xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 6ff9768a3144c846462de27ebedeb8fa694b87ae)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 	put_unaligned_be24(val << shift, buf);
294 }
295 
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 	put_unaligned_be32(val << shift, buf);
299 }
300 
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 	put_unaligned_le32(val << shift, buf);
304 }
305 
306 static void regmap_format_32_native(void *buf, unsigned int val,
307 				    unsigned int shift)
308 {
309 	u32 v = val << shift;
310 
311 	memcpy(buf, &v, sizeof(v));
312 }
313 
314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317 
318 static unsigned int regmap_parse_8(const void *buf)
319 {
320 	const u8 *b = buf;
321 
322 	return b[0];
323 }
324 
325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327 	return get_unaligned_be16(buf);
328 }
329 
330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332 	return get_unaligned_le16(buf);
333 }
334 
335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337 	u16 v = get_unaligned_be16(buf);
338 
339 	memcpy(buf, &v, sizeof(v));
340 }
341 
342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344 	u16 v = get_unaligned_le16(buf);
345 
346 	memcpy(buf, &v, sizeof(v));
347 }
348 
349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351 	u16 v;
352 
353 	memcpy(&v, buf, sizeof(v));
354 	return v;
355 }
356 
357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359 	return get_unaligned_be24(buf);
360 }
361 
362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364 	return get_unaligned_be32(buf);
365 }
366 
367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 	return get_unaligned_le32(buf);
370 }
371 
372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374 	u32 v = get_unaligned_be32(buf);
375 
376 	memcpy(buf, &v, sizeof(v));
377 }
378 
379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381 	u32 v = get_unaligned_le32(buf);
382 
383 	memcpy(buf, &v, sizeof(v));
384 }
385 
386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388 	u32 v;
389 
390 	memcpy(&v, buf, sizeof(v));
391 	return v;
392 }
393 
394 static void regmap_lock_hwlock(void *__map)
395 {
396 	struct regmap *map = __map;
397 
398 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400 
401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403 	struct regmap *map = __map;
404 
405 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407 
408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410 	struct regmap *map = __map;
411 
412 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 				    &map->spinlock_flags);
414 }
415 
416 static void regmap_unlock_hwlock(void *__map)
417 {
418 	struct regmap *map = __map;
419 
420 	hwspin_unlock(map->hwlock);
421 }
422 
423 static void regmap_unlock_hwlock_irq(void *__map)
424 {
425 	struct regmap *map = __map;
426 
427 	hwspin_unlock_irq(map->hwlock);
428 }
429 
430 static void regmap_unlock_hwlock_irqrestore(void *__map)
431 {
432 	struct regmap *map = __map;
433 
434 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435 }
436 
437 static void regmap_lock_unlock_none(void *__map)
438 {
439 
440 }
441 
442 static void regmap_lock_mutex(void *__map)
443 {
444 	struct regmap *map = __map;
445 	mutex_lock(&map->mutex);
446 }
447 
448 static void regmap_unlock_mutex(void *__map)
449 {
450 	struct regmap *map = __map;
451 	mutex_unlock(&map->mutex);
452 }
453 
454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
456 {
457 	struct regmap *map = __map;
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&map->spinlock, flags);
461 	map->spinlock_flags = flags;
462 }
463 
464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
466 {
467 	struct regmap *map = __map;
468 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469 }
470 
471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
473 {
474 	struct regmap *map = __map;
475 	unsigned long flags;
476 
477 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 	map->raw_spinlock_flags = flags;
479 }
480 
481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
483 {
484 	struct regmap *map = __map;
485 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486 }
487 
488 static void dev_get_regmap_release(struct device *dev, void *res)
489 {
490 	/*
491 	 * We don't actually have anything to do here; the goal here
492 	 * is not to manage the regmap but to provide a simple way to
493 	 * get the regmap back given a struct device.
494 	 */
495 }
496 
497 static bool _regmap_range_add(struct regmap *map,
498 			      struct regmap_range_node *data)
499 {
500 	struct rb_root *root = &map->range_tree;
501 	struct rb_node **new = &(root->rb_node), *parent = NULL;
502 
503 	while (*new) {
504 		struct regmap_range_node *this =
505 			rb_entry(*new, struct regmap_range_node, node);
506 
507 		parent = *new;
508 		if (data->range_max < this->range_min)
509 			new = &((*new)->rb_left);
510 		else if (data->range_min > this->range_max)
511 			new = &((*new)->rb_right);
512 		else
513 			return false;
514 	}
515 
516 	rb_link_node(&data->node, parent, new);
517 	rb_insert_color(&data->node, root);
518 
519 	return true;
520 }
521 
522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 						      unsigned int reg)
524 {
525 	struct rb_node *node = map->range_tree.rb_node;
526 
527 	while (node) {
528 		struct regmap_range_node *this =
529 			rb_entry(node, struct regmap_range_node, node);
530 
531 		if (reg < this->range_min)
532 			node = node->rb_left;
533 		else if (reg > this->range_max)
534 			node = node->rb_right;
535 		else
536 			return this;
537 	}
538 
539 	return NULL;
540 }
541 
542 static void regmap_range_exit(struct regmap *map)
543 {
544 	struct rb_node *next;
545 	struct regmap_range_node *range_node;
546 
547 	next = rb_first(&map->range_tree);
548 	while (next) {
549 		range_node = rb_entry(next, struct regmap_range_node, node);
550 		next = rb_next(&range_node->node);
551 		rb_erase(&range_node->node, &map->range_tree);
552 		kfree(range_node);
553 	}
554 
555 	kfree(map->selector_work_buf);
556 }
557 
558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559 {
560 	if (config->name) {
561 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
562 
563 		if (!name)
564 			return -ENOMEM;
565 
566 		kfree_const(map->name);
567 		map->name = name;
568 	}
569 
570 	return 0;
571 }
572 
573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 		      const struct regmap_config *config)
575 {
576 	struct regmap **m;
577 	int ret;
578 
579 	map->dev = dev;
580 
581 	ret = regmap_set_name(map, config);
582 	if (ret)
583 		return ret;
584 
585 	regmap_debugfs_exit(map);
586 	regmap_debugfs_init(map);
587 
588 	/* Add a devres resource for dev_get_regmap() */
589 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 	if (!m) {
591 		regmap_debugfs_exit(map);
592 		return -ENOMEM;
593 	}
594 	*m = map;
595 	devres_add(dev, m);
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
600 
601 static int dev_get_regmap_match(struct device *dev, void *res, void *data);
602 
603 static int regmap_detach_dev(struct device *dev, struct regmap *map)
604 {
605 	if (!dev)
606 		return 0;
607 
608 	return devres_release(dev, dev_get_regmap_release,
609 			      dev_get_regmap_match, (void *)map->name);
610 }
611 
612 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
613 					const struct regmap_config *config)
614 {
615 	enum regmap_endian endian;
616 
617 	/* Retrieve the endianness specification from the regmap config */
618 	endian = config->reg_format_endian;
619 
620 	/* If the regmap config specified a non-default value, use that */
621 	if (endian != REGMAP_ENDIAN_DEFAULT)
622 		return endian;
623 
624 	/* Retrieve the endianness specification from the bus config */
625 	if (bus && bus->reg_format_endian_default)
626 		endian = bus->reg_format_endian_default;
627 
628 	/* If the bus specified a non-default value, use that */
629 	if (endian != REGMAP_ENDIAN_DEFAULT)
630 		return endian;
631 
632 	/* Use this if no other value was found */
633 	return REGMAP_ENDIAN_BIG;
634 }
635 
636 enum regmap_endian regmap_get_val_endian(struct device *dev,
637 					 const struct regmap_bus *bus,
638 					 const struct regmap_config *config)
639 {
640 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
641 	enum regmap_endian endian;
642 
643 	/* Retrieve the endianness specification from the regmap config */
644 	endian = config->val_format_endian;
645 
646 	/* If the regmap config specified a non-default value, use that */
647 	if (endian != REGMAP_ENDIAN_DEFAULT)
648 		return endian;
649 
650 	/* If the firmware node exist try to get endianness from it */
651 	if (fwnode_property_read_bool(fwnode, "big-endian"))
652 		endian = REGMAP_ENDIAN_BIG;
653 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
654 		endian = REGMAP_ENDIAN_LITTLE;
655 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
656 		endian = REGMAP_ENDIAN_NATIVE;
657 
658 	/* If the endianness was specified in fwnode, use that */
659 	if (endian != REGMAP_ENDIAN_DEFAULT)
660 		return endian;
661 
662 	/* Retrieve the endianness specification from the bus config */
663 	if (bus && bus->val_format_endian_default)
664 		endian = bus->val_format_endian_default;
665 
666 	/* If the bus specified a non-default value, use that */
667 	if (endian != REGMAP_ENDIAN_DEFAULT)
668 		return endian;
669 
670 	/* Use this if no other value was found */
671 	return REGMAP_ENDIAN_BIG;
672 }
673 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
674 
675 struct regmap *__regmap_init(struct device *dev,
676 			     const struct regmap_bus *bus,
677 			     void *bus_context,
678 			     const struct regmap_config *config,
679 			     struct lock_class_key *lock_key,
680 			     const char *lock_name)
681 {
682 	struct regmap *map;
683 	int ret = -EINVAL;
684 	enum regmap_endian reg_endian, val_endian;
685 	int i, j;
686 
687 	if (!config)
688 		goto err;
689 
690 	map = kzalloc(sizeof(*map), GFP_KERNEL);
691 	if (map == NULL) {
692 		ret = -ENOMEM;
693 		goto err;
694 	}
695 
696 	ret = regmap_set_name(map, config);
697 	if (ret)
698 		goto err_map;
699 
700 	ret = -EINVAL; /* Later error paths rely on this */
701 
702 	if (config->disable_locking) {
703 		map->lock = map->unlock = regmap_lock_unlock_none;
704 		map->can_sleep = config->can_sleep;
705 		regmap_debugfs_disable(map);
706 	} else if (config->lock && config->unlock) {
707 		map->lock = config->lock;
708 		map->unlock = config->unlock;
709 		map->lock_arg = config->lock_arg;
710 		map->can_sleep = config->can_sleep;
711 	} else if (config->use_hwlock) {
712 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
713 		if (!map->hwlock) {
714 			ret = -ENXIO;
715 			goto err_name;
716 		}
717 
718 		switch (config->hwlock_mode) {
719 		case HWLOCK_IRQSTATE:
720 			map->lock = regmap_lock_hwlock_irqsave;
721 			map->unlock = regmap_unlock_hwlock_irqrestore;
722 			break;
723 		case HWLOCK_IRQ:
724 			map->lock = regmap_lock_hwlock_irq;
725 			map->unlock = regmap_unlock_hwlock_irq;
726 			break;
727 		default:
728 			map->lock = regmap_lock_hwlock;
729 			map->unlock = regmap_unlock_hwlock;
730 			break;
731 		}
732 
733 		map->lock_arg = map;
734 	} else {
735 		if ((bus && bus->fast_io) ||
736 		    config->fast_io) {
737 			if (config->use_raw_spinlock) {
738 				raw_spin_lock_init(&map->raw_spinlock);
739 				map->lock = regmap_lock_raw_spinlock;
740 				map->unlock = regmap_unlock_raw_spinlock;
741 				lockdep_set_class_and_name(&map->raw_spinlock,
742 							   lock_key, lock_name);
743 			} else {
744 				spin_lock_init(&map->spinlock);
745 				map->lock = regmap_lock_spinlock;
746 				map->unlock = regmap_unlock_spinlock;
747 				lockdep_set_class_and_name(&map->spinlock,
748 							   lock_key, lock_name);
749 			}
750 		} else {
751 			mutex_init(&map->mutex);
752 			map->lock = regmap_lock_mutex;
753 			map->unlock = regmap_unlock_mutex;
754 			map->can_sleep = true;
755 			lockdep_set_class_and_name(&map->mutex,
756 						   lock_key, lock_name);
757 		}
758 		map->lock_arg = map;
759 		map->lock_key = lock_key;
760 	}
761 
762 	/*
763 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
764 	 * scratch buffers with sleeping allocations.
765 	 */
766 	if ((bus && bus->fast_io) || config->fast_io)
767 		map->alloc_flags = GFP_ATOMIC;
768 	else
769 		map->alloc_flags = GFP_KERNEL;
770 
771 	map->reg_base = config->reg_base;
772 
773 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
774 	map->format.pad_bytes = config->pad_bits / 8;
775 	map->format.reg_shift = config->reg_shift;
776 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
777 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
778 			config->val_bits + config->pad_bits, 8);
779 	map->reg_shift = config->pad_bits % 8;
780 	if (config->reg_stride)
781 		map->reg_stride = config->reg_stride;
782 	else
783 		map->reg_stride = 1;
784 	if (is_power_of_2(map->reg_stride))
785 		map->reg_stride_order = ilog2(map->reg_stride);
786 	else
787 		map->reg_stride_order = -1;
788 	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
789 	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
790 	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
791 	if (bus) {
792 		map->max_raw_read = bus->max_raw_read;
793 		map->max_raw_write = bus->max_raw_write;
794 	} else if (config->max_raw_read && config->max_raw_write) {
795 		map->max_raw_read = config->max_raw_read;
796 		map->max_raw_write = config->max_raw_write;
797 	}
798 	map->dev = dev;
799 	map->bus = bus;
800 	map->bus_context = bus_context;
801 	map->max_register = config->max_register;
802 	map->wr_table = config->wr_table;
803 	map->rd_table = config->rd_table;
804 	map->volatile_table = config->volatile_table;
805 	map->precious_table = config->precious_table;
806 	map->wr_noinc_table = config->wr_noinc_table;
807 	map->rd_noinc_table = config->rd_noinc_table;
808 	map->writeable_reg = config->writeable_reg;
809 	map->readable_reg = config->readable_reg;
810 	map->volatile_reg = config->volatile_reg;
811 	map->precious_reg = config->precious_reg;
812 	map->writeable_noinc_reg = config->writeable_noinc_reg;
813 	map->readable_noinc_reg = config->readable_noinc_reg;
814 	map->cache_type = config->cache_type;
815 
816 	spin_lock_init(&map->async_lock);
817 	INIT_LIST_HEAD(&map->async_list);
818 	INIT_LIST_HEAD(&map->async_free);
819 	init_waitqueue_head(&map->async_waitq);
820 
821 	if (config->read_flag_mask ||
822 	    config->write_flag_mask ||
823 	    config->zero_flag_mask) {
824 		map->read_flag_mask = config->read_flag_mask;
825 		map->write_flag_mask = config->write_flag_mask;
826 	} else if (bus) {
827 		map->read_flag_mask = bus->read_flag_mask;
828 	}
829 
830 	if (config && config->read && config->write) {
831 		map->reg_read  = _regmap_bus_read;
832 		if (config->reg_update_bits)
833 			map->reg_update_bits = config->reg_update_bits;
834 
835 		/* Bulk read/write */
836 		map->read = config->read;
837 		map->write = config->write;
838 
839 		reg_endian = REGMAP_ENDIAN_NATIVE;
840 		val_endian = REGMAP_ENDIAN_NATIVE;
841 	} else if (!bus) {
842 		map->reg_read  = config->reg_read;
843 		map->reg_write = config->reg_write;
844 		map->reg_update_bits = config->reg_update_bits;
845 
846 		map->defer_caching = false;
847 		goto skip_format_initialization;
848 	} else if (!bus->read || !bus->write) {
849 		map->reg_read = _regmap_bus_reg_read;
850 		map->reg_write = _regmap_bus_reg_write;
851 		map->reg_update_bits = bus->reg_update_bits;
852 
853 		map->defer_caching = false;
854 		goto skip_format_initialization;
855 	} else {
856 		map->reg_read  = _regmap_bus_read;
857 		map->reg_update_bits = bus->reg_update_bits;
858 		/* Bulk read/write */
859 		map->read = bus->read;
860 		map->write = bus->write;
861 
862 		reg_endian = regmap_get_reg_endian(bus, config);
863 		val_endian = regmap_get_val_endian(dev, bus, config);
864 	}
865 
866 	switch (config->reg_bits + map->reg_shift) {
867 	case 2:
868 		switch (config->val_bits) {
869 		case 6:
870 			map->format.format_write = regmap_format_2_6_write;
871 			break;
872 		default:
873 			goto err_hwlock;
874 		}
875 		break;
876 
877 	case 4:
878 		switch (config->val_bits) {
879 		case 12:
880 			map->format.format_write = regmap_format_4_12_write;
881 			break;
882 		default:
883 			goto err_hwlock;
884 		}
885 		break;
886 
887 	case 7:
888 		switch (config->val_bits) {
889 		case 9:
890 			map->format.format_write = regmap_format_7_9_write;
891 			break;
892 		case 17:
893 			map->format.format_write = regmap_format_7_17_write;
894 			break;
895 		default:
896 			goto err_hwlock;
897 		}
898 		break;
899 
900 	case 10:
901 		switch (config->val_bits) {
902 		case 14:
903 			map->format.format_write = regmap_format_10_14_write;
904 			break;
905 		default:
906 			goto err_hwlock;
907 		}
908 		break;
909 
910 	case 12:
911 		switch (config->val_bits) {
912 		case 20:
913 			map->format.format_write = regmap_format_12_20_write;
914 			break;
915 		default:
916 			goto err_hwlock;
917 		}
918 		break;
919 
920 	case 8:
921 		map->format.format_reg = regmap_format_8;
922 		break;
923 
924 	case 16:
925 		switch (reg_endian) {
926 		case REGMAP_ENDIAN_BIG:
927 			map->format.format_reg = regmap_format_16_be;
928 			break;
929 		case REGMAP_ENDIAN_LITTLE:
930 			map->format.format_reg = regmap_format_16_le;
931 			break;
932 		case REGMAP_ENDIAN_NATIVE:
933 			map->format.format_reg = regmap_format_16_native;
934 			break;
935 		default:
936 			goto err_hwlock;
937 		}
938 		break;
939 
940 	case 24:
941 		switch (reg_endian) {
942 		case REGMAP_ENDIAN_BIG:
943 			map->format.format_reg = regmap_format_24_be;
944 			break;
945 		default:
946 			goto err_hwlock;
947 		}
948 		break;
949 
950 	case 32:
951 		switch (reg_endian) {
952 		case REGMAP_ENDIAN_BIG:
953 			map->format.format_reg = regmap_format_32_be;
954 			break;
955 		case REGMAP_ENDIAN_LITTLE:
956 			map->format.format_reg = regmap_format_32_le;
957 			break;
958 		case REGMAP_ENDIAN_NATIVE:
959 			map->format.format_reg = regmap_format_32_native;
960 			break;
961 		default:
962 			goto err_hwlock;
963 		}
964 		break;
965 
966 	default:
967 		goto err_hwlock;
968 	}
969 
970 	if (val_endian == REGMAP_ENDIAN_NATIVE)
971 		map->format.parse_inplace = regmap_parse_inplace_noop;
972 
973 	switch (config->val_bits) {
974 	case 8:
975 		map->format.format_val = regmap_format_8;
976 		map->format.parse_val = regmap_parse_8;
977 		map->format.parse_inplace = regmap_parse_inplace_noop;
978 		break;
979 	case 16:
980 		switch (val_endian) {
981 		case REGMAP_ENDIAN_BIG:
982 			map->format.format_val = regmap_format_16_be;
983 			map->format.parse_val = regmap_parse_16_be;
984 			map->format.parse_inplace = regmap_parse_16_be_inplace;
985 			break;
986 		case REGMAP_ENDIAN_LITTLE:
987 			map->format.format_val = regmap_format_16_le;
988 			map->format.parse_val = regmap_parse_16_le;
989 			map->format.parse_inplace = regmap_parse_16_le_inplace;
990 			break;
991 		case REGMAP_ENDIAN_NATIVE:
992 			map->format.format_val = regmap_format_16_native;
993 			map->format.parse_val = regmap_parse_16_native;
994 			break;
995 		default:
996 			goto err_hwlock;
997 		}
998 		break;
999 	case 24:
1000 		switch (val_endian) {
1001 		case REGMAP_ENDIAN_BIG:
1002 			map->format.format_val = regmap_format_24_be;
1003 			map->format.parse_val = regmap_parse_24_be;
1004 			break;
1005 		default:
1006 			goto err_hwlock;
1007 		}
1008 		break;
1009 	case 32:
1010 		switch (val_endian) {
1011 		case REGMAP_ENDIAN_BIG:
1012 			map->format.format_val = regmap_format_32_be;
1013 			map->format.parse_val = regmap_parse_32_be;
1014 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1015 			break;
1016 		case REGMAP_ENDIAN_LITTLE:
1017 			map->format.format_val = regmap_format_32_le;
1018 			map->format.parse_val = regmap_parse_32_le;
1019 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1020 			break;
1021 		case REGMAP_ENDIAN_NATIVE:
1022 			map->format.format_val = regmap_format_32_native;
1023 			map->format.parse_val = regmap_parse_32_native;
1024 			break;
1025 		default:
1026 			goto err_hwlock;
1027 		}
1028 		break;
1029 	}
1030 
1031 	if (map->format.format_write) {
1032 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1033 		    (val_endian != REGMAP_ENDIAN_BIG))
1034 			goto err_hwlock;
1035 		map->use_single_write = true;
1036 	}
1037 
1038 	if (!map->format.format_write &&
1039 	    !(map->format.format_reg && map->format.format_val))
1040 		goto err_hwlock;
1041 
1042 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1043 	if (map->work_buf == NULL) {
1044 		ret = -ENOMEM;
1045 		goto err_hwlock;
1046 	}
1047 
1048 	if (map->format.format_write) {
1049 		map->defer_caching = false;
1050 		map->reg_write = _regmap_bus_formatted_write;
1051 	} else if (map->format.format_val) {
1052 		map->defer_caching = true;
1053 		map->reg_write = _regmap_bus_raw_write;
1054 	}
1055 
1056 skip_format_initialization:
1057 
1058 	map->range_tree = RB_ROOT;
1059 	for (i = 0; i < config->num_ranges; i++) {
1060 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1061 		struct regmap_range_node *new;
1062 
1063 		/* Sanity check */
1064 		if (range_cfg->range_max < range_cfg->range_min) {
1065 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1066 				range_cfg->range_max, range_cfg->range_min);
1067 			goto err_range;
1068 		}
1069 
1070 		if (range_cfg->range_max > map->max_register) {
1071 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1072 				range_cfg->range_max, map->max_register);
1073 			goto err_range;
1074 		}
1075 
1076 		if (range_cfg->selector_reg > map->max_register) {
1077 			dev_err(map->dev,
1078 				"Invalid range %d: selector out of map\n", i);
1079 			goto err_range;
1080 		}
1081 
1082 		if (range_cfg->window_len == 0) {
1083 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1084 				i);
1085 			goto err_range;
1086 		}
1087 
1088 		/* Make sure, that this register range has no selector
1089 		   or data window within its boundary */
1090 		for (j = 0; j < config->num_ranges; j++) {
1091 			unsigned int sel_reg = config->ranges[j].selector_reg;
1092 			unsigned int win_min = config->ranges[j].window_start;
1093 			unsigned int win_max = win_min +
1094 					       config->ranges[j].window_len - 1;
1095 
1096 			/* Allow data window inside its own virtual range */
1097 			if (j == i)
1098 				continue;
1099 
1100 			if (range_cfg->range_min <= sel_reg &&
1101 			    sel_reg <= range_cfg->range_max) {
1102 				dev_err(map->dev,
1103 					"Range %d: selector for %d in window\n",
1104 					i, j);
1105 				goto err_range;
1106 			}
1107 
1108 			if (!(win_max < range_cfg->range_min ||
1109 			      win_min > range_cfg->range_max)) {
1110 				dev_err(map->dev,
1111 					"Range %d: window for %d in window\n",
1112 					i, j);
1113 				goto err_range;
1114 			}
1115 		}
1116 
1117 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1118 		if (new == NULL) {
1119 			ret = -ENOMEM;
1120 			goto err_range;
1121 		}
1122 
1123 		new->map = map;
1124 		new->name = range_cfg->name;
1125 		new->range_min = range_cfg->range_min;
1126 		new->range_max = range_cfg->range_max;
1127 		new->selector_reg = range_cfg->selector_reg;
1128 		new->selector_mask = range_cfg->selector_mask;
1129 		new->selector_shift = range_cfg->selector_shift;
1130 		new->window_start = range_cfg->window_start;
1131 		new->window_len = range_cfg->window_len;
1132 
1133 		if (!_regmap_range_add(map, new)) {
1134 			dev_err(map->dev, "Failed to add range %d\n", i);
1135 			kfree(new);
1136 			goto err_range;
1137 		}
1138 
1139 		if (map->selector_work_buf == NULL) {
1140 			map->selector_work_buf =
1141 				kzalloc(map->format.buf_size, GFP_KERNEL);
1142 			if (map->selector_work_buf == NULL) {
1143 				ret = -ENOMEM;
1144 				goto err_range;
1145 			}
1146 		}
1147 	}
1148 
1149 	ret = regcache_init(map, config);
1150 	if (ret != 0)
1151 		goto err_range;
1152 
1153 	if (dev) {
1154 		ret = regmap_attach_dev(dev, map, config);
1155 		if (ret != 0)
1156 			goto err_regcache;
1157 	} else {
1158 		regmap_debugfs_init(map);
1159 	}
1160 
1161 	return map;
1162 
1163 err_regcache:
1164 	regcache_exit(map);
1165 err_range:
1166 	regmap_range_exit(map);
1167 	kfree(map->work_buf);
1168 err_hwlock:
1169 	if (map->hwlock)
1170 		hwspin_lock_free(map->hwlock);
1171 err_name:
1172 	kfree_const(map->name);
1173 err_map:
1174 	kfree(map);
1175 err:
1176 	return ERR_PTR(ret);
1177 }
1178 EXPORT_SYMBOL_GPL(__regmap_init);
1179 
1180 static void devm_regmap_release(struct device *dev, void *res)
1181 {
1182 	regmap_exit(*(struct regmap **)res);
1183 }
1184 
1185 struct regmap *__devm_regmap_init(struct device *dev,
1186 				  const struct regmap_bus *bus,
1187 				  void *bus_context,
1188 				  const struct regmap_config *config,
1189 				  struct lock_class_key *lock_key,
1190 				  const char *lock_name)
1191 {
1192 	struct regmap **ptr, *regmap;
1193 
1194 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1195 	if (!ptr)
1196 		return ERR_PTR(-ENOMEM);
1197 
1198 	regmap = __regmap_init(dev, bus, bus_context, config,
1199 			       lock_key, lock_name);
1200 	if (!IS_ERR(regmap)) {
1201 		*ptr = regmap;
1202 		devres_add(dev, ptr);
1203 	} else {
1204 		devres_free(ptr);
1205 	}
1206 
1207 	return regmap;
1208 }
1209 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1210 
1211 static void regmap_field_init(struct regmap_field *rm_field,
1212 	struct regmap *regmap, struct reg_field reg_field)
1213 {
1214 	rm_field->regmap = regmap;
1215 	rm_field->reg = reg_field.reg;
1216 	rm_field->shift = reg_field.lsb;
1217 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1218 
1219 	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1220 
1221 	rm_field->id_size = reg_field.id_size;
1222 	rm_field->id_offset = reg_field.id_offset;
1223 }
1224 
1225 /**
1226  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1227  *
1228  * @dev: Device that will be interacted with
1229  * @regmap: regmap bank in which this register field is located.
1230  * @reg_field: Register field with in the bank.
1231  *
1232  * The return value will be an ERR_PTR() on error or a valid pointer
1233  * to a struct regmap_field. The regmap_field will be automatically freed
1234  * by the device management code.
1235  */
1236 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1237 		struct regmap *regmap, struct reg_field reg_field)
1238 {
1239 	struct regmap_field *rm_field = devm_kzalloc(dev,
1240 					sizeof(*rm_field), GFP_KERNEL);
1241 	if (!rm_field)
1242 		return ERR_PTR(-ENOMEM);
1243 
1244 	regmap_field_init(rm_field, regmap, reg_field);
1245 
1246 	return rm_field;
1247 
1248 }
1249 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1250 
1251 
1252 /**
1253  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1254  *
1255  * @regmap: regmap bank in which this register field is located.
1256  * @rm_field: regmap register fields within the bank.
1257  * @reg_field: Register fields within the bank.
1258  * @num_fields: Number of register fields.
1259  *
1260  * The return value will be an -ENOMEM on error or zero for success.
1261  * Newly allocated regmap_fields should be freed by calling
1262  * regmap_field_bulk_free()
1263  */
1264 int regmap_field_bulk_alloc(struct regmap *regmap,
1265 			    struct regmap_field **rm_field,
1266 			    const struct reg_field *reg_field,
1267 			    int num_fields)
1268 {
1269 	struct regmap_field *rf;
1270 	int i;
1271 
1272 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1273 	if (!rf)
1274 		return -ENOMEM;
1275 
1276 	for (i = 0; i < num_fields; i++) {
1277 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1278 		rm_field[i] = &rf[i];
1279 	}
1280 
1281 	return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1284 
1285 /**
1286  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1287  * fields.
1288  *
1289  * @dev: Device that will be interacted with
1290  * @regmap: regmap bank in which this register field is located.
1291  * @rm_field: regmap register fields within the bank.
1292  * @reg_field: Register fields within the bank.
1293  * @num_fields: Number of register fields.
1294  *
1295  * The return value will be an -ENOMEM on error or zero for success.
1296  * Newly allocated regmap_fields will be automatically freed by the
1297  * device management code.
1298  */
1299 int devm_regmap_field_bulk_alloc(struct device *dev,
1300 				 struct regmap *regmap,
1301 				 struct regmap_field **rm_field,
1302 				 const struct reg_field *reg_field,
1303 				 int num_fields)
1304 {
1305 	struct regmap_field *rf;
1306 	int i;
1307 
1308 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1309 	if (!rf)
1310 		return -ENOMEM;
1311 
1312 	for (i = 0; i < num_fields; i++) {
1313 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1314 		rm_field[i] = &rf[i];
1315 	}
1316 
1317 	return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1320 
1321 /**
1322  * regmap_field_bulk_free() - Free register field allocated using
1323  *                       regmap_field_bulk_alloc.
1324  *
1325  * @field: regmap fields which should be freed.
1326  */
1327 void regmap_field_bulk_free(struct regmap_field *field)
1328 {
1329 	kfree(field);
1330 }
1331 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1332 
1333 /**
1334  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1335  *                            devm_regmap_field_bulk_alloc.
1336  *
1337  * @dev: Device that will be interacted with
1338  * @field: regmap field which should be freed.
1339  *
1340  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1341  * drivers need not call this function, as the memory allocated via devm
1342  * will be freed as per device-driver life-cycle.
1343  */
1344 void devm_regmap_field_bulk_free(struct device *dev,
1345 				 struct regmap_field *field)
1346 {
1347 	devm_kfree(dev, field);
1348 }
1349 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1350 
1351 /**
1352  * devm_regmap_field_free() - Free a register field allocated using
1353  *                            devm_regmap_field_alloc.
1354  *
1355  * @dev: Device that will be interacted with
1356  * @field: regmap field which should be freed.
1357  *
1358  * Free register field allocated using devm_regmap_field_alloc(). Usually
1359  * drivers need not call this function, as the memory allocated via devm
1360  * will be freed as per device-driver life-cyle.
1361  */
1362 void devm_regmap_field_free(struct device *dev,
1363 	struct regmap_field *field)
1364 {
1365 	devm_kfree(dev, field);
1366 }
1367 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1368 
1369 /**
1370  * regmap_field_alloc() - Allocate and initialise a register field.
1371  *
1372  * @regmap: regmap bank in which this register field is located.
1373  * @reg_field: Register field with in the bank.
1374  *
1375  * The return value will be an ERR_PTR() on error or a valid pointer
1376  * to a struct regmap_field. The regmap_field should be freed by the
1377  * user once its finished working with it using regmap_field_free().
1378  */
1379 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1380 		struct reg_field reg_field)
1381 {
1382 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1383 
1384 	if (!rm_field)
1385 		return ERR_PTR(-ENOMEM);
1386 
1387 	regmap_field_init(rm_field, regmap, reg_field);
1388 
1389 	return rm_field;
1390 }
1391 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1392 
1393 /**
1394  * regmap_field_free() - Free register field allocated using
1395  *                       regmap_field_alloc.
1396  *
1397  * @field: regmap field which should be freed.
1398  */
1399 void regmap_field_free(struct regmap_field *field)
1400 {
1401 	kfree(field);
1402 }
1403 EXPORT_SYMBOL_GPL(regmap_field_free);
1404 
1405 /**
1406  * regmap_reinit_cache() - Reinitialise the current register cache
1407  *
1408  * @map: Register map to operate on.
1409  * @config: New configuration.  Only the cache data will be used.
1410  *
1411  * Discard any existing register cache for the map and initialize a
1412  * new cache.  This can be used to restore the cache to defaults or to
1413  * update the cache configuration to reflect runtime discovery of the
1414  * hardware.
1415  *
1416  * No explicit locking is done here, the user needs to ensure that
1417  * this function will not race with other calls to regmap.
1418  */
1419 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1420 {
1421 	int ret;
1422 
1423 	regcache_exit(map);
1424 	regmap_debugfs_exit(map);
1425 
1426 	map->max_register = config->max_register;
1427 	map->writeable_reg = config->writeable_reg;
1428 	map->readable_reg = config->readable_reg;
1429 	map->volatile_reg = config->volatile_reg;
1430 	map->precious_reg = config->precious_reg;
1431 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1432 	map->readable_noinc_reg = config->readable_noinc_reg;
1433 	map->cache_type = config->cache_type;
1434 
1435 	ret = regmap_set_name(map, config);
1436 	if (ret)
1437 		return ret;
1438 
1439 	regmap_debugfs_init(map);
1440 
1441 	map->cache_bypass = false;
1442 	map->cache_only = false;
1443 
1444 	return regcache_init(map, config);
1445 }
1446 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1447 
1448 /**
1449  * regmap_exit() - Free a previously allocated register map
1450  *
1451  * @map: Register map to operate on.
1452  */
1453 void regmap_exit(struct regmap *map)
1454 {
1455 	struct regmap_async *async;
1456 
1457 	regmap_detach_dev(map->dev, map);
1458 	regcache_exit(map);
1459 	regmap_debugfs_exit(map);
1460 	regmap_range_exit(map);
1461 	if (map->bus && map->bus->free_context)
1462 		map->bus->free_context(map->bus_context);
1463 	kfree(map->work_buf);
1464 	while (!list_empty(&map->async_free)) {
1465 		async = list_first_entry_or_null(&map->async_free,
1466 						 struct regmap_async,
1467 						 list);
1468 		list_del(&async->list);
1469 		kfree(async->work_buf);
1470 		kfree(async);
1471 	}
1472 	if (map->hwlock)
1473 		hwspin_lock_free(map->hwlock);
1474 	if (map->lock == regmap_lock_mutex)
1475 		mutex_destroy(&map->mutex);
1476 	kfree_const(map->name);
1477 	kfree(map->patch);
1478 	if (map->bus && map->bus->free_on_exit)
1479 		kfree(map->bus);
1480 	kfree(map);
1481 }
1482 EXPORT_SYMBOL_GPL(regmap_exit);
1483 
1484 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1485 {
1486 	struct regmap **r = res;
1487 	if (!r || !*r) {
1488 		WARN_ON(!r || !*r);
1489 		return 0;
1490 	}
1491 
1492 	/* If the user didn't specify a name match any */
1493 	if (data)
1494 		return (*r)->name && !strcmp((*r)->name, data);
1495 	else
1496 		return 1;
1497 }
1498 
1499 /**
1500  * dev_get_regmap() - Obtain the regmap (if any) for a device
1501  *
1502  * @dev: Device to retrieve the map for
1503  * @name: Optional name for the register map, usually NULL.
1504  *
1505  * Returns the regmap for the device if one is present, or NULL.  If
1506  * name is specified then it must match the name specified when
1507  * registering the device, if it is NULL then the first regmap found
1508  * will be used.  Devices with multiple register maps are very rare,
1509  * generic code should normally not need to specify a name.
1510  */
1511 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1512 {
1513 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1514 					dev_get_regmap_match, (void *)name);
1515 
1516 	if (!r)
1517 		return NULL;
1518 	return *r;
1519 }
1520 EXPORT_SYMBOL_GPL(dev_get_regmap);
1521 
1522 /**
1523  * regmap_get_device() - Obtain the device from a regmap
1524  *
1525  * @map: Register map to operate on.
1526  *
1527  * Returns the underlying device that the regmap has been created for.
1528  */
1529 struct device *regmap_get_device(struct regmap *map)
1530 {
1531 	return map->dev;
1532 }
1533 EXPORT_SYMBOL_GPL(regmap_get_device);
1534 
1535 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1536 			       struct regmap_range_node *range,
1537 			       unsigned int val_num)
1538 {
1539 	void *orig_work_buf;
1540 	unsigned int win_offset;
1541 	unsigned int win_page;
1542 	bool page_chg;
1543 	int ret;
1544 
1545 	win_offset = (*reg - range->range_min) % range->window_len;
1546 	win_page = (*reg - range->range_min) / range->window_len;
1547 
1548 	if (val_num > 1) {
1549 		/* Bulk write shouldn't cross range boundary */
1550 		if (*reg + val_num - 1 > range->range_max)
1551 			return -EINVAL;
1552 
1553 		/* ... or single page boundary */
1554 		if (val_num > range->window_len - win_offset)
1555 			return -EINVAL;
1556 	}
1557 
1558 	/* It is possible to have selector register inside data window.
1559 	   In that case, selector register is located on every page and
1560 	   it needs no page switching, when accessed alone. */
1561 	if (val_num > 1 ||
1562 	    range->window_start + win_offset != range->selector_reg) {
1563 		/* Use separate work_buf during page switching */
1564 		orig_work_buf = map->work_buf;
1565 		map->work_buf = map->selector_work_buf;
1566 
1567 		ret = _regmap_update_bits(map, range->selector_reg,
1568 					  range->selector_mask,
1569 					  win_page << range->selector_shift,
1570 					  &page_chg, false);
1571 
1572 		map->work_buf = orig_work_buf;
1573 
1574 		if (ret != 0)
1575 			return ret;
1576 	}
1577 
1578 	*reg = range->window_start + win_offset;
1579 
1580 	return 0;
1581 }
1582 
1583 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1584 					  unsigned long mask)
1585 {
1586 	u8 *buf;
1587 	int i;
1588 
1589 	if (!mask || !map->work_buf)
1590 		return;
1591 
1592 	buf = map->work_buf;
1593 
1594 	for (i = 0; i < max_bytes; i++)
1595 		buf[i] |= (mask >> (8 * i)) & 0xff;
1596 }
1597 
1598 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1599 {
1600 	reg += map->reg_base;
1601 
1602 	if (map->format.reg_shift > 0)
1603 		reg >>= map->format.reg_shift;
1604 	else if (map->format.reg_shift < 0)
1605 		reg <<= -(map->format.reg_shift);
1606 
1607 	return reg;
1608 }
1609 
1610 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1611 				  const void *val, size_t val_len, bool noinc)
1612 {
1613 	struct regmap_range_node *range;
1614 	unsigned long flags;
1615 	void *work_val = map->work_buf + map->format.reg_bytes +
1616 		map->format.pad_bytes;
1617 	void *buf;
1618 	int ret = -ENOTSUPP;
1619 	size_t len;
1620 	int i;
1621 
1622 	/* Check for unwritable or noinc registers in range
1623 	 * before we start
1624 	 */
1625 	if (!regmap_writeable_noinc(map, reg)) {
1626 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1627 			unsigned int element =
1628 				reg + regmap_get_offset(map, i);
1629 			if (!regmap_writeable(map, element) ||
1630 				regmap_writeable_noinc(map, element))
1631 				return -EINVAL;
1632 		}
1633 	}
1634 
1635 	if (!map->cache_bypass && map->format.parse_val) {
1636 		unsigned int ival, offset;
1637 		int val_bytes = map->format.val_bytes;
1638 
1639 		/* Cache the last written value for noinc writes */
1640 		i = noinc ? val_len - val_bytes : 0;
1641 		for (; i < val_len; i += val_bytes) {
1642 			ival = map->format.parse_val(val + i);
1643 			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1644 			ret = regcache_write(map, reg + offset, ival);
1645 			if (ret) {
1646 				dev_err(map->dev,
1647 					"Error in caching of register: %x ret: %d\n",
1648 					reg + offset, ret);
1649 				return ret;
1650 			}
1651 		}
1652 		if (map->cache_only) {
1653 			map->cache_dirty = true;
1654 			return 0;
1655 		}
1656 	}
1657 
1658 	range = _regmap_range_lookup(map, reg);
1659 	if (range) {
1660 		int val_num = val_len / map->format.val_bytes;
1661 		int win_offset = (reg - range->range_min) % range->window_len;
1662 		int win_residue = range->window_len - win_offset;
1663 
1664 		/* If the write goes beyond the end of the window split it */
1665 		while (val_num > win_residue) {
1666 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1667 				win_residue, val_len / map->format.val_bytes);
1668 			ret = _regmap_raw_write_impl(map, reg, val,
1669 						     win_residue *
1670 						     map->format.val_bytes, noinc);
1671 			if (ret != 0)
1672 				return ret;
1673 
1674 			reg += win_residue;
1675 			val_num -= win_residue;
1676 			val += win_residue * map->format.val_bytes;
1677 			val_len -= win_residue * map->format.val_bytes;
1678 
1679 			win_offset = (reg - range->range_min) %
1680 				range->window_len;
1681 			win_residue = range->window_len - win_offset;
1682 		}
1683 
1684 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1685 		if (ret != 0)
1686 			return ret;
1687 	}
1688 
1689 	reg = regmap_reg_addr(map, reg);
1690 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1691 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1692 				      map->write_flag_mask);
1693 
1694 	/*
1695 	 * Essentially all I/O mechanisms will be faster with a single
1696 	 * buffer to write.  Since register syncs often generate raw
1697 	 * writes of single registers optimise that case.
1698 	 */
1699 	if (val != work_val && val_len == map->format.val_bytes) {
1700 		memcpy(work_val, val, map->format.val_bytes);
1701 		val = work_val;
1702 	}
1703 
1704 	if (map->async && map->bus && map->bus->async_write) {
1705 		struct regmap_async *async;
1706 
1707 		trace_regmap_async_write_start(map, reg, val_len);
1708 
1709 		spin_lock_irqsave(&map->async_lock, flags);
1710 		async = list_first_entry_or_null(&map->async_free,
1711 						 struct regmap_async,
1712 						 list);
1713 		if (async)
1714 			list_del(&async->list);
1715 		spin_unlock_irqrestore(&map->async_lock, flags);
1716 
1717 		if (!async) {
1718 			async = map->bus->async_alloc();
1719 			if (!async)
1720 				return -ENOMEM;
1721 
1722 			async->work_buf = kzalloc(map->format.buf_size,
1723 						  GFP_KERNEL | GFP_DMA);
1724 			if (!async->work_buf) {
1725 				kfree(async);
1726 				return -ENOMEM;
1727 			}
1728 		}
1729 
1730 		async->map = map;
1731 
1732 		/* If the caller supplied the value we can use it safely. */
1733 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1734 		       map->format.reg_bytes + map->format.val_bytes);
1735 
1736 		spin_lock_irqsave(&map->async_lock, flags);
1737 		list_add_tail(&async->list, &map->async_list);
1738 		spin_unlock_irqrestore(&map->async_lock, flags);
1739 
1740 		if (val != work_val)
1741 			ret = map->bus->async_write(map->bus_context,
1742 						    async->work_buf,
1743 						    map->format.reg_bytes +
1744 						    map->format.pad_bytes,
1745 						    val, val_len, async);
1746 		else
1747 			ret = map->bus->async_write(map->bus_context,
1748 						    async->work_buf,
1749 						    map->format.reg_bytes +
1750 						    map->format.pad_bytes +
1751 						    val_len, NULL, 0, async);
1752 
1753 		if (ret != 0) {
1754 			dev_err(map->dev, "Failed to schedule write: %d\n",
1755 				ret);
1756 
1757 			spin_lock_irqsave(&map->async_lock, flags);
1758 			list_move(&async->list, &map->async_free);
1759 			spin_unlock_irqrestore(&map->async_lock, flags);
1760 		}
1761 
1762 		return ret;
1763 	}
1764 
1765 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1766 
1767 	/* If we're doing a single register write we can probably just
1768 	 * send the work_buf directly, otherwise try to do a gather
1769 	 * write.
1770 	 */
1771 	if (val == work_val)
1772 		ret = map->write(map->bus_context, map->work_buf,
1773 				 map->format.reg_bytes +
1774 				 map->format.pad_bytes +
1775 				 val_len);
1776 	else if (map->bus && map->bus->gather_write)
1777 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1778 					     map->format.reg_bytes +
1779 					     map->format.pad_bytes,
1780 					     val, val_len);
1781 	else
1782 		ret = -ENOTSUPP;
1783 
1784 	/* If that didn't work fall back on linearising by hand. */
1785 	if (ret == -ENOTSUPP) {
1786 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1787 		buf = kzalloc(len, GFP_KERNEL);
1788 		if (!buf)
1789 			return -ENOMEM;
1790 
1791 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1792 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1793 		       val, val_len);
1794 		ret = map->write(map->bus_context, buf, len);
1795 
1796 		kfree(buf);
1797 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1798 		/* regcache_drop_region() takes lock that we already have,
1799 		 * thus call map->cache_ops->drop() directly
1800 		 */
1801 		if (map->cache_ops && map->cache_ops->drop)
1802 			map->cache_ops->drop(map, reg, reg + 1);
1803 	}
1804 
1805 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1806 
1807 	return ret;
1808 }
1809 
1810 /**
1811  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1812  *
1813  * @map: Map to check.
1814  */
1815 bool regmap_can_raw_write(struct regmap *map)
1816 {
1817 	return map->write && map->format.format_val && map->format.format_reg;
1818 }
1819 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1820 
1821 /**
1822  * regmap_get_raw_read_max - Get the maximum size we can read
1823  *
1824  * @map: Map to check.
1825  */
1826 size_t regmap_get_raw_read_max(struct regmap *map)
1827 {
1828 	return map->max_raw_read;
1829 }
1830 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1831 
1832 /**
1833  * regmap_get_raw_write_max - Get the maximum size we can read
1834  *
1835  * @map: Map to check.
1836  */
1837 size_t regmap_get_raw_write_max(struct regmap *map)
1838 {
1839 	return map->max_raw_write;
1840 }
1841 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1842 
1843 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1844 				       unsigned int val)
1845 {
1846 	int ret;
1847 	struct regmap_range_node *range;
1848 	struct regmap *map = context;
1849 
1850 	WARN_ON(!map->format.format_write);
1851 
1852 	range = _regmap_range_lookup(map, reg);
1853 	if (range) {
1854 		ret = _regmap_select_page(map, &reg, range, 1);
1855 		if (ret != 0)
1856 			return ret;
1857 	}
1858 
1859 	reg = regmap_reg_addr(map, reg);
1860 	map->format.format_write(map, reg, val);
1861 
1862 	trace_regmap_hw_write_start(map, reg, 1);
1863 
1864 	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1865 
1866 	trace_regmap_hw_write_done(map, reg, 1);
1867 
1868 	return ret;
1869 }
1870 
1871 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1872 				 unsigned int val)
1873 {
1874 	struct regmap *map = context;
1875 	struct regmap_range_node *range;
1876 	int ret;
1877 
1878 	range = _regmap_range_lookup(map, reg);
1879 	if (range) {
1880 		ret = _regmap_select_page(map, &reg, range, 1);
1881 		if (ret != 0)
1882 			return ret;
1883 	}
1884 
1885 	reg = regmap_reg_addr(map, reg);
1886 	return map->bus->reg_write(map->bus_context, reg, val);
1887 }
1888 
1889 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1890 				 unsigned int val)
1891 {
1892 	struct regmap *map = context;
1893 
1894 	WARN_ON(!map->format.format_val);
1895 
1896 	map->format.format_val(map->work_buf + map->format.reg_bytes
1897 			       + map->format.pad_bytes, val, 0);
1898 	return _regmap_raw_write_impl(map, reg,
1899 				      map->work_buf +
1900 				      map->format.reg_bytes +
1901 				      map->format.pad_bytes,
1902 				      map->format.val_bytes,
1903 				      false);
1904 }
1905 
1906 static inline void *_regmap_map_get_context(struct regmap *map)
1907 {
1908 	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1909 }
1910 
1911 int _regmap_write(struct regmap *map, unsigned int reg,
1912 		  unsigned int val)
1913 {
1914 	int ret;
1915 	void *context = _regmap_map_get_context(map);
1916 
1917 	if (!regmap_writeable(map, reg))
1918 		return -EIO;
1919 
1920 	if (!map->cache_bypass && !map->defer_caching) {
1921 		ret = regcache_write(map, reg, val);
1922 		if (ret != 0)
1923 			return ret;
1924 		if (map->cache_only) {
1925 			map->cache_dirty = true;
1926 			return 0;
1927 		}
1928 	}
1929 
1930 	ret = map->reg_write(context, reg, val);
1931 	if (ret == 0) {
1932 		if (regmap_should_log(map))
1933 			dev_info(map->dev, "%x <= %x\n", reg, val);
1934 
1935 		trace_regmap_reg_write(map, reg, val);
1936 	}
1937 
1938 	return ret;
1939 }
1940 
1941 /**
1942  * regmap_write() - Write a value to a single register
1943  *
1944  * @map: Register map to write to
1945  * @reg: Register to write to
1946  * @val: Value to be written
1947  *
1948  * A value of zero will be returned on success, a negative errno will
1949  * be returned in error cases.
1950  */
1951 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1952 {
1953 	int ret;
1954 
1955 	if (!IS_ALIGNED(reg, map->reg_stride))
1956 		return -EINVAL;
1957 
1958 	map->lock(map->lock_arg);
1959 
1960 	ret = _regmap_write(map, reg, val);
1961 
1962 	map->unlock(map->lock_arg);
1963 
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(regmap_write);
1967 
1968 /**
1969  * regmap_write_async() - Write a value to a single register asynchronously
1970  *
1971  * @map: Register map to write to
1972  * @reg: Register to write to
1973  * @val: Value to be written
1974  *
1975  * A value of zero will be returned on success, a negative errno will
1976  * be returned in error cases.
1977  */
1978 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1979 {
1980 	int ret;
1981 
1982 	if (!IS_ALIGNED(reg, map->reg_stride))
1983 		return -EINVAL;
1984 
1985 	map->lock(map->lock_arg);
1986 
1987 	map->async = true;
1988 
1989 	ret = _regmap_write(map, reg, val);
1990 
1991 	map->async = false;
1992 
1993 	map->unlock(map->lock_arg);
1994 
1995 	return ret;
1996 }
1997 EXPORT_SYMBOL_GPL(regmap_write_async);
1998 
1999 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2000 		      const void *val, size_t val_len, bool noinc)
2001 {
2002 	size_t val_bytes = map->format.val_bytes;
2003 	size_t val_count = val_len / val_bytes;
2004 	size_t chunk_count, chunk_bytes;
2005 	size_t chunk_regs = val_count;
2006 	int ret, i;
2007 
2008 	if (!val_count)
2009 		return -EINVAL;
2010 
2011 	if (map->use_single_write)
2012 		chunk_regs = 1;
2013 	else if (map->max_raw_write && val_len > map->max_raw_write)
2014 		chunk_regs = map->max_raw_write / val_bytes;
2015 
2016 	chunk_count = val_count / chunk_regs;
2017 	chunk_bytes = chunk_regs * val_bytes;
2018 
2019 	/* Write as many bytes as possible with chunk_size */
2020 	for (i = 0; i < chunk_count; i++) {
2021 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2022 		if (ret)
2023 			return ret;
2024 
2025 		reg += regmap_get_offset(map, chunk_regs);
2026 		val += chunk_bytes;
2027 		val_len -= chunk_bytes;
2028 	}
2029 
2030 	/* Write remaining bytes */
2031 	if (val_len)
2032 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2033 
2034 	return ret;
2035 }
2036 
2037 /**
2038  * regmap_raw_write() - Write raw values to one or more registers
2039  *
2040  * @map: Register map to write to
2041  * @reg: Initial register to write to
2042  * @val: Block of data to be written, laid out for direct transmission to the
2043  *       device
2044  * @val_len: Length of data pointed to by val.
2045  *
2046  * This function is intended to be used for things like firmware
2047  * download where a large block of data needs to be transferred to the
2048  * device.  No formatting will be done on the data provided.
2049  *
2050  * A value of zero will be returned on success, a negative errno will
2051  * be returned in error cases.
2052  */
2053 int regmap_raw_write(struct regmap *map, unsigned int reg,
2054 		     const void *val, size_t val_len)
2055 {
2056 	int ret;
2057 
2058 	if (!regmap_can_raw_write(map))
2059 		return -EINVAL;
2060 	if (val_len % map->format.val_bytes)
2061 		return -EINVAL;
2062 
2063 	map->lock(map->lock_arg);
2064 
2065 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2066 
2067 	map->unlock(map->lock_arg);
2068 
2069 	return ret;
2070 }
2071 EXPORT_SYMBOL_GPL(regmap_raw_write);
2072 
2073 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2074 				  void *val, unsigned int val_len, bool write)
2075 {
2076 	size_t val_bytes = map->format.val_bytes;
2077 	size_t val_count = val_len / val_bytes;
2078 	unsigned int lastval;
2079 	u8 *u8p;
2080 	u16 *u16p;
2081 	u32 *u32p;
2082 	int ret;
2083 	int i;
2084 
2085 	switch (val_bytes) {
2086 	case 1:
2087 		u8p = val;
2088 		if (write)
2089 			lastval = (unsigned int)u8p[val_count - 1];
2090 		break;
2091 	case 2:
2092 		u16p = val;
2093 		if (write)
2094 			lastval = (unsigned int)u16p[val_count - 1];
2095 		break;
2096 	case 4:
2097 		u32p = val;
2098 		if (write)
2099 			lastval = (unsigned int)u32p[val_count - 1];
2100 		break;
2101 	default:
2102 		return -EINVAL;
2103 	}
2104 
2105 	/*
2106 	 * Update the cache with the last value we write, the rest is just
2107 	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2108 	 * sure a single read from the cache will work.
2109 	 */
2110 	if (write) {
2111 		if (!map->cache_bypass && !map->defer_caching) {
2112 			ret = regcache_write(map, reg, lastval);
2113 			if (ret != 0)
2114 				return ret;
2115 			if (map->cache_only) {
2116 				map->cache_dirty = true;
2117 				return 0;
2118 			}
2119 		}
2120 		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2121 	} else {
2122 		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2123 	}
2124 
2125 	if (!ret && regmap_should_log(map)) {
2126 		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2127 		for (i = 0; i < val_count; i++) {
2128 			switch (val_bytes) {
2129 			case 1:
2130 				pr_cont("%x", u8p[i]);
2131 				break;
2132 			case 2:
2133 				pr_cont("%x", u16p[i]);
2134 				break;
2135 			case 4:
2136 				pr_cont("%x", u32p[i]);
2137 				break;
2138 			default:
2139 				break;
2140 			}
2141 			if (i == (val_count - 1))
2142 				pr_cont("]\n");
2143 			else
2144 				pr_cont(",");
2145 		}
2146 	}
2147 
2148 	return 0;
2149 }
2150 
2151 /**
2152  * regmap_noinc_write(): Write data from a register without incrementing the
2153  *			register number
2154  *
2155  * @map: Register map to write to
2156  * @reg: Register to write to
2157  * @val: Pointer to data buffer
2158  * @val_len: Length of output buffer in bytes.
2159  *
2160  * The regmap API usually assumes that bulk bus write operations will write a
2161  * range of registers. Some devices have certain registers for which a write
2162  * operation can write to an internal FIFO.
2163  *
2164  * The target register must be volatile but registers after it can be
2165  * completely unrelated cacheable registers.
2166  *
2167  * This will attempt multiple writes as required to write val_len bytes.
2168  *
2169  * A value of zero will be returned on success, a negative errno will be
2170  * returned in error cases.
2171  */
2172 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2173 		      const void *val, size_t val_len)
2174 {
2175 	size_t write_len;
2176 	int ret;
2177 
2178 	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2179 		return -EINVAL;
2180 	if (val_len % map->format.val_bytes)
2181 		return -EINVAL;
2182 	if (!IS_ALIGNED(reg, map->reg_stride))
2183 		return -EINVAL;
2184 	if (val_len == 0)
2185 		return -EINVAL;
2186 
2187 	map->lock(map->lock_arg);
2188 
2189 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2190 		ret = -EINVAL;
2191 		goto out_unlock;
2192 	}
2193 
2194 	/*
2195 	 * Use the accelerated operation if we can. The val drops the const
2196 	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2197 	 */
2198 	if (map->bus->reg_noinc_write) {
2199 		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2200 		goto out_unlock;
2201 	}
2202 
2203 	while (val_len) {
2204 		if (map->max_raw_write && map->max_raw_write < val_len)
2205 			write_len = map->max_raw_write;
2206 		else
2207 			write_len = val_len;
2208 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2209 		if (ret)
2210 			goto out_unlock;
2211 		val = ((u8 *)val) + write_len;
2212 		val_len -= write_len;
2213 	}
2214 
2215 out_unlock:
2216 	map->unlock(map->lock_arg);
2217 	return ret;
2218 }
2219 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2220 
2221 /**
2222  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2223  *                                   register field.
2224  *
2225  * @field: Register field to write to
2226  * @mask: Bitmask to change
2227  * @val: Value to be written
2228  * @change: Boolean indicating if a write was done
2229  * @async: Boolean indicating asynchronously
2230  * @force: Boolean indicating use force update
2231  *
2232  * Perform a read/modify/write cycle on the register field with change,
2233  * async, force option.
2234  *
2235  * A value of zero will be returned on success, a negative errno will
2236  * be returned in error cases.
2237  */
2238 int regmap_field_update_bits_base(struct regmap_field *field,
2239 				  unsigned int mask, unsigned int val,
2240 				  bool *change, bool async, bool force)
2241 {
2242 	mask = (mask << field->shift) & field->mask;
2243 
2244 	return regmap_update_bits_base(field->regmap, field->reg,
2245 				       mask, val << field->shift,
2246 				       change, async, force);
2247 }
2248 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2249 
2250 /**
2251  * regmap_field_test_bits() - Check if all specified bits are set in a
2252  *                            register field.
2253  *
2254  * @field: Register field to operate on
2255  * @bits: Bits to test
2256  *
2257  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2258  * tested bits is not set and 1 if all tested bits are set.
2259  */
2260 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2261 {
2262 	unsigned int val, ret;
2263 
2264 	ret = regmap_field_read(field, &val);
2265 	if (ret)
2266 		return ret;
2267 
2268 	return (val & bits) == bits;
2269 }
2270 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2271 
2272 /**
2273  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2274  *                                    register field with port ID
2275  *
2276  * @field: Register field to write to
2277  * @id: port ID
2278  * @mask: Bitmask to change
2279  * @val: Value to be written
2280  * @change: Boolean indicating if a write was done
2281  * @async: Boolean indicating asynchronously
2282  * @force: Boolean indicating use force update
2283  *
2284  * A value of zero will be returned on success, a negative errno will
2285  * be returned in error cases.
2286  */
2287 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2288 				   unsigned int mask, unsigned int val,
2289 				   bool *change, bool async, bool force)
2290 {
2291 	if (id >= field->id_size)
2292 		return -EINVAL;
2293 
2294 	mask = (mask << field->shift) & field->mask;
2295 
2296 	return regmap_update_bits_base(field->regmap,
2297 				       field->reg + (field->id_offset * id),
2298 				       mask, val << field->shift,
2299 				       change, async, force);
2300 }
2301 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2302 
2303 /**
2304  * regmap_bulk_write() - Write multiple registers to the device
2305  *
2306  * @map: Register map to write to
2307  * @reg: First register to be write from
2308  * @val: Block of data to be written, in native register size for device
2309  * @val_count: Number of registers to write
2310  *
2311  * This function is intended to be used for writing a large block of
2312  * data to the device either in single transfer or multiple transfer.
2313  *
2314  * A value of zero will be returned on success, a negative errno will
2315  * be returned in error cases.
2316  */
2317 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2318 		     size_t val_count)
2319 {
2320 	int ret = 0, i;
2321 	size_t val_bytes = map->format.val_bytes;
2322 
2323 	if (!IS_ALIGNED(reg, map->reg_stride))
2324 		return -EINVAL;
2325 
2326 	/*
2327 	 * Some devices don't support bulk write, for them we have a series of
2328 	 * single write operations.
2329 	 */
2330 	if (!map->write || !map->format.parse_inplace) {
2331 		map->lock(map->lock_arg);
2332 		for (i = 0; i < val_count; i++) {
2333 			unsigned int ival;
2334 
2335 			switch (val_bytes) {
2336 			case 1:
2337 				ival = *(u8 *)(val + (i * val_bytes));
2338 				break;
2339 			case 2:
2340 				ival = *(u16 *)(val + (i * val_bytes));
2341 				break;
2342 			case 4:
2343 				ival = *(u32 *)(val + (i * val_bytes));
2344 				break;
2345 			default:
2346 				ret = -EINVAL;
2347 				goto out;
2348 			}
2349 
2350 			ret = _regmap_write(map,
2351 					    reg + regmap_get_offset(map, i),
2352 					    ival);
2353 			if (ret != 0)
2354 				goto out;
2355 		}
2356 out:
2357 		map->unlock(map->lock_arg);
2358 	} else {
2359 		void *wval;
2360 
2361 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2362 		if (!wval)
2363 			return -ENOMEM;
2364 
2365 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2366 			map->format.parse_inplace(wval + i);
2367 
2368 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2369 
2370 		kfree(wval);
2371 	}
2372 
2373 	if (!ret)
2374 		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2375 
2376 	return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2379 
2380 /*
2381  * _regmap_raw_multi_reg_write()
2382  *
2383  * the (register,newvalue) pairs in regs have not been formatted, but
2384  * they are all in the same page and have been changed to being page
2385  * relative. The page register has been written if that was necessary.
2386  */
2387 static int _regmap_raw_multi_reg_write(struct regmap *map,
2388 				       const struct reg_sequence *regs,
2389 				       size_t num_regs)
2390 {
2391 	int ret;
2392 	void *buf;
2393 	int i;
2394 	u8 *u8;
2395 	size_t val_bytes = map->format.val_bytes;
2396 	size_t reg_bytes = map->format.reg_bytes;
2397 	size_t pad_bytes = map->format.pad_bytes;
2398 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2399 	size_t len = pair_size * num_regs;
2400 
2401 	if (!len)
2402 		return -EINVAL;
2403 
2404 	buf = kzalloc(len, GFP_KERNEL);
2405 	if (!buf)
2406 		return -ENOMEM;
2407 
2408 	/* We have to linearise by hand. */
2409 
2410 	u8 = buf;
2411 
2412 	for (i = 0; i < num_regs; i++) {
2413 		unsigned int reg = regs[i].reg;
2414 		unsigned int val = regs[i].def;
2415 		trace_regmap_hw_write_start(map, reg, 1);
2416 		reg = regmap_reg_addr(map, reg);
2417 		map->format.format_reg(u8, reg, map->reg_shift);
2418 		u8 += reg_bytes + pad_bytes;
2419 		map->format.format_val(u8, val, 0);
2420 		u8 += val_bytes;
2421 	}
2422 	u8 = buf;
2423 	*u8 |= map->write_flag_mask;
2424 
2425 	ret = map->write(map->bus_context, buf, len);
2426 
2427 	kfree(buf);
2428 
2429 	for (i = 0; i < num_regs; i++) {
2430 		int reg = regs[i].reg;
2431 		trace_regmap_hw_write_done(map, reg, 1);
2432 	}
2433 	return ret;
2434 }
2435 
2436 static unsigned int _regmap_register_page(struct regmap *map,
2437 					  unsigned int reg,
2438 					  struct regmap_range_node *range)
2439 {
2440 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2441 
2442 	return win_page;
2443 }
2444 
2445 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2446 					       struct reg_sequence *regs,
2447 					       size_t num_regs)
2448 {
2449 	int ret;
2450 	int i, n;
2451 	struct reg_sequence *base;
2452 	unsigned int this_page = 0;
2453 	unsigned int page_change = 0;
2454 	/*
2455 	 * the set of registers are not neccessarily in order, but
2456 	 * since the order of write must be preserved this algorithm
2457 	 * chops the set each time the page changes. This also applies
2458 	 * if there is a delay required at any point in the sequence.
2459 	 */
2460 	base = regs;
2461 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2462 		unsigned int reg = regs[i].reg;
2463 		struct regmap_range_node *range;
2464 
2465 		range = _regmap_range_lookup(map, reg);
2466 		if (range) {
2467 			unsigned int win_page = _regmap_register_page(map, reg,
2468 								      range);
2469 
2470 			if (i == 0)
2471 				this_page = win_page;
2472 			if (win_page != this_page) {
2473 				this_page = win_page;
2474 				page_change = 1;
2475 			}
2476 		}
2477 
2478 		/* If we have both a page change and a delay make sure to
2479 		 * write the regs and apply the delay before we change the
2480 		 * page.
2481 		 */
2482 
2483 		if (page_change || regs[i].delay_us) {
2484 
2485 				/* For situations where the first write requires
2486 				 * a delay we need to make sure we don't call
2487 				 * raw_multi_reg_write with n=0
2488 				 * This can't occur with page breaks as we
2489 				 * never write on the first iteration
2490 				 */
2491 				if (regs[i].delay_us && i == 0)
2492 					n = 1;
2493 
2494 				ret = _regmap_raw_multi_reg_write(map, base, n);
2495 				if (ret != 0)
2496 					return ret;
2497 
2498 				if (regs[i].delay_us) {
2499 					if (map->can_sleep)
2500 						fsleep(regs[i].delay_us);
2501 					else
2502 						udelay(regs[i].delay_us);
2503 				}
2504 
2505 				base += n;
2506 				n = 0;
2507 
2508 				if (page_change) {
2509 					ret = _regmap_select_page(map,
2510 								  &base[n].reg,
2511 								  range, 1);
2512 					if (ret != 0)
2513 						return ret;
2514 
2515 					page_change = 0;
2516 				}
2517 
2518 		}
2519 
2520 	}
2521 	if (n > 0)
2522 		return _regmap_raw_multi_reg_write(map, base, n);
2523 	return 0;
2524 }
2525 
2526 static int _regmap_multi_reg_write(struct regmap *map,
2527 				   const struct reg_sequence *regs,
2528 				   size_t num_regs)
2529 {
2530 	int i;
2531 	int ret;
2532 
2533 	if (!map->can_multi_write) {
2534 		for (i = 0; i < num_regs; i++) {
2535 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2536 			if (ret != 0)
2537 				return ret;
2538 
2539 			if (regs[i].delay_us) {
2540 				if (map->can_sleep)
2541 					fsleep(regs[i].delay_us);
2542 				else
2543 					udelay(regs[i].delay_us);
2544 			}
2545 		}
2546 		return 0;
2547 	}
2548 
2549 	if (!map->format.parse_inplace)
2550 		return -EINVAL;
2551 
2552 	if (map->writeable_reg)
2553 		for (i = 0; i < num_regs; i++) {
2554 			int reg = regs[i].reg;
2555 			if (!map->writeable_reg(map->dev, reg))
2556 				return -EINVAL;
2557 			if (!IS_ALIGNED(reg, map->reg_stride))
2558 				return -EINVAL;
2559 		}
2560 
2561 	if (!map->cache_bypass) {
2562 		for (i = 0; i < num_regs; i++) {
2563 			unsigned int val = regs[i].def;
2564 			unsigned int reg = regs[i].reg;
2565 			ret = regcache_write(map, reg, val);
2566 			if (ret) {
2567 				dev_err(map->dev,
2568 				"Error in caching of register: %x ret: %d\n",
2569 								reg, ret);
2570 				return ret;
2571 			}
2572 		}
2573 		if (map->cache_only) {
2574 			map->cache_dirty = true;
2575 			return 0;
2576 		}
2577 	}
2578 
2579 	WARN_ON(!map->bus);
2580 
2581 	for (i = 0; i < num_regs; i++) {
2582 		unsigned int reg = regs[i].reg;
2583 		struct regmap_range_node *range;
2584 
2585 		/* Coalesce all the writes between a page break or a delay
2586 		 * in a sequence
2587 		 */
2588 		range = _regmap_range_lookup(map, reg);
2589 		if (range || regs[i].delay_us) {
2590 			size_t len = sizeof(struct reg_sequence)*num_regs;
2591 			struct reg_sequence *base = kmemdup(regs, len,
2592 							   GFP_KERNEL);
2593 			if (!base)
2594 				return -ENOMEM;
2595 			ret = _regmap_range_multi_paged_reg_write(map, base,
2596 								  num_regs);
2597 			kfree(base);
2598 
2599 			return ret;
2600 		}
2601 	}
2602 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2603 }
2604 
2605 /**
2606  * regmap_multi_reg_write() - Write multiple registers to the device
2607  *
2608  * @map: Register map to write to
2609  * @regs: Array of structures containing register,value to be written
2610  * @num_regs: Number of registers to write
2611  *
2612  * Write multiple registers to the device where the set of register, value
2613  * pairs are supplied in any order, possibly not all in a single range.
2614  *
2615  * The 'normal' block write mode will send ultimately send data on the
2616  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2617  * addressed. However, this alternative block multi write mode will send
2618  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2619  * must of course support the mode.
2620  *
2621  * A value of zero will be returned on success, a negative errno will be
2622  * returned in error cases.
2623  */
2624 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2625 			   int num_regs)
2626 {
2627 	int ret;
2628 
2629 	map->lock(map->lock_arg);
2630 
2631 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2632 
2633 	map->unlock(map->lock_arg);
2634 
2635 	return ret;
2636 }
2637 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2638 
2639 /**
2640  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2641  *                                     device but not the cache
2642  *
2643  * @map: Register map to write to
2644  * @regs: Array of structures containing register,value to be written
2645  * @num_regs: Number of registers to write
2646  *
2647  * Write multiple registers to the device but not the cache where the set
2648  * of register are supplied in any order.
2649  *
2650  * This function is intended to be used for writing a large block of data
2651  * atomically to the device in single transfer for those I2C client devices
2652  * that implement this alternative block write mode.
2653  *
2654  * A value of zero will be returned on success, a negative errno will
2655  * be returned in error cases.
2656  */
2657 int regmap_multi_reg_write_bypassed(struct regmap *map,
2658 				    const struct reg_sequence *regs,
2659 				    int num_regs)
2660 {
2661 	int ret;
2662 	bool bypass;
2663 
2664 	map->lock(map->lock_arg);
2665 
2666 	bypass = map->cache_bypass;
2667 	map->cache_bypass = true;
2668 
2669 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2670 
2671 	map->cache_bypass = bypass;
2672 
2673 	map->unlock(map->lock_arg);
2674 
2675 	return ret;
2676 }
2677 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2678 
2679 /**
2680  * regmap_raw_write_async() - Write raw values to one or more registers
2681  *                            asynchronously
2682  *
2683  * @map: Register map to write to
2684  * @reg: Initial register to write to
2685  * @val: Block of data to be written, laid out for direct transmission to the
2686  *       device.  Must be valid until regmap_async_complete() is called.
2687  * @val_len: Length of data pointed to by val.
2688  *
2689  * This function is intended to be used for things like firmware
2690  * download where a large block of data needs to be transferred to the
2691  * device.  No formatting will be done on the data provided.
2692  *
2693  * If supported by the underlying bus the write will be scheduled
2694  * asynchronously, helping maximise I/O speed on higher speed buses
2695  * like SPI.  regmap_async_complete() can be called to ensure that all
2696  * asynchrnous writes have been completed.
2697  *
2698  * A value of zero will be returned on success, a negative errno will
2699  * be returned in error cases.
2700  */
2701 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2702 			   const void *val, size_t val_len)
2703 {
2704 	int ret;
2705 
2706 	if (val_len % map->format.val_bytes)
2707 		return -EINVAL;
2708 	if (!IS_ALIGNED(reg, map->reg_stride))
2709 		return -EINVAL;
2710 
2711 	map->lock(map->lock_arg);
2712 
2713 	map->async = true;
2714 
2715 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2716 
2717 	map->async = false;
2718 
2719 	map->unlock(map->lock_arg);
2720 
2721 	return ret;
2722 }
2723 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2724 
2725 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2726 			    unsigned int val_len, bool noinc)
2727 {
2728 	struct regmap_range_node *range;
2729 	int ret;
2730 
2731 	if (!map->read)
2732 		return -EINVAL;
2733 
2734 	range = _regmap_range_lookup(map, reg);
2735 	if (range) {
2736 		ret = _regmap_select_page(map, &reg, range,
2737 					  noinc ? 1 : val_len / map->format.val_bytes);
2738 		if (ret != 0)
2739 			return ret;
2740 	}
2741 
2742 	reg = regmap_reg_addr(map, reg);
2743 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2744 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2745 				      map->read_flag_mask);
2746 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2747 
2748 	ret = map->read(map->bus_context, map->work_buf,
2749 			map->format.reg_bytes + map->format.pad_bytes,
2750 			val, val_len);
2751 
2752 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2753 
2754 	return ret;
2755 }
2756 
2757 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2758 				unsigned int *val)
2759 {
2760 	struct regmap *map = context;
2761 	struct regmap_range_node *range;
2762 	int ret;
2763 
2764 	range = _regmap_range_lookup(map, reg);
2765 	if (range) {
2766 		ret = _regmap_select_page(map, &reg, range, 1);
2767 		if (ret != 0)
2768 			return ret;
2769 	}
2770 
2771 	reg = regmap_reg_addr(map, reg);
2772 	return map->bus->reg_read(map->bus_context, reg, val);
2773 }
2774 
2775 static int _regmap_bus_read(void *context, unsigned int reg,
2776 			    unsigned int *val)
2777 {
2778 	int ret;
2779 	struct regmap *map = context;
2780 	void *work_val = map->work_buf + map->format.reg_bytes +
2781 		map->format.pad_bytes;
2782 
2783 	if (!map->format.parse_val)
2784 		return -EINVAL;
2785 
2786 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2787 	if (ret == 0)
2788 		*val = map->format.parse_val(work_val);
2789 
2790 	return ret;
2791 }
2792 
2793 static int _regmap_read(struct regmap *map, unsigned int reg,
2794 			unsigned int *val)
2795 {
2796 	int ret;
2797 	void *context = _regmap_map_get_context(map);
2798 
2799 	if (!map->cache_bypass) {
2800 		ret = regcache_read(map, reg, val);
2801 		if (ret == 0)
2802 			return 0;
2803 	}
2804 
2805 	if (map->cache_only)
2806 		return -EBUSY;
2807 
2808 	if (!regmap_readable(map, reg))
2809 		return -EIO;
2810 
2811 	ret = map->reg_read(context, reg, val);
2812 	if (ret == 0) {
2813 		if (regmap_should_log(map))
2814 			dev_info(map->dev, "%x => %x\n", reg, *val);
2815 
2816 		trace_regmap_reg_read(map, reg, *val);
2817 
2818 		if (!map->cache_bypass)
2819 			regcache_write(map, reg, *val);
2820 	}
2821 
2822 	return ret;
2823 }
2824 
2825 /**
2826  * regmap_read() - Read a value from a single register
2827  *
2828  * @map: Register map to read from
2829  * @reg: Register to be read from
2830  * @val: Pointer to store read value
2831  *
2832  * A value of zero will be returned on success, a negative errno will
2833  * be returned in error cases.
2834  */
2835 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2836 {
2837 	int ret;
2838 
2839 	if (!IS_ALIGNED(reg, map->reg_stride))
2840 		return -EINVAL;
2841 
2842 	map->lock(map->lock_arg);
2843 
2844 	ret = _regmap_read(map, reg, val);
2845 
2846 	map->unlock(map->lock_arg);
2847 
2848 	return ret;
2849 }
2850 EXPORT_SYMBOL_GPL(regmap_read);
2851 
2852 /**
2853  * regmap_read_bypassed() - Read a value from a single register direct
2854  *			    from the device, bypassing the cache
2855  *
2856  * @map: Register map to read from
2857  * @reg: Register to be read from
2858  * @val: Pointer to store read value
2859  *
2860  * A value of zero will be returned on success, a negative errno will
2861  * be returned in error cases.
2862  */
2863 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2864 {
2865 	int ret;
2866 	bool bypass, cache_only;
2867 
2868 	if (!IS_ALIGNED(reg, map->reg_stride))
2869 		return -EINVAL;
2870 
2871 	map->lock(map->lock_arg);
2872 
2873 	bypass = map->cache_bypass;
2874 	cache_only = map->cache_only;
2875 	map->cache_bypass = true;
2876 	map->cache_only = false;
2877 
2878 	ret = _regmap_read(map, reg, val);
2879 
2880 	map->cache_bypass = bypass;
2881 	map->cache_only = cache_only;
2882 
2883 	map->unlock(map->lock_arg);
2884 
2885 	return ret;
2886 }
2887 EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2888 
2889 /**
2890  * regmap_raw_read() - Read raw data from the device
2891  *
2892  * @map: Register map to read from
2893  * @reg: First register to be read from
2894  * @val: Pointer to store read value
2895  * @val_len: Size of data to read
2896  *
2897  * A value of zero will be returned on success, a negative errno will
2898  * be returned in error cases.
2899  */
2900 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2901 		    size_t val_len)
2902 {
2903 	size_t val_bytes = map->format.val_bytes;
2904 	size_t val_count = val_len / val_bytes;
2905 	unsigned int v;
2906 	int ret, i;
2907 
2908 	if (val_len % map->format.val_bytes)
2909 		return -EINVAL;
2910 	if (!IS_ALIGNED(reg, map->reg_stride))
2911 		return -EINVAL;
2912 	if (val_count == 0)
2913 		return -EINVAL;
2914 
2915 	map->lock(map->lock_arg);
2916 
2917 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2918 	    map->cache_type == REGCACHE_NONE) {
2919 		size_t chunk_count, chunk_bytes;
2920 		size_t chunk_regs = val_count;
2921 
2922 		if (!map->cache_bypass && map->cache_only) {
2923 			ret = -EBUSY;
2924 			goto out;
2925 		}
2926 
2927 		if (!map->read) {
2928 			ret = -ENOTSUPP;
2929 			goto out;
2930 		}
2931 
2932 		if (map->use_single_read)
2933 			chunk_regs = 1;
2934 		else if (map->max_raw_read && val_len > map->max_raw_read)
2935 			chunk_regs = map->max_raw_read / val_bytes;
2936 
2937 		chunk_count = val_count / chunk_regs;
2938 		chunk_bytes = chunk_regs * val_bytes;
2939 
2940 		/* Read bytes that fit into whole chunks */
2941 		for (i = 0; i < chunk_count; i++) {
2942 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2943 			if (ret != 0)
2944 				goto out;
2945 
2946 			reg += regmap_get_offset(map, chunk_regs);
2947 			val += chunk_bytes;
2948 			val_len -= chunk_bytes;
2949 		}
2950 
2951 		/* Read remaining bytes */
2952 		if (val_len) {
2953 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2954 			if (ret != 0)
2955 				goto out;
2956 		}
2957 	} else {
2958 		/* Otherwise go word by word for the cache; should be low
2959 		 * cost as we expect to hit the cache.
2960 		 */
2961 		for (i = 0; i < val_count; i++) {
2962 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2963 					   &v);
2964 			if (ret != 0)
2965 				goto out;
2966 
2967 			map->format.format_val(val + (i * val_bytes), v, 0);
2968 		}
2969 	}
2970 
2971  out:
2972 	map->unlock(map->lock_arg);
2973 
2974 	return ret;
2975 }
2976 EXPORT_SYMBOL_GPL(regmap_raw_read);
2977 
2978 /**
2979  * regmap_noinc_read(): Read data from a register without incrementing the
2980  *			register number
2981  *
2982  * @map: Register map to read from
2983  * @reg: Register to read from
2984  * @val: Pointer to data buffer
2985  * @val_len: Length of output buffer in bytes.
2986  *
2987  * The regmap API usually assumes that bulk read operations will read a
2988  * range of registers. Some devices have certain registers for which a read
2989  * operation read will read from an internal FIFO.
2990  *
2991  * The target register must be volatile but registers after it can be
2992  * completely unrelated cacheable registers.
2993  *
2994  * This will attempt multiple reads as required to read val_len bytes.
2995  *
2996  * A value of zero will be returned on success, a negative errno will be
2997  * returned in error cases.
2998  */
2999 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3000 		      void *val, size_t val_len)
3001 {
3002 	size_t read_len;
3003 	int ret;
3004 
3005 	if (!map->read)
3006 		return -ENOTSUPP;
3007 
3008 	if (val_len % map->format.val_bytes)
3009 		return -EINVAL;
3010 	if (!IS_ALIGNED(reg, map->reg_stride))
3011 		return -EINVAL;
3012 	if (val_len == 0)
3013 		return -EINVAL;
3014 
3015 	map->lock(map->lock_arg);
3016 
3017 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3018 		ret = -EINVAL;
3019 		goto out_unlock;
3020 	}
3021 
3022 	/*
3023 	 * We have not defined the FIFO semantics for cache, as the
3024 	 * cache is just one value deep. Should we return the last
3025 	 * written value? Just avoid this by always reading the FIFO
3026 	 * even when using cache. Cache only will not work.
3027 	 */
3028 	if (!map->cache_bypass && map->cache_only) {
3029 		ret = -EBUSY;
3030 		goto out_unlock;
3031 	}
3032 
3033 	/* Use the accelerated operation if we can */
3034 	if (map->bus->reg_noinc_read) {
3035 		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3036 		goto out_unlock;
3037 	}
3038 
3039 	while (val_len) {
3040 		if (map->max_raw_read && map->max_raw_read < val_len)
3041 			read_len = map->max_raw_read;
3042 		else
3043 			read_len = val_len;
3044 		ret = _regmap_raw_read(map, reg, val, read_len, true);
3045 		if (ret)
3046 			goto out_unlock;
3047 		val = ((u8 *)val) + read_len;
3048 		val_len -= read_len;
3049 	}
3050 
3051 out_unlock:
3052 	map->unlock(map->lock_arg);
3053 	return ret;
3054 }
3055 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3056 
3057 /**
3058  * regmap_field_read(): Read a value to a single register field
3059  *
3060  * @field: Register field to read from
3061  * @val: Pointer to store read value
3062  *
3063  * A value of zero will be returned on success, a negative errno will
3064  * be returned in error cases.
3065  */
3066 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3067 {
3068 	int ret;
3069 	unsigned int reg_val;
3070 	ret = regmap_read(field->regmap, field->reg, &reg_val);
3071 	if (ret != 0)
3072 		return ret;
3073 
3074 	reg_val &= field->mask;
3075 	reg_val >>= field->shift;
3076 	*val = reg_val;
3077 
3078 	return ret;
3079 }
3080 EXPORT_SYMBOL_GPL(regmap_field_read);
3081 
3082 /**
3083  * regmap_fields_read() - Read a value to a single register field with port ID
3084  *
3085  * @field: Register field to read from
3086  * @id: port ID
3087  * @val: Pointer to store read value
3088  *
3089  * A value of zero will be returned on success, a negative errno will
3090  * be returned in error cases.
3091  */
3092 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3093 		       unsigned int *val)
3094 {
3095 	int ret;
3096 	unsigned int reg_val;
3097 
3098 	if (id >= field->id_size)
3099 		return -EINVAL;
3100 
3101 	ret = regmap_read(field->regmap,
3102 			  field->reg + (field->id_offset * id),
3103 			  &reg_val);
3104 	if (ret != 0)
3105 		return ret;
3106 
3107 	reg_val &= field->mask;
3108 	reg_val >>= field->shift;
3109 	*val = reg_val;
3110 
3111 	return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(regmap_fields_read);
3114 
3115 /**
3116  * regmap_bulk_read() - Read multiple registers from the device
3117  *
3118  * @map: Register map to read from
3119  * @reg: First register to be read from
3120  * @val: Pointer to store read value, in native register size for device
3121  * @val_count: Number of registers to read
3122  *
3123  * A value of zero will be returned on success, a negative errno will
3124  * be returned in error cases.
3125  */
3126 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3127 		     size_t val_count)
3128 {
3129 	int ret, i;
3130 	size_t val_bytes = map->format.val_bytes;
3131 	bool vol = regmap_volatile_range(map, reg, val_count);
3132 
3133 	if (!IS_ALIGNED(reg, map->reg_stride))
3134 		return -EINVAL;
3135 	if (val_count == 0)
3136 		return -EINVAL;
3137 
3138 	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3139 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3140 		if (ret != 0)
3141 			return ret;
3142 
3143 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3144 			map->format.parse_inplace(val + i);
3145 	} else {
3146 		u32 *u32 = val;
3147 		u16 *u16 = val;
3148 		u8 *u8 = val;
3149 
3150 		map->lock(map->lock_arg);
3151 
3152 		for (i = 0; i < val_count; i++) {
3153 			unsigned int ival;
3154 
3155 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3156 					   &ival);
3157 			if (ret != 0)
3158 				goto out;
3159 
3160 			switch (map->format.val_bytes) {
3161 			case 4:
3162 				u32[i] = ival;
3163 				break;
3164 			case 2:
3165 				u16[i] = ival;
3166 				break;
3167 			case 1:
3168 				u8[i] = ival;
3169 				break;
3170 			default:
3171 				ret = -EINVAL;
3172 				goto out;
3173 			}
3174 		}
3175 
3176 out:
3177 		map->unlock(map->lock_arg);
3178 	}
3179 
3180 	if (!ret)
3181 		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3182 
3183 	return ret;
3184 }
3185 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3186 
3187 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3188 			       unsigned int mask, unsigned int val,
3189 			       bool *change, bool force_write)
3190 {
3191 	int ret;
3192 	unsigned int tmp, orig;
3193 
3194 	if (change)
3195 		*change = false;
3196 
3197 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3198 		reg = regmap_reg_addr(map, reg);
3199 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3200 		if (ret == 0 && change)
3201 			*change = true;
3202 	} else {
3203 		ret = _regmap_read(map, reg, &orig);
3204 		if (ret != 0)
3205 			return ret;
3206 
3207 		tmp = orig & ~mask;
3208 		tmp |= val & mask;
3209 
3210 		if (force_write || (tmp != orig) || map->force_write_field) {
3211 			ret = _regmap_write(map, reg, tmp);
3212 			if (ret == 0 && change)
3213 				*change = true;
3214 		}
3215 	}
3216 
3217 	return ret;
3218 }
3219 
3220 /**
3221  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3222  *
3223  * @map: Register map to update
3224  * @reg: Register to update
3225  * @mask: Bitmask to change
3226  * @val: New value for bitmask
3227  * @change: Boolean indicating if a write was done
3228  * @async: Boolean indicating asynchronously
3229  * @force: Boolean indicating use force update
3230  *
3231  * Perform a read/modify/write cycle on a register map with change, async, force
3232  * options.
3233  *
3234  * If async is true:
3235  *
3236  * With most buses the read must be done synchronously so this is most useful
3237  * for devices with a cache which do not need to interact with the hardware to
3238  * determine the current register value.
3239  *
3240  * Returns zero for success, a negative number on error.
3241  */
3242 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3243 			    unsigned int mask, unsigned int val,
3244 			    bool *change, bool async, bool force)
3245 {
3246 	int ret;
3247 
3248 	map->lock(map->lock_arg);
3249 
3250 	map->async = async;
3251 
3252 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3253 
3254 	map->async = false;
3255 
3256 	map->unlock(map->lock_arg);
3257 
3258 	return ret;
3259 }
3260 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3261 
3262 /**
3263  * regmap_test_bits() - Check if all specified bits are set in a register.
3264  *
3265  * @map: Register map to operate on
3266  * @reg: Register to read from
3267  * @bits: Bits to test
3268  *
3269  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3270  * bits are set and a negative error number if the underlying regmap_read()
3271  * fails.
3272  */
3273 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3274 {
3275 	unsigned int val, ret;
3276 
3277 	ret = regmap_read(map, reg, &val);
3278 	if (ret)
3279 		return ret;
3280 
3281 	return (val & bits) == bits;
3282 }
3283 EXPORT_SYMBOL_GPL(regmap_test_bits);
3284 
3285 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3286 {
3287 	struct regmap *map = async->map;
3288 	bool wake;
3289 
3290 	trace_regmap_async_io_complete(map);
3291 
3292 	spin_lock(&map->async_lock);
3293 	list_move(&async->list, &map->async_free);
3294 	wake = list_empty(&map->async_list);
3295 
3296 	if (ret != 0)
3297 		map->async_ret = ret;
3298 
3299 	spin_unlock(&map->async_lock);
3300 
3301 	if (wake)
3302 		wake_up(&map->async_waitq);
3303 }
3304 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3305 
3306 static int regmap_async_is_done(struct regmap *map)
3307 {
3308 	unsigned long flags;
3309 	int ret;
3310 
3311 	spin_lock_irqsave(&map->async_lock, flags);
3312 	ret = list_empty(&map->async_list);
3313 	spin_unlock_irqrestore(&map->async_lock, flags);
3314 
3315 	return ret;
3316 }
3317 
3318 /**
3319  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3320  *
3321  * @map: Map to operate on.
3322  *
3323  * Blocks until any pending asynchronous I/O has completed.  Returns
3324  * an error code for any failed I/O operations.
3325  */
3326 int regmap_async_complete(struct regmap *map)
3327 {
3328 	unsigned long flags;
3329 	int ret;
3330 
3331 	/* Nothing to do with no async support */
3332 	if (!map->bus || !map->bus->async_write)
3333 		return 0;
3334 
3335 	trace_regmap_async_complete_start(map);
3336 
3337 	wait_event(map->async_waitq, regmap_async_is_done(map));
3338 
3339 	spin_lock_irqsave(&map->async_lock, flags);
3340 	ret = map->async_ret;
3341 	map->async_ret = 0;
3342 	spin_unlock_irqrestore(&map->async_lock, flags);
3343 
3344 	trace_regmap_async_complete_done(map);
3345 
3346 	return ret;
3347 }
3348 EXPORT_SYMBOL_GPL(regmap_async_complete);
3349 
3350 /**
3351  * regmap_register_patch - Register and apply register updates to be applied
3352  *                         on device initialistion
3353  *
3354  * @map: Register map to apply updates to.
3355  * @regs: Values to update.
3356  * @num_regs: Number of entries in regs.
3357  *
3358  * Register a set of register updates to be applied to the device
3359  * whenever the device registers are synchronised with the cache and
3360  * apply them immediately.  Typically this is used to apply
3361  * corrections to be applied to the device defaults on startup, such
3362  * as the updates some vendors provide to undocumented registers.
3363  *
3364  * The caller must ensure that this function cannot be called
3365  * concurrently with either itself or regcache_sync().
3366  */
3367 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3368 			  int num_regs)
3369 {
3370 	struct reg_sequence *p;
3371 	int ret;
3372 	bool bypass;
3373 
3374 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3375 	    num_regs))
3376 		return 0;
3377 
3378 	p = krealloc(map->patch,
3379 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3380 		     GFP_KERNEL);
3381 	if (p) {
3382 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3383 		map->patch = p;
3384 		map->patch_regs += num_regs;
3385 	} else {
3386 		return -ENOMEM;
3387 	}
3388 
3389 	map->lock(map->lock_arg);
3390 
3391 	bypass = map->cache_bypass;
3392 
3393 	map->cache_bypass = true;
3394 	map->async = true;
3395 
3396 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3397 
3398 	map->async = false;
3399 	map->cache_bypass = bypass;
3400 
3401 	map->unlock(map->lock_arg);
3402 
3403 	regmap_async_complete(map);
3404 
3405 	return ret;
3406 }
3407 EXPORT_SYMBOL_GPL(regmap_register_patch);
3408 
3409 /**
3410  * regmap_get_val_bytes() - Report the size of a register value
3411  *
3412  * @map: Register map to operate on.
3413  *
3414  * Report the size of a register value, mainly intended to for use by
3415  * generic infrastructure built on top of regmap.
3416  */
3417 int regmap_get_val_bytes(struct regmap *map)
3418 {
3419 	if (map->format.format_write)
3420 		return -EINVAL;
3421 
3422 	return map->format.val_bytes;
3423 }
3424 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3425 
3426 /**
3427  * regmap_get_max_register() - Report the max register value
3428  *
3429  * @map: Register map to operate on.
3430  *
3431  * Report the max register value, mainly intended to for use by
3432  * generic infrastructure built on top of regmap.
3433  */
3434 int regmap_get_max_register(struct regmap *map)
3435 {
3436 	return map->max_register ? map->max_register : -EINVAL;
3437 }
3438 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3439 
3440 /**
3441  * regmap_get_reg_stride() - Report the register address stride
3442  *
3443  * @map: Register map to operate on.
3444  *
3445  * Report the register address stride, mainly intended to for use by
3446  * generic infrastructure built on top of regmap.
3447  */
3448 int regmap_get_reg_stride(struct regmap *map)
3449 {
3450 	return map->reg_stride;
3451 }
3452 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3453 
3454 /**
3455  * regmap_might_sleep() - Returns whether a regmap access might sleep.
3456  *
3457  * @map: Register map to operate on.
3458  *
3459  * Returns true if an access to the register might sleep, else false.
3460  */
3461 bool regmap_might_sleep(struct regmap *map)
3462 {
3463 	return map->can_sleep;
3464 }
3465 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3466 
3467 int regmap_parse_val(struct regmap *map, const void *buf,
3468 			unsigned int *val)
3469 {
3470 	if (!map->format.parse_val)
3471 		return -EINVAL;
3472 
3473 	*val = map->format.parse_val(buf);
3474 
3475 	return 0;
3476 }
3477 EXPORT_SYMBOL_GPL(regmap_parse_val);
3478 
3479 static int __init regmap_initcall(void)
3480 {
3481 	regmap_debugfs_initcall();
3482 
3483 	return 0;
3484 }
3485 postcore_initcall(regmap_initcall);
3486