap_writeable(map, element) || 1630 regmap_writeable_noinc(map, element)) 1631 return -EINVAL; 1632 } 1633 } 1634 1635 if (!map->cache_bypass && map->format.parse_val) { 1636 unsigned int ival, offset; 1637 int val_bytes = map->format.val_bytes; 1638 1639 /* Cache the last written value for noinc writes */ 1640 i = noinc ? val_len - val_bytes : 0; 1641 for (; i < val_len; i += val_bytes) { 1642 ival = map->format.parse_val(val + i); 1643 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes); 1644 ret = regcache_write(map, reg + offset, ival); 1645 if (ret) { 1646 dev_err(map->dev, 1647 "Error in caching of register: %x ret: %d\n", 1648 reg + offset, ret); 1649 return ret; 1650 } 1651 } 1652 if (map->cache_only) { 1653 map->cache_dirty = true; 1654 return 0; 1655 } 1656 } 1657 1658 range = _regmap_range_lookup(map, reg); 1659 if (range) { 1660 int val_num = val_len / map->format.val_bytes; 1661 int win_offset = (reg - range->range_min) % range->window_len; 1662 int win_residue = range->window_len - win_offset; 1663 1664 /* If the write goes beyond the end of the window split it */ 1665 while (val_num > win_residue) { 1666 dev_dbg(map->dev, "Writing window %d/%zu\n", 1667 win_residue, val_len / map->format.val_bytes); 1668 ret = _regmap_raw_write_impl(map, reg, val, 1669 win_residue * 1670 map->format.val_bytes, noinc); 1671 if (ret != 0) 1672 return ret; 1673 1674 reg += win_residue; 1675 val_num -= win_residue; 1676 val += win_residue * map->format.val_bytes; 1677 val_len -= win_residue * map->format.val_bytes; 1678 1679 win_offset = (reg - range->range_min) % 1680 range->window_len; 1681 win_residue = range->window_len - win_offset; 1682 } 1683 1684 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num); 1685 if (ret != 0) 1686 return ret; 1687 } 1688 1689 reg = regmap_reg_addr(map, reg); 1690 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1691 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 1692 map->write_flag_mask); 1693 1694 /* 1695 * Essentially all I/O mechanisms will be faster with a single 1696 * buffer to write. Since register syncs often generate raw 1697 * writes of single registers optimise that case. 1698 */ 1699 if (val != work_val && val_len == map->format.val_bytes) { 1700 memcpy(work_val, val, map->format.val_bytes); 1701 val = work_val; 1702 } 1703 1704 if (map->async && map->bus && map->bus->async_write) { 1705 struct regmap_async *async; 1706 1707 trace_regmap_async_write_start(map, reg, val_len); 1708 1709 spin_lock_irqsave(&map->async_lock, flags); 1710 async = list_first_entry_or_null(&map->async_free, 1711 struct regmap_async, 1712 list); 1713 if (async) 1714 list_del(&async->list); 1715 spin_unlock_irqrestore(&map->async_lock, flags); 1716 1717 if (!async) { 1718 async = map->bus->async_alloc(); 1719 if (!async) 1720 return -ENOMEM; 1721 1722 async->work_buf = kzalloc(map->format.buf_size, 1723 GFP_KERNEL | GFP_DMA); 1724 if (!async->work_buf) { 1725 kfree(async); 1726 return -ENOMEM; 1727 } 1728 } 1729 1730 async->map = map; 1731 1732 /* If the caller supplied the value we can use it safely. */ 1733 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1734 map->format.reg_bytes + map->format.val_bytes); 1735 1736 spin_lock_irqsave(&map->async_lock, flags); 1737 list_add_tail(&async->list, &map->async_list); 1738 spin_unlock_irqrestore(&map->async_lock, flags); 1739 1740 if (val != work_val) 1741 ret = map->bus->async_write(map->bus_context, 1742 async->work_buf, 1743 map->format.reg_bytes + 1744 map->format.pad_bytes, 1745 val, val_len, async); 1746 else 1747 ret = map->bus->async_write(map->bus_context, 1748 async->work_buf, 1749 map->format.reg_bytes + 1750 map->format.pad_bytes + 1751 val_len, NULL, 0, async); 1752 1753 if (ret != 0) { 1754 dev_err(map->dev, "Failed to schedule write: %d\n", 1755 ret); 1756 1757 spin_lock_irqsave(&map->async_lock, flags); 1758 list_move(&async->list, &map->async_free); 1759 spin_unlock_irqrestore(&map->async_lock, flags); 1760 } 1761 1762 return ret; 1763 } 1764 1765 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); 1766 1767 /* If we're doing a single register write we can probably just 1768 * send the work_buf directly, otherwise try to do a gather 1769 * write. 1770 */ 1771 if (val == work_val) 1772 ret = map->write(map->bus_context, map->work_buf, 1773 map->format.reg_bytes + 1774 map->format.pad_bytes + 1775 val_len); 1776 else if (map->bus && map->bus->gather_write) 1777 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1778 map->format.reg_bytes + 1779 map->format.pad_bytes, 1780 val, val_len); 1781 else 1782 ret = -ENOTSUPP; 1783 1784 /* If that didn't work fall back on linearising by hand. */ 1785 if (ret == -ENOTSUPP) { 1786 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1787 buf = kzalloc(len, GFP_KERNEL); 1788 if (!buf) 1789 return -ENOMEM; 1790 1791 memcpy(buf, map->work_buf, map->format.reg_bytes); 1792 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1793 val, val_len); 1794 ret = map->write(map->bus_context, buf, len); 1795 1796 kfree(buf); 1797 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) { 1798 /* regcache_drop_region() takes lock that we already have, 1799 * thus call map->cache_ops->drop() directly 1800 */ 1801 if (map->cache_ops && map->cache_ops->drop) 1802 map->cache_ops->drop(map, reg, reg + 1); 1803 } 1804 1805 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); 1806 1807 return ret; 1808 } 1809 1810 /** 1811 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1812 * 1813 * @map: Map to check. 1814 */ 1815 bool regmap_can_raw_write(struct regmap *map) 1816 { 1817 return map->write && map->format.format_val && map->format.format_reg; 1818 } 1819 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1820 1821 /** 1822 * regmap_get_raw_read_max - Get the maximum size we can read 1823 * 1824 * @map: Map to check. 1825 */ 1826 size_t regmap_get_raw_read_max(struct regmap *map) 1827 { 1828 return map->max_raw_read; 1829 } 1830 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max); 1831 1832 /** 1833 * regmap_get_raw_write_max - Get the maximum size we can read 1834 * 1835 * @map: Map to check. 1836 */ 1837 size_t regmap_get_raw_write_max(struct regmap *map) 1838 { 1839 return map->max_raw_write; 1840 } 1841 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max); 1842 1843 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1844 unsigned int val) 1845 { 1846 int ret; 1847 struct regmap_range_node *range; 1848 struct regmap *map = context; 1849 1850 WARN_ON(!map->format.format_write); 1851 1852 range = _regmap_range_lookup(map, reg); 1853 if (range) { 1854 ret = _regmap_select_page(map, ®, range, 1); 1855 if (ret != 0) 1856 return ret; 1857 } 1858 1859 reg = regmap_reg_addr(map, reg); 1860 map->format.format_write(map, reg, val); 1861 1862 trace_regmap_hw_write_start(map, reg, 1); 1863 1864 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size); 1865 1866 trace_regmap_hw_write_done(map, reg, 1); 1867 1868 return ret; 1869 } 1870 1871 static int _regmap_bus_reg_write(void *context, unsigned int reg, 1872 unsigned int val) 1873 { 1874 struct regmap *map = context; 1875 struct regmap_range_node *range; 1876 int ret; 1877 1878 range = _regmap_range_lookup(map, reg); 1879 if (range) { 1880 ret = _regmap_select_page(map, ®, range, 1); 1881 if (ret != 0) 1882 return ret; 1883 } 1884 1885 reg = regmap_reg_addr(map, reg); 1886 return map->bus->reg_write(map->bus_context, reg, val); 1887 } 1888 1889 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1890 unsigned int val) 1891 { 1892 struct regmap *map = context; 1893 1894 WARN_ON(!map->format.format_val); 1895 1896 map->format.format_val(map->work_buf + map->format.reg_bytes 1897 + map->format.pad_bytes, val, 0); 1898 return _regmap_raw_write_impl(map, reg, 1899 map->work_buf + 1900 map->format.reg_bytes + 1901 map->format.pad_bytes, 1902 map->format.val_bytes, 1903 false); 1904 } 1905 1906 static inline void *_regmap_map_get_context(struct regmap *map) 1907 { 1908 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context; 1909 } 1910 1911 int _regmap_write(struct regmap *map, unsigned int reg, 1912 unsigned int val) 1913 { 1914 int ret; 1915 void *context = _regmap_map_get_context(map); 1916 1917 if (!regmap_writeable(map, reg)) 1918 return -EIO; 1919 1920 if (!map->cache_bypass && !map->defer_caching) { 1921 ret = regcache_write(map, reg, val); 1922 if (ret != 0) 1923 return ret; 1924 if (map->cache_only) { 1925 map->cache_dirty = true; 1926 return 0; 1927 } 1928 } 1929 1930 ret = map->reg_write(context, reg, val); 1931 if (ret == 0) { 1932 if (regmap_should_log(map)) 1933 dev_info(map->dev, "%x <= %x\n", reg, val); 1934 1935 trace_regmap_reg_write(map, reg, val); 1936 } 1937 1938 return ret; 1939 } 1940 1941 /** 1942 * regmap_write() - Write a value to a single register 1943 * 1944 * @map: Register map to write to 1945 * @reg: Register to write to 1946 * @val: Value to be written 1947 * 1948 * A value of zero will be returned on success, a negative errno will 1949 * be returned in error cases. 1950 */ 1951 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 1952 { 1953 int ret; 1954 1955 if (!IS_ALIGNED(reg, map->reg_stride)) 1956 return -EINVAL; 1957 1958 map->lock(map->lock_arg); 1959 1960 ret = _regmap_write(map, reg, val); 1961 1962 map->unlock(map->lock_arg); 1963 1964 return ret; 1965 } 1966 EXPORT_SYMBOL_GPL(regmap_write); 1967 1968 /** 1969 * regmap_write_async() - Write a value to a single register asynchronously 1970 * 1971 * @map: Register map to write to 1972 * @reg: Register to write to 1973 * @val: Value to be written 1974 * 1975 * A value of zero will be returned on success, a negative errno will 1976 * be returned in error cases. 1977 */ 1978 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 1979 { 1980 int ret; 1981 1982 if (!IS_ALIGNED(reg, map->reg_stride)) 1983 return -EINVAL; 1984 1985 map->lock(map->lock_arg); 1986 1987 map->async = true; 1988 1989 ret = _regmap_write(map, reg, val); 1990 1991 map->async = false; 1992 1993 map->unlock(map->lock_arg); 1994 1995 return ret; 1996 } 1997 EXPORT_SYMBOL_GPL(regmap_write_async); 1998 1999 int _regmap_raw_write(struct regmap *map, unsigned int reg, 2000 const void *val, size_t val_len, bool noinc) 2001 { 2002 size_t val_bytes = map->format.val_bytes; 2003 size_t val_count = val_len / val_bytes; 2004 size_t chunk_count, chunk_bytes; 2005 size_t chunk_regs = val_count; 2006 int ret, i; 2007 2008 if (!val_count) 2009 return -EINVAL; 2010 2011 if (map->use_single_write) 2012 chunk_regs = 1; 2013 else if (map->max_raw_write && val_len > map->max_raw_write) 2014 chunk_regs = map->max_raw_write / val_bytes; 2015 2016 chunk_count = val_count / chunk_regs; 2017 chunk_bytes = chunk_regs * val_bytes; 2018 2019 /* Write as many bytes as possible with chunk_size */ 2020 for (i = 0; i < chunk_count; i++) { 2021 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc); 2022 if (ret) 2023 return ret; 2024 2025 reg += regmap_get_offset(map, chunk_regs); 2026 val += chunk_bytes; 2027 val_len -= chunk_bytes; 2028 } 2029 2030 /* Write remaining bytes */ 2031 if (val_len) 2032 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc); 2033 2034 return ret; 2035 } 2036 2037 /** 2038 * regmap_raw_write() - Write raw values to one or more registers 2039 * 2040 * @map: Register map to write to 2041 * @reg: Initial register to write to 2042 * @val: Block of data to be written, laid out for direct transmission to the 2043 * device 2044 * @val_len: Length of data pointed to by val. 2045 * 2046 * This function is intended to be used for things like firmware 2047 * download where a large block of data needs to be transferred to the 2048 * device. No formatting will be done on the data provided. 2049 * 2050 * A value of zero will be returned on success, a negative errno will 2051 * be returned in error cases. 2052 */ 2053 int regmap_raw_write(struct regmap *map, unsigned int reg, 2054 const void *val, size_t val_len) 2055 { 2056 int ret; 2057 2058 if (!regmap_can_raw_write(map)) 2059 return -EINVAL; 2060 if (val_len % map->format.val_bytes) 2061 return -EINVAL; 2062 2063 map->lock(map->lock_arg); 2064 2065 ret = _regmap_raw_write(map, reg, val, val_len, false); 2066 2067 map->unlock(map->lock_arg); 2068 2069 return ret; 2070 } 2071 EXPORT_SYMBOL_GPL(regmap_raw_write); 2072 2073 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg, 2074 void *val, unsigned int val_len, bool write) 2075 { 2076 size_t val_bytes = map->format.val_bytes; 2077 size_t val_count = val_len / val_bytes; 2078 unsigned int lastval; 2079 u8 *u8p; 2080 u16 *u16p; 2081 u32 *u32p; 2082 int ret; 2083 int i; 2084 2085 switch (val_bytes) { 2086 case 1: 2087 u8p = val; 2088 if (write) 2089 lastval = (unsigned int)u8p[val_count - 1]; 2090 break; 2091 case 2: 2092 u16p = val; 2093 if (write) 2094 lastval = (unsigned int)u16p[val_count - 1]; 2095 break; 2096 case 4: 2097 u32p = val; 2098 if (write) 2099 lastval = (unsigned int)u32p[val_count - 1]; 2100 break; 2101 default: 2102 return -EINVAL; 2103 } 2104 2105 /* 2106 * Update the cache with the last value we write, the rest is just 2107 * gone down in the hardware FIFO. We can't cache FIFOs. This makes 2108 * sure a single read from the cache will work. 2109 */ 2110 if (write) { 2111 if (!map->cache_bypass && !map->defer_caching) { 2112 ret = regcache_write(map, reg, lastval); 2113 if (ret != 0) 2114 return ret; 2115 if (map->cache_only) { 2116 map->cache_dirty = true; 2117 return 0; 2118 } 2119 } 2120 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count); 2121 } else { 2122 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count); 2123 } 2124 2125 if (!ret && regmap_should_log(map)) { 2126 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>"); 2127 for (i = 0; i < val_count; i++) { 2128 switch (val_bytes) { 2129 case 1: 2130 pr_cont("%x", u8p[i]); 2131 break; 2132 case 2: 2133 pr_cont("%x", u16p[i]); 2134 break; 2135 case 4: 2136 pr_cont("%x", u32p[i]); 2137 break; 2138 default: 2139 break; 2140 } 2141 if (i == (val_count - 1)) 2142 pr_cont("]\n"); 2143 else 2144 pr_cont(","); 2145 } 2146 } 2147 2148 return 0; 2149 } 2150 2151 /** 2152 * regmap_noinc_write(): Write data from a register without incrementing the 2153 * register number 2154 * 2155 * @map: Register map to write to 2156 * @reg: Register to write to 2157 * @val: Pointer to data buffer 2158 * @val_len: Length of output buffer in bytes. 2159 * 2160 * The regmap API usually assumes that bulk bus write operations will write a 2161 * range of registers. Some devices have certain registers for which a write 2162 * operation can write to an internal FIFO. 2163 * 2164 * The target register must be volatile but registers after it can be 2165 * completely unrelated cacheable registers. 2166 * 2167 * This will attempt multiple writes as required to write val_len bytes. 2168 * 2169 * A value of zero will be returned on success, a negative errno will be 2170 * returned in error cases. 2171 */ 2172 int regmap_noinc_write(struct regmap *map, unsigned int reg, 2173 const void *val, size_t val_len) 2174 { 2175 size_t write_len; 2176 int ret; 2177 2178 if (!map->write && !(map->bus && map->bus->reg_noinc_write)) 2179 return -EINVAL; 2180 if (val_len % map->format.val_bytes) 2181 return -EINVAL; 2182 if (!IS_ALIGNED(reg, map->reg_stride)) 2183 return -EINVAL; 2184 if (val_len == 0) 2185 return -EINVAL; 2186 2187 map->lock(map->lock_arg); 2188 2189 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) { 2190 ret = -EINVAL; 2191 goto out_unlock; 2192 } 2193 2194 /* 2195 * Use the accelerated operation if we can. The val drops the const 2196 * typing in order to facilitate code reuse in regmap_noinc_readwrite(). 2197 */ 2198 if (map->bus->reg_noinc_write) { 2199 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true); 2200 goto out_unlock; 2201 } 2202 2203 while (val_len) { 2204 if (map->max_raw_write && map->max_raw_write < val_len) 2205 write_len = map->max_raw_write; 2206 else 2207 write_len = val_len; 2208 ret = _regmap_raw_write(map, reg, val, write_len, true); 2209 if (ret) 2210 goto out_unlock; 2211 val = ((u8 *)val) + write_len; 2212 val_len -= write_len; 2213 } 2214 2215 out_unlock: 2216 map->unlock(map->lock_arg); 2217 return ret; 2218 } 2219 EXPORT_SYMBOL_GPL(regmap_noinc_write); 2220 2221 /** 2222 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a 2223 * register field. 2224 * 2225 * @field: Register field to write to 2226 * @mask: Bitmask to change 2227 * @val: Value to be written 2228 * @change: Boolean indicating if a write was done 2229 * @async: Boolean indicating asynchronously 2230 * @force: Boolean indicating use force update 2231 * 2232 * Perform a read/modify/write cycle on the register field with change, 2233 * async, force option. 2234 * 2235 * A value of zero will be returned on success, a negative errno will 2236 * be returned in error cases. 2237 */ 2238 int regmap_field_update_bits_base(struct regmap_field *field, 2239 unsigned int mask, unsigned int val, 2240 bool *change, bool async, bool force) 2241 { 2242 mask = (mask << field->shift) & field->mask; 2243 2244 return regmap_update_bits_base(field->regmap, field->reg, 2245 mask, val << field->shift, 2246 change, async, force); 2247 } 2248 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base); 2249 2250 /** 2251 * regmap_field_test_bits() - Check if all specified bits are set in a 2252 * register field. 2253 * 2254 * @field: Register field to operate on 2255 * @bits: Bits to test 2256 * 2257 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the 2258 * tested bits is not set and 1 if all tested bits are set. 2259 */ 2260 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits) 2261 { 2262 unsigned int val, ret; 2263 2264 ret = regmap_field_read(field, &val); 2265 if (ret) 2266 return ret; 2267 2268 return (val & bits) == bits; 2269 } 2270 EXPORT_SYMBOL_GPL(regmap_field_test_bits); 2271 2272 /** 2273 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a 2274 * register field with port ID 2275 * 2276 * @field: Register field to write to 2277 * @id: port ID 2278 * @mask: Bitmask to change 2279 * @val: Value to be written 2280 * @change: Boolean indicating if a write was done 2281 * @async: Boolean indicating asynchronously 2282 * @force: Boolean indicating use force update 2283 * 2284 * A value of zero will be returned on success, a negative errno will 2285 * be returned in error cases. 2286 */ 2287 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id, 2288 unsigned int mask, unsigned int val, 2289 bool *change, bool async, bool force) 2290 { 2291 if (id >= field->id_size) 2292 return -EINVAL; 2293 2294 mask = (mask << field->shift) & field->mask; 2295 2296 return regmap_update_bits_base(field->regmap, 2297 field->reg + (field->id_offset * id), 2298 mask, val << field->shift, 2299 change, async, force); 2300 } 2301 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base); 2302 2303 /** 2304 * regmap_bulk_write() - Write multiple registers to the device 2305 * 2306 * @map: Register map to write to 2307 * @reg: First register to be write from 2308 * @val: Block of data to be written, in native register size for device 2309 * @val_count: Number of registers to write 2310 * 2311 * This function is intended to be used for writing a large block of 2312 * data to the device either in single transfer or multiple transfer. 2313 * 2314 * A value of zero will be returned on success, a negative errno will 2315 * be returned in error cases. 2316 */ 2317 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 2318 size_t val_count) 2319 { 2320 int ret = 0, i; 2321 size_t val_bytes = map->format.val_bytes; 2322 2323 if (!IS_ALIGNED(reg, map->reg_stride)) 2324 return -EINVAL; 2325 2326 /* 2327 * Some devices don't support bulk write, for them we have a series of 2328 * single write operations. 2329 */ 2330 if (!map->write || !map->format.parse_inplace) { 2331 map->lock(map->lock_arg); 2332 for (i = 0; i < val_count; i++) { 2333 unsigned int ival; 2334 2335 switch (val_bytes) { 2336 case 1: 2337 ival = *(u8 *)(val + (i * val_bytes)); 2338 break; 2339 case 2: 2340 ival = *(u16 *)(val + (i * val_bytes)); 2341 break; 2342 case 4: 2343 ival = *(u32 *)(val + (i * val_bytes)); 2344 break; 2345 default: 2346 ret = -EINVAL; 2347 goto out; 2348 } 2349 2350 ret = _regmap_write(map, 2351 reg + regmap_get_offset(map, i), 2352 ival); 2353 if (ret != 0) 2354 goto out; 2355 } 2356 out: 2357 map->unlock(map->lock_arg); 2358 } else { 2359 void *wval; 2360 2361 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags); 2362 if (!wval) 2363 return -ENOMEM; 2364 2365 for (i = 0; i < val_count * val_bytes; i += val_bytes) 2366 map->format.parse_inplace(wval + i); 2367 2368 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count); 2369 2370 kfree(wval); 2371 } 2372 2373 if (!ret) 2374 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count); 2375 2376 return ret; 2377 } 2378 EXPORT_SYMBOL_GPL(regmap_bulk_write); 2379 2380 /* 2381 * _regmap_raw_multi_reg_write() 2382 * 2383 * the (register,newvalue) pairs in regs have not been formatted, but 2384 * they are all in the same page and have been changed to being page 2385 * relative. The page register has been written if that was necessary. 2386 */ 2387 static int _regmap_raw_multi_reg_write(struct regmap *map, 2388 const struct reg_sequence *regs, 2389 size_t num_regs) 2390 { 2391 int ret; 2392 void *buf; 2393 int i; 2394 u8 *u8; 2395 size_t val_bytes = map->format.val_bytes; 2396 size_t reg_bytes = map->format.reg_bytes; 2397 size_t pad_bytes = map->format.pad_bytes; 2398 size_t pair_size = reg_bytes + pad_bytes + val_bytes; 2399 size_t len = pair_size * num_regs; 2400 2401 if (!len) 2402 return -EINVAL; 2403 2404 buf = kzalloc(len, GFP_KERNEL); 2405 if (!buf) 2406 return -ENOMEM; 2407 2408 /* We have to linearise by hand. */ 2409 2410 u8 = buf; 2411 2412 for (i = 0; i < num_regs; i++) { 2413 unsigned int reg = regs[i].reg; 2414 unsigned int val = regs[i].def; 2415 trace_regmap_hw_write_start(map, reg, 1); 2416 reg = regmap_reg_addr(map, reg); 2417 map->format.format_reg(u8, reg, map->reg_shift); 2418 u8 += reg_bytes + pad_bytes; 2419 map->format.format_val(u8, val, 0); 2420 u8 += val_bytes; 2421 } 2422 u8 = buf; 2423 *u8 |= map->write_flag_mask; 2424 2425 ret = map->write(map->bus_context, buf, len); 2426 2427 kfree(buf); 2428 2429 for (i = 0; i < num_regs; i++) { 2430 int reg = regs[i].reg; 2431 trace_regmap_hw_write_done(map, reg, 1); 2432 } 2433 return ret; 2434 } 2435 2436 static unsigned int _regmap_register_page(struct regmap *map, 2437 unsigned int reg, 2438 struct regmap_range_node *range) 2439 { 2440 unsigned int win_page = (reg - range->range_min) / range->window_len; 2441 2442 return win_page; 2443 } 2444 2445 static int _regmap_range_multi_paged_reg_write(struct regmap *map, 2446 struct reg_sequence *regs, 2447 size_t num_regs) 2448 { 2449 int ret; 2450 int i, n; 2451 struct reg_sequence *base; 2452 unsigned int this_page = 0; 2453 unsigned int page_change = 0; 2454 /* 2455 * the set of registers are not neccessarily in order, but 2456 * since the order of write must be preserved this algorithm 2457 * chops the set each time the page changes. This also applies 2458 * if there is a delay required at any point in the sequence. 2459 */ 2460 base = regs; 2461 for (i = 0, n = 0; i < num_regs; i++, n++) { 2462 unsigned int reg = regs[i].reg; 2463 struct regmap_range_node *range; 2464 2465 range = _regmap_range_lookup(map, reg); 2466 if (range) { 2467 unsigned int win_page = _regmap_register_page(map, reg, 2468 range); 2469 2470 if (i == 0) 2471 this_page = win_page; 2472 if (win_page != this_page) { 2473 this_page = win_page; 2474 page_change = 1; 2475 } 2476 } 2477 2478 /* If we have both a page change and a delay make sure to 2479 * write the regs and apply the delay before we change the 2480 * page. 2481 */ 2482 2483 if (page_change || regs[i].delay_us) { 2484 2485 /* For situations where the first write requires 2486 * a delay we need to make sure we don't call 2487 * raw_multi_reg_write with n=0 2488 * This can't occur with page breaks as we 2489 * never write on the first iteration 2490 */ 2491 if (regs[i].delay_us && i == 0) 2492 n = 1; 2493 2494 ret = _regmap_raw_multi_reg_write(map, base, n); 2495 if (ret != 0) 2496 return ret; 2497 2498 if (regs[i].delay_us) { 2499 if (map->can_sleep) 2500 fsleep(regs[i].delay_us); 2501 else 2502 udelay(regs[i].delay_us); 2503 } 2504 2505 base += n; 2506 n = 0; 2507 2508 if (page_change) { 2509 ret = _regmap_select_page(map, 2510 &base[n].reg, 2511 range, 1); 2512 if (ret != 0) 2513 return ret; 2514 2515 page_change = 0; 2516 } 2517 2518 } 2519 2520 } 2521 if (n > 0) 2522 return _regmap_raw_multi_reg_write(map, base, n); 2523 return 0; 2524 } 2525 2526 static int _regmap_multi_reg_write(struct regmap *map, 2527 const struct reg_sequence *regs, 2528 size_t num_regs) 2529 { 2530 int i; 2531 int ret; 2532 2533 if (!map->can_multi_write) { 2534 for (i = 0; i < num_regs; i++) { 2535 ret = _regmap_write(map, regs[i].reg, regs[i].def); 2536 if (ret != 0) 2537 return ret; 2538 2539 if (regs[i].delay_us) { 2540 if (map->can_sleep) 2541 fsleep(regs[i].delay_us); 2542 else 2543 udelay(regs[i].delay_us); 2544 } 2545 } 2546 return 0; 2547 } 2548 2549 if (!map->format.parse_inplace) 2550 return -EINVAL; 2551 2552 if (map->writeable_reg) 2553 for (i = 0; i < num_regs; i++) { 2554 int reg = regs[i].reg; 2555 if (!map->writeable_reg(map->dev, reg)) 2556 return -EINVAL; 2557 if (!IS_ALIGNED(reg, map->reg_stride)) 2558 return -EINVAL; 2559 } 2560 2561 if (!map->cache_bypass) { 2562 for (i = 0; i < num_regs; i++) { 2563 unsigned int val = regs[i].def; 2564 unsigned int reg = regs[i].reg; 2565 ret = regcache_write(map, reg, val); 2566 if (ret) { 2567 dev_err(map->dev, 2568 "Error in caching of register: %x ret: %d\n", 2569 reg, ret); 2570 return ret; 2571 } 2572 } 2573 if (map->cache_only) { 2574 map->cache_dirty = true; 2575 return 0; 2576 } 2577 } 2578 2579 WARN_ON(!map->bus); 2580 2581 for (i = 0; i < num_regs; i++) { 2582 unsigned int reg = regs[i].reg; 2583 struct regmap_range_node *range; 2584 2585 /* Coalesce all the writes between a page break or a delay 2586 * in a sequence 2587 */ 2588 range = _regmap_range_lookup(map, reg); 2589 if (range || regs[i].delay_us) { 2590 size_t len = sizeof(struct reg_sequence)*num_regs; 2591 struct reg_sequence *base = kmemdup(regs, len, 2592 GFP_KERNEL); 2593 if (!base) 2594 return -ENOMEM; 2595 ret = _regmap_range_multi_paged_reg_write(map, base, 2596 num_regs); 2597 kfree(base); 2598 2599 return ret; 2600 } 2601 } 2602 return _regmap_raw_multi_reg_write(map, regs, num_regs); 2603 } 2604 2605 /** 2606 * regmap_multi_reg_write() - Write multiple registers to the device 2607 * 2608 * @map: Register map to write to 2609 * @regs: Array of structures containing register,value to be written 2610 * @num_regs: Number of registers to write 2611 * 2612 * Write multiple registers to the device where the set of register, value 2613 * pairs are supplied in any order, possibly not all in a single range. 2614 * 2615 * The 'normal' block write mode will send ultimately send data on the 2616 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are 2617 * addressed. However, this alternative block multi write mode will send 2618 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device 2619 * must of course support the mode. 2620 * 2621 * A value of zero will be returned on success, a negative errno will be 2622 * returned in error cases. 2623 */ 2624 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, 2625 int num_regs) 2626 { 2627 int ret; 2628 2629 map->lock(map->lock_arg); 2630 2631 ret = _regmap_multi_reg_write(map, regs, num_regs); 2632 2633 map->unlock(map->lock_arg); 2634 2635 return ret; 2636 } 2637 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 2638 2639 /** 2640 * regmap_multi_reg_write_bypassed() - Write multiple registers to the 2641 * device but not the cache 2642 * 2643 * @map: Register map to write to 2644 * @regs: Array of structures containing register,value to be written 2645 * @num_regs: Number of registers to write 2646 * 2647 * Write multiple registers to the device but not the cache where the set 2648 * of register are supplied in any order. 2649 * 2650 * This function is intended to be used for writing a large block of data 2651 * atomically to the device in single transfer for those I2C client devices 2652 * that implement this alternative block write mode. 2653 * 2654 * A value of zero will be returned on success, a negative errno will 2655 * be returned in error cases. 2656 */ 2657 int regmap_multi_reg_write_bypassed(struct regmap *map, 2658 const struct reg_sequence *regs, 2659 int num_regs) 2660 { 2661 int ret; 2662 bool bypass; 2663 2664 map->lock(map->lock_arg); 2665 2666 bypass = map->cache_bypass; 2667 map->cache_bypass = true; 2668 2669 ret = _regmap_multi_reg_write(map, regs, num_regs); 2670 2671 map->cache_bypass = bypass; 2672 2673 map->unlock(map->lock_arg); 2674 2675 return ret; 2676 } 2677 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); 2678 2679 /** 2680 * regmap_raw_write_async() - Write raw values to one or more registers 2681 * asynchronously 2682 * 2683 * @map: Register map to write to 2684 * @reg: Initial register to write to 2685 * @val: Block of data to be written, laid out for direct transmission to the 2686 * device. Must be valid until regmap_async_complete() is called. 2687 * @val_len: Length of data pointed to by val. 2688 * 2689 * This function is intended to be used for things like firmware 2690 * download where a large block of data needs to be transferred to the 2691 * device. No formatting will be done on the data provided. 2692 * 2693 * If supported by the underlying bus the write will be scheduled 2694 * asynchronously, helping maximise I/O speed on higher speed buses 2695 * like SPI. regmap_async_complete() can be called to ensure that all 2696 * asynchrnous writes have been completed. 2697 * 2698 * A value of zero will be returned on success, a negative errno will 2699 * be returned in error cases. 2700 */ 2701 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 2702 const void *val, size_t val_len) 2703 { 2704 int ret; 2705 2706 if (val_len % map->format.val_bytes) 2707 return -EINVAL; 2708 if (!IS_ALIGNED(reg, map->reg_stride)) 2709 return -EINVAL; 2710 2711 map->lock(map->lock_arg); 2712 2713 map->async = true; 2714 2715 ret = _regmap_raw_write(map, reg, val, val_len, false); 2716 2717 map->async = false; 2718 2719 map->unlock(map->lock_arg); 2720 2721 return ret; 2722 } 2723 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 2724 2725 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2726 unsigned int val_len, bool noinc) 2727 { 2728 struct regmap_range_node *range; 2729 int ret; 2730 2731 if (!map->read) 2732 return -EINVAL; 2733 2734 range = _regmap_range_lookup(map, reg); 2735 if (range) { 2736 ret = _regmap_select_page(map, ®, range, 2737 noinc ? 1 : val_len / map->format.val_bytes); 2738 if (ret != 0) 2739 return ret; 2740 } 2741 2742 reg = regmap_reg_addr(map, reg); 2743 map->format.format_reg(map->work_buf, reg, map->reg_shift); 2744 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 2745 map->read_flag_mask); 2746 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); 2747 2748 ret = map->read(map->bus_context, map->work_buf, 2749 map->format.reg_bytes + map->format.pad_bytes, 2750 val, val_len); 2751 2752 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); 2753 2754 return ret; 2755 } 2756 2757 static int _regmap_bus_reg_read(void *context, unsigned int reg, 2758 unsigned int *val) 2759 { 2760 struct regmap *map = context; 2761 struct regmap_range_node *range; 2762 int ret; 2763 2764 range = _regmap_range_lookup(map, reg); 2765 if (range) { 2766 ret = _regmap_select_page(map, ®, range, 1); 2767 if (ret != 0) 2768 return ret; 2769 } 2770 2771 reg = regmap_reg_addr(map, reg); 2772 return map->bus->reg_read(map->bus_context, reg, val); 2773 } 2774 2775 static int _regmap_bus_read(void *context, unsigned int reg, 2776 unsigned int *val) 2777 { 2778 int ret; 2779 struct regmap *map = context; 2780 void *work_val = map->work_buf + map->format.reg_bytes + 2781 map->format.pad_bytes; 2782 2783 if (!map->format.parse_val) 2784 return -EINVAL; 2785 2786 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false); 2787 if (ret == 0) 2788 *val = map->format.parse_val(work_val); 2789 2790 return ret; 2791 } 2792 2793 static int _regmap_read(struct regmap *map, unsigned int reg, 2794 unsigned int *val) 2795 { 2796 int ret; 2797 void *context = _regmap_map_get_context(map); 2798 2799 if (!map->cache_bypass) { 2800 ret = regcache_read(map, reg, val); 2801 if (ret == 0) 2802 return 0; 2803 } 2804 2805 if (map->cache_only) 2806 return -EBUSY; 2807 2808 if (!regmap_readable(map, reg)) 2809 return -EIO; 2810 2811 ret = map->reg_read(context, reg, val); 2812 if (ret == 0) { 2813 if (regmap_should_log(map)) 2814 dev_info(map->dev, "%x => %x\n", reg, *val); 2815 2816 trace_regmap_reg_read(map, reg, *val); 2817 2818 if (!map->cache_bypass) 2819 regcache_write(map, reg, *val); 2820 } 2821 2822 return ret; 2823 } 2824 2825 /** 2826 * regmap_read() - Read a value from a single register 2827 * 2828 * @map: Register map to read from 2829 * @reg: Register to be read from 2830 * @val: Pointer to store read value 2831 * 2832 * A value of zero will be returned on success, a negative errno will 2833 * be returned in error cases. 2834 */ 2835 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 2836 { 2837 int ret; 2838 2839 if (!IS_ALIGNED(reg, map->reg_stride)) 2840 return -EINVAL; 2841 2842 map->lock(map->lock_arg); 2843 2844 ret = _regmap_read(map, reg, val); 2845 2846 map->unlock(map->lock_arg); 2847 2848 return ret; 2849 } 2850 EXPORT_SYMBOL_GPL(regmap_read); 2851 2852 /** 2853 * regmap_read_bypassed() - Read a value from a single register direct 2854 * from the device, bypassing the cache 2855 * 2856 * @map: Register map to read from 2857 * @reg: Register to be read from 2858 * @val: Pointer to store read value 2859 * 2860 * A value of zero will be returned on success, a negative errno will 2861 * be returned in error cases. 2862 */ 2863 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val) 2864 { 2865 int ret; 2866 bool bypass, cache_only; 2867 2868 if (!IS_ALIGNED(reg, map->reg_stride)) 2869 return -EINVAL; 2870 2871 map->lock(map->lock_arg); 2872 2873 bypass = map->cache_bypass; 2874 cache_only = map->cache_only; 2875 map->cache_bypass = true; 2876 map->cache_only = false; 2877 2878 ret = _regmap_read(map, reg, val); 2879 2880 map->cache_bypass = bypass; 2881 map->cache_only = cache_only; 2882 2883 map->unlock(map->lock_arg); 2884 2885 return ret; 2886 } 2887 EXPORT_SYMBOL_GPL(regmap_read_bypassed); 2888 2889 /** 2890 * regmap_raw_read() - Read raw data from the device 2891 * 2892 * @map: Register map to read from 2893 * @reg: First register to be read from 2894 * @val: Pointer to store read value 2895 * @val_len: Size of data to read 2896 * 2897 * A value of zero will be returned on success, a negative errno will 2898 * be returned in error cases. 2899 */ 2900 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2901 size_t val_len) 2902 { 2903 size_t val_bytes = map->format.val_bytes; 2904 size_t val_count = val_len / val_bytes; 2905 unsigned int v; 2906 int ret, i; 2907 2908 if (val_len % map->format.val_bytes) 2909 return -EINVAL; 2910 if (!IS_ALIGNED(reg, map->reg_stride)) 2911 return -EINVAL; 2912 if (val_count == 0) 2913 return -EINVAL; 2914 2915 map->lock(map->lock_arg); 2916 2917 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 2918 map->cache_type == REGCACHE_NONE) { 2919 size_t chunk_count, chunk_bytes; 2920 size_t chunk_regs = val_count; 2921 2922 if (!map->cache_bypass && map->cache_only) { 2923 ret = -EBUSY; 2924 goto out; 2925 } 2926 2927 if (!map->read) { 2928 ret = -ENOTSUPP; 2929 goto out; 2930 } 2931 2932 if (map->use_single_read) 2933 chunk_regs = 1; 2934 else if (map->max_raw_read && val_len > map->max_raw_read) 2935 chunk_regs = map->max_raw_read / val_bytes; 2936 2937 chunk_count = val_count / chunk_regs; 2938 chunk_bytes = chunk_regs * val_bytes; 2939 2940 /* Read bytes that fit into whole chunks */ 2941 for (i = 0; i < chunk_count; i++) { 2942 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false); 2943 if (ret != 0) 2944 goto out; 2945 2946 reg += regmap_get_offset(map, chunk_regs); 2947 val += chunk_bytes; 2948 val_len -= chunk_bytes; 2949 } 2950 2951 /* Read remaining bytes */ 2952 if (val_len) { 2953 ret = _regmap_raw_read(map, reg, val, val_len, false); 2954 if (ret != 0) 2955 goto out; 2956 } 2957 } else { 2958 /* Otherwise go word by word for the cache; should be low 2959 * cost as we expect to hit the cache. 2960 */ 2961 for (i = 0; i < val_count; i++) { 2962 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 2963 &v); 2964 if (ret != 0) 2965 goto out; 2966 2967 map->format.format_val(val + (i * val_bytes), v, 0); 2968 } 2969 } 2970 2971 out: 2972 map->unlock(map->lock_arg); 2973 2974 return ret; 2975 } 2976 EXPORT_SYMBOL_GPL(regmap_raw_read); 2977 2978 /** 2979 * regmap_noinc_read(): Read data from a register without incrementing the 2980 * register number 2981 * 2982 * @map: Register map to read from 2983 * @reg: Register to read from 2984 * @val: Pointer to data buffer 2985 * @val_len: Length of output buffer in bytes. 2986 * 2987 * The regmap API usually assumes that bulk read operations will read a 2988 * range of registers. Some devices have certain registers for which a read 2989 * operation read will read from an internal FIFO. 2990 * 2991 * The target register must be volatile but registers after it can be 2992 * completely unrelated cacheable registers. 2993 * 2994 * This will attempt multiple reads as required to read val_len bytes. 2995 * 2996 * A value of zero will be returned on success, a negative errno will be 2997 * returned in error cases. 2998 */ 2999 int regmap_noinc_read(struct regmap *map, unsigned int reg, 3000 void *val, size_t val_len) 3001 { 3002 size_t read_len; 3003 int ret; 3004 3005 if (!map->read) 3006 return -ENOTSUPP; 3007 3008 if (val_len % map->format.val_bytes) 3009 return -EINVAL; 3010 if (!IS_ALIGNED(reg, map->reg_stride)) 3011 return -EINVAL; 3012 if (val_len == 0) 3013 return -EINVAL; 3014 3015 map->lock(map->lock_arg); 3016 3017 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) { 3018 ret = -EINVAL; 3019 goto out_unlock; 3020 } 3021 3022 /* 3023 * We have not defined the FIFO semantics for cache, as the 3024 * cache is just one value deep. Should we return the last 3025 * written value? Just avoid this by always reading the FIFO 3026 * even when using cache. Cache only will not work. 3027 */ 3028 if (!map->cache_bypass && map->cache_only) { 3029 ret = -EBUSY; 3030 goto out_unlock; 3031 } 3032 3033 /* Use the accelerated operation if we can */ 3034 if (map->bus->reg_noinc_read) { 3035 ret = regmap_noinc_readwrite(map, reg, val, val_len, false); 3036 goto out_unlock; 3037 } 3038 3039 while (val_len) { 3040 if (map->max_raw_read && map->max_raw_read < val_len) 3041 read_len = map->max_raw_read; 3042 else 3043 read_len = val_len; 3044 ret = _regmap_raw_read(map, reg, val, read_len, true); 3045 if (ret) 3046 goto out_unlock; 3047 val = ((u8 *)val) + read_len; 3048 val_len -= read_len; 3049 } 3050 3051 out_unlock: 3052 map->unlock(map->lock_arg); 3053 return ret; 3054 } 3055 EXPORT_SYMBOL_GPL(regmap_noinc_read); 3056 3057 /** 3058 * regmap_field_read(): Read a value to a single register field 3059 * 3060 * @field: Register field to read from 3061 * @val: Pointer to store read value 3062 * 3063 * A value of zero will be returned on success, a negative errno will 3064 * be returned in error cases. 3065 */ 3066 int regmap_field_read(struct regmap_field *field, unsigned int *val) 3067 { 3068 int ret; 3069 unsigned int reg_val; 3070 ret = regmap_read(field->regmap, field->reg, ®_val); 3071 if (ret != 0) 3072 return ret; 3073 3074 reg_val &= field->mask; 3075 reg_val >>= field->shift; 3076 *val = reg_val; 3077 3078 return ret; 3079 } 3080 EXPORT_SYMBOL_GPL(regmap_field_read); 3081 3082 /** 3083 * regmap_fields_read() - Read a value to a single register field with port ID 3084 * 3085 * @field: Register field to read from 3086 * @id: port ID 3087 * @val: Pointer to store read value 3088 * 3089 * A value of zero will be returned on success, a negative errno will 3090 * be returned in error cases. 3091 */ 3092 int regmap_fields_read(struct regmap_field *field, unsigned int id, 3093 unsigned int *val) 3094 { 3095 int ret; 3096 unsigned int reg_val; 3097 3098 if (id >= field->id_size) 3099 return -EINVAL; 3100 3101 ret = regmap_read(field->regmap, 3102 field->reg + (field->id_offset * id), 3103 ®_val); 3104 if (ret != 0) 3105 return ret; 3106 3107 reg_val &= field->mask; 3108 reg_val >>= field->shift; 3109 *val = reg_val; 3110 3111 return ret; 3112 } 3113 EXPORT_SYMBOL_GPL(regmap_fields_read); 3114 3115 /** 3116 * regmap_bulk_read() - Read multiple registers from the device 3117 * 3118 * @map: Register map to read from 3119 * @reg: First register to be read from 3120 * @val: Pointer to store read value, in native register size for device 3121 * @val_count: Number of registers to read 3122 * 3123 * A value of zero will be returned on success, a negative errno will 3124 * be returned in error cases. 3125 */ 3126 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 3127 size_t val_count) 3128 { 3129 int ret, i; 3130 size_t val_bytes = map->format.val_bytes; 3131 bool vol = regmap_volatile_range(map, reg, val_count); 3132 3133 if (!IS_ALIGNED(reg, map->reg_stride)) 3134 return -EINVAL; 3135 if (val_count == 0) 3136 return -EINVAL; 3137 3138 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { 3139 ret = regmap_raw_read(map, reg, val, val_bytes * val_count); 3140 if (ret != 0) 3141 return ret; 3142 3143 for (i = 0; i < val_count * val_bytes; i += val_bytes) 3144 map->format.parse_inplace(val + i); 3145 } else { 3146 u32 *u32 = val; 3147 u16 *u16 = val; 3148 u8 *u8 = val; 3149 3150 map->lock(map->lock_arg); 3151 3152 for (i = 0; i < val_count; i++) { 3153 unsigned int ival; 3154 3155 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 3156 &ival); 3157 if (ret != 0) 3158 goto out; 3159 3160 switch (map->format.val_bytes) { 3161 case 4: 3162 u32[i] = ival; 3163 break; 3164 case 2: 3165 u16[i] = ival; 3166 break; 3167 case 1: 3168 u8[i] = ival; 3169 break; 3170 default: 3171 ret = -EINVAL; 3172 goto out; 3173 } 3174 } 3175 3176 out: 3177 map->unlock(map->lock_arg); 3178 } 3179 3180 if (!ret) 3181 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count); 3182 3183 return ret; 3184 } 3185 EXPORT_SYMBOL_GPL(regmap_bulk_read); 3186 3187 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 3188 unsigned int mask, unsigned int val, 3189 bool *change, bool force_write) 3190 { 3191 int ret; 3192 unsigned int tmp, orig; 3193 3194 if (change) 3195 *change = false; 3196 3197 if (regmap_volatile(map, reg) && map->reg_update_bits) { 3198 reg = regmap_reg_addr(map, reg); 3199 ret = map->reg_update_bits(map->bus_context, reg, mask, val); 3200 if (ret == 0 && change) 3201 *change = true; 3202 } else { 3203 ret = _regmap_read(map, reg, &orig); 3204 if (ret != 0) 3205 return ret; 3206 3207 tmp = orig & ~mask; 3208 tmp |= val & mask; 3209 3210 if (force_write || (tmp != orig) || map->force_write_field) { 3211 ret = _regmap_write(map, reg, tmp); 3212 if (ret == 0 && change) 3213 *change = true; 3214 } 3215 } 3216 3217 return ret; 3218 } 3219 3220 /** 3221 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register 3222 * 3223 * @map: Register map to update 3224 * @reg: Register to update 3225 * @mask: Bitmask to change 3226 * @val: New value for bitmask 3227 * @change: Boolean indicating if a write was done 3228 * @async: Boolean indicating asynchronously 3229 * @force: Boolean indicating use force update 3230 * 3231 * Perform a read/modify/write cycle on a register map with change, async, force 3232 * options. 3233 * 3234 * If async is true: 3235 * 3236 * With most buses the read must be done synchronously so this is most useful 3237 * for devices with a cache which do not need to interact with the hardware to 3238 * determine the current register value. 3239 * 3240 * Returns zero for success, a negative number on error. 3241 */ 3242 int regmap_update_bits_base(struct regmap *map, unsigned int reg, 3243 unsigned int mask, unsigned int val, 3244 bool *change, bool async, bool force) 3245 { 3246 int ret; 3247 3248 map->lock(map->lock_arg); 3249 3250 map->async = async; 3251 3252 ret = _regmap_update_bits(map, reg, mask, val, change, force); 3253 3254 map->async = false; 3255 3256 map->unlock(map->lock_arg); 3257 3258 return ret; 3259 } 3260 EXPORT_SYMBOL_GPL(regmap_update_bits_base); 3261 3262 /** 3263 * regmap_test_bits() - Check if all specified bits are set in a register. 3264 * 3265 * @map: Register map to operate on 3266 * @reg: Register to read from 3267 * @bits: Bits to test 3268 * 3269 * Returns 0 if at least one of the tested bits is not set, 1 if all tested 3270 * bits are set and a negative error number if the underlying regmap_read() 3271 * fails. 3272 */ 3273 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits) 3274 { 3275 unsigned int val, ret; 3276 3277 ret = regmap_read(map, reg, &val); 3278 if (ret) 3279 return ret; 3280 3281 return (val & bits) == bits; 3282 } 3283 EXPORT_SYMBOL_GPL(regmap_test_bits); 3284 3285 void regmap_async_complete_cb(struct regmap_async *async, int ret) 3286 { 3287 struct regmap *map = async->map; 3288 bool wake; 3289 3290 trace_regmap_async_io_complete(map); 3291 3292 spin_lock(&map->async_lock); 3293 list_move(&async->list, &map->async_free); 3294 wake = list_empty(&map->async_list); 3295 3296 if (ret != 0) 3297 map->async_ret = ret; 3298 3299 spin_unlock(&map->async_lock); 3300 3301 if (wake) 3302 wake_up(&map->async_waitq); 3303 } 3304 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 3305 3306 static int regmap_async_is_done(struct regmap *map) 3307 { 3308 unsigned long flags; 3309 int ret; 3310 3311 spin_lock_irqsave(&map->async_lock, flags); 3312 ret = list_empty(&map->async_list); 3313 spin_unlock_irqrestore(&map->async_lock, flags); 3314 3315 return ret; 3316 } 3317 3318 /** 3319 * regmap_async_complete - Ensure all asynchronous I/O has completed. 3320 * 3321 * @map: Map to operate on. 3322 * 3323 * Blocks until any pending asynchronous I/O has completed. Returns 3324 * an error code for any failed I/O operations. 3325 */ 3326 int regmap_async_complete(struct regmap *map) 3327 { 3328 unsigned long flags; 3329 int ret; 3330 3331 /* Nothing to do with no async support */ 3332 if (!map->bus || !map->bus->async_write) 3333 return 0; 3334 3335 trace_regmap_async_complete_start(map); 3336 3337 wait_event(map->async_waitq, regmap_async_is_done(map)); 3338 3339 spin_lock_irqsave(&map->async_lock, flags); 3340 ret = map->async_ret; 3341 map->async_ret = 0; 3342 spin_unlock_irqrestore(&map->async_lock, flags); 3343 3344 trace_regmap_async_complete_done(map); 3345 3346 return ret; 3347 } 3348 EXPORT_SYMBOL_GPL(regmap_async_complete); 3349 3350 /** 3351 * regmap_register_patch - Register and apply register updates to be applied 3352 * on device initialistion 3353 * 3354 * @map: Register map to apply updates to. 3355 * @regs: Values to update. 3356 * @num_regs: Number of entries in regs. 3357 * 3358 * Register a set of register updates to be applied to the device 3359 * whenever the device registers are synchronised with the cache and 3360 * apply them immediately. Typically this is used to apply 3361 * corrections to be applied to the device defaults on startup, such 3362 * as the updates some vendors provide to undocumented registers. 3363 * 3364 * The caller must ensure that this function cannot be called 3365 * concurrently with either itself or regcache_sync(). 3366 */ 3367 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, 3368 int num_regs) 3369 { 3370 struct reg_sequence *p; 3371 int ret; 3372 bool bypass; 3373 3374 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", 3375 num_regs)) 3376 return 0; 3377 3378 p = krealloc(map->patch, 3379 sizeof(struct reg_sequence) * (map->patch_regs + num_regs), 3380 GFP_KERNEL); 3381 if (p) { 3382 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 3383 map->patch = p; 3384 map->patch_regs += num_regs; 3385 } else { 3386 return -ENOMEM; 3387 } 3388 3389 map->lock(map->lock_arg); 3390 3391 bypass = map->cache_bypass; 3392 3393 map->cache_bypass = true; 3394 map->async = true; 3395 3396 ret = _regmap_multi_reg_write(map, regs, num_regs); 3397 3398 map->async = false; 3399 map->cache_bypass = bypass; 3400 3401 map->unlock(map->lock_arg); 3402 3403 regmap_async_complete(map); 3404 3405 return ret; 3406 } 3407 EXPORT_SYMBOL_GPL(regmap_register_patch); 3408 3409 /** 3410 * regmap_get_val_bytes() - Report the size of a register value 3411 * 3412 * @map: Register map to operate on. 3413 * 3414 * Report the size of a register value, mainly intended to for use by 3415 * generic infrastructure built on top of regmap. 3416 */ 3417 int regmap_get_val_bytes(struct regmap *map) 3418 { 3419 if (map->format.format_write) 3420 return -EINVAL; 3421 3422 return map->format.val_bytes; 3423 } 3424 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 3425 3426 /** 3427 * regmap_get_max_register() - Report the max register value 3428 * 3429 * @map: Register map to operate on. 3430 * 3431 * Report the max register value, mainly intended to for use by 3432 * generic infrastructure built on top of regmap. 3433 */ 3434 int regmap_get_max_register(struct regmap *map) 3435 { 3436 return map->max_register ? map->max_register : -EINVAL; 3437 } 3438 EXPORT_SYMBOL_GPL(regmap_get_max_register); 3439 3440 /** 3441 * regmap_get_reg_stride() - Report the register address stride 3442 * 3443 * @map: Register map to operate on. 3444 * 3445 * Report the register address stride, mainly intended to for use by 3446 * generic infrastructure built on top of regmap. 3447 */ 3448 int regmap_get_reg_stride(struct regmap *map) 3449 { 3450 return map->reg_stride; 3451 } 3452 EXPORT_SYMBOL_GPL(regmap_get_reg_stride); 3453 3454 /** 3455 * regmap_might_sleep() - Returns whether a regmap access might sleep. 3456 * 3457 * @map: Register map to operate on. 3458 * 3459 * Returns true if an access to the register might sleep, else false. 3460 */ 3461 bool regmap_might_sleep(struct regmap *map) 3462 { 3463 return map->can_sleep; 3464 } 3465 EXPORT_SYMBOL_GPL(regmap_might_sleep); 3466 3467 int regmap_parse_val(struct regmap *map, const void *buf, 3468 unsigned int *val) 3469 { 3470 if (!map->format.parse_val) 3471 return -EINVAL; 3472 3473 *val = map->format.parse_val(buf); 3474 3475 return 0; 3476 } 3477 EXPORT_SYMBOL_GPL(regmap_parse_val); 3478 3479 static int __init regmap_initcall(void) 3480 { 3481 regmap_debugfs_initcall(); 3482 3483 return 0; 3484 } 3485 postcore_initcall(regmap_initcall); 3486