xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 59f216cf04d973b4316761cbf3e7cb9556715b7a)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292 {
293 	u8 *b = buf;
294 
295 	val <<= shift;
296 
297 	b[0] = val >> 16;
298 	b[1] = val >> 8;
299 	b[2] = val;
300 }
301 
302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303 {
304 	put_unaligned_be32(val << shift, buf);
305 }
306 
307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308 {
309 	put_unaligned_le32(val << shift, buf);
310 }
311 
312 static void regmap_format_32_native(void *buf, unsigned int val,
313 				    unsigned int shift)
314 {
315 	u32 v = val << shift;
316 
317 	memcpy(buf, &v, sizeof(v));
318 }
319 
320 #ifdef CONFIG_64BIT
321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322 {
323 	put_unaligned_be64((u64) val << shift, buf);
324 }
325 
326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327 {
328 	put_unaligned_le64((u64) val << shift, buf);
329 }
330 
331 static void regmap_format_64_native(void *buf, unsigned int val,
332 				    unsigned int shift)
333 {
334 	u64 v = (u64) val << shift;
335 
336 	memcpy(buf, &v, sizeof(v));
337 }
338 #endif
339 
340 static void regmap_parse_inplace_noop(void *buf)
341 {
342 }
343 
344 static unsigned int regmap_parse_8(const void *buf)
345 {
346 	const u8 *b = buf;
347 
348 	return b[0];
349 }
350 
351 static unsigned int regmap_parse_16_be(const void *buf)
352 {
353 	return get_unaligned_be16(buf);
354 }
355 
356 static unsigned int regmap_parse_16_le(const void *buf)
357 {
358 	return get_unaligned_le16(buf);
359 }
360 
361 static void regmap_parse_16_be_inplace(void *buf)
362 {
363 	u16 v = get_unaligned_be16(buf);
364 
365 	memcpy(buf, &v, sizeof(v));
366 }
367 
368 static void regmap_parse_16_le_inplace(void *buf)
369 {
370 	u16 v = get_unaligned_le16(buf);
371 
372 	memcpy(buf, &v, sizeof(v));
373 }
374 
375 static unsigned int regmap_parse_16_native(const void *buf)
376 {
377 	u16 v;
378 
379 	memcpy(&v, buf, sizeof(v));
380 	return v;
381 }
382 
383 static unsigned int regmap_parse_24(const void *buf)
384 {
385 	const u8 *b = buf;
386 	unsigned int ret = b[2];
387 	ret |= ((unsigned int)b[1]) << 8;
388 	ret |= ((unsigned int)b[0]) << 16;
389 
390 	return ret;
391 }
392 
393 static unsigned int regmap_parse_32_be(const void *buf)
394 {
395 	return get_unaligned_be32(buf);
396 }
397 
398 static unsigned int regmap_parse_32_le(const void *buf)
399 {
400 	return get_unaligned_le32(buf);
401 }
402 
403 static void regmap_parse_32_be_inplace(void *buf)
404 {
405 	u32 v = get_unaligned_be32(buf);
406 
407 	memcpy(buf, &v, sizeof(v));
408 }
409 
410 static void regmap_parse_32_le_inplace(void *buf)
411 {
412 	u32 v = get_unaligned_le32(buf);
413 
414 	memcpy(buf, &v, sizeof(v));
415 }
416 
417 static unsigned int regmap_parse_32_native(const void *buf)
418 {
419 	u32 v;
420 
421 	memcpy(&v, buf, sizeof(v));
422 	return v;
423 }
424 
425 #ifdef CONFIG_64BIT
426 static unsigned int regmap_parse_64_be(const void *buf)
427 {
428 	return get_unaligned_be64(buf);
429 }
430 
431 static unsigned int regmap_parse_64_le(const void *buf)
432 {
433 	return get_unaligned_le64(buf);
434 }
435 
436 static void regmap_parse_64_be_inplace(void *buf)
437 {
438 	u64 v =  get_unaligned_be64(buf);
439 
440 	memcpy(buf, &v, sizeof(v));
441 }
442 
443 static void regmap_parse_64_le_inplace(void *buf)
444 {
445 	u64 v = get_unaligned_le64(buf);
446 
447 	memcpy(buf, &v, sizeof(v));
448 }
449 
450 static unsigned int regmap_parse_64_native(const void *buf)
451 {
452 	u64 v;
453 
454 	memcpy(&v, buf, sizeof(v));
455 	return v;
456 }
457 #endif
458 
459 static void regmap_lock_hwlock(void *__map)
460 {
461 	struct regmap *map = __map;
462 
463 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
464 }
465 
466 static void regmap_lock_hwlock_irq(void *__map)
467 {
468 	struct regmap *map = __map;
469 
470 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471 }
472 
473 static void regmap_lock_hwlock_irqsave(void *__map)
474 {
475 	struct regmap *map = __map;
476 
477 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 				    &map->spinlock_flags);
479 }
480 
481 static void regmap_unlock_hwlock(void *__map)
482 {
483 	struct regmap *map = __map;
484 
485 	hwspin_unlock(map->hwlock);
486 }
487 
488 static void regmap_unlock_hwlock_irq(void *__map)
489 {
490 	struct regmap *map = __map;
491 
492 	hwspin_unlock_irq(map->hwlock);
493 }
494 
495 static void regmap_unlock_hwlock_irqrestore(void *__map)
496 {
497 	struct regmap *map = __map;
498 
499 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500 }
501 
502 static void regmap_lock_unlock_none(void *__map)
503 {
504 
505 }
506 
507 static void regmap_lock_mutex(void *__map)
508 {
509 	struct regmap *map = __map;
510 	mutex_lock(&map->mutex);
511 }
512 
513 static void regmap_unlock_mutex(void *__map)
514 {
515 	struct regmap *map = __map;
516 	mutex_unlock(&map->mutex);
517 }
518 
519 static void regmap_lock_spinlock(void *__map)
520 __acquires(&map->spinlock)
521 {
522 	struct regmap *map = __map;
523 	unsigned long flags;
524 
525 	spin_lock_irqsave(&map->spinlock, flags);
526 	map->spinlock_flags = flags;
527 }
528 
529 static void regmap_unlock_spinlock(void *__map)
530 __releases(&map->spinlock)
531 {
532 	struct regmap *map = __map;
533 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534 }
535 
536 static void dev_get_regmap_release(struct device *dev, void *res)
537 {
538 	/*
539 	 * We don't actually have anything to do here; the goal here
540 	 * is not to manage the regmap but to provide a simple way to
541 	 * get the regmap back given a struct device.
542 	 */
543 }
544 
545 static bool _regmap_range_add(struct regmap *map,
546 			      struct regmap_range_node *data)
547 {
548 	struct rb_root *root = &map->range_tree;
549 	struct rb_node **new = &(root->rb_node), *parent = NULL;
550 
551 	while (*new) {
552 		struct regmap_range_node *this =
553 			rb_entry(*new, struct regmap_range_node, node);
554 
555 		parent = *new;
556 		if (data->range_max < this->range_min)
557 			new = &((*new)->rb_left);
558 		else if (data->range_min > this->range_max)
559 			new = &((*new)->rb_right);
560 		else
561 			return false;
562 	}
563 
564 	rb_link_node(&data->node, parent, new);
565 	rb_insert_color(&data->node, root);
566 
567 	return true;
568 }
569 
570 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
571 						      unsigned int reg)
572 {
573 	struct rb_node *node = map->range_tree.rb_node;
574 
575 	while (node) {
576 		struct regmap_range_node *this =
577 			rb_entry(node, struct regmap_range_node, node);
578 
579 		if (reg < this->range_min)
580 			node = node->rb_left;
581 		else if (reg > this->range_max)
582 			node = node->rb_right;
583 		else
584 			return this;
585 	}
586 
587 	return NULL;
588 }
589 
590 static void regmap_range_exit(struct regmap *map)
591 {
592 	struct rb_node *next;
593 	struct regmap_range_node *range_node;
594 
595 	next = rb_first(&map->range_tree);
596 	while (next) {
597 		range_node = rb_entry(next, struct regmap_range_node, node);
598 		next = rb_next(&range_node->node);
599 		rb_erase(&range_node->node, &map->range_tree);
600 		kfree(range_node);
601 	}
602 
603 	kfree(map->selector_work_buf);
604 }
605 
606 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
607 {
608 	if (config->name) {
609 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
610 
611 		if (!name)
612 			return -ENOMEM;
613 
614 		kfree_const(map->name);
615 		map->name = name;
616 	}
617 
618 	return 0;
619 }
620 
621 int regmap_attach_dev(struct device *dev, struct regmap *map,
622 		      const struct regmap_config *config)
623 {
624 	struct regmap **m;
625 	int ret;
626 
627 	map->dev = dev;
628 
629 	ret = regmap_set_name(map, config);
630 	if (ret)
631 		return ret;
632 
633 	regmap_debugfs_init(map);
634 
635 	/* Add a devres resource for dev_get_regmap() */
636 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
637 	if (!m) {
638 		regmap_debugfs_exit(map);
639 		return -ENOMEM;
640 	}
641 	*m = map;
642 	devres_add(dev, m);
643 
644 	return 0;
645 }
646 EXPORT_SYMBOL_GPL(regmap_attach_dev);
647 
648 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
649 					const struct regmap_config *config)
650 {
651 	enum regmap_endian endian;
652 
653 	/* Retrieve the endianness specification from the regmap config */
654 	endian = config->reg_format_endian;
655 
656 	/* If the regmap config specified a non-default value, use that */
657 	if (endian != REGMAP_ENDIAN_DEFAULT)
658 		return endian;
659 
660 	/* Retrieve the endianness specification from the bus config */
661 	if (bus && bus->reg_format_endian_default)
662 		endian = bus->reg_format_endian_default;
663 
664 	/* If the bus specified a non-default value, use that */
665 	if (endian != REGMAP_ENDIAN_DEFAULT)
666 		return endian;
667 
668 	/* Use this if no other value was found */
669 	return REGMAP_ENDIAN_BIG;
670 }
671 
672 enum regmap_endian regmap_get_val_endian(struct device *dev,
673 					 const struct regmap_bus *bus,
674 					 const struct regmap_config *config)
675 {
676 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
677 	enum regmap_endian endian;
678 
679 	/* Retrieve the endianness specification from the regmap config */
680 	endian = config->val_format_endian;
681 
682 	/* If the regmap config specified a non-default value, use that */
683 	if (endian != REGMAP_ENDIAN_DEFAULT)
684 		return endian;
685 
686 	/* If the firmware node exist try to get endianness from it */
687 	if (fwnode_property_read_bool(fwnode, "big-endian"))
688 		endian = REGMAP_ENDIAN_BIG;
689 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
690 		endian = REGMAP_ENDIAN_LITTLE;
691 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
692 		endian = REGMAP_ENDIAN_NATIVE;
693 
694 	/* If the endianness was specified in fwnode, use that */
695 	if (endian != REGMAP_ENDIAN_DEFAULT)
696 		return endian;
697 
698 	/* Retrieve the endianness specification from the bus config */
699 	if (bus && bus->val_format_endian_default)
700 		endian = bus->val_format_endian_default;
701 
702 	/* If the bus specified a non-default value, use that */
703 	if (endian != REGMAP_ENDIAN_DEFAULT)
704 		return endian;
705 
706 	/* Use this if no other value was found */
707 	return REGMAP_ENDIAN_BIG;
708 }
709 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
710 
711 struct regmap *__regmap_init(struct device *dev,
712 			     const struct regmap_bus *bus,
713 			     void *bus_context,
714 			     const struct regmap_config *config,
715 			     struct lock_class_key *lock_key,
716 			     const char *lock_name)
717 {
718 	struct regmap *map;
719 	int ret = -EINVAL;
720 	enum regmap_endian reg_endian, val_endian;
721 	int i, j;
722 
723 	if (!config)
724 		goto err;
725 
726 	map = kzalloc(sizeof(*map), GFP_KERNEL);
727 	if (map == NULL) {
728 		ret = -ENOMEM;
729 		goto err;
730 	}
731 
732 	ret = regmap_set_name(map, config);
733 	if (ret)
734 		goto err_map;
735 
736 	ret = -EINVAL; /* Later error paths rely on this */
737 
738 	if (config->disable_locking) {
739 		map->lock = map->unlock = regmap_lock_unlock_none;
740 		map->can_sleep = config->can_sleep;
741 		regmap_debugfs_disable(map);
742 	} else if (config->lock && config->unlock) {
743 		map->lock = config->lock;
744 		map->unlock = config->unlock;
745 		map->lock_arg = config->lock_arg;
746 		map->can_sleep = config->can_sleep;
747 	} else if (config->use_hwlock) {
748 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
749 		if (!map->hwlock) {
750 			ret = -ENXIO;
751 			goto err_name;
752 		}
753 
754 		switch (config->hwlock_mode) {
755 		case HWLOCK_IRQSTATE:
756 			map->lock = regmap_lock_hwlock_irqsave;
757 			map->unlock = regmap_unlock_hwlock_irqrestore;
758 			break;
759 		case HWLOCK_IRQ:
760 			map->lock = regmap_lock_hwlock_irq;
761 			map->unlock = regmap_unlock_hwlock_irq;
762 			break;
763 		default:
764 			map->lock = regmap_lock_hwlock;
765 			map->unlock = regmap_unlock_hwlock;
766 			break;
767 		}
768 
769 		map->lock_arg = map;
770 	} else {
771 		if ((bus && bus->fast_io) ||
772 		    config->fast_io) {
773 			spin_lock_init(&map->spinlock);
774 			map->lock = regmap_lock_spinlock;
775 			map->unlock = regmap_unlock_spinlock;
776 			lockdep_set_class_and_name(&map->spinlock,
777 						   lock_key, lock_name);
778 		} else {
779 			mutex_init(&map->mutex);
780 			map->lock = regmap_lock_mutex;
781 			map->unlock = regmap_unlock_mutex;
782 			map->can_sleep = true;
783 			lockdep_set_class_and_name(&map->mutex,
784 						   lock_key, lock_name);
785 		}
786 		map->lock_arg = map;
787 	}
788 
789 	/*
790 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
791 	 * scratch buffers with sleeping allocations.
792 	 */
793 	if ((bus && bus->fast_io) || config->fast_io)
794 		map->alloc_flags = GFP_ATOMIC;
795 	else
796 		map->alloc_flags = GFP_KERNEL;
797 
798 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
799 	map->format.pad_bytes = config->pad_bits / 8;
800 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
801 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
802 			config->val_bits + config->pad_bits, 8);
803 	map->reg_shift = config->pad_bits % 8;
804 	if (config->reg_stride)
805 		map->reg_stride = config->reg_stride;
806 	else
807 		map->reg_stride = 1;
808 	if (is_power_of_2(map->reg_stride))
809 		map->reg_stride_order = ilog2(map->reg_stride);
810 	else
811 		map->reg_stride_order = -1;
812 	map->use_single_read = config->use_single_read || !bus || !bus->read;
813 	map->use_single_write = config->use_single_write || !bus || !bus->write;
814 	map->can_multi_write = config->can_multi_write && bus && bus->write;
815 	if (bus) {
816 		map->max_raw_read = bus->max_raw_read;
817 		map->max_raw_write = bus->max_raw_write;
818 	}
819 	map->dev = dev;
820 	map->bus = bus;
821 	map->bus_context = bus_context;
822 	map->max_register = config->max_register;
823 	map->wr_table = config->wr_table;
824 	map->rd_table = config->rd_table;
825 	map->volatile_table = config->volatile_table;
826 	map->precious_table = config->precious_table;
827 	map->wr_noinc_table = config->wr_noinc_table;
828 	map->rd_noinc_table = config->rd_noinc_table;
829 	map->writeable_reg = config->writeable_reg;
830 	map->readable_reg = config->readable_reg;
831 	map->volatile_reg = config->volatile_reg;
832 	map->precious_reg = config->precious_reg;
833 	map->writeable_noinc_reg = config->writeable_noinc_reg;
834 	map->readable_noinc_reg = config->readable_noinc_reg;
835 	map->cache_type = config->cache_type;
836 
837 	spin_lock_init(&map->async_lock);
838 	INIT_LIST_HEAD(&map->async_list);
839 	INIT_LIST_HEAD(&map->async_free);
840 	init_waitqueue_head(&map->async_waitq);
841 
842 	if (config->read_flag_mask ||
843 	    config->write_flag_mask ||
844 	    config->zero_flag_mask) {
845 		map->read_flag_mask = config->read_flag_mask;
846 		map->write_flag_mask = config->write_flag_mask;
847 	} else if (bus) {
848 		map->read_flag_mask = bus->read_flag_mask;
849 	}
850 
851 	if (!bus) {
852 		map->reg_read  = config->reg_read;
853 		map->reg_write = config->reg_write;
854 
855 		map->defer_caching = false;
856 		goto skip_format_initialization;
857 	} else if (!bus->read || !bus->write) {
858 		map->reg_read = _regmap_bus_reg_read;
859 		map->reg_write = _regmap_bus_reg_write;
860 		map->reg_update_bits = bus->reg_update_bits;
861 
862 		map->defer_caching = false;
863 		goto skip_format_initialization;
864 	} else {
865 		map->reg_read  = _regmap_bus_read;
866 		map->reg_update_bits = bus->reg_update_bits;
867 	}
868 
869 	reg_endian = regmap_get_reg_endian(bus, config);
870 	val_endian = regmap_get_val_endian(dev, bus, config);
871 
872 	switch (config->reg_bits + map->reg_shift) {
873 	case 2:
874 		switch (config->val_bits) {
875 		case 6:
876 			map->format.format_write = regmap_format_2_6_write;
877 			break;
878 		default:
879 			goto err_hwlock;
880 		}
881 		break;
882 
883 	case 4:
884 		switch (config->val_bits) {
885 		case 12:
886 			map->format.format_write = regmap_format_4_12_write;
887 			break;
888 		default:
889 			goto err_hwlock;
890 		}
891 		break;
892 
893 	case 7:
894 		switch (config->val_bits) {
895 		case 9:
896 			map->format.format_write = regmap_format_7_9_write;
897 			break;
898 		case 17:
899 			map->format.format_write = regmap_format_7_17_write;
900 			break;
901 		default:
902 			goto err_hwlock;
903 		}
904 		break;
905 
906 	case 10:
907 		switch (config->val_bits) {
908 		case 14:
909 			map->format.format_write = regmap_format_10_14_write;
910 			break;
911 		default:
912 			goto err_hwlock;
913 		}
914 		break;
915 
916 	case 12:
917 		switch (config->val_bits) {
918 		case 20:
919 			map->format.format_write = regmap_format_12_20_write;
920 			break;
921 		default:
922 			goto err_hwlock;
923 		}
924 		break;
925 
926 	case 8:
927 		map->format.format_reg = regmap_format_8;
928 		break;
929 
930 	case 16:
931 		switch (reg_endian) {
932 		case REGMAP_ENDIAN_BIG:
933 			map->format.format_reg = regmap_format_16_be;
934 			break;
935 		case REGMAP_ENDIAN_LITTLE:
936 			map->format.format_reg = regmap_format_16_le;
937 			break;
938 		case REGMAP_ENDIAN_NATIVE:
939 			map->format.format_reg = regmap_format_16_native;
940 			break;
941 		default:
942 			goto err_hwlock;
943 		}
944 		break;
945 
946 	case 24:
947 		if (reg_endian != REGMAP_ENDIAN_BIG)
948 			goto err_hwlock;
949 		map->format.format_reg = regmap_format_24;
950 		break;
951 
952 	case 32:
953 		switch (reg_endian) {
954 		case REGMAP_ENDIAN_BIG:
955 			map->format.format_reg = regmap_format_32_be;
956 			break;
957 		case REGMAP_ENDIAN_LITTLE:
958 			map->format.format_reg = regmap_format_32_le;
959 			break;
960 		case REGMAP_ENDIAN_NATIVE:
961 			map->format.format_reg = regmap_format_32_native;
962 			break;
963 		default:
964 			goto err_hwlock;
965 		}
966 		break;
967 
968 #ifdef CONFIG_64BIT
969 	case 64:
970 		switch (reg_endian) {
971 		case REGMAP_ENDIAN_BIG:
972 			map->format.format_reg = regmap_format_64_be;
973 			break;
974 		case REGMAP_ENDIAN_LITTLE:
975 			map->format.format_reg = regmap_format_64_le;
976 			break;
977 		case REGMAP_ENDIAN_NATIVE:
978 			map->format.format_reg = regmap_format_64_native;
979 			break;
980 		default:
981 			goto err_hwlock;
982 		}
983 		break;
984 #endif
985 
986 	default:
987 		goto err_hwlock;
988 	}
989 
990 	if (val_endian == REGMAP_ENDIAN_NATIVE)
991 		map->format.parse_inplace = regmap_parse_inplace_noop;
992 
993 	switch (config->val_bits) {
994 	case 8:
995 		map->format.format_val = regmap_format_8;
996 		map->format.parse_val = regmap_parse_8;
997 		map->format.parse_inplace = regmap_parse_inplace_noop;
998 		break;
999 	case 16:
1000 		switch (val_endian) {
1001 		case REGMAP_ENDIAN_BIG:
1002 			map->format.format_val = regmap_format_16_be;
1003 			map->format.parse_val = regmap_parse_16_be;
1004 			map->format.parse_inplace = regmap_parse_16_be_inplace;
1005 			break;
1006 		case REGMAP_ENDIAN_LITTLE:
1007 			map->format.format_val = regmap_format_16_le;
1008 			map->format.parse_val = regmap_parse_16_le;
1009 			map->format.parse_inplace = regmap_parse_16_le_inplace;
1010 			break;
1011 		case REGMAP_ENDIAN_NATIVE:
1012 			map->format.format_val = regmap_format_16_native;
1013 			map->format.parse_val = regmap_parse_16_native;
1014 			break;
1015 		default:
1016 			goto err_hwlock;
1017 		}
1018 		break;
1019 	case 24:
1020 		if (val_endian != REGMAP_ENDIAN_BIG)
1021 			goto err_hwlock;
1022 		map->format.format_val = regmap_format_24;
1023 		map->format.parse_val = regmap_parse_24;
1024 		break;
1025 	case 32:
1026 		switch (val_endian) {
1027 		case REGMAP_ENDIAN_BIG:
1028 			map->format.format_val = regmap_format_32_be;
1029 			map->format.parse_val = regmap_parse_32_be;
1030 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1031 			break;
1032 		case REGMAP_ENDIAN_LITTLE:
1033 			map->format.format_val = regmap_format_32_le;
1034 			map->format.parse_val = regmap_parse_32_le;
1035 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1036 			break;
1037 		case REGMAP_ENDIAN_NATIVE:
1038 			map->format.format_val = regmap_format_32_native;
1039 			map->format.parse_val = regmap_parse_32_native;
1040 			break;
1041 		default:
1042 			goto err_hwlock;
1043 		}
1044 		break;
1045 #ifdef CONFIG_64BIT
1046 	case 64:
1047 		switch (val_endian) {
1048 		case REGMAP_ENDIAN_BIG:
1049 			map->format.format_val = regmap_format_64_be;
1050 			map->format.parse_val = regmap_parse_64_be;
1051 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1052 			break;
1053 		case REGMAP_ENDIAN_LITTLE:
1054 			map->format.format_val = regmap_format_64_le;
1055 			map->format.parse_val = regmap_parse_64_le;
1056 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1057 			break;
1058 		case REGMAP_ENDIAN_NATIVE:
1059 			map->format.format_val = regmap_format_64_native;
1060 			map->format.parse_val = regmap_parse_64_native;
1061 			break;
1062 		default:
1063 			goto err_hwlock;
1064 		}
1065 		break;
1066 #endif
1067 	}
1068 
1069 	if (map->format.format_write) {
1070 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1071 		    (val_endian != REGMAP_ENDIAN_BIG))
1072 			goto err_hwlock;
1073 		map->use_single_write = true;
1074 	}
1075 
1076 	if (!map->format.format_write &&
1077 	    !(map->format.format_reg && map->format.format_val))
1078 		goto err_hwlock;
1079 
1080 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1081 	if (map->work_buf == NULL) {
1082 		ret = -ENOMEM;
1083 		goto err_hwlock;
1084 	}
1085 
1086 	if (map->format.format_write) {
1087 		map->defer_caching = false;
1088 		map->reg_write = _regmap_bus_formatted_write;
1089 	} else if (map->format.format_val) {
1090 		map->defer_caching = true;
1091 		map->reg_write = _regmap_bus_raw_write;
1092 	}
1093 
1094 skip_format_initialization:
1095 
1096 	map->range_tree = RB_ROOT;
1097 	for (i = 0; i < config->num_ranges; i++) {
1098 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1099 		struct regmap_range_node *new;
1100 
1101 		/* Sanity check */
1102 		if (range_cfg->range_max < range_cfg->range_min) {
1103 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1104 				range_cfg->range_max, range_cfg->range_min);
1105 			goto err_range;
1106 		}
1107 
1108 		if (range_cfg->range_max > map->max_register) {
1109 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1110 				range_cfg->range_max, map->max_register);
1111 			goto err_range;
1112 		}
1113 
1114 		if (range_cfg->selector_reg > map->max_register) {
1115 			dev_err(map->dev,
1116 				"Invalid range %d: selector out of map\n", i);
1117 			goto err_range;
1118 		}
1119 
1120 		if (range_cfg->window_len == 0) {
1121 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1122 				i);
1123 			goto err_range;
1124 		}
1125 
1126 		/* Make sure, that this register range has no selector
1127 		   or data window within its boundary */
1128 		for (j = 0; j < config->num_ranges; j++) {
1129 			unsigned sel_reg = config->ranges[j].selector_reg;
1130 			unsigned win_min = config->ranges[j].window_start;
1131 			unsigned win_max = win_min +
1132 					   config->ranges[j].window_len - 1;
1133 
1134 			/* Allow data window inside its own virtual range */
1135 			if (j == i)
1136 				continue;
1137 
1138 			if (range_cfg->range_min <= sel_reg &&
1139 			    sel_reg <= range_cfg->range_max) {
1140 				dev_err(map->dev,
1141 					"Range %d: selector for %d in window\n",
1142 					i, j);
1143 				goto err_range;
1144 			}
1145 
1146 			if (!(win_max < range_cfg->range_min ||
1147 			      win_min > range_cfg->range_max)) {
1148 				dev_err(map->dev,
1149 					"Range %d: window for %d in window\n",
1150 					i, j);
1151 				goto err_range;
1152 			}
1153 		}
1154 
1155 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1156 		if (new == NULL) {
1157 			ret = -ENOMEM;
1158 			goto err_range;
1159 		}
1160 
1161 		new->map = map;
1162 		new->name = range_cfg->name;
1163 		new->range_min = range_cfg->range_min;
1164 		new->range_max = range_cfg->range_max;
1165 		new->selector_reg = range_cfg->selector_reg;
1166 		new->selector_mask = range_cfg->selector_mask;
1167 		new->selector_shift = range_cfg->selector_shift;
1168 		new->window_start = range_cfg->window_start;
1169 		new->window_len = range_cfg->window_len;
1170 
1171 		if (!_regmap_range_add(map, new)) {
1172 			dev_err(map->dev, "Failed to add range %d\n", i);
1173 			kfree(new);
1174 			goto err_range;
1175 		}
1176 
1177 		if (map->selector_work_buf == NULL) {
1178 			map->selector_work_buf =
1179 				kzalloc(map->format.buf_size, GFP_KERNEL);
1180 			if (map->selector_work_buf == NULL) {
1181 				ret = -ENOMEM;
1182 				goto err_range;
1183 			}
1184 		}
1185 	}
1186 
1187 	ret = regcache_init(map, config);
1188 	if (ret != 0)
1189 		goto err_range;
1190 
1191 	if (dev) {
1192 		ret = regmap_attach_dev(dev, map, config);
1193 		if (ret != 0)
1194 			goto err_regcache;
1195 	} else {
1196 		regmap_debugfs_init(map);
1197 	}
1198 
1199 	return map;
1200 
1201 err_regcache:
1202 	regcache_exit(map);
1203 err_range:
1204 	regmap_range_exit(map);
1205 	kfree(map->work_buf);
1206 err_hwlock:
1207 	if (map->hwlock)
1208 		hwspin_lock_free(map->hwlock);
1209 err_name:
1210 	kfree_const(map->name);
1211 err_map:
1212 	kfree(map);
1213 err:
1214 	return ERR_PTR(ret);
1215 }
1216 EXPORT_SYMBOL_GPL(__regmap_init);
1217 
1218 static void devm_regmap_release(struct device *dev, void *res)
1219 {
1220 	regmap_exit(*(struct regmap **)res);
1221 }
1222 
1223 struct regmap *__devm_regmap_init(struct device *dev,
1224 				  const struct regmap_bus *bus,
1225 				  void *bus_context,
1226 				  const struct regmap_config *config,
1227 				  struct lock_class_key *lock_key,
1228 				  const char *lock_name)
1229 {
1230 	struct regmap **ptr, *regmap;
1231 
1232 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1233 	if (!ptr)
1234 		return ERR_PTR(-ENOMEM);
1235 
1236 	regmap = __regmap_init(dev, bus, bus_context, config,
1237 			       lock_key, lock_name);
1238 	if (!IS_ERR(regmap)) {
1239 		*ptr = regmap;
1240 		devres_add(dev, ptr);
1241 	} else {
1242 		devres_free(ptr);
1243 	}
1244 
1245 	return regmap;
1246 }
1247 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1248 
1249 static void regmap_field_init(struct regmap_field *rm_field,
1250 	struct regmap *regmap, struct reg_field reg_field)
1251 {
1252 	rm_field->regmap = regmap;
1253 	rm_field->reg = reg_field.reg;
1254 	rm_field->shift = reg_field.lsb;
1255 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1256 	rm_field->id_size = reg_field.id_size;
1257 	rm_field->id_offset = reg_field.id_offset;
1258 }
1259 
1260 /**
1261  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1262  *
1263  * @dev: Device that will be interacted with
1264  * @regmap: regmap bank in which this register field is located.
1265  * @reg_field: Register field with in the bank.
1266  *
1267  * The return value will be an ERR_PTR() on error or a valid pointer
1268  * to a struct regmap_field. The regmap_field will be automatically freed
1269  * by the device management code.
1270  */
1271 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1272 		struct regmap *regmap, struct reg_field reg_field)
1273 {
1274 	struct regmap_field *rm_field = devm_kzalloc(dev,
1275 					sizeof(*rm_field), GFP_KERNEL);
1276 	if (!rm_field)
1277 		return ERR_PTR(-ENOMEM);
1278 
1279 	regmap_field_init(rm_field, regmap, reg_field);
1280 
1281 	return rm_field;
1282 
1283 }
1284 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1285 
1286 
1287 /**
1288  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1289  *
1290  * @regmap: regmap bank in which this register field is located.
1291  * @rm_field: regmap register fields within the bank.
1292  * @reg_field: Register fields within the bank.
1293  * @num_fields: Number of register fields.
1294  *
1295  * The return value will be an -ENOMEM on error or zero for success.
1296  * Newly allocated regmap_fields should be freed by calling
1297  * regmap_field_bulk_free()
1298  */
1299 int regmap_field_bulk_alloc(struct regmap *regmap,
1300 			    struct regmap_field **rm_field,
1301 			    struct reg_field *reg_field,
1302 			    int num_fields)
1303 {
1304 	struct regmap_field *rf;
1305 	int i;
1306 
1307 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1308 	if (!rf)
1309 		return -ENOMEM;
1310 
1311 	for (i = 0; i < num_fields; i++) {
1312 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1313 		rm_field[i] = &rf[i];
1314 	}
1315 
1316 	return 0;
1317 }
1318 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1319 
1320 /**
1321  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1322  * fields.
1323  *
1324  * @dev: Device that will be interacted with
1325  * @regmap: regmap bank in which this register field is located.
1326  * @rm_field: regmap register fields within the bank.
1327  * @reg_field: Register fields within the bank.
1328  * @num_fields: Number of register fields.
1329  *
1330  * The return value will be an -ENOMEM on error or zero for success.
1331  * Newly allocated regmap_fields will be automatically freed by the
1332  * device management code.
1333  */
1334 int devm_regmap_field_bulk_alloc(struct device *dev,
1335 				 struct regmap *regmap,
1336 				 struct regmap_field **rm_field,
1337 				 struct reg_field *reg_field,
1338 				 int num_fields)
1339 {
1340 	struct regmap_field *rf;
1341 	int i;
1342 
1343 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1344 	if (!rf)
1345 		return -ENOMEM;
1346 
1347 	for (i = 0; i < num_fields; i++) {
1348 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1349 		rm_field[i] = &rf[i];
1350 	}
1351 
1352 	return 0;
1353 }
1354 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1355 
1356 /**
1357  * regmap_field_bulk_free() - Free register field allocated using
1358  *                       regmap_field_bulk_alloc.
1359  *
1360  * @field: regmap fields which should be freed.
1361  */
1362 void regmap_field_bulk_free(struct regmap_field *field)
1363 {
1364 	kfree(field);
1365 }
1366 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1367 
1368 /**
1369  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1370  *                            devm_regmap_field_bulk_alloc.
1371  *
1372  * @dev: Device that will be interacted with
1373  * @field: regmap field which should be freed.
1374  *
1375  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1376  * drivers need not call this function, as the memory allocated via devm
1377  * will be freed as per device-driver life-cycle.
1378  */
1379 void devm_regmap_field_bulk_free(struct device *dev,
1380 				 struct regmap_field *field)
1381 {
1382 	devm_kfree(dev, field);
1383 }
1384 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1385 
1386 /**
1387  * devm_regmap_field_free() - Free a register field allocated using
1388  *                            devm_regmap_field_alloc.
1389  *
1390  * @dev: Device that will be interacted with
1391  * @field: regmap field which should be freed.
1392  *
1393  * Free register field allocated using devm_regmap_field_alloc(). Usually
1394  * drivers need not call this function, as the memory allocated via devm
1395  * will be freed as per device-driver life-cyle.
1396  */
1397 void devm_regmap_field_free(struct device *dev,
1398 	struct regmap_field *field)
1399 {
1400 	devm_kfree(dev, field);
1401 }
1402 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1403 
1404 /**
1405  * regmap_field_alloc() - Allocate and initialise a register field.
1406  *
1407  * @regmap: regmap bank in which this register field is located.
1408  * @reg_field: Register field with in the bank.
1409  *
1410  * The return value will be an ERR_PTR() on error or a valid pointer
1411  * to a struct regmap_field. The regmap_field should be freed by the
1412  * user once its finished working with it using regmap_field_free().
1413  */
1414 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1415 		struct reg_field reg_field)
1416 {
1417 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1418 
1419 	if (!rm_field)
1420 		return ERR_PTR(-ENOMEM);
1421 
1422 	regmap_field_init(rm_field, regmap, reg_field);
1423 
1424 	return rm_field;
1425 }
1426 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1427 
1428 /**
1429  * regmap_field_free() - Free register field allocated using
1430  *                       regmap_field_alloc.
1431  *
1432  * @field: regmap field which should be freed.
1433  */
1434 void regmap_field_free(struct regmap_field *field)
1435 {
1436 	kfree(field);
1437 }
1438 EXPORT_SYMBOL_GPL(regmap_field_free);
1439 
1440 /**
1441  * regmap_reinit_cache() - Reinitialise the current register cache
1442  *
1443  * @map: Register map to operate on.
1444  * @config: New configuration.  Only the cache data will be used.
1445  *
1446  * Discard any existing register cache for the map and initialize a
1447  * new cache.  This can be used to restore the cache to defaults or to
1448  * update the cache configuration to reflect runtime discovery of the
1449  * hardware.
1450  *
1451  * No explicit locking is done here, the user needs to ensure that
1452  * this function will not race with other calls to regmap.
1453  */
1454 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1455 {
1456 	int ret;
1457 
1458 	regcache_exit(map);
1459 	regmap_debugfs_exit(map);
1460 
1461 	map->max_register = config->max_register;
1462 	map->writeable_reg = config->writeable_reg;
1463 	map->readable_reg = config->readable_reg;
1464 	map->volatile_reg = config->volatile_reg;
1465 	map->precious_reg = config->precious_reg;
1466 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1467 	map->readable_noinc_reg = config->readable_noinc_reg;
1468 	map->cache_type = config->cache_type;
1469 
1470 	ret = regmap_set_name(map, config);
1471 	if (ret)
1472 		return ret;
1473 
1474 	regmap_debugfs_init(map);
1475 
1476 	map->cache_bypass = false;
1477 	map->cache_only = false;
1478 
1479 	return regcache_init(map, config);
1480 }
1481 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1482 
1483 /**
1484  * regmap_exit() - Free a previously allocated register map
1485  *
1486  * @map: Register map to operate on.
1487  */
1488 void regmap_exit(struct regmap *map)
1489 {
1490 	struct regmap_async *async;
1491 
1492 	regcache_exit(map);
1493 	regmap_debugfs_exit(map);
1494 	regmap_range_exit(map);
1495 	if (map->bus && map->bus->free_context)
1496 		map->bus->free_context(map->bus_context);
1497 	kfree(map->work_buf);
1498 	while (!list_empty(&map->async_free)) {
1499 		async = list_first_entry_or_null(&map->async_free,
1500 						 struct regmap_async,
1501 						 list);
1502 		list_del(&async->list);
1503 		kfree(async->work_buf);
1504 		kfree(async);
1505 	}
1506 	if (map->hwlock)
1507 		hwspin_lock_free(map->hwlock);
1508 	if (map->lock == regmap_lock_mutex)
1509 		mutex_destroy(&map->mutex);
1510 	kfree_const(map->name);
1511 	kfree(map->patch);
1512 	if (map->bus && map->bus->free_on_exit)
1513 		kfree(map->bus);
1514 	kfree(map);
1515 }
1516 EXPORT_SYMBOL_GPL(regmap_exit);
1517 
1518 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1519 {
1520 	struct regmap **r = res;
1521 	if (!r || !*r) {
1522 		WARN_ON(!r || !*r);
1523 		return 0;
1524 	}
1525 
1526 	/* If the user didn't specify a name match any */
1527 	if (data)
1528 		return !strcmp((*r)->name, data);
1529 	else
1530 		return 1;
1531 }
1532 
1533 /**
1534  * dev_get_regmap() - Obtain the regmap (if any) for a device
1535  *
1536  * @dev: Device to retrieve the map for
1537  * @name: Optional name for the register map, usually NULL.
1538  *
1539  * Returns the regmap for the device if one is present, or NULL.  If
1540  * name is specified then it must match the name specified when
1541  * registering the device, if it is NULL then the first regmap found
1542  * will be used.  Devices with multiple register maps are very rare,
1543  * generic code should normally not need to specify a name.
1544  */
1545 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1546 {
1547 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1548 					dev_get_regmap_match, (void *)name);
1549 
1550 	if (!r)
1551 		return NULL;
1552 	return *r;
1553 }
1554 EXPORT_SYMBOL_GPL(dev_get_regmap);
1555 
1556 /**
1557  * regmap_get_device() - Obtain the device from a regmap
1558  *
1559  * @map: Register map to operate on.
1560  *
1561  * Returns the underlying device that the regmap has been created for.
1562  */
1563 struct device *regmap_get_device(struct regmap *map)
1564 {
1565 	return map->dev;
1566 }
1567 EXPORT_SYMBOL_GPL(regmap_get_device);
1568 
1569 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1570 			       struct regmap_range_node *range,
1571 			       unsigned int val_num)
1572 {
1573 	void *orig_work_buf;
1574 	unsigned int win_offset;
1575 	unsigned int win_page;
1576 	bool page_chg;
1577 	int ret;
1578 
1579 	win_offset = (*reg - range->range_min) % range->window_len;
1580 	win_page = (*reg - range->range_min) / range->window_len;
1581 
1582 	if (val_num > 1) {
1583 		/* Bulk write shouldn't cross range boundary */
1584 		if (*reg + val_num - 1 > range->range_max)
1585 			return -EINVAL;
1586 
1587 		/* ... or single page boundary */
1588 		if (val_num > range->window_len - win_offset)
1589 			return -EINVAL;
1590 	}
1591 
1592 	/* It is possible to have selector register inside data window.
1593 	   In that case, selector register is located on every page and
1594 	   it needs no page switching, when accessed alone. */
1595 	if (val_num > 1 ||
1596 	    range->window_start + win_offset != range->selector_reg) {
1597 		/* Use separate work_buf during page switching */
1598 		orig_work_buf = map->work_buf;
1599 		map->work_buf = map->selector_work_buf;
1600 
1601 		ret = _regmap_update_bits(map, range->selector_reg,
1602 					  range->selector_mask,
1603 					  win_page << range->selector_shift,
1604 					  &page_chg, false);
1605 
1606 		map->work_buf = orig_work_buf;
1607 
1608 		if (ret != 0)
1609 			return ret;
1610 	}
1611 
1612 	*reg = range->window_start + win_offset;
1613 
1614 	return 0;
1615 }
1616 
1617 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1618 					  unsigned long mask)
1619 {
1620 	u8 *buf;
1621 	int i;
1622 
1623 	if (!mask || !map->work_buf)
1624 		return;
1625 
1626 	buf = map->work_buf;
1627 
1628 	for (i = 0; i < max_bytes; i++)
1629 		buf[i] |= (mask >> (8 * i)) & 0xff;
1630 }
1631 
1632 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1633 				  const void *val, size_t val_len, bool noinc)
1634 {
1635 	struct regmap_range_node *range;
1636 	unsigned long flags;
1637 	void *work_val = map->work_buf + map->format.reg_bytes +
1638 		map->format.pad_bytes;
1639 	void *buf;
1640 	int ret = -ENOTSUPP;
1641 	size_t len;
1642 	int i;
1643 
1644 	WARN_ON(!map->bus);
1645 
1646 	/* Check for unwritable or noinc registers in range
1647 	 * before we start
1648 	 */
1649 	if (!regmap_writeable_noinc(map, reg)) {
1650 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1651 			unsigned int element =
1652 				reg + regmap_get_offset(map, i);
1653 			if (!regmap_writeable(map, element) ||
1654 				regmap_writeable_noinc(map, element))
1655 				return -EINVAL;
1656 		}
1657 	}
1658 
1659 	if (!map->cache_bypass && map->format.parse_val) {
1660 		unsigned int ival;
1661 		int val_bytes = map->format.val_bytes;
1662 		for (i = 0; i < val_len / val_bytes; i++) {
1663 			ival = map->format.parse_val(val + (i * val_bytes));
1664 			ret = regcache_write(map,
1665 					     reg + regmap_get_offset(map, i),
1666 					     ival);
1667 			if (ret) {
1668 				dev_err(map->dev,
1669 					"Error in caching of register: %x ret: %d\n",
1670 					reg + i, ret);
1671 				return ret;
1672 			}
1673 		}
1674 		if (map->cache_only) {
1675 			map->cache_dirty = true;
1676 			return 0;
1677 		}
1678 	}
1679 
1680 	range = _regmap_range_lookup(map, reg);
1681 	if (range) {
1682 		int val_num = val_len / map->format.val_bytes;
1683 		int win_offset = (reg - range->range_min) % range->window_len;
1684 		int win_residue = range->window_len - win_offset;
1685 
1686 		/* If the write goes beyond the end of the window split it */
1687 		while (val_num > win_residue) {
1688 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1689 				win_residue, val_len / map->format.val_bytes);
1690 			ret = _regmap_raw_write_impl(map, reg, val,
1691 						     win_residue *
1692 						     map->format.val_bytes, noinc);
1693 			if (ret != 0)
1694 				return ret;
1695 
1696 			reg += win_residue;
1697 			val_num -= win_residue;
1698 			val += win_residue * map->format.val_bytes;
1699 			val_len -= win_residue * map->format.val_bytes;
1700 
1701 			win_offset = (reg - range->range_min) %
1702 				range->window_len;
1703 			win_residue = range->window_len - win_offset;
1704 		}
1705 
1706 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1707 		if (ret != 0)
1708 			return ret;
1709 	}
1710 
1711 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1712 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1713 				      map->write_flag_mask);
1714 
1715 	/*
1716 	 * Essentially all I/O mechanisms will be faster with a single
1717 	 * buffer to write.  Since register syncs often generate raw
1718 	 * writes of single registers optimise that case.
1719 	 */
1720 	if (val != work_val && val_len == map->format.val_bytes) {
1721 		memcpy(work_val, val, map->format.val_bytes);
1722 		val = work_val;
1723 	}
1724 
1725 	if (map->async && map->bus->async_write) {
1726 		struct regmap_async *async;
1727 
1728 		trace_regmap_async_write_start(map, reg, val_len);
1729 
1730 		spin_lock_irqsave(&map->async_lock, flags);
1731 		async = list_first_entry_or_null(&map->async_free,
1732 						 struct regmap_async,
1733 						 list);
1734 		if (async)
1735 			list_del(&async->list);
1736 		spin_unlock_irqrestore(&map->async_lock, flags);
1737 
1738 		if (!async) {
1739 			async = map->bus->async_alloc();
1740 			if (!async)
1741 				return -ENOMEM;
1742 
1743 			async->work_buf = kzalloc(map->format.buf_size,
1744 						  GFP_KERNEL | GFP_DMA);
1745 			if (!async->work_buf) {
1746 				kfree(async);
1747 				return -ENOMEM;
1748 			}
1749 		}
1750 
1751 		async->map = map;
1752 
1753 		/* If the caller supplied the value we can use it safely. */
1754 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1755 		       map->format.reg_bytes + map->format.val_bytes);
1756 
1757 		spin_lock_irqsave(&map->async_lock, flags);
1758 		list_add_tail(&async->list, &map->async_list);
1759 		spin_unlock_irqrestore(&map->async_lock, flags);
1760 
1761 		if (val != work_val)
1762 			ret = map->bus->async_write(map->bus_context,
1763 						    async->work_buf,
1764 						    map->format.reg_bytes +
1765 						    map->format.pad_bytes,
1766 						    val, val_len, async);
1767 		else
1768 			ret = map->bus->async_write(map->bus_context,
1769 						    async->work_buf,
1770 						    map->format.reg_bytes +
1771 						    map->format.pad_bytes +
1772 						    val_len, NULL, 0, async);
1773 
1774 		if (ret != 0) {
1775 			dev_err(map->dev, "Failed to schedule write: %d\n",
1776 				ret);
1777 
1778 			spin_lock_irqsave(&map->async_lock, flags);
1779 			list_move(&async->list, &map->async_free);
1780 			spin_unlock_irqrestore(&map->async_lock, flags);
1781 		}
1782 
1783 		return ret;
1784 	}
1785 
1786 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1787 
1788 	/* If we're doing a single register write we can probably just
1789 	 * send the work_buf directly, otherwise try to do a gather
1790 	 * write.
1791 	 */
1792 	if (val == work_val)
1793 		ret = map->bus->write(map->bus_context, map->work_buf,
1794 				      map->format.reg_bytes +
1795 				      map->format.pad_bytes +
1796 				      val_len);
1797 	else if (map->bus->gather_write)
1798 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1799 					     map->format.reg_bytes +
1800 					     map->format.pad_bytes,
1801 					     val, val_len);
1802 	else
1803 		ret = -ENOTSUPP;
1804 
1805 	/* If that didn't work fall back on linearising by hand. */
1806 	if (ret == -ENOTSUPP) {
1807 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1808 		buf = kzalloc(len, GFP_KERNEL);
1809 		if (!buf)
1810 			return -ENOMEM;
1811 
1812 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1813 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1814 		       val, val_len);
1815 		ret = map->bus->write(map->bus_context, buf, len);
1816 
1817 		kfree(buf);
1818 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1819 		/* regcache_drop_region() takes lock that we already have,
1820 		 * thus call map->cache_ops->drop() directly
1821 		 */
1822 		if (map->cache_ops && map->cache_ops->drop)
1823 			map->cache_ops->drop(map, reg, reg + 1);
1824 	}
1825 
1826 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1827 
1828 	return ret;
1829 }
1830 
1831 /**
1832  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1833  *
1834  * @map: Map to check.
1835  */
1836 bool regmap_can_raw_write(struct regmap *map)
1837 {
1838 	return map->bus && map->bus->write && map->format.format_val &&
1839 		map->format.format_reg;
1840 }
1841 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1842 
1843 /**
1844  * regmap_get_raw_read_max - Get the maximum size we can read
1845  *
1846  * @map: Map to check.
1847  */
1848 size_t regmap_get_raw_read_max(struct regmap *map)
1849 {
1850 	return map->max_raw_read;
1851 }
1852 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1853 
1854 /**
1855  * regmap_get_raw_write_max - Get the maximum size we can read
1856  *
1857  * @map: Map to check.
1858  */
1859 size_t regmap_get_raw_write_max(struct regmap *map)
1860 {
1861 	return map->max_raw_write;
1862 }
1863 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1864 
1865 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1866 				       unsigned int val)
1867 {
1868 	int ret;
1869 	struct regmap_range_node *range;
1870 	struct regmap *map = context;
1871 
1872 	WARN_ON(!map->bus || !map->format.format_write);
1873 
1874 	range = _regmap_range_lookup(map, reg);
1875 	if (range) {
1876 		ret = _regmap_select_page(map, &reg, range, 1);
1877 		if (ret != 0)
1878 			return ret;
1879 	}
1880 
1881 	map->format.format_write(map, reg, val);
1882 
1883 	trace_regmap_hw_write_start(map, reg, 1);
1884 
1885 	ret = map->bus->write(map->bus_context, map->work_buf,
1886 			      map->format.buf_size);
1887 
1888 	trace_regmap_hw_write_done(map, reg, 1);
1889 
1890 	return ret;
1891 }
1892 
1893 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1894 				 unsigned int val)
1895 {
1896 	struct regmap *map = context;
1897 
1898 	return map->bus->reg_write(map->bus_context, reg, val);
1899 }
1900 
1901 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1902 				 unsigned int val)
1903 {
1904 	struct regmap *map = context;
1905 
1906 	WARN_ON(!map->bus || !map->format.format_val);
1907 
1908 	map->format.format_val(map->work_buf + map->format.reg_bytes
1909 			       + map->format.pad_bytes, val, 0);
1910 	return _regmap_raw_write_impl(map, reg,
1911 				      map->work_buf +
1912 				      map->format.reg_bytes +
1913 				      map->format.pad_bytes,
1914 				      map->format.val_bytes,
1915 				      false);
1916 }
1917 
1918 static inline void *_regmap_map_get_context(struct regmap *map)
1919 {
1920 	return (map->bus) ? map : map->bus_context;
1921 }
1922 
1923 int _regmap_write(struct regmap *map, unsigned int reg,
1924 		  unsigned int val)
1925 {
1926 	int ret;
1927 	void *context = _regmap_map_get_context(map);
1928 
1929 	if (!regmap_writeable(map, reg))
1930 		return -EIO;
1931 
1932 	if (!map->cache_bypass && !map->defer_caching) {
1933 		ret = regcache_write(map, reg, val);
1934 		if (ret != 0)
1935 			return ret;
1936 		if (map->cache_only) {
1937 			map->cache_dirty = true;
1938 			return 0;
1939 		}
1940 	}
1941 
1942 	ret = map->reg_write(context, reg, val);
1943 	if (ret == 0) {
1944 		if (regmap_should_log(map))
1945 			dev_info(map->dev, "%x <= %x\n", reg, val);
1946 
1947 		trace_regmap_reg_write(map, reg, val);
1948 	}
1949 
1950 	return ret;
1951 }
1952 
1953 /**
1954  * regmap_write() - Write a value to a single register
1955  *
1956  * @map: Register map to write to
1957  * @reg: Register to write to
1958  * @val: Value to be written
1959  *
1960  * A value of zero will be returned on success, a negative errno will
1961  * be returned in error cases.
1962  */
1963 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1964 {
1965 	int ret;
1966 
1967 	if (!IS_ALIGNED(reg, map->reg_stride))
1968 		return -EINVAL;
1969 
1970 	map->lock(map->lock_arg);
1971 
1972 	ret = _regmap_write(map, reg, val);
1973 
1974 	map->unlock(map->lock_arg);
1975 
1976 	return ret;
1977 }
1978 EXPORT_SYMBOL_GPL(regmap_write);
1979 
1980 /**
1981  * regmap_write_async() - Write a value to a single register asynchronously
1982  *
1983  * @map: Register map to write to
1984  * @reg: Register to write to
1985  * @val: Value to be written
1986  *
1987  * A value of zero will be returned on success, a negative errno will
1988  * be returned in error cases.
1989  */
1990 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1991 {
1992 	int ret;
1993 
1994 	if (!IS_ALIGNED(reg, map->reg_stride))
1995 		return -EINVAL;
1996 
1997 	map->lock(map->lock_arg);
1998 
1999 	map->async = true;
2000 
2001 	ret = _regmap_write(map, reg, val);
2002 
2003 	map->async = false;
2004 
2005 	map->unlock(map->lock_arg);
2006 
2007 	return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(regmap_write_async);
2010 
2011 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2012 		      const void *val, size_t val_len, bool noinc)
2013 {
2014 	size_t val_bytes = map->format.val_bytes;
2015 	size_t val_count = val_len / val_bytes;
2016 	size_t chunk_count, chunk_bytes;
2017 	size_t chunk_regs = val_count;
2018 	int ret, i;
2019 
2020 	if (!val_count)
2021 		return -EINVAL;
2022 
2023 	if (map->use_single_write)
2024 		chunk_regs = 1;
2025 	else if (map->max_raw_write && val_len > map->max_raw_write)
2026 		chunk_regs = map->max_raw_write / val_bytes;
2027 
2028 	chunk_count = val_count / chunk_regs;
2029 	chunk_bytes = chunk_regs * val_bytes;
2030 
2031 	/* Write as many bytes as possible with chunk_size */
2032 	for (i = 0; i < chunk_count; i++) {
2033 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2034 		if (ret)
2035 			return ret;
2036 
2037 		reg += regmap_get_offset(map, chunk_regs);
2038 		val += chunk_bytes;
2039 		val_len -= chunk_bytes;
2040 	}
2041 
2042 	/* Write remaining bytes */
2043 	if (val_len)
2044 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2045 
2046 	return ret;
2047 }
2048 
2049 /**
2050  * regmap_raw_write() - Write raw values to one or more registers
2051  *
2052  * @map: Register map to write to
2053  * @reg: Initial register to write to
2054  * @val: Block of data to be written, laid out for direct transmission to the
2055  *       device
2056  * @val_len: Length of data pointed to by val.
2057  *
2058  * This function is intended to be used for things like firmware
2059  * download where a large block of data needs to be transferred to the
2060  * device.  No formatting will be done on the data provided.
2061  *
2062  * A value of zero will be returned on success, a negative errno will
2063  * be returned in error cases.
2064  */
2065 int regmap_raw_write(struct regmap *map, unsigned int reg,
2066 		     const void *val, size_t val_len)
2067 {
2068 	int ret;
2069 
2070 	if (!regmap_can_raw_write(map))
2071 		return -EINVAL;
2072 	if (val_len % map->format.val_bytes)
2073 		return -EINVAL;
2074 
2075 	map->lock(map->lock_arg);
2076 
2077 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2078 
2079 	map->unlock(map->lock_arg);
2080 
2081 	return ret;
2082 }
2083 EXPORT_SYMBOL_GPL(regmap_raw_write);
2084 
2085 /**
2086  * regmap_noinc_write(): Write data from a register without incrementing the
2087  *			register number
2088  *
2089  * @map: Register map to write to
2090  * @reg: Register to write to
2091  * @val: Pointer to data buffer
2092  * @val_len: Length of output buffer in bytes.
2093  *
2094  * The regmap API usually assumes that bulk bus write operations will write a
2095  * range of registers. Some devices have certain registers for which a write
2096  * operation can write to an internal FIFO.
2097  *
2098  * The target register must be volatile but registers after it can be
2099  * completely unrelated cacheable registers.
2100  *
2101  * This will attempt multiple writes as required to write val_len bytes.
2102  *
2103  * A value of zero will be returned on success, a negative errno will be
2104  * returned in error cases.
2105  */
2106 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2107 		      const void *val, size_t val_len)
2108 {
2109 	size_t write_len;
2110 	int ret;
2111 
2112 	if (!map->bus)
2113 		return -EINVAL;
2114 	if (!map->bus->write)
2115 		return -ENOTSUPP;
2116 	if (val_len % map->format.val_bytes)
2117 		return -EINVAL;
2118 	if (!IS_ALIGNED(reg, map->reg_stride))
2119 		return -EINVAL;
2120 	if (val_len == 0)
2121 		return -EINVAL;
2122 
2123 	map->lock(map->lock_arg);
2124 
2125 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2126 		ret = -EINVAL;
2127 		goto out_unlock;
2128 	}
2129 
2130 	while (val_len) {
2131 		if (map->max_raw_write && map->max_raw_write < val_len)
2132 			write_len = map->max_raw_write;
2133 		else
2134 			write_len = val_len;
2135 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2136 		if (ret)
2137 			goto out_unlock;
2138 		val = ((u8 *)val) + write_len;
2139 		val_len -= write_len;
2140 	}
2141 
2142 out_unlock:
2143 	map->unlock(map->lock_arg);
2144 	return ret;
2145 }
2146 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2147 
2148 /**
2149  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2150  *                                   register field.
2151  *
2152  * @field: Register field to write to
2153  * @mask: Bitmask to change
2154  * @val: Value to be written
2155  * @change: Boolean indicating if a write was done
2156  * @async: Boolean indicating asynchronously
2157  * @force: Boolean indicating use force update
2158  *
2159  * Perform a read/modify/write cycle on the register field with change,
2160  * async, force option.
2161  *
2162  * A value of zero will be returned on success, a negative errno will
2163  * be returned in error cases.
2164  */
2165 int regmap_field_update_bits_base(struct regmap_field *field,
2166 				  unsigned int mask, unsigned int val,
2167 				  bool *change, bool async, bool force)
2168 {
2169 	mask = (mask << field->shift) & field->mask;
2170 
2171 	return regmap_update_bits_base(field->regmap, field->reg,
2172 				       mask, val << field->shift,
2173 				       change, async, force);
2174 }
2175 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2176 
2177 /**
2178  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2179  *                                    register field with port ID
2180  *
2181  * @field: Register field to write to
2182  * @id: port ID
2183  * @mask: Bitmask to change
2184  * @val: Value to be written
2185  * @change: Boolean indicating if a write was done
2186  * @async: Boolean indicating asynchronously
2187  * @force: Boolean indicating use force update
2188  *
2189  * A value of zero will be returned on success, a negative errno will
2190  * be returned in error cases.
2191  */
2192 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2193 				   unsigned int mask, unsigned int val,
2194 				   bool *change, bool async, bool force)
2195 {
2196 	if (id >= field->id_size)
2197 		return -EINVAL;
2198 
2199 	mask = (mask << field->shift) & field->mask;
2200 
2201 	return regmap_update_bits_base(field->regmap,
2202 				       field->reg + (field->id_offset * id),
2203 				       mask, val << field->shift,
2204 				       change, async, force);
2205 }
2206 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2207 
2208 /**
2209  * regmap_bulk_write() - Write multiple registers to the device
2210  *
2211  * @map: Register map to write to
2212  * @reg: First register to be write from
2213  * @val: Block of data to be written, in native register size for device
2214  * @val_count: Number of registers to write
2215  *
2216  * This function is intended to be used for writing a large block of
2217  * data to the device either in single transfer or multiple transfer.
2218  *
2219  * A value of zero will be returned on success, a negative errno will
2220  * be returned in error cases.
2221  */
2222 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2223 		     size_t val_count)
2224 {
2225 	int ret = 0, i;
2226 	size_t val_bytes = map->format.val_bytes;
2227 
2228 	if (!IS_ALIGNED(reg, map->reg_stride))
2229 		return -EINVAL;
2230 
2231 	/*
2232 	 * Some devices don't support bulk write, for them we have a series of
2233 	 * single write operations.
2234 	 */
2235 	if (!map->bus || !map->format.parse_inplace) {
2236 		map->lock(map->lock_arg);
2237 		for (i = 0; i < val_count; i++) {
2238 			unsigned int ival;
2239 
2240 			switch (val_bytes) {
2241 			case 1:
2242 				ival = *(u8 *)(val + (i * val_bytes));
2243 				break;
2244 			case 2:
2245 				ival = *(u16 *)(val + (i * val_bytes));
2246 				break;
2247 			case 4:
2248 				ival = *(u32 *)(val + (i * val_bytes));
2249 				break;
2250 #ifdef CONFIG_64BIT
2251 			case 8:
2252 				ival = *(u64 *)(val + (i * val_bytes));
2253 				break;
2254 #endif
2255 			default:
2256 				ret = -EINVAL;
2257 				goto out;
2258 			}
2259 
2260 			ret = _regmap_write(map,
2261 					    reg + regmap_get_offset(map, i),
2262 					    ival);
2263 			if (ret != 0)
2264 				goto out;
2265 		}
2266 out:
2267 		map->unlock(map->lock_arg);
2268 	} else {
2269 		void *wval;
2270 
2271 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2272 		if (!wval)
2273 			return -ENOMEM;
2274 
2275 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2276 			map->format.parse_inplace(wval + i);
2277 
2278 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2279 
2280 		kfree(wval);
2281 	}
2282 	return ret;
2283 }
2284 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2285 
2286 /*
2287  * _regmap_raw_multi_reg_write()
2288  *
2289  * the (register,newvalue) pairs in regs have not been formatted, but
2290  * they are all in the same page and have been changed to being page
2291  * relative. The page register has been written if that was necessary.
2292  */
2293 static int _regmap_raw_multi_reg_write(struct regmap *map,
2294 				       const struct reg_sequence *regs,
2295 				       size_t num_regs)
2296 {
2297 	int ret;
2298 	void *buf;
2299 	int i;
2300 	u8 *u8;
2301 	size_t val_bytes = map->format.val_bytes;
2302 	size_t reg_bytes = map->format.reg_bytes;
2303 	size_t pad_bytes = map->format.pad_bytes;
2304 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2305 	size_t len = pair_size * num_regs;
2306 
2307 	if (!len)
2308 		return -EINVAL;
2309 
2310 	buf = kzalloc(len, GFP_KERNEL);
2311 	if (!buf)
2312 		return -ENOMEM;
2313 
2314 	/* We have to linearise by hand. */
2315 
2316 	u8 = buf;
2317 
2318 	for (i = 0; i < num_regs; i++) {
2319 		unsigned int reg = regs[i].reg;
2320 		unsigned int val = regs[i].def;
2321 		trace_regmap_hw_write_start(map, reg, 1);
2322 		map->format.format_reg(u8, reg, map->reg_shift);
2323 		u8 += reg_bytes + pad_bytes;
2324 		map->format.format_val(u8, val, 0);
2325 		u8 += val_bytes;
2326 	}
2327 	u8 = buf;
2328 	*u8 |= map->write_flag_mask;
2329 
2330 	ret = map->bus->write(map->bus_context, buf, len);
2331 
2332 	kfree(buf);
2333 
2334 	for (i = 0; i < num_regs; i++) {
2335 		int reg = regs[i].reg;
2336 		trace_regmap_hw_write_done(map, reg, 1);
2337 	}
2338 	return ret;
2339 }
2340 
2341 static unsigned int _regmap_register_page(struct regmap *map,
2342 					  unsigned int reg,
2343 					  struct regmap_range_node *range)
2344 {
2345 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2346 
2347 	return win_page;
2348 }
2349 
2350 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2351 					       struct reg_sequence *regs,
2352 					       size_t num_regs)
2353 {
2354 	int ret;
2355 	int i, n;
2356 	struct reg_sequence *base;
2357 	unsigned int this_page = 0;
2358 	unsigned int page_change = 0;
2359 	/*
2360 	 * the set of registers are not neccessarily in order, but
2361 	 * since the order of write must be preserved this algorithm
2362 	 * chops the set each time the page changes. This also applies
2363 	 * if there is a delay required at any point in the sequence.
2364 	 */
2365 	base = regs;
2366 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2367 		unsigned int reg = regs[i].reg;
2368 		struct regmap_range_node *range;
2369 
2370 		range = _regmap_range_lookup(map, reg);
2371 		if (range) {
2372 			unsigned int win_page = _regmap_register_page(map, reg,
2373 								      range);
2374 
2375 			if (i == 0)
2376 				this_page = win_page;
2377 			if (win_page != this_page) {
2378 				this_page = win_page;
2379 				page_change = 1;
2380 			}
2381 		}
2382 
2383 		/* If we have both a page change and a delay make sure to
2384 		 * write the regs and apply the delay before we change the
2385 		 * page.
2386 		 */
2387 
2388 		if (page_change || regs[i].delay_us) {
2389 
2390 				/* For situations where the first write requires
2391 				 * a delay we need to make sure we don't call
2392 				 * raw_multi_reg_write with n=0
2393 				 * This can't occur with page breaks as we
2394 				 * never write on the first iteration
2395 				 */
2396 				if (regs[i].delay_us && i == 0)
2397 					n = 1;
2398 
2399 				ret = _regmap_raw_multi_reg_write(map, base, n);
2400 				if (ret != 0)
2401 					return ret;
2402 
2403 				if (regs[i].delay_us) {
2404 					if (map->can_sleep)
2405 						fsleep(regs[i].delay_us);
2406 					else
2407 						udelay(regs[i].delay_us);
2408 				}
2409 
2410 				base += n;
2411 				n = 0;
2412 
2413 				if (page_change) {
2414 					ret = _regmap_select_page(map,
2415 								  &base[n].reg,
2416 								  range, 1);
2417 					if (ret != 0)
2418 						return ret;
2419 
2420 					page_change = 0;
2421 				}
2422 
2423 		}
2424 
2425 	}
2426 	if (n > 0)
2427 		return _regmap_raw_multi_reg_write(map, base, n);
2428 	return 0;
2429 }
2430 
2431 static int _regmap_multi_reg_write(struct regmap *map,
2432 				   const struct reg_sequence *regs,
2433 				   size_t num_regs)
2434 {
2435 	int i;
2436 	int ret;
2437 
2438 	if (!map->can_multi_write) {
2439 		for (i = 0; i < num_regs; i++) {
2440 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2441 			if (ret != 0)
2442 				return ret;
2443 
2444 			if (regs[i].delay_us) {
2445 				if (map->can_sleep)
2446 					fsleep(regs[i].delay_us);
2447 				else
2448 					udelay(regs[i].delay_us);
2449 			}
2450 		}
2451 		return 0;
2452 	}
2453 
2454 	if (!map->format.parse_inplace)
2455 		return -EINVAL;
2456 
2457 	if (map->writeable_reg)
2458 		for (i = 0; i < num_regs; i++) {
2459 			int reg = regs[i].reg;
2460 			if (!map->writeable_reg(map->dev, reg))
2461 				return -EINVAL;
2462 			if (!IS_ALIGNED(reg, map->reg_stride))
2463 				return -EINVAL;
2464 		}
2465 
2466 	if (!map->cache_bypass) {
2467 		for (i = 0; i < num_regs; i++) {
2468 			unsigned int val = regs[i].def;
2469 			unsigned int reg = regs[i].reg;
2470 			ret = regcache_write(map, reg, val);
2471 			if (ret) {
2472 				dev_err(map->dev,
2473 				"Error in caching of register: %x ret: %d\n",
2474 								reg, ret);
2475 				return ret;
2476 			}
2477 		}
2478 		if (map->cache_only) {
2479 			map->cache_dirty = true;
2480 			return 0;
2481 		}
2482 	}
2483 
2484 	WARN_ON(!map->bus);
2485 
2486 	for (i = 0; i < num_regs; i++) {
2487 		unsigned int reg = regs[i].reg;
2488 		struct regmap_range_node *range;
2489 
2490 		/* Coalesce all the writes between a page break or a delay
2491 		 * in a sequence
2492 		 */
2493 		range = _regmap_range_lookup(map, reg);
2494 		if (range || regs[i].delay_us) {
2495 			size_t len = sizeof(struct reg_sequence)*num_regs;
2496 			struct reg_sequence *base = kmemdup(regs, len,
2497 							   GFP_KERNEL);
2498 			if (!base)
2499 				return -ENOMEM;
2500 			ret = _regmap_range_multi_paged_reg_write(map, base,
2501 								  num_regs);
2502 			kfree(base);
2503 
2504 			return ret;
2505 		}
2506 	}
2507 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2508 }
2509 
2510 /**
2511  * regmap_multi_reg_write() - Write multiple registers to the device
2512  *
2513  * @map: Register map to write to
2514  * @regs: Array of structures containing register,value to be written
2515  * @num_regs: Number of registers to write
2516  *
2517  * Write multiple registers to the device where the set of register, value
2518  * pairs are supplied in any order, possibly not all in a single range.
2519  *
2520  * The 'normal' block write mode will send ultimately send data on the
2521  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2522  * addressed. However, this alternative block multi write mode will send
2523  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2524  * must of course support the mode.
2525  *
2526  * A value of zero will be returned on success, a negative errno will be
2527  * returned in error cases.
2528  */
2529 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2530 			   int num_regs)
2531 {
2532 	int ret;
2533 
2534 	map->lock(map->lock_arg);
2535 
2536 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2537 
2538 	map->unlock(map->lock_arg);
2539 
2540 	return ret;
2541 }
2542 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2543 
2544 /**
2545  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2546  *                                     device but not the cache
2547  *
2548  * @map: Register map to write to
2549  * @regs: Array of structures containing register,value to be written
2550  * @num_regs: Number of registers to write
2551  *
2552  * Write multiple registers to the device but not the cache where the set
2553  * of register are supplied in any order.
2554  *
2555  * This function is intended to be used for writing a large block of data
2556  * atomically to the device in single transfer for those I2C client devices
2557  * that implement this alternative block write mode.
2558  *
2559  * A value of zero will be returned on success, a negative errno will
2560  * be returned in error cases.
2561  */
2562 int regmap_multi_reg_write_bypassed(struct regmap *map,
2563 				    const struct reg_sequence *regs,
2564 				    int num_regs)
2565 {
2566 	int ret;
2567 	bool bypass;
2568 
2569 	map->lock(map->lock_arg);
2570 
2571 	bypass = map->cache_bypass;
2572 	map->cache_bypass = true;
2573 
2574 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2575 
2576 	map->cache_bypass = bypass;
2577 
2578 	map->unlock(map->lock_arg);
2579 
2580 	return ret;
2581 }
2582 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2583 
2584 /**
2585  * regmap_raw_write_async() - Write raw values to one or more registers
2586  *                            asynchronously
2587  *
2588  * @map: Register map to write to
2589  * @reg: Initial register to write to
2590  * @val: Block of data to be written, laid out for direct transmission to the
2591  *       device.  Must be valid until regmap_async_complete() is called.
2592  * @val_len: Length of data pointed to by val.
2593  *
2594  * This function is intended to be used for things like firmware
2595  * download where a large block of data needs to be transferred to the
2596  * device.  No formatting will be done on the data provided.
2597  *
2598  * If supported by the underlying bus the write will be scheduled
2599  * asynchronously, helping maximise I/O speed on higher speed buses
2600  * like SPI.  regmap_async_complete() can be called to ensure that all
2601  * asynchrnous writes have been completed.
2602  *
2603  * A value of zero will be returned on success, a negative errno will
2604  * be returned in error cases.
2605  */
2606 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2607 			   const void *val, size_t val_len)
2608 {
2609 	int ret;
2610 
2611 	if (val_len % map->format.val_bytes)
2612 		return -EINVAL;
2613 	if (!IS_ALIGNED(reg, map->reg_stride))
2614 		return -EINVAL;
2615 
2616 	map->lock(map->lock_arg);
2617 
2618 	map->async = true;
2619 
2620 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2621 
2622 	map->async = false;
2623 
2624 	map->unlock(map->lock_arg);
2625 
2626 	return ret;
2627 }
2628 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2629 
2630 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2631 			    unsigned int val_len, bool noinc)
2632 {
2633 	struct regmap_range_node *range;
2634 	int ret;
2635 
2636 	WARN_ON(!map->bus);
2637 
2638 	if (!map->bus || !map->bus->read)
2639 		return -EINVAL;
2640 
2641 	range = _regmap_range_lookup(map, reg);
2642 	if (range) {
2643 		ret = _regmap_select_page(map, &reg, range,
2644 					  noinc ? 1 : val_len / map->format.val_bytes);
2645 		if (ret != 0)
2646 			return ret;
2647 	}
2648 
2649 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2650 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2651 				      map->read_flag_mask);
2652 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2653 
2654 	ret = map->bus->read(map->bus_context, map->work_buf,
2655 			     map->format.reg_bytes + map->format.pad_bytes,
2656 			     val, val_len);
2657 
2658 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2659 
2660 	return ret;
2661 }
2662 
2663 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2664 				unsigned int *val)
2665 {
2666 	struct regmap *map = context;
2667 
2668 	return map->bus->reg_read(map->bus_context, reg, val);
2669 }
2670 
2671 static int _regmap_bus_read(void *context, unsigned int reg,
2672 			    unsigned int *val)
2673 {
2674 	int ret;
2675 	struct regmap *map = context;
2676 	void *work_val = map->work_buf + map->format.reg_bytes +
2677 		map->format.pad_bytes;
2678 
2679 	if (!map->format.parse_val)
2680 		return -EINVAL;
2681 
2682 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2683 	if (ret == 0)
2684 		*val = map->format.parse_val(work_val);
2685 
2686 	return ret;
2687 }
2688 
2689 static int _regmap_read(struct regmap *map, unsigned int reg,
2690 			unsigned int *val)
2691 {
2692 	int ret;
2693 	void *context = _regmap_map_get_context(map);
2694 
2695 	if (!map->cache_bypass) {
2696 		ret = regcache_read(map, reg, val);
2697 		if (ret == 0)
2698 			return 0;
2699 	}
2700 
2701 	if (map->cache_only)
2702 		return -EBUSY;
2703 
2704 	if (!regmap_readable(map, reg))
2705 		return -EIO;
2706 
2707 	ret = map->reg_read(context, reg, val);
2708 	if (ret == 0) {
2709 		if (regmap_should_log(map))
2710 			dev_info(map->dev, "%x => %x\n", reg, *val);
2711 
2712 		trace_regmap_reg_read(map, reg, *val);
2713 
2714 		if (!map->cache_bypass)
2715 			regcache_write(map, reg, *val);
2716 	}
2717 
2718 	return ret;
2719 }
2720 
2721 /**
2722  * regmap_read() - Read a value from a single register
2723  *
2724  * @map: Register map to read from
2725  * @reg: Register to be read from
2726  * @val: Pointer to store read value
2727  *
2728  * A value of zero will be returned on success, a negative errno will
2729  * be returned in error cases.
2730  */
2731 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2732 {
2733 	int ret;
2734 
2735 	if (!IS_ALIGNED(reg, map->reg_stride))
2736 		return -EINVAL;
2737 
2738 	map->lock(map->lock_arg);
2739 
2740 	ret = _regmap_read(map, reg, val);
2741 
2742 	map->unlock(map->lock_arg);
2743 
2744 	return ret;
2745 }
2746 EXPORT_SYMBOL_GPL(regmap_read);
2747 
2748 /**
2749  * regmap_raw_read() - Read raw data from the device
2750  *
2751  * @map: Register map to read from
2752  * @reg: First register to be read from
2753  * @val: Pointer to store read value
2754  * @val_len: Size of data to read
2755  *
2756  * A value of zero will be returned on success, a negative errno will
2757  * be returned in error cases.
2758  */
2759 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2760 		    size_t val_len)
2761 {
2762 	size_t val_bytes = map->format.val_bytes;
2763 	size_t val_count = val_len / val_bytes;
2764 	unsigned int v;
2765 	int ret, i;
2766 
2767 	if (!map->bus)
2768 		return -EINVAL;
2769 	if (val_len % map->format.val_bytes)
2770 		return -EINVAL;
2771 	if (!IS_ALIGNED(reg, map->reg_stride))
2772 		return -EINVAL;
2773 	if (val_count == 0)
2774 		return -EINVAL;
2775 
2776 	map->lock(map->lock_arg);
2777 
2778 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2779 	    map->cache_type == REGCACHE_NONE) {
2780 		size_t chunk_count, chunk_bytes;
2781 		size_t chunk_regs = val_count;
2782 
2783 		if (!map->bus->read) {
2784 			ret = -ENOTSUPP;
2785 			goto out;
2786 		}
2787 
2788 		if (map->use_single_read)
2789 			chunk_regs = 1;
2790 		else if (map->max_raw_read && val_len > map->max_raw_read)
2791 			chunk_regs = map->max_raw_read / val_bytes;
2792 
2793 		chunk_count = val_count / chunk_regs;
2794 		chunk_bytes = chunk_regs * val_bytes;
2795 
2796 		/* Read bytes that fit into whole chunks */
2797 		for (i = 0; i < chunk_count; i++) {
2798 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2799 			if (ret != 0)
2800 				goto out;
2801 
2802 			reg += regmap_get_offset(map, chunk_regs);
2803 			val += chunk_bytes;
2804 			val_len -= chunk_bytes;
2805 		}
2806 
2807 		/* Read remaining bytes */
2808 		if (val_len) {
2809 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2810 			if (ret != 0)
2811 				goto out;
2812 		}
2813 	} else {
2814 		/* Otherwise go word by word for the cache; should be low
2815 		 * cost as we expect to hit the cache.
2816 		 */
2817 		for (i = 0; i < val_count; i++) {
2818 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2819 					   &v);
2820 			if (ret != 0)
2821 				goto out;
2822 
2823 			map->format.format_val(val + (i * val_bytes), v, 0);
2824 		}
2825 	}
2826 
2827  out:
2828 	map->unlock(map->lock_arg);
2829 
2830 	return ret;
2831 }
2832 EXPORT_SYMBOL_GPL(regmap_raw_read);
2833 
2834 /**
2835  * regmap_noinc_read(): Read data from a register without incrementing the
2836  *			register number
2837  *
2838  * @map: Register map to read from
2839  * @reg: Register to read from
2840  * @val: Pointer to data buffer
2841  * @val_len: Length of output buffer in bytes.
2842  *
2843  * The regmap API usually assumes that bulk bus read operations will read a
2844  * range of registers. Some devices have certain registers for which a read
2845  * operation read will read from an internal FIFO.
2846  *
2847  * The target register must be volatile but registers after it can be
2848  * completely unrelated cacheable registers.
2849  *
2850  * This will attempt multiple reads as required to read val_len bytes.
2851  *
2852  * A value of zero will be returned on success, a negative errno will be
2853  * returned in error cases.
2854  */
2855 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2856 		      void *val, size_t val_len)
2857 {
2858 	size_t read_len;
2859 	int ret;
2860 
2861 	if (!map->bus)
2862 		return -EINVAL;
2863 	if (!map->bus->read)
2864 		return -ENOTSUPP;
2865 	if (val_len % map->format.val_bytes)
2866 		return -EINVAL;
2867 	if (!IS_ALIGNED(reg, map->reg_stride))
2868 		return -EINVAL;
2869 	if (val_len == 0)
2870 		return -EINVAL;
2871 
2872 	map->lock(map->lock_arg);
2873 
2874 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2875 		ret = -EINVAL;
2876 		goto out_unlock;
2877 	}
2878 
2879 	while (val_len) {
2880 		if (map->max_raw_read && map->max_raw_read < val_len)
2881 			read_len = map->max_raw_read;
2882 		else
2883 			read_len = val_len;
2884 		ret = _regmap_raw_read(map, reg, val, read_len, true);
2885 		if (ret)
2886 			goto out_unlock;
2887 		val = ((u8 *)val) + read_len;
2888 		val_len -= read_len;
2889 	}
2890 
2891 out_unlock:
2892 	map->unlock(map->lock_arg);
2893 	return ret;
2894 }
2895 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2896 
2897 /**
2898  * regmap_field_read(): Read a value to a single register field
2899  *
2900  * @field: Register field to read from
2901  * @val: Pointer to store read value
2902  *
2903  * A value of zero will be returned on success, a negative errno will
2904  * be returned in error cases.
2905  */
2906 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2907 {
2908 	int ret;
2909 	unsigned int reg_val;
2910 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2911 	if (ret != 0)
2912 		return ret;
2913 
2914 	reg_val &= field->mask;
2915 	reg_val >>= field->shift;
2916 	*val = reg_val;
2917 
2918 	return ret;
2919 }
2920 EXPORT_SYMBOL_GPL(regmap_field_read);
2921 
2922 /**
2923  * regmap_fields_read() - Read a value to a single register field with port ID
2924  *
2925  * @field: Register field to read from
2926  * @id: port ID
2927  * @val: Pointer to store read value
2928  *
2929  * A value of zero will be returned on success, a negative errno will
2930  * be returned in error cases.
2931  */
2932 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2933 		       unsigned int *val)
2934 {
2935 	int ret;
2936 	unsigned int reg_val;
2937 
2938 	if (id >= field->id_size)
2939 		return -EINVAL;
2940 
2941 	ret = regmap_read(field->regmap,
2942 			  field->reg + (field->id_offset * id),
2943 			  &reg_val);
2944 	if (ret != 0)
2945 		return ret;
2946 
2947 	reg_val &= field->mask;
2948 	reg_val >>= field->shift;
2949 	*val = reg_val;
2950 
2951 	return ret;
2952 }
2953 EXPORT_SYMBOL_GPL(regmap_fields_read);
2954 
2955 /**
2956  * regmap_bulk_read() - Read multiple registers from the device
2957  *
2958  * @map: Register map to read from
2959  * @reg: First register to be read from
2960  * @val: Pointer to store read value, in native register size for device
2961  * @val_count: Number of registers to read
2962  *
2963  * A value of zero will be returned on success, a negative errno will
2964  * be returned in error cases.
2965  */
2966 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2967 		     size_t val_count)
2968 {
2969 	int ret, i;
2970 	size_t val_bytes = map->format.val_bytes;
2971 	bool vol = regmap_volatile_range(map, reg, val_count);
2972 
2973 	if (!IS_ALIGNED(reg, map->reg_stride))
2974 		return -EINVAL;
2975 	if (val_count == 0)
2976 		return -EINVAL;
2977 
2978 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2979 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2980 		if (ret != 0)
2981 			return ret;
2982 
2983 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2984 			map->format.parse_inplace(val + i);
2985 	} else {
2986 #ifdef CONFIG_64BIT
2987 		u64 *u64 = val;
2988 #endif
2989 		u32 *u32 = val;
2990 		u16 *u16 = val;
2991 		u8 *u8 = val;
2992 
2993 		map->lock(map->lock_arg);
2994 
2995 		for (i = 0; i < val_count; i++) {
2996 			unsigned int ival;
2997 
2998 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2999 					   &ival);
3000 			if (ret != 0)
3001 				goto out;
3002 
3003 			switch (map->format.val_bytes) {
3004 #ifdef CONFIG_64BIT
3005 			case 8:
3006 				u64[i] = ival;
3007 				break;
3008 #endif
3009 			case 4:
3010 				u32[i] = ival;
3011 				break;
3012 			case 2:
3013 				u16[i] = ival;
3014 				break;
3015 			case 1:
3016 				u8[i] = ival;
3017 				break;
3018 			default:
3019 				ret = -EINVAL;
3020 				goto out;
3021 			}
3022 		}
3023 
3024 out:
3025 		map->unlock(map->lock_arg);
3026 	}
3027 
3028 	return ret;
3029 }
3030 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3031 
3032 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3033 			       unsigned int mask, unsigned int val,
3034 			       bool *change, bool force_write)
3035 {
3036 	int ret;
3037 	unsigned int tmp, orig;
3038 
3039 	if (change)
3040 		*change = false;
3041 
3042 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3043 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3044 		if (ret == 0 && change)
3045 			*change = true;
3046 	} else {
3047 		ret = _regmap_read(map, reg, &orig);
3048 		if (ret != 0)
3049 			return ret;
3050 
3051 		tmp = orig & ~mask;
3052 		tmp |= val & mask;
3053 
3054 		if (force_write || (tmp != orig)) {
3055 			ret = _regmap_write(map, reg, tmp);
3056 			if (ret == 0 && change)
3057 				*change = true;
3058 		}
3059 	}
3060 
3061 	return ret;
3062 }
3063 
3064 /**
3065  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3066  *
3067  * @map: Register map to update
3068  * @reg: Register to update
3069  * @mask: Bitmask to change
3070  * @val: New value for bitmask
3071  * @change: Boolean indicating if a write was done
3072  * @async: Boolean indicating asynchronously
3073  * @force: Boolean indicating use force update
3074  *
3075  * Perform a read/modify/write cycle on a register map with change, async, force
3076  * options.
3077  *
3078  * If async is true:
3079  *
3080  * With most buses the read must be done synchronously so this is most useful
3081  * for devices with a cache which do not need to interact with the hardware to
3082  * determine the current register value.
3083  *
3084  * Returns zero for success, a negative number on error.
3085  */
3086 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3087 			    unsigned int mask, unsigned int val,
3088 			    bool *change, bool async, bool force)
3089 {
3090 	int ret;
3091 
3092 	map->lock(map->lock_arg);
3093 
3094 	map->async = async;
3095 
3096 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3097 
3098 	map->async = false;
3099 
3100 	map->unlock(map->lock_arg);
3101 
3102 	return ret;
3103 }
3104 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3105 
3106 /**
3107  * regmap_test_bits() - Check if all specified bits are set in a register.
3108  *
3109  * @map: Register map to operate on
3110  * @reg: Register to read from
3111  * @bits: Bits to test
3112  *
3113  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3114  * bits are set and a negative error number if the underlying regmap_read()
3115  * fails.
3116  */
3117 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3118 {
3119 	unsigned int val, ret;
3120 
3121 	ret = regmap_read(map, reg, &val);
3122 	if (ret)
3123 		return ret;
3124 
3125 	return (val & bits) == bits;
3126 }
3127 EXPORT_SYMBOL_GPL(regmap_test_bits);
3128 
3129 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3130 {
3131 	struct regmap *map = async->map;
3132 	bool wake;
3133 
3134 	trace_regmap_async_io_complete(map);
3135 
3136 	spin_lock(&map->async_lock);
3137 	list_move(&async->list, &map->async_free);
3138 	wake = list_empty(&map->async_list);
3139 
3140 	if (ret != 0)
3141 		map->async_ret = ret;
3142 
3143 	spin_unlock(&map->async_lock);
3144 
3145 	if (wake)
3146 		wake_up(&map->async_waitq);
3147 }
3148 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3149 
3150 static int regmap_async_is_done(struct regmap *map)
3151 {
3152 	unsigned long flags;
3153 	int ret;
3154 
3155 	spin_lock_irqsave(&map->async_lock, flags);
3156 	ret = list_empty(&map->async_list);
3157 	spin_unlock_irqrestore(&map->async_lock, flags);
3158 
3159 	return ret;
3160 }
3161 
3162 /**
3163  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3164  *
3165  * @map: Map to operate on.
3166  *
3167  * Blocks until any pending asynchronous I/O has completed.  Returns
3168  * an error code for any failed I/O operations.
3169  */
3170 int regmap_async_complete(struct regmap *map)
3171 {
3172 	unsigned long flags;
3173 	int ret;
3174 
3175 	/* Nothing to do with no async support */
3176 	if (!map->bus || !map->bus->async_write)
3177 		return 0;
3178 
3179 	trace_regmap_async_complete_start(map);
3180 
3181 	wait_event(map->async_waitq, regmap_async_is_done(map));
3182 
3183 	spin_lock_irqsave(&map->async_lock, flags);
3184 	ret = map->async_ret;
3185 	map->async_ret = 0;
3186 	spin_unlock_irqrestore(&map->async_lock, flags);
3187 
3188 	trace_regmap_async_complete_done(map);
3189 
3190 	return ret;
3191 }
3192 EXPORT_SYMBOL_GPL(regmap_async_complete);
3193 
3194 /**
3195  * regmap_register_patch - Register and apply register updates to be applied
3196  *                         on device initialistion
3197  *
3198  * @map: Register map to apply updates to.
3199  * @regs: Values to update.
3200  * @num_regs: Number of entries in regs.
3201  *
3202  * Register a set of register updates to be applied to the device
3203  * whenever the device registers are synchronised with the cache and
3204  * apply them immediately.  Typically this is used to apply
3205  * corrections to be applied to the device defaults on startup, such
3206  * as the updates some vendors provide to undocumented registers.
3207  *
3208  * The caller must ensure that this function cannot be called
3209  * concurrently with either itself or regcache_sync().
3210  */
3211 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3212 			  int num_regs)
3213 {
3214 	struct reg_sequence *p;
3215 	int ret;
3216 	bool bypass;
3217 
3218 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3219 	    num_regs))
3220 		return 0;
3221 
3222 	p = krealloc(map->patch,
3223 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3224 		     GFP_KERNEL);
3225 	if (p) {
3226 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3227 		map->patch = p;
3228 		map->patch_regs += num_regs;
3229 	} else {
3230 		return -ENOMEM;
3231 	}
3232 
3233 	map->lock(map->lock_arg);
3234 
3235 	bypass = map->cache_bypass;
3236 
3237 	map->cache_bypass = true;
3238 	map->async = true;
3239 
3240 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3241 
3242 	map->async = false;
3243 	map->cache_bypass = bypass;
3244 
3245 	map->unlock(map->lock_arg);
3246 
3247 	regmap_async_complete(map);
3248 
3249 	return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(regmap_register_patch);
3252 
3253 /**
3254  * regmap_get_val_bytes() - Report the size of a register value
3255  *
3256  * @map: Register map to operate on.
3257  *
3258  * Report the size of a register value, mainly intended to for use by
3259  * generic infrastructure built on top of regmap.
3260  */
3261 int regmap_get_val_bytes(struct regmap *map)
3262 {
3263 	if (map->format.format_write)
3264 		return -EINVAL;
3265 
3266 	return map->format.val_bytes;
3267 }
3268 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3269 
3270 /**
3271  * regmap_get_max_register() - Report the max register value
3272  *
3273  * @map: Register map to operate on.
3274  *
3275  * Report the max register value, mainly intended to for use by
3276  * generic infrastructure built on top of regmap.
3277  */
3278 int regmap_get_max_register(struct regmap *map)
3279 {
3280 	return map->max_register ? map->max_register : -EINVAL;
3281 }
3282 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3283 
3284 /**
3285  * regmap_get_reg_stride() - Report the register address stride
3286  *
3287  * @map: Register map to operate on.
3288  *
3289  * Report the register address stride, mainly intended to for use by
3290  * generic infrastructure built on top of regmap.
3291  */
3292 int regmap_get_reg_stride(struct regmap *map)
3293 {
3294 	return map->reg_stride;
3295 }
3296 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3297 
3298 int regmap_parse_val(struct regmap *map, const void *buf,
3299 			unsigned int *val)
3300 {
3301 	if (!map->format.parse_val)
3302 		return -EINVAL;
3303 
3304 	*val = map->format.parse_val(buf);
3305 
3306 	return 0;
3307 }
3308 EXPORT_SYMBOL_GPL(regmap_parse_val);
3309 
3310 static int __init regmap_initcall(void)
3311 {
3312 	regmap_debugfs_initcall();
3313 
3314 	return 0;
3315 }
3316 postcore_initcall(regmap_initcall);
3317