xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 4c5a116a)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_2_6_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	*out = (reg << 6) | val;
218 }
219 
220 static void regmap_format_4_12_write(struct regmap *map,
221 				     unsigned int reg, unsigned int val)
222 {
223 	__be16 *out = map->work_buf;
224 	*out = cpu_to_be16((reg << 12) | val);
225 }
226 
227 static void regmap_format_7_9_write(struct regmap *map,
228 				    unsigned int reg, unsigned int val)
229 {
230 	__be16 *out = map->work_buf;
231 	*out = cpu_to_be16((reg << 9) | val);
232 }
233 
234 static void regmap_format_10_14_write(struct regmap *map,
235 				    unsigned int reg, unsigned int val)
236 {
237 	u8 *out = map->work_buf;
238 
239 	out[2] = val;
240 	out[1] = (val >> 8) | (reg << 6);
241 	out[0] = reg >> 2;
242 }
243 
244 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
245 {
246 	u8 *b = buf;
247 
248 	b[0] = val << shift;
249 }
250 
251 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
252 {
253 	put_unaligned_be16(val << shift, buf);
254 }
255 
256 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
257 {
258 	put_unaligned_le16(val << shift, buf);
259 }
260 
261 static void regmap_format_16_native(void *buf, unsigned int val,
262 				    unsigned int shift)
263 {
264 	u16 v = val << shift;
265 
266 	memcpy(buf, &v, sizeof(v));
267 }
268 
269 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
270 {
271 	u8 *b = buf;
272 
273 	val <<= shift;
274 
275 	b[0] = val >> 16;
276 	b[1] = val >> 8;
277 	b[2] = val;
278 }
279 
280 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
281 {
282 	put_unaligned_be32(val << shift, buf);
283 }
284 
285 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
286 {
287 	put_unaligned_le32(val << shift, buf);
288 }
289 
290 static void regmap_format_32_native(void *buf, unsigned int val,
291 				    unsigned int shift)
292 {
293 	u32 v = val << shift;
294 
295 	memcpy(buf, &v, sizeof(v));
296 }
297 
298 #ifdef CONFIG_64BIT
299 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
300 {
301 	put_unaligned_be64((u64) val << shift, buf);
302 }
303 
304 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
305 {
306 	put_unaligned_le64((u64) val << shift, buf);
307 }
308 
309 static void regmap_format_64_native(void *buf, unsigned int val,
310 				    unsigned int shift)
311 {
312 	u64 v = (u64) val << shift;
313 
314 	memcpy(buf, &v, sizeof(v));
315 }
316 #endif
317 
318 static void regmap_parse_inplace_noop(void *buf)
319 {
320 }
321 
322 static unsigned int regmap_parse_8(const void *buf)
323 {
324 	const u8 *b = buf;
325 
326 	return b[0];
327 }
328 
329 static unsigned int regmap_parse_16_be(const void *buf)
330 {
331 	return get_unaligned_be16(buf);
332 }
333 
334 static unsigned int regmap_parse_16_le(const void *buf)
335 {
336 	return get_unaligned_le16(buf);
337 }
338 
339 static void regmap_parse_16_be_inplace(void *buf)
340 {
341 	u16 v = get_unaligned_be16(buf);
342 
343 	memcpy(buf, &v, sizeof(v));
344 }
345 
346 static void regmap_parse_16_le_inplace(void *buf)
347 {
348 	u16 v = get_unaligned_le16(buf);
349 
350 	memcpy(buf, &v, sizeof(v));
351 }
352 
353 static unsigned int regmap_parse_16_native(const void *buf)
354 {
355 	u16 v;
356 
357 	memcpy(&v, buf, sizeof(v));
358 	return v;
359 }
360 
361 static unsigned int regmap_parse_24(const void *buf)
362 {
363 	const u8 *b = buf;
364 	unsigned int ret = b[2];
365 	ret |= ((unsigned int)b[1]) << 8;
366 	ret |= ((unsigned int)b[0]) << 16;
367 
368 	return ret;
369 }
370 
371 static unsigned int regmap_parse_32_be(const void *buf)
372 {
373 	return get_unaligned_be32(buf);
374 }
375 
376 static unsigned int regmap_parse_32_le(const void *buf)
377 {
378 	return get_unaligned_le32(buf);
379 }
380 
381 static void regmap_parse_32_be_inplace(void *buf)
382 {
383 	u32 v = get_unaligned_be32(buf);
384 
385 	memcpy(buf, &v, sizeof(v));
386 }
387 
388 static void regmap_parse_32_le_inplace(void *buf)
389 {
390 	u32 v = get_unaligned_le32(buf);
391 
392 	memcpy(buf, &v, sizeof(v));
393 }
394 
395 static unsigned int regmap_parse_32_native(const void *buf)
396 {
397 	u32 v;
398 
399 	memcpy(&v, buf, sizeof(v));
400 	return v;
401 }
402 
403 #ifdef CONFIG_64BIT
404 static unsigned int regmap_parse_64_be(const void *buf)
405 {
406 	return get_unaligned_be64(buf);
407 }
408 
409 static unsigned int regmap_parse_64_le(const void *buf)
410 {
411 	return get_unaligned_le64(buf);
412 }
413 
414 static void regmap_parse_64_be_inplace(void *buf)
415 {
416 	u64 v =  get_unaligned_be64(buf);
417 
418 	memcpy(buf, &v, sizeof(v));
419 }
420 
421 static void regmap_parse_64_le_inplace(void *buf)
422 {
423 	u64 v = get_unaligned_le64(buf);
424 
425 	memcpy(buf, &v, sizeof(v));
426 }
427 
428 static unsigned int regmap_parse_64_native(const void *buf)
429 {
430 	u64 v;
431 
432 	memcpy(&v, buf, sizeof(v));
433 	return v;
434 }
435 #endif
436 
437 static void regmap_lock_hwlock(void *__map)
438 {
439 	struct regmap *map = __map;
440 
441 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
442 }
443 
444 static void regmap_lock_hwlock_irq(void *__map)
445 {
446 	struct regmap *map = __map;
447 
448 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
449 }
450 
451 static void regmap_lock_hwlock_irqsave(void *__map)
452 {
453 	struct regmap *map = __map;
454 
455 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
456 				    &map->spinlock_flags);
457 }
458 
459 static void regmap_unlock_hwlock(void *__map)
460 {
461 	struct regmap *map = __map;
462 
463 	hwspin_unlock(map->hwlock);
464 }
465 
466 static void regmap_unlock_hwlock_irq(void *__map)
467 {
468 	struct regmap *map = __map;
469 
470 	hwspin_unlock_irq(map->hwlock);
471 }
472 
473 static void regmap_unlock_hwlock_irqrestore(void *__map)
474 {
475 	struct regmap *map = __map;
476 
477 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
478 }
479 
480 static void regmap_lock_unlock_none(void *__map)
481 {
482 
483 }
484 
485 static void regmap_lock_mutex(void *__map)
486 {
487 	struct regmap *map = __map;
488 	mutex_lock(&map->mutex);
489 }
490 
491 static void regmap_unlock_mutex(void *__map)
492 {
493 	struct regmap *map = __map;
494 	mutex_unlock(&map->mutex);
495 }
496 
497 static void regmap_lock_spinlock(void *__map)
498 __acquires(&map->spinlock)
499 {
500 	struct regmap *map = __map;
501 	unsigned long flags;
502 
503 	spin_lock_irqsave(&map->spinlock, flags);
504 	map->spinlock_flags = flags;
505 }
506 
507 static void regmap_unlock_spinlock(void *__map)
508 __releases(&map->spinlock)
509 {
510 	struct regmap *map = __map;
511 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
512 }
513 
514 static void dev_get_regmap_release(struct device *dev, void *res)
515 {
516 	/*
517 	 * We don't actually have anything to do here; the goal here
518 	 * is not to manage the regmap but to provide a simple way to
519 	 * get the regmap back given a struct device.
520 	 */
521 }
522 
523 static bool _regmap_range_add(struct regmap *map,
524 			      struct regmap_range_node *data)
525 {
526 	struct rb_root *root = &map->range_tree;
527 	struct rb_node **new = &(root->rb_node), *parent = NULL;
528 
529 	while (*new) {
530 		struct regmap_range_node *this =
531 			rb_entry(*new, struct regmap_range_node, node);
532 
533 		parent = *new;
534 		if (data->range_max < this->range_min)
535 			new = &((*new)->rb_left);
536 		else if (data->range_min > this->range_max)
537 			new = &((*new)->rb_right);
538 		else
539 			return false;
540 	}
541 
542 	rb_link_node(&data->node, parent, new);
543 	rb_insert_color(&data->node, root);
544 
545 	return true;
546 }
547 
548 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
549 						      unsigned int reg)
550 {
551 	struct rb_node *node = map->range_tree.rb_node;
552 
553 	while (node) {
554 		struct regmap_range_node *this =
555 			rb_entry(node, struct regmap_range_node, node);
556 
557 		if (reg < this->range_min)
558 			node = node->rb_left;
559 		else if (reg > this->range_max)
560 			node = node->rb_right;
561 		else
562 			return this;
563 	}
564 
565 	return NULL;
566 }
567 
568 static void regmap_range_exit(struct regmap *map)
569 {
570 	struct rb_node *next;
571 	struct regmap_range_node *range_node;
572 
573 	next = rb_first(&map->range_tree);
574 	while (next) {
575 		range_node = rb_entry(next, struct regmap_range_node, node);
576 		next = rb_next(&range_node->node);
577 		rb_erase(&range_node->node, &map->range_tree);
578 		kfree(range_node);
579 	}
580 
581 	kfree(map->selector_work_buf);
582 }
583 
584 int regmap_attach_dev(struct device *dev, struct regmap *map,
585 		      const struct regmap_config *config)
586 {
587 	struct regmap **m;
588 
589 	map->dev = dev;
590 
591 	regmap_debugfs_init(map, config->name);
592 
593 	/* Add a devres resource for dev_get_regmap() */
594 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
595 	if (!m) {
596 		regmap_debugfs_exit(map);
597 		return -ENOMEM;
598 	}
599 	*m = map;
600 	devres_add(dev, m);
601 
602 	return 0;
603 }
604 EXPORT_SYMBOL_GPL(regmap_attach_dev);
605 
606 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
607 					const struct regmap_config *config)
608 {
609 	enum regmap_endian endian;
610 
611 	/* Retrieve the endianness specification from the regmap config */
612 	endian = config->reg_format_endian;
613 
614 	/* If the regmap config specified a non-default value, use that */
615 	if (endian != REGMAP_ENDIAN_DEFAULT)
616 		return endian;
617 
618 	/* Retrieve the endianness specification from the bus config */
619 	if (bus && bus->reg_format_endian_default)
620 		endian = bus->reg_format_endian_default;
621 
622 	/* If the bus specified a non-default value, use that */
623 	if (endian != REGMAP_ENDIAN_DEFAULT)
624 		return endian;
625 
626 	/* Use this if no other value was found */
627 	return REGMAP_ENDIAN_BIG;
628 }
629 
630 enum regmap_endian regmap_get_val_endian(struct device *dev,
631 					 const struct regmap_bus *bus,
632 					 const struct regmap_config *config)
633 {
634 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
635 	enum regmap_endian endian;
636 
637 	/* Retrieve the endianness specification from the regmap config */
638 	endian = config->val_format_endian;
639 
640 	/* If the regmap config specified a non-default value, use that */
641 	if (endian != REGMAP_ENDIAN_DEFAULT)
642 		return endian;
643 
644 	/* If the firmware node exist try to get endianness from it */
645 	if (fwnode_property_read_bool(fwnode, "big-endian"))
646 		endian = REGMAP_ENDIAN_BIG;
647 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
648 		endian = REGMAP_ENDIAN_LITTLE;
649 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
650 		endian = REGMAP_ENDIAN_NATIVE;
651 
652 	/* If the endianness was specified in fwnode, use that */
653 	if (endian != REGMAP_ENDIAN_DEFAULT)
654 		return endian;
655 
656 	/* Retrieve the endianness specification from the bus config */
657 	if (bus && bus->val_format_endian_default)
658 		endian = bus->val_format_endian_default;
659 
660 	/* If the bus specified a non-default value, use that */
661 	if (endian != REGMAP_ENDIAN_DEFAULT)
662 		return endian;
663 
664 	/* Use this if no other value was found */
665 	return REGMAP_ENDIAN_BIG;
666 }
667 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
668 
669 struct regmap *__regmap_init(struct device *dev,
670 			     const struct regmap_bus *bus,
671 			     void *bus_context,
672 			     const struct regmap_config *config,
673 			     struct lock_class_key *lock_key,
674 			     const char *lock_name)
675 {
676 	struct regmap *map;
677 	int ret = -EINVAL;
678 	enum regmap_endian reg_endian, val_endian;
679 	int i, j;
680 
681 	if (!config)
682 		goto err;
683 
684 	map = kzalloc(sizeof(*map), GFP_KERNEL);
685 	if (map == NULL) {
686 		ret = -ENOMEM;
687 		goto err;
688 	}
689 
690 	if (config->name) {
691 		map->name = kstrdup_const(config->name, GFP_KERNEL);
692 		if (!map->name) {
693 			ret = -ENOMEM;
694 			goto err_map;
695 		}
696 	}
697 
698 	if (config->disable_locking) {
699 		map->lock = map->unlock = regmap_lock_unlock_none;
700 		regmap_debugfs_disable(map);
701 	} else if (config->lock && config->unlock) {
702 		map->lock = config->lock;
703 		map->unlock = config->unlock;
704 		map->lock_arg = config->lock_arg;
705 	} else if (config->use_hwlock) {
706 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
707 		if (!map->hwlock) {
708 			ret = -ENXIO;
709 			goto err_name;
710 		}
711 
712 		switch (config->hwlock_mode) {
713 		case HWLOCK_IRQSTATE:
714 			map->lock = regmap_lock_hwlock_irqsave;
715 			map->unlock = regmap_unlock_hwlock_irqrestore;
716 			break;
717 		case HWLOCK_IRQ:
718 			map->lock = regmap_lock_hwlock_irq;
719 			map->unlock = regmap_unlock_hwlock_irq;
720 			break;
721 		default:
722 			map->lock = regmap_lock_hwlock;
723 			map->unlock = regmap_unlock_hwlock;
724 			break;
725 		}
726 
727 		map->lock_arg = map;
728 	} else {
729 		if ((bus && bus->fast_io) ||
730 		    config->fast_io) {
731 			spin_lock_init(&map->spinlock);
732 			map->lock = regmap_lock_spinlock;
733 			map->unlock = regmap_unlock_spinlock;
734 			lockdep_set_class_and_name(&map->spinlock,
735 						   lock_key, lock_name);
736 		} else {
737 			mutex_init(&map->mutex);
738 			map->lock = regmap_lock_mutex;
739 			map->unlock = regmap_unlock_mutex;
740 			lockdep_set_class_and_name(&map->mutex,
741 						   lock_key, lock_name);
742 		}
743 		map->lock_arg = map;
744 	}
745 
746 	/*
747 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
748 	 * scratch buffers with sleeping allocations.
749 	 */
750 	if ((bus && bus->fast_io) || config->fast_io)
751 		map->alloc_flags = GFP_ATOMIC;
752 	else
753 		map->alloc_flags = GFP_KERNEL;
754 
755 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
756 	map->format.pad_bytes = config->pad_bits / 8;
757 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
758 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
759 			config->val_bits + config->pad_bits, 8);
760 	map->reg_shift = config->pad_bits % 8;
761 	if (config->reg_stride)
762 		map->reg_stride = config->reg_stride;
763 	else
764 		map->reg_stride = 1;
765 	if (is_power_of_2(map->reg_stride))
766 		map->reg_stride_order = ilog2(map->reg_stride);
767 	else
768 		map->reg_stride_order = -1;
769 	map->use_single_read = config->use_single_read || !bus || !bus->read;
770 	map->use_single_write = config->use_single_write || !bus || !bus->write;
771 	map->can_multi_write = config->can_multi_write && bus && bus->write;
772 	if (bus) {
773 		map->max_raw_read = bus->max_raw_read;
774 		map->max_raw_write = bus->max_raw_write;
775 	}
776 	map->dev = dev;
777 	map->bus = bus;
778 	map->bus_context = bus_context;
779 	map->max_register = config->max_register;
780 	map->wr_table = config->wr_table;
781 	map->rd_table = config->rd_table;
782 	map->volatile_table = config->volatile_table;
783 	map->precious_table = config->precious_table;
784 	map->wr_noinc_table = config->wr_noinc_table;
785 	map->rd_noinc_table = config->rd_noinc_table;
786 	map->writeable_reg = config->writeable_reg;
787 	map->readable_reg = config->readable_reg;
788 	map->volatile_reg = config->volatile_reg;
789 	map->precious_reg = config->precious_reg;
790 	map->writeable_noinc_reg = config->writeable_noinc_reg;
791 	map->readable_noinc_reg = config->readable_noinc_reg;
792 	map->cache_type = config->cache_type;
793 
794 	spin_lock_init(&map->async_lock);
795 	INIT_LIST_HEAD(&map->async_list);
796 	INIT_LIST_HEAD(&map->async_free);
797 	init_waitqueue_head(&map->async_waitq);
798 
799 	if (config->read_flag_mask ||
800 	    config->write_flag_mask ||
801 	    config->zero_flag_mask) {
802 		map->read_flag_mask = config->read_flag_mask;
803 		map->write_flag_mask = config->write_flag_mask;
804 	} else if (bus) {
805 		map->read_flag_mask = bus->read_flag_mask;
806 	}
807 
808 	if (!bus) {
809 		map->reg_read  = config->reg_read;
810 		map->reg_write = config->reg_write;
811 
812 		map->defer_caching = false;
813 		goto skip_format_initialization;
814 	} else if (!bus->read || !bus->write) {
815 		map->reg_read = _regmap_bus_reg_read;
816 		map->reg_write = _regmap_bus_reg_write;
817 		map->reg_update_bits = bus->reg_update_bits;
818 
819 		map->defer_caching = false;
820 		goto skip_format_initialization;
821 	} else {
822 		map->reg_read  = _regmap_bus_read;
823 		map->reg_update_bits = bus->reg_update_bits;
824 	}
825 
826 	reg_endian = regmap_get_reg_endian(bus, config);
827 	val_endian = regmap_get_val_endian(dev, bus, config);
828 
829 	switch (config->reg_bits + map->reg_shift) {
830 	case 2:
831 		switch (config->val_bits) {
832 		case 6:
833 			map->format.format_write = regmap_format_2_6_write;
834 			break;
835 		default:
836 			goto err_hwlock;
837 		}
838 		break;
839 
840 	case 4:
841 		switch (config->val_bits) {
842 		case 12:
843 			map->format.format_write = regmap_format_4_12_write;
844 			break;
845 		default:
846 			goto err_hwlock;
847 		}
848 		break;
849 
850 	case 7:
851 		switch (config->val_bits) {
852 		case 9:
853 			map->format.format_write = regmap_format_7_9_write;
854 			break;
855 		default:
856 			goto err_hwlock;
857 		}
858 		break;
859 
860 	case 10:
861 		switch (config->val_bits) {
862 		case 14:
863 			map->format.format_write = regmap_format_10_14_write;
864 			break;
865 		default:
866 			goto err_hwlock;
867 		}
868 		break;
869 
870 	case 8:
871 		map->format.format_reg = regmap_format_8;
872 		break;
873 
874 	case 16:
875 		switch (reg_endian) {
876 		case REGMAP_ENDIAN_BIG:
877 			map->format.format_reg = regmap_format_16_be;
878 			break;
879 		case REGMAP_ENDIAN_LITTLE:
880 			map->format.format_reg = regmap_format_16_le;
881 			break;
882 		case REGMAP_ENDIAN_NATIVE:
883 			map->format.format_reg = regmap_format_16_native;
884 			break;
885 		default:
886 			goto err_hwlock;
887 		}
888 		break;
889 
890 	case 24:
891 		if (reg_endian != REGMAP_ENDIAN_BIG)
892 			goto err_hwlock;
893 		map->format.format_reg = regmap_format_24;
894 		break;
895 
896 	case 32:
897 		switch (reg_endian) {
898 		case REGMAP_ENDIAN_BIG:
899 			map->format.format_reg = regmap_format_32_be;
900 			break;
901 		case REGMAP_ENDIAN_LITTLE:
902 			map->format.format_reg = regmap_format_32_le;
903 			break;
904 		case REGMAP_ENDIAN_NATIVE:
905 			map->format.format_reg = regmap_format_32_native;
906 			break;
907 		default:
908 			goto err_hwlock;
909 		}
910 		break;
911 
912 #ifdef CONFIG_64BIT
913 	case 64:
914 		switch (reg_endian) {
915 		case REGMAP_ENDIAN_BIG:
916 			map->format.format_reg = regmap_format_64_be;
917 			break;
918 		case REGMAP_ENDIAN_LITTLE:
919 			map->format.format_reg = regmap_format_64_le;
920 			break;
921 		case REGMAP_ENDIAN_NATIVE:
922 			map->format.format_reg = regmap_format_64_native;
923 			break;
924 		default:
925 			goto err_hwlock;
926 		}
927 		break;
928 #endif
929 
930 	default:
931 		goto err_hwlock;
932 	}
933 
934 	if (val_endian == REGMAP_ENDIAN_NATIVE)
935 		map->format.parse_inplace = regmap_parse_inplace_noop;
936 
937 	switch (config->val_bits) {
938 	case 8:
939 		map->format.format_val = regmap_format_8;
940 		map->format.parse_val = regmap_parse_8;
941 		map->format.parse_inplace = regmap_parse_inplace_noop;
942 		break;
943 	case 16:
944 		switch (val_endian) {
945 		case REGMAP_ENDIAN_BIG:
946 			map->format.format_val = regmap_format_16_be;
947 			map->format.parse_val = regmap_parse_16_be;
948 			map->format.parse_inplace = regmap_parse_16_be_inplace;
949 			break;
950 		case REGMAP_ENDIAN_LITTLE:
951 			map->format.format_val = regmap_format_16_le;
952 			map->format.parse_val = regmap_parse_16_le;
953 			map->format.parse_inplace = regmap_parse_16_le_inplace;
954 			break;
955 		case REGMAP_ENDIAN_NATIVE:
956 			map->format.format_val = regmap_format_16_native;
957 			map->format.parse_val = regmap_parse_16_native;
958 			break;
959 		default:
960 			goto err_hwlock;
961 		}
962 		break;
963 	case 24:
964 		if (val_endian != REGMAP_ENDIAN_BIG)
965 			goto err_hwlock;
966 		map->format.format_val = regmap_format_24;
967 		map->format.parse_val = regmap_parse_24;
968 		break;
969 	case 32:
970 		switch (val_endian) {
971 		case REGMAP_ENDIAN_BIG:
972 			map->format.format_val = regmap_format_32_be;
973 			map->format.parse_val = regmap_parse_32_be;
974 			map->format.parse_inplace = regmap_parse_32_be_inplace;
975 			break;
976 		case REGMAP_ENDIAN_LITTLE:
977 			map->format.format_val = regmap_format_32_le;
978 			map->format.parse_val = regmap_parse_32_le;
979 			map->format.parse_inplace = regmap_parse_32_le_inplace;
980 			break;
981 		case REGMAP_ENDIAN_NATIVE:
982 			map->format.format_val = regmap_format_32_native;
983 			map->format.parse_val = regmap_parse_32_native;
984 			break;
985 		default:
986 			goto err_hwlock;
987 		}
988 		break;
989 #ifdef CONFIG_64BIT
990 	case 64:
991 		switch (val_endian) {
992 		case REGMAP_ENDIAN_BIG:
993 			map->format.format_val = regmap_format_64_be;
994 			map->format.parse_val = regmap_parse_64_be;
995 			map->format.parse_inplace = regmap_parse_64_be_inplace;
996 			break;
997 		case REGMAP_ENDIAN_LITTLE:
998 			map->format.format_val = regmap_format_64_le;
999 			map->format.parse_val = regmap_parse_64_le;
1000 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1001 			break;
1002 		case REGMAP_ENDIAN_NATIVE:
1003 			map->format.format_val = regmap_format_64_native;
1004 			map->format.parse_val = regmap_parse_64_native;
1005 			break;
1006 		default:
1007 			goto err_hwlock;
1008 		}
1009 		break;
1010 #endif
1011 	}
1012 
1013 	if (map->format.format_write) {
1014 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1015 		    (val_endian != REGMAP_ENDIAN_BIG))
1016 			goto err_hwlock;
1017 		map->use_single_write = true;
1018 	}
1019 
1020 	if (!map->format.format_write &&
1021 	    !(map->format.format_reg && map->format.format_val))
1022 		goto err_hwlock;
1023 
1024 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1025 	if (map->work_buf == NULL) {
1026 		ret = -ENOMEM;
1027 		goto err_hwlock;
1028 	}
1029 
1030 	if (map->format.format_write) {
1031 		map->defer_caching = false;
1032 		map->reg_write = _regmap_bus_formatted_write;
1033 	} else if (map->format.format_val) {
1034 		map->defer_caching = true;
1035 		map->reg_write = _regmap_bus_raw_write;
1036 	}
1037 
1038 skip_format_initialization:
1039 
1040 	map->range_tree = RB_ROOT;
1041 	for (i = 0; i < config->num_ranges; i++) {
1042 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1043 		struct regmap_range_node *new;
1044 
1045 		/* Sanity check */
1046 		if (range_cfg->range_max < range_cfg->range_min) {
1047 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1048 				range_cfg->range_max, range_cfg->range_min);
1049 			goto err_range;
1050 		}
1051 
1052 		if (range_cfg->range_max > map->max_register) {
1053 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1054 				range_cfg->range_max, map->max_register);
1055 			goto err_range;
1056 		}
1057 
1058 		if (range_cfg->selector_reg > map->max_register) {
1059 			dev_err(map->dev,
1060 				"Invalid range %d: selector out of map\n", i);
1061 			goto err_range;
1062 		}
1063 
1064 		if (range_cfg->window_len == 0) {
1065 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1066 				i);
1067 			goto err_range;
1068 		}
1069 
1070 		/* Make sure, that this register range has no selector
1071 		   or data window within its boundary */
1072 		for (j = 0; j < config->num_ranges; j++) {
1073 			unsigned sel_reg = config->ranges[j].selector_reg;
1074 			unsigned win_min = config->ranges[j].window_start;
1075 			unsigned win_max = win_min +
1076 					   config->ranges[j].window_len - 1;
1077 
1078 			/* Allow data window inside its own virtual range */
1079 			if (j == i)
1080 				continue;
1081 
1082 			if (range_cfg->range_min <= sel_reg &&
1083 			    sel_reg <= range_cfg->range_max) {
1084 				dev_err(map->dev,
1085 					"Range %d: selector for %d in window\n",
1086 					i, j);
1087 				goto err_range;
1088 			}
1089 
1090 			if (!(win_max < range_cfg->range_min ||
1091 			      win_min > range_cfg->range_max)) {
1092 				dev_err(map->dev,
1093 					"Range %d: window for %d in window\n",
1094 					i, j);
1095 				goto err_range;
1096 			}
1097 		}
1098 
1099 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1100 		if (new == NULL) {
1101 			ret = -ENOMEM;
1102 			goto err_range;
1103 		}
1104 
1105 		new->map = map;
1106 		new->name = range_cfg->name;
1107 		new->range_min = range_cfg->range_min;
1108 		new->range_max = range_cfg->range_max;
1109 		new->selector_reg = range_cfg->selector_reg;
1110 		new->selector_mask = range_cfg->selector_mask;
1111 		new->selector_shift = range_cfg->selector_shift;
1112 		new->window_start = range_cfg->window_start;
1113 		new->window_len = range_cfg->window_len;
1114 
1115 		if (!_regmap_range_add(map, new)) {
1116 			dev_err(map->dev, "Failed to add range %d\n", i);
1117 			kfree(new);
1118 			goto err_range;
1119 		}
1120 
1121 		if (map->selector_work_buf == NULL) {
1122 			map->selector_work_buf =
1123 				kzalloc(map->format.buf_size, GFP_KERNEL);
1124 			if (map->selector_work_buf == NULL) {
1125 				ret = -ENOMEM;
1126 				goto err_range;
1127 			}
1128 		}
1129 	}
1130 
1131 	ret = regcache_init(map, config);
1132 	if (ret != 0)
1133 		goto err_range;
1134 
1135 	if (dev) {
1136 		ret = regmap_attach_dev(dev, map, config);
1137 		if (ret != 0)
1138 			goto err_regcache;
1139 	} else {
1140 		regmap_debugfs_init(map, config->name);
1141 	}
1142 
1143 	return map;
1144 
1145 err_regcache:
1146 	regcache_exit(map);
1147 err_range:
1148 	regmap_range_exit(map);
1149 	kfree(map->work_buf);
1150 err_hwlock:
1151 	if (map->hwlock)
1152 		hwspin_lock_free(map->hwlock);
1153 err_name:
1154 	kfree_const(map->name);
1155 err_map:
1156 	kfree(map);
1157 err:
1158 	return ERR_PTR(ret);
1159 }
1160 EXPORT_SYMBOL_GPL(__regmap_init);
1161 
1162 static void devm_regmap_release(struct device *dev, void *res)
1163 {
1164 	regmap_exit(*(struct regmap **)res);
1165 }
1166 
1167 struct regmap *__devm_regmap_init(struct device *dev,
1168 				  const struct regmap_bus *bus,
1169 				  void *bus_context,
1170 				  const struct regmap_config *config,
1171 				  struct lock_class_key *lock_key,
1172 				  const char *lock_name)
1173 {
1174 	struct regmap **ptr, *regmap;
1175 
1176 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1177 	if (!ptr)
1178 		return ERR_PTR(-ENOMEM);
1179 
1180 	regmap = __regmap_init(dev, bus, bus_context, config,
1181 			       lock_key, lock_name);
1182 	if (!IS_ERR(regmap)) {
1183 		*ptr = regmap;
1184 		devres_add(dev, ptr);
1185 	} else {
1186 		devres_free(ptr);
1187 	}
1188 
1189 	return regmap;
1190 }
1191 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1192 
1193 static void regmap_field_init(struct regmap_field *rm_field,
1194 	struct regmap *regmap, struct reg_field reg_field)
1195 {
1196 	rm_field->regmap = regmap;
1197 	rm_field->reg = reg_field.reg;
1198 	rm_field->shift = reg_field.lsb;
1199 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1200 	rm_field->id_size = reg_field.id_size;
1201 	rm_field->id_offset = reg_field.id_offset;
1202 }
1203 
1204 /**
1205  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1206  *
1207  * @dev: Device that will be interacted with
1208  * @regmap: regmap bank in which this register field is located.
1209  * @reg_field: Register field with in the bank.
1210  *
1211  * The return value will be an ERR_PTR() on error or a valid pointer
1212  * to a struct regmap_field. The regmap_field will be automatically freed
1213  * by the device management code.
1214  */
1215 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1216 		struct regmap *regmap, struct reg_field reg_field)
1217 {
1218 	struct regmap_field *rm_field = devm_kzalloc(dev,
1219 					sizeof(*rm_field), GFP_KERNEL);
1220 	if (!rm_field)
1221 		return ERR_PTR(-ENOMEM);
1222 
1223 	regmap_field_init(rm_field, regmap, reg_field);
1224 
1225 	return rm_field;
1226 
1227 }
1228 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1229 
1230 /**
1231  * devm_regmap_field_free() - Free a register field allocated using
1232  *                            devm_regmap_field_alloc.
1233  *
1234  * @dev: Device that will be interacted with
1235  * @field: regmap field which should be freed.
1236  *
1237  * Free register field allocated using devm_regmap_field_alloc(). Usually
1238  * drivers need not call this function, as the memory allocated via devm
1239  * will be freed as per device-driver life-cyle.
1240  */
1241 void devm_regmap_field_free(struct device *dev,
1242 	struct regmap_field *field)
1243 {
1244 	devm_kfree(dev, field);
1245 }
1246 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1247 
1248 /**
1249  * regmap_field_alloc() - Allocate and initialise a register field.
1250  *
1251  * @regmap: regmap bank in which this register field is located.
1252  * @reg_field: Register field with in the bank.
1253  *
1254  * The return value will be an ERR_PTR() on error or a valid pointer
1255  * to a struct regmap_field. The regmap_field should be freed by the
1256  * user once its finished working with it using regmap_field_free().
1257  */
1258 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1259 		struct reg_field reg_field)
1260 {
1261 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1262 
1263 	if (!rm_field)
1264 		return ERR_PTR(-ENOMEM);
1265 
1266 	regmap_field_init(rm_field, regmap, reg_field);
1267 
1268 	return rm_field;
1269 }
1270 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1271 
1272 /**
1273  * regmap_field_free() - Free register field allocated using
1274  *                       regmap_field_alloc.
1275  *
1276  * @field: regmap field which should be freed.
1277  */
1278 void regmap_field_free(struct regmap_field *field)
1279 {
1280 	kfree(field);
1281 }
1282 EXPORT_SYMBOL_GPL(regmap_field_free);
1283 
1284 /**
1285  * regmap_reinit_cache() - Reinitialise the current register cache
1286  *
1287  * @map: Register map to operate on.
1288  * @config: New configuration.  Only the cache data will be used.
1289  *
1290  * Discard any existing register cache for the map and initialize a
1291  * new cache.  This can be used to restore the cache to defaults or to
1292  * update the cache configuration to reflect runtime discovery of the
1293  * hardware.
1294  *
1295  * No explicit locking is done here, the user needs to ensure that
1296  * this function will not race with other calls to regmap.
1297  */
1298 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1299 {
1300 	regcache_exit(map);
1301 	regmap_debugfs_exit(map);
1302 
1303 	map->max_register = config->max_register;
1304 	map->writeable_reg = config->writeable_reg;
1305 	map->readable_reg = config->readable_reg;
1306 	map->volatile_reg = config->volatile_reg;
1307 	map->precious_reg = config->precious_reg;
1308 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1309 	map->readable_noinc_reg = config->readable_noinc_reg;
1310 	map->cache_type = config->cache_type;
1311 
1312 	regmap_debugfs_init(map, config->name);
1313 
1314 	map->cache_bypass = false;
1315 	map->cache_only = false;
1316 
1317 	return regcache_init(map, config);
1318 }
1319 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1320 
1321 /**
1322  * regmap_exit() - Free a previously allocated register map
1323  *
1324  * @map: Register map to operate on.
1325  */
1326 void regmap_exit(struct regmap *map)
1327 {
1328 	struct regmap_async *async;
1329 
1330 	regcache_exit(map);
1331 	regmap_debugfs_exit(map);
1332 	regmap_range_exit(map);
1333 	if (map->bus && map->bus->free_context)
1334 		map->bus->free_context(map->bus_context);
1335 	kfree(map->work_buf);
1336 	while (!list_empty(&map->async_free)) {
1337 		async = list_first_entry_or_null(&map->async_free,
1338 						 struct regmap_async,
1339 						 list);
1340 		list_del(&async->list);
1341 		kfree(async->work_buf);
1342 		kfree(async);
1343 	}
1344 	if (map->hwlock)
1345 		hwspin_lock_free(map->hwlock);
1346 	kfree_const(map->name);
1347 	kfree(map->patch);
1348 	kfree(map);
1349 }
1350 EXPORT_SYMBOL_GPL(regmap_exit);
1351 
1352 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1353 {
1354 	struct regmap **r = res;
1355 	if (!r || !*r) {
1356 		WARN_ON(!r || !*r);
1357 		return 0;
1358 	}
1359 
1360 	/* If the user didn't specify a name match any */
1361 	if (data)
1362 		return !strcmp((*r)->name, data);
1363 	else
1364 		return 1;
1365 }
1366 
1367 /**
1368  * dev_get_regmap() - Obtain the regmap (if any) for a device
1369  *
1370  * @dev: Device to retrieve the map for
1371  * @name: Optional name for the register map, usually NULL.
1372  *
1373  * Returns the regmap for the device if one is present, or NULL.  If
1374  * name is specified then it must match the name specified when
1375  * registering the device, if it is NULL then the first regmap found
1376  * will be used.  Devices with multiple register maps are very rare,
1377  * generic code should normally not need to specify a name.
1378  */
1379 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1380 {
1381 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1382 					dev_get_regmap_match, (void *)name);
1383 
1384 	if (!r)
1385 		return NULL;
1386 	return *r;
1387 }
1388 EXPORT_SYMBOL_GPL(dev_get_regmap);
1389 
1390 /**
1391  * regmap_get_device() - Obtain the device from a regmap
1392  *
1393  * @map: Register map to operate on.
1394  *
1395  * Returns the underlying device that the regmap has been created for.
1396  */
1397 struct device *regmap_get_device(struct regmap *map)
1398 {
1399 	return map->dev;
1400 }
1401 EXPORT_SYMBOL_GPL(regmap_get_device);
1402 
1403 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1404 			       struct regmap_range_node *range,
1405 			       unsigned int val_num)
1406 {
1407 	void *orig_work_buf;
1408 	unsigned int win_offset;
1409 	unsigned int win_page;
1410 	bool page_chg;
1411 	int ret;
1412 
1413 	win_offset = (*reg - range->range_min) % range->window_len;
1414 	win_page = (*reg - range->range_min) / range->window_len;
1415 
1416 	if (val_num > 1) {
1417 		/* Bulk write shouldn't cross range boundary */
1418 		if (*reg + val_num - 1 > range->range_max)
1419 			return -EINVAL;
1420 
1421 		/* ... or single page boundary */
1422 		if (val_num > range->window_len - win_offset)
1423 			return -EINVAL;
1424 	}
1425 
1426 	/* It is possible to have selector register inside data window.
1427 	   In that case, selector register is located on every page and
1428 	   it needs no page switching, when accessed alone. */
1429 	if (val_num > 1 ||
1430 	    range->window_start + win_offset != range->selector_reg) {
1431 		/* Use separate work_buf during page switching */
1432 		orig_work_buf = map->work_buf;
1433 		map->work_buf = map->selector_work_buf;
1434 
1435 		ret = _regmap_update_bits(map, range->selector_reg,
1436 					  range->selector_mask,
1437 					  win_page << range->selector_shift,
1438 					  &page_chg, false);
1439 
1440 		map->work_buf = orig_work_buf;
1441 
1442 		if (ret != 0)
1443 			return ret;
1444 	}
1445 
1446 	*reg = range->window_start + win_offset;
1447 
1448 	return 0;
1449 }
1450 
1451 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1452 					  unsigned long mask)
1453 {
1454 	u8 *buf;
1455 	int i;
1456 
1457 	if (!mask || !map->work_buf)
1458 		return;
1459 
1460 	buf = map->work_buf;
1461 
1462 	for (i = 0; i < max_bytes; i++)
1463 		buf[i] |= (mask >> (8 * i)) & 0xff;
1464 }
1465 
1466 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1467 				  const void *val, size_t val_len)
1468 {
1469 	struct regmap_range_node *range;
1470 	unsigned long flags;
1471 	void *work_val = map->work_buf + map->format.reg_bytes +
1472 		map->format.pad_bytes;
1473 	void *buf;
1474 	int ret = -ENOTSUPP;
1475 	size_t len;
1476 	int i;
1477 
1478 	WARN_ON(!map->bus);
1479 
1480 	/* Check for unwritable or noinc registers in range
1481 	 * before we start
1482 	 */
1483 	if (!regmap_writeable_noinc(map, reg)) {
1484 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1485 			unsigned int element =
1486 				reg + regmap_get_offset(map, i);
1487 			if (!regmap_writeable(map, element) ||
1488 				regmap_writeable_noinc(map, element))
1489 				return -EINVAL;
1490 		}
1491 	}
1492 
1493 	if (!map->cache_bypass && map->format.parse_val) {
1494 		unsigned int ival;
1495 		int val_bytes = map->format.val_bytes;
1496 		for (i = 0; i < val_len / val_bytes; i++) {
1497 			ival = map->format.parse_val(val + (i * val_bytes));
1498 			ret = regcache_write(map,
1499 					     reg + regmap_get_offset(map, i),
1500 					     ival);
1501 			if (ret) {
1502 				dev_err(map->dev,
1503 					"Error in caching of register: %x ret: %d\n",
1504 					reg + i, ret);
1505 				return ret;
1506 			}
1507 		}
1508 		if (map->cache_only) {
1509 			map->cache_dirty = true;
1510 			return 0;
1511 		}
1512 	}
1513 
1514 	range = _regmap_range_lookup(map, reg);
1515 	if (range) {
1516 		int val_num = val_len / map->format.val_bytes;
1517 		int win_offset = (reg - range->range_min) % range->window_len;
1518 		int win_residue = range->window_len - win_offset;
1519 
1520 		/* If the write goes beyond the end of the window split it */
1521 		while (val_num > win_residue) {
1522 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1523 				win_residue, val_len / map->format.val_bytes);
1524 			ret = _regmap_raw_write_impl(map, reg, val,
1525 						     win_residue *
1526 						     map->format.val_bytes);
1527 			if (ret != 0)
1528 				return ret;
1529 
1530 			reg += win_residue;
1531 			val_num -= win_residue;
1532 			val += win_residue * map->format.val_bytes;
1533 			val_len -= win_residue * map->format.val_bytes;
1534 
1535 			win_offset = (reg - range->range_min) %
1536 				range->window_len;
1537 			win_residue = range->window_len - win_offset;
1538 		}
1539 
1540 		ret = _regmap_select_page(map, &reg, range, val_num);
1541 		if (ret != 0)
1542 			return ret;
1543 	}
1544 
1545 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1546 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1547 				      map->write_flag_mask);
1548 
1549 	/*
1550 	 * Essentially all I/O mechanisms will be faster with a single
1551 	 * buffer to write.  Since register syncs often generate raw
1552 	 * writes of single registers optimise that case.
1553 	 */
1554 	if (val != work_val && val_len == map->format.val_bytes) {
1555 		memcpy(work_val, val, map->format.val_bytes);
1556 		val = work_val;
1557 	}
1558 
1559 	if (map->async && map->bus->async_write) {
1560 		struct regmap_async *async;
1561 
1562 		trace_regmap_async_write_start(map, reg, val_len);
1563 
1564 		spin_lock_irqsave(&map->async_lock, flags);
1565 		async = list_first_entry_or_null(&map->async_free,
1566 						 struct regmap_async,
1567 						 list);
1568 		if (async)
1569 			list_del(&async->list);
1570 		spin_unlock_irqrestore(&map->async_lock, flags);
1571 
1572 		if (!async) {
1573 			async = map->bus->async_alloc();
1574 			if (!async)
1575 				return -ENOMEM;
1576 
1577 			async->work_buf = kzalloc(map->format.buf_size,
1578 						  GFP_KERNEL | GFP_DMA);
1579 			if (!async->work_buf) {
1580 				kfree(async);
1581 				return -ENOMEM;
1582 			}
1583 		}
1584 
1585 		async->map = map;
1586 
1587 		/* If the caller supplied the value we can use it safely. */
1588 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1589 		       map->format.reg_bytes + map->format.val_bytes);
1590 
1591 		spin_lock_irqsave(&map->async_lock, flags);
1592 		list_add_tail(&async->list, &map->async_list);
1593 		spin_unlock_irqrestore(&map->async_lock, flags);
1594 
1595 		if (val != work_val)
1596 			ret = map->bus->async_write(map->bus_context,
1597 						    async->work_buf,
1598 						    map->format.reg_bytes +
1599 						    map->format.pad_bytes,
1600 						    val, val_len, async);
1601 		else
1602 			ret = map->bus->async_write(map->bus_context,
1603 						    async->work_buf,
1604 						    map->format.reg_bytes +
1605 						    map->format.pad_bytes +
1606 						    val_len, NULL, 0, async);
1607 
1608 		if (ret != 0) {
1609 			dev_err(map->dev, "Failed to schedule write: %d\n",
1610 				ret);
1611 
1612 			spin_lock_irqsave(&map->async_lock, flags);
1613 			list_move(&async->list, &map->async_free);
1614 			spin_unlock_irqrestore(&map->async_lock, flags);
1615 		}
1616 
1617 		return ret;
1618 	}
1619 
1620 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1621 
1622 	/* If we're doing a single register write we can probably just
1623 	 * send the work_buf directly, otherwise try to do a gather
1624 	 * write.
1625 	 */
1626 	if (val == work_val)
1627 		ret = map->bus->write(map->bus_context, map->work_buf,
1628 				      map->format.reg_bytes +
1629 				      map->format.pad_bytes +
1630 				      val_len);
1631 	else if (map->bus->gather_write)
1632 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1633 					     map->format.reg_bytes +
1634 					     map->format.pad_bytes,
1635 					     val, val_len);
1636 	else
1637 		ret = -ENOTSUPP;
1638 
1639 	/* If that didn't work fall back on linearising by hand. */
1640 	if (ret == -ENOTSUPP) {
1641 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1642 		buf = kzalloc(len, GFP_KERNEL);
1643 		if (!buf)
1644 			return -ENOMEM;
1645 
1646 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1647 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1648 		       val, val_len);
1649 		ret = map->bus->write(map->bus_context, buf, len);
1650 
1651 		kfree(buf);
1652 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1653 		/* regcache_drop_region() takes lock that we already have,
1654 		 * thus call map->cache_ops->drop() directly
1655 		 */
1656 		if (map->cache_ops && map->cache_ops->drop)
1657 			map->cache_ops->drop(map, reg, reg + 1);
1658 	}
1659 
1660 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1661 
1662 	return ret;
1663 }
1664 
1665 /**
1666  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1667  *
1668  * @map: Map to check.
1669  */
1670 bool regmap_can_raw_write(struct regmap *map)
1671 {
1672 	return map->bus && map->bus->write && map->format.format_val &&
1673 		map->format.format_reg;
1674 }
1675 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1676 
1677 /**
1678  * regmap_get_raw_read_max - Get the maximum size we can read
1679  *
1680  * @map: Map to check.
1681  */
1682 size_t regmap_get_raw_read_max(struct regmap *map)
1683 {
1684 	return map->max_raw_read;
1685 }
1686 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1687 
1688 /**
1689  * regmap_get_raw_write_max - Get the maximum size we can read
1690  *
1691  * @map: Map to check.
1692  */
1693 size_t regmap_get_raw_write_max(struct regmap *map)
1694 {
1695 	return map->max_raw_write;
1696 }
1697 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1698 
1699 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1700 				       unsigned int val)
1701 {
1702 	int ret;
1703 	struct regmap_range_node *range;
1704 	struct regmap *map = context;
1705 
1706 	WARN_ON(!map->bus || !map->format.format_write);
1707 
1708 	range = _regmap_range_lookup(map, reg);
1709 	if (range) {
1710 		ret = _regmap_select_page(map, &reg, range, 1);
1711 		if (ret != 0)
1712 			return ret;
1713 	}
1714 
1715 	map->format.format_write(map, reg, val);
1716 
1717 	trace_regmap_hw_write_start(map, reg, 1);
1718 
1719 	ret = map->bus->write(map->bus_context, map->work_buf,
1720 			      map->format.buf_size);
1721 
1722 	trace_regmap_hw_write_done(map, reg, 1);
1723 
1724 	return ret;
1725 }
1726 
1727 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1728 				 unsigned int val)
1729 {
1730 	struct regmap *map = context;
1731 
1732 	return map->bus->reg_write(map->bus_context, reg, val);
1733 }
1734 
1735 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1736 				 unsigned int val)
1737 {
1738 	struct regmap *map = context;
1739 
1740 	WARN_ON(!map->bus || !map->format.format_val);
1741 
1742 	map->format.format_val(map->work_buf + map->format.reg_bytes
1743 			       + map->format.pad_bytes, val, 0);
1744 	return _regmap_raw_write_impl(map, reg,
1745 				      map->work_buf +
1746 				      map->format.reg_bytes +
1747 				      map->format.pad_bytes,
1748 				      map->format.val_bytes);
1749 }
1750 
1751 static inline void *_regmap_map_get_context(struct regmap *map)
1752 {
1753 	return (map->bus) ? map : map->bus_context;
1754 }
1755 
1756 int _regmap_write(struct regmap *map, unsigned int reg,
1757 		  unsigned int val)
1758 {
1759 	int ret;
1760 	void *context = _regmap_map_get_context(map);
1761 
1762 	if (!regmap_writeable(map, reg))
1763 		return -EIO;
1764 
1765 	if (!map->cache_bypass && !map->defer_caching) {
1766 		ret = regcache_write(map, reg, val);
1767 		if (ret != 0)
1768 			return ret;
1769 		if (map->cache_only) {
1770 			map->cache_dirty = true;
1771 			return 0;
1772 		}
1773 	}
1774 
1775 	if (regmap_should_log(map))
1776 		dev_info(map->dev, "%x <= %x\n", reg, val);
1777 
1778 	trace_regmap_reg_write(map, reg, val);
1779 
1780 	return map->reg_write(context, reg, val);
1781 }
1782 
1783 /**
1784  * regmap_write() - Write a value to a single register
1785  *
1786  * @map: Register map to write to
1787  * @reg: Register to write to
1788  * @val: Value to be written
1789  *
1790  * A value of zero will be returned on success, a negative errno will
1791  * be returned in error cases.
1792  */
1793 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1794 {
1795 	int ret;
1796 
1797 	if (!IS_ALIGNED(reg, map->reg_stride))
1798 		return -EINVAL;
1799 
1800 	map->lock(map->lock_arg);
1801 
1802 	ret = _regmap_write(map, reg, val);
1803 
1804 	map->unlock(map->lock_arg);
1805 
1806 	return ret;
1807 }
1808 EXPORT_SYMBOL_GPL(regmap_write);
1809 
1810 /**
1811  * regmap_write_async() - Write a value to a single register asynchronously
1812  *
1813  * @map: Register map to write to
1814  * @reg: Register to write to
1815  * @val: Value to be written
1816  *
1817  * A value of zero will be returned on success, a negative errno will
1818  * be returned in error cases.
1819  */
1820 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1821 {
1822 	int ret;
1823 
1824 	if (!IS_ALIGNED(reg, map->reg_stride))
1825 		return -EINVAL;
1826 
1827 	map->lock(map->lock_arg);
1828 
1829 	map->async = true;
1830 
1831 	ret = _regmap_write(map, reg, val);
1832 
1833 	map->async = false;
1834 
1835 	map->unlock(map->lock_arg);
1836 
1837 	return ret;
1838 }
1839 EXPORT_SYMBOL_GPL(regmap_write_async);
1840 
1841 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1842 		      const void *val, size_t val_len)
1843 {
1844 	size_t val_bytes = map->format.val_bytes;
1845 	size_t val_count = val_len / val_bytes;
1846 	size_t chunk_count, chunk_bytes;
1847 	size_t chunk_regs = val_count;
1848 	int ret, i;
1849 
1850 	if (!val_count)
1851 		return -EINVAL;
1852 
1853 	if (map->use_single_write)
1854 		chunk_regs = 1;
1855 	else if (map->max_raw_write && val_len > map->max_raw_write)
1856 		chunk_regs = map->max_raw_write / val_bytes;
1857 
1858 	chunk_count = val_count / chunk_regs;
1859 	chunk_bytes = chunk_regs * val_bytes;
1860 
1861 	/* Write as many bytes as possible with chunk_size */
1862 	for (i = 0; i < chunk_count; i++) {
1863 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1864 		if (ret)
1865 			return ret;
1866 
1867 		reg += regmap_get_offset(map, chunk_regs);
1868 		val += chunk_bytes;
1869 		val_len -= chunk_bytes;
1870 	}
1871 
1872 	/* Write remaining bytes */
1873 	if (val_len)
1874 		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1875 
1876 	return ret;
1877 }
1878 
1879 /**
1880  * regmap_raw_write() - Write raw values to one or more registers
1881  *
1882  * @map: Register map to write to
1883  * @reg: Initial register to write to
1884  * @val: Block of data to be written, laid out for direct transmission to the
1885  *       device
1886  * @val_len: Length of data pointed to by val.
1887  *
1888  * This function is intended to be used for things like firmware
1889  * download where a large block of data needs to be transferred to the
1890  * device.  No formatting will be done on the data provided.
1891  *
1892  * A value of zero will be returned on success, a negative errno will
1893  * be returned in error cases.
1894  */
1895 int regmap_raw_write(struct regmap *map, unsigned int reg,
1896 		     const void *val, size_t val_len)
1897 {
1898 	int ret;
1899 
1900 	if (!regmap_can_raw_write(map))
1901 		return -EINVAL;
1902 	if (val_len % map->format.val_bytes)
1903 		return -EINVAL;
1904 
1905 	map->lock(map->lock_arg);
1906 
1907 	ret = _regmap_raw_write(map, reg, val, val_len);
1908 
1909 	map->unlock(map->lock_arg);
1910 
1911 	return ret;
1912 }
1913 EXPORT_SYMBOL_GPL(regmap_raw_write);
1914 
1915 /**
1916  * regmap_noinc_write(): Write data from a register without incrementing the
1917  *			register number
1918  *
1919  * @map: Register map to write to
1920  * @reg: Register to write to
1921  * @val: Pointer to data buffer
1922  * @val_len: Length of output buffer in bytes.
1923  *
1924  * The regmap API usually assumes that bulk bus write operations will write a
1925  * range of registers. Some devices have certain registers for which a write
1926  * operation can write to an internal FIFO.
1927  *
1928  * The target register must be volatile but registers after it can be
1929  * completely unrelated cacheable registers.
1930  *
1931  * This will attempt multiple writes as required to write val_len bytes.
1932  *
1933  * A value of zero will be returned on success, a negative errno will be
1934  * returned in error cases.
1935  */
1936 int regmap_noinc_write(struct regmap *map, unsigned int reg,
1937 		      const void *val, size_t val_len)
1938 {
1939 	size_t write_len;
1940 	int ret;
1941 
1942 	if (!map->bus)
1943 		return -EINVAL;
1944 	if (!map->bus->write)
1945 		return -ENOTSUPP;
1946 	if (val_len % map->format.val_bytes)
1947 		return -EINVAL;
1948 	if (!IS_ALIGNED(reg, map->reg_stride))
1949 		return -EINVAL;
1950 	if (val_len == 0)
1951 		return -EINVAL;
1952 
1953 	map->lock(map->lock_arg);
1954 
1955 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1956 		ret = -EINVAL;
1957 		goto out_unlock;
1958 	}
1959 
1960 	while (val_len) {
1961 		if (map->max_raw_write && map->max_raw_write < val_len)
1962 			write_len = map->max_raw_write;
1963 		else
1964 			write_len = val_len;
1965 		ret = _regmap_raw_write(map, reg, val, write_len);
1966 		if (ret)
1967 			goto out_unlock;
1968 		val = ((u8 *)val) + write_len;
1969 		val_len -= write_len;
1970 	}
1971 
1972 out_unlock:
1973 	map->unlock(map->lock_arg);
1974 	return ret;
1975 }
1976 EXPORT_SYMBOL_GPL(regmap_noinc_write);
1977 
1978 /**
1979  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1980  *                                   register field.
1981  *
1982  * @field: Register field to write to
1983  * @mask: Bitmask to change
1984  * @val: Value to be written
1985  * @change: Boolean indicating if a write was done
1986  * @async: Boolean indicating asynchronously
1987  * @force: Boolean indicating use force update
1988  *
1989  * Perform a read/modify/write cycle on the register field with change,
1990  * async, force option.
1991  *
1992  * A value of zero will be returned on success, a negative errno will
1993  * be returned in error cases.
1994  */
1995 int regmap_field_update_bits_base(struct regmap_field *field,
1996 				  unsigned int mask, unsigned int val,
1997 				  bool *change, bool async, bool force)
1998 {
1999 	mask = (mask << field->shift) & field->mask;
2000 
2001 	return regmap_update_bits_base(field->regmap, field->reg,
2002 				       mask, val << field->shift,
2003 				       change, async, force);
2004 }
2005 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2006 
2007 /**
2008  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2009  *                                    register field with port ID
2010  *
2011  * @field: Register field to write to
2012  * @id: port ID
2013  * @mask: Bitmask to change
2014  * @val: Value to be written
2015  * @change: Boolean indicating if a write was done
2016  * @async: Boolean indicating asynchronously
2017  * @force: Boolean indicating use force update
2018  *
2019  * A value of zero will be returned on success, a negative errno will
2020  * be returned in error cases.
2021  */
2022 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2023 				   unsigned int mask, unsigned int val,
2024 				   bool *change, bool async, bool force)
2025 {
2026 	if (id >= field->id_size)
2027 		return -EINVAL;
2028 
2029 	mask = (mask << field->shift) & field->mask;
2030 
2031 	return regmap_update_bits_base(field->regmap,
2032 				       field->reg + (field->id_offset * id),
2033 				       mask, val << field->shift,
2034 				       change, async, force);
2035 }
2036 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2037 
2038 /**
2039  * regmap_bulk_write() - Write multiple registers to the device
2040  *
2041  * @map: Register map to write to
2042  * @reg: First register to be write from
2043  * @val: Block of data to be written, in native register size for device
2044  * @val_count: Number of registers to write
2045  *
2046  * This function is intended to be used for writing a large block of
2047  * data to the device either in single transfer or multiple transfer.
2048  *
2049  * A value of zero will be returned on success, a negative errno will
2050  * be returned in error cases.
2051  */
2052 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2053 		     size_t val_count)
2054 {
2055 	int ret = 0, i;
2056 	size_t val_bytes = map->format.val_bytes;
2057 
2058 	if (!IS_ALIGNED(reg, map->reg_stride))
2059 		return -EINVAL;
2060 
2061 	/*
2062 	 * Some devices don't support bulk write, for them we have a series of
2063 	 * single write operations.
2064 	 */
2065 	if (!map->bus || !map->format.parse_inplace) {
2066 		map->lock(map->lock_arg);
2067 		for (i = 0; i < val_count; i++) {
2068 			unsigned int ival;
2069 
2070 			switch (val_bytes) {
2071 			case 1:
2072 				ival = *(u8 *)(val + (i * val_bytes));
2073 				break;
2074 			case 2:
2075 				ival = *(u16 *)(val + (i * val_bytes));
2076 				break;
2077 			case 4:
2078 				ival = *(u32 *)(val + (i * val_bytes));
2079 				break;
2080 #ifdef CONFIG_64BIT
2081 			case 8:
2082 				ival = *(u64 *)(val + (i * val_bytes));
2083 				break;
2084 #endif
2085 			default:
2086 				ret = -EINVAL;
2087 				goto out;
2088 			}
2089 
2090 			ret = _regmap_write(map,
2091 					    reg + regmap_get_offset(map, i),
2092 					    ival);
2093 			if (ret != 0)
2094 				goto out;
2095 		}
2096 out:
2097 		map->unlock(map->lock_arg);
2098 	} else {
2099 		void *wval;
2100 
2101 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2102 		if (!wval)
2103 			return -ENOMEM;
2104 
2105 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2106 			map->format.parse_inplace(wval + i);
2107 
2108 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2109 
2110 		kfree(wval);
2111 	}
2112 	return ret;
2113 }
2114 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2115 
2116 /*
2117  * _regmap_raw_multi_reg_write()
2118  *
2119  * the (register,newvalue) pairs in regs have not been formatted, but
2120  * they are all in the same page and have been changed to being page
2121  * relative. The page register has been written if that was necessary.
2122  */
2123 static int _regmap_raw_multi_reg_write(struct regmap *map,
2124 				       const struct reg_sequence *regs,
2125 				       size_t num_regs)
2126 {
2127 	int ret;
2128 	void *buf;
2129 	int i;
2130 	u8 *u8;
2131 	size_t val_bytes = map->format.val_bytes;
2132 	size_t reg_bytes = map->format.reg_bytes;
2133 	size_t pad_bytes = map->format.pad_bytes;
2134 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2135 	size_t len = pair_size * num_regs;
2136 
2137 	if (!len)
2138 		return -EINVAL;
2139 
2140 	buf = kzalloc(len, GFP_KERNEL);
2141 	if (!buf)
2142 		return -ENOMEM;
2143 
2144 	/* We have to linearise by hand. */
2145 
2146 	u8 = buf;
2147 
2148 	for (i = 0; i < num_regs; i++) {
2149 		unsigned int reg = regs[i].reg;
2150 		unsigned int val = regs[i].def;
2151 		trace_regmap_hw_write_start(map, reg, 1);
2152 		map->format.format_reg(u8, reg, map->reg_shift);
2153 		u8 += reg_bytes + pad_bytes;
2154 		map->format.format_val(u8, val, 0);
2155 		u8 += val_bytes;
2156 	}
2157 	u8 = buf;
2158 	*u8 |= map->write_flag_mask;
2159 
2160 	ret = map->bus->write(map->bus_context, buf, len);
2161 
2162 	kfree(buf);
2163 
2164 	for (i = 0; i < num_regs; i++) {
2165 		int reg = regs[i].reg;
2166 		trace_regmap_hw_write_done(map, reg, 1);
2167 	}
2168 	return ret;
2169 }
2170 
2171 static unsigned int _regmap_register_page(struct regmap *map,
2172 					  unsigned int reg,
2173 					  struct regmap_range_node *range)
2174 {
2175 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2176 
2177 	return win_page;
2178 }
2179 
2180 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2181 					       struct reg_sequence *regs,
2182 					       size_t num_regs)
2183 {
2184 	int ret;
2185 	int i, n;
2186 	struct reg_sequence *base;
2187 	unsigned int this_page = 0;
2188 	unsigned int page_change = 0;
2189 	/*
2190 	 * the set of registers are not neccessarily in order, but
2191 	 * since the order of write must be preserved this algorithm
2192 	 * chops the set each time the page changes. This also applies
2193 	 * if there is a delay required at any point in the sequence.
2194 	 */
2195 	base = regs;
2196 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2197 		unsigned int reg = regs[i].reg;
2198 		struct regmap_range_node *range;
2199 
2200 		range = _regmap_range_lookup(map, reg);
2201 		if (range) {
2202 			unsigned int win_page = _regmap_register_page(map, reg,
2203 								      range);
2204 
2205 			if (i == 0)
2206 				this_page = win_page;
2207 			if (win_page != this_page) {
2208 				this_page = win_page;
2209 				page_change = 1;
2210 			}
2211 		}
2212 
2213 		/* If we have both a page change and a delay make sure to
2214 		 * write the regs and apply the delay before we change the
2215 		 * page.
2216 		 */
2217 
2218 		if (page_change || regs[i].delay_us) {
2219 
2220 				/* For situations where the first write requires
2221 				 * a delay we need to make sure we don't call
2222 				 * raw_multi_reg_write with n=0
2223 				 * This can't occur with page breaks as we
2224 				 * never write on the first iteration
2225 				 */
2226 				if (regs[i].delay_us && i == 0)
2227 					n = 1;
2228 
2229 				ret = _regmap_raw_multi_reg_write(map, base, n);
2230 				if (ret != 0)
2231 					return ret;
2232 
2233 				if (regs[i].delay_us)
2234 					udelay(regs[i].delay_us);
2235 
2236 				base += n;
2237 				n = 0;
2238 
2239 				if (page_change) {
2240 					ret = _regmap_select_page(map,
2241 								  &base[n].reg,
2242 								  range, 1);
2243 					if (ret != 0)
2244 						return ret;
2245 
2246 					page_change = 0;
2247 				}
2248 
2249 		}
2250 
2251 	}
2252 	if (n > 0)
2253 		return _regmap_raw_multi_reg_write(map, base, n);
2254 	return 0;
2255 }
2256 
2257 static int _regmap_multi_reg_write(struct regmap *map,
2258 				   const struct reg_sequence *regs,
2259 				   size_t num_regs)
2260 {
2261 	int i;
2262 	int ret;
2263 
2264 	if (!map->can_multi_write) {
2265 		for (i = 0; i < num_regs; i++) {
2266 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2267 			if (ret != 0)
2268 				return ret;
2269 
2270 			if (regs[i].delay_us)
2271 				udelay(regs[i].delay_us);
2272 		}
2273 		return 0;
2274 	}
2275 
2276 	if (!map->format.parse_inplace)
2277 		return -EINVAL;
2278 
2279 	if (map->writeable_reg)
2280 		for (i = 0; i < num_regs; i++) {
2281 			int reg = regs[i].reg;
2282 			if (!map->writeable_reg(map->dev, reg))
2283 				return -EINVAL;
2284 			if (!IS_ALIGNED(reg, map->reg_stride))
2285 				return -EINVAL;
2286 		}
2287 
2288 	if (!map->cache_bypass) {
2289 		for (i = 0; i < num_regs; i++) {
2290 			unsigned int val = regs[i].def;
2291 			unsigned int reg = regs[i].reg;
2292 			ret = regcache_write(map, reg, val);
2293 			if (ret) {
2294 				dev_err(map->dev,
2295 				"Error in caching of register: %x ret: %d\n",
2296 								reg, ret);
2297 				return ret;
2298 			}
2299 		}
2300 		if (map->cache_only) {
2301 			map->cache_dirty = true;
2302 			return 0;
2303 		}
2304 	}
2305 
2306 	WARN_ON(!map->bus);
2307 
2308 	for (i = 0; i < num_regs; i++) {
2309 		unsigned int reg = regs[i].reg;
2310 		struct regmap_range_node *range;
2311 
2312 		/* Coalesce all the writes between a page break or a delay
2313 		 * in a sequence
2314 		 */
2315 		range = _regmap_range_lookup(map, reg);
2316 		if (range || regs[i].delay_us) {
2317 			size_t len = sizeof(struct reg_sequence)*num_regs;
2318 			struct reg_sequence *base = kmemdup(regs, len,
2319 							   GFP_KERNEL);
2320 			if (!base)
2321 				return -ENOMEM;
2322 			ret = _regmap_range_multi_paged_reg_write(map, base,
2323 								  num_regs);
2324 			kfree(base);
2325 
2326 			return ret;
2327 		}
2328 	}
2329 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2330 }
2331 
2332 /**
2333  * regmap_multi_reg_write() - Write multiple registers to the device
2334  *
2335  * @map: Register map to write to
2336  * @regs: Array of structures containing register,value to be written
2337  * @num_regs: Number of registers to write
2338  *
2339  * Write multiple registers to the device where the set of register, value
2340  * pairs are supplied in any order, possibly not all in a single range.
2341  *
2342  * The 'normal' block write mode will send ultimately send data on the
2343  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2344  * addressed. However, this alternative block multi write mode will send
2345  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2346  * must of course support the mode.
2347  *
2348  * A value of zero will be returned on success, a negative errno will be
2349  * returned in error cases.
2350  */
2351 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2352 			   int num_regs)
2353 {
2354 	int ret;
2355 
2356 	map->lock(map->lock_arg);
2357 
2358 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2359 
2360 	map->unlock(map->lock_arg);
2361 
2362 	return ret;
2363 }
2364 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2365 
2366 /**
2367  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2368  *                                     device but not the cache
2369  *
2370  * @map: Register map to write to
2371  * @regs: Array of structures containing register,value to be written
2372  * @num_regs: Number of registers to write
2373  *
2374  * Write multiple registers to the device but not the cache where the set
2375  * of register are supplied in any order.
2376  *
2377  * This function is intended to be used for writing a large block of data
2378  * atomically to the device in single transfer for those I2C client devices
2379  * that implement this alternative block write mode.
2380  *
2381  * A value of zero will be returned on success, a negative errno will
2382  * be returned in error cases.
2383  */
2384 int regmap_multi_reg_write_bypassed(struct regmap *map,
2385 				    const struct reg_sequence *regs,
2386 				    int num_regs)
2387 {
2388 	int ret;
2389 	bool bypass;
2390 
2391 	map->lock(map->lock_arg);
2392 
2393 	bypass = map->cache_bypass;
2394 	map->cache_bypass = true;
2395 
2396 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2397 
2398 	map->cache_bypass = bypass;
2399 
2400 	map->unlock(map->lock_arg);
2401 
2402 	return ret;
2403 }
2404 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2405 
2406 /**
2407  * regmap_raw_write_async() - Write raw values to one or more registers
2408  *                            asynchronously
2409  *
2410  * @map: Register map to write to
2411  * @reg: Initial register to write to
2412  * @val: Block of data to be written, laid out for direct transmission to the
2413  *       device.  Must be valid until regmap_async_complete() is called.
2414  * @val_len: Length of data pointed to by val.
2415  *
2416  * This function is intended to be used for things like firmware
2417  * download where a large block of data needs to be transferred to the
2418  * device.  No formatting will be done on the data provided.
2419  *
2420  * If supported by the underlying bus the write will be scheduled
2421  * asynchronously, helping maximise I/O speed on higher speed buses
2422  * like SPI.  regmap_async_complete() can be called to ensure that all
2423  * asynchrnous writes have been completed.
2424  *
2425  * A value of zero will be returned on success, a negative errno will
2426  * be returned in error cases.
2427  */
2428 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2429 			   const void *val, size_t val_len)
2430 {
2431 	int ret;
2432 
2433 	if (val_len % map->format.val_bytes)
2434 		return -EINVAL;
2435 	if (!IS_ALIGNED(reg, map->reg_stride))
2436 		return -EINVAL;
2437 
2438 	map->lock(map->lock_arg);
2439 
2440 	map->async = true;
2441 
2442 	ret = _regmap_raw_write(map, reg, val, val_len);
2443 
2444 	map->async = false;
2445 
2446 	map->unlock(map->lock_arg);
2447 
2448 	return ret;
2449 }
2450 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2451 
2452 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2453 			    unsigned int val_len)
2454 {
2455 	struct regmap_range_node *range;
2456 	int ret;
2457 
2458 	WARN_ON(!map->bus);
2459 
2460 	if (!map->bus || !map->bus->read)
2461 		return -EINVAL;
2462 
2463 	range = _regmap_range_lookup(map, reg);
2464 	if (range) {
2465 		ret = _regmap_select_page(map, &reg, range,
2466 					  val_len / map->format.val_bytes);
2467 		if (ret != 0)
2468 			return ret;
2469 	}
2470 
2471 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2472 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2473 				      map->read_flag_mask);
2474 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2475 
2476 	ret = map->bus->read(map->bus_context, map->work_buf,
2477 			     map->format.reg_bytes + map->format.pad_bytes,
2478 			     val, val_len);
2479 
2480 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2481 
2482 	return ret;
2483 }
2484 
2485 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2486 				unsigned int *val)
2487 {
2488 	struct regmap *map = context;
2489 
2490 	return map->bus->reg_read(map->bus_context, reg, val);
2491 }
2492 
2493 static int _regmap_bus_read(void *context, unsigned int reg,
2494 			    unsigned int *val)
2495 {
2496 	int ret;
2497 	struct regmap *map = context;
2498 	void *work_val = map->work_buf + map->format.reg_bytes +
2499 		map->format.pad_bytes;
2500 
2501 	if (!map->format.parse_val)
2502 		return -EINVAL;
2503 
2504 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2505 	if (ret == 0)
2506 		*val = map->format.parse_val(work_val);
2507 
2508 	return ret;
2509 }
2510 
2511 static int _regmap_read(struct regmap *map, unsigned int reg,
2512 			unsigned int *val)
2513 {
2514 	int ret;
2515 	void *context = _regmap_map_get_context(map);
2516 
2517 	if (!map->cache_bypass) {
2518 		ret = regcache_read(map, reg, val);
2519 		if (ret == 0)
2520 			return 0;
2521 	}
2522 
2523 	if (map->cache_only)
2524 		return -EBUSY;
2525 
2526 	if (!regmap_readable(map, reg))
2527 		return -EIO;
2528 
2529 	ret = map->reg_read(context, reg, val);
2530 	if (ret == 0) {
2531 		if (regmap_should_log(map))
2532 			dev_info(map->dev, "%x => %x\n", reg, *val);
2533 
2534 		trace_regmap_reg_read(map, reg, *val);
2535 
2536 		if (!map->cache_bypass)
2537 			regcache_write(map, reg, *val);
2538 	}
2539 
2540 	return ret;
2541 }
2542 
2543 /**
2544  * regmap_read() - Read a value from a single register
2545  *
2546  * @map: Register map to read from
2547  * @reg: Register to be read from
2548  * @val: Pointer to store read value
2549  *
2550  * A value of zero will be returned on success, a negative errno will
2551  * be returned in error cases.
2552  */
2553 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2554 {
2555 	int ret;
2556 
2557 	if (!IS_ALIGNED(reg, map->reg_stride))
2558 		return -EINVAL;
2559 
2560 	map->lock(map->lock_arg);
2561 
2562 	ret = _regmap_read(map, reg, val);
2563 
2564 	map->unlock(map->lock_arg);
2565 
2566 	return ret;
2567 }
2568 EXPORT_SYMBOL_GPL(regmap_read);
2569 
2570 /**
2571  * regmap_raw_read() - Read raw data from the device
2572  *
2573  * @map: Register map to read from
2574  * @reg: First register to be read from
2575  * @val: Pointer to store read value
2576  * @val_len: Size of data to read
2577  *
2578  * A value of zero will be returned on success, a negative errno will
2579  * be returned in error cases.
2580  */
2581 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2582 		    size_t val_len)
2583 {
2584 	size_t val_bytes = map->format.val_bytes;
2585 	size_t val_count = val_len / val_bytes;
2586 	unsigned int v;
2587 	int ret, i;
2588 
2589 	if (!map->bus)
2590 		return -EINVAL;
2591 	if (val_len % map->format.val_bytes)
2592 		return -EINVAL;
2593 	if (!IS_ALIGNED(reg, map->reg_stride))
2594 		return -EINVAL;
2595 	if (val_count == 0)
2596 		return -EINVAL;
2597 
2598 	map->lock(map->lock_arg);
2599 
2600 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2601 	    map->cache_type == REGCACHE_NONE) {
2602 		size_t chunk_count, chunk_bytes;
2603 		size_t chunk_regs = val_count;
2604 
2605 		if (!map->bus->read) {
2606 			ret = -ENOTSUPP;
2607 			goto out;
2608 		}
2609 
2610 		if (map->use_single_read)
2611 			chunk_regs = 1;
2612 		else if (map->max_raw_read && val_len > map->max_raw_read)
2613 			chunk_regs = map->max_raw_read / val_bytes;
2614 
2615 		chunk_count = val_count / chunk_regs;
2616 		chunk_bytes = chunk_regs * val_bytes;
2617 
2618 		/* Read bytes that fit into whole chunks */
2619 		for (i = 0; i < chunk_count; i++) {
2620 			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2621 			if (ret != 0)
2622 				goto out;
2623 
2624 			reg += regmap_get_offset(map, chunk_regs);
2625 			val += chunk_bytes;
2626 			val_len -= chunk_bytes;
2627 		}
2628 
2629 		/* Read remaining bytes */
2630 		if (val_len) {
2631 			ret = _regmap_raw_read(map, reg, val, val_len);
2632 			if (ret != 0)
2633 				goto out;
2634 		}
2635 	} else {
2636 		/* Otherwise go word by word for the cache; should be low
2637 		 * cost as we expect to hit the cache.
2638 		 */
2639 		for (i = 0; i < val_count; i++) {
2640 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2641 					   &v);
2642 			if (ret != 0)
2643 				goto out;
2644 
2645 			map->format.format_val(val + (i * val_bytes), v, 0);
2646 		}
2647 	}
2648 
2649  out:
2650 	map->unlock(map->lock_arg);
2651 
2652 	return ret;
2653 }
2654 EXPORT_SYMBOL_GPL(regmap_raw_read);
2655 
2656 /**
2657  * regmap_noinc_read(): Read data from a register without incrementing the
2658  *			register number
2659  *
2660  * @map: Register map to read from
2661  * @reg: Register to read from
2662  * @val: Pointer to data buffer
2663  * @val_len: Length of output buffer in bytes.
2664  *
2665  * The regmap API usually assumes that bulk bus read operations will read a
2666  * range of registers. Some devices have certain registers for which a read
2667  * operation read will read from an internal FIFO.
2668  *
2669  * The target register must be volatile but registers after it can be
2670  * completely unrelated cacheable registers.
2671  *
2672  * This will attempt multiple reads as required to read val_len bytes.
2673  *
2674  * A value of zero will be returned on success, a negative errno will be
2675  * returned in error cases.
2676  */
2677 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2678 		      void *val, size_t val_len)
2679 {
2680 	size_t read_len;
2681 	int ret;
2682 
2683 	if (!map->bus)
2684 		return -EINVAL;
2685 	if (!map->bus->read)
2686 		return -ENOTSUPP;
2687 	if (val_len % map->format.val_bytes)
2688 		return -EINVAL;
2689 	if (!IS_ALIGNED(reg, map->reg_stride))
2690 		return -EINVAL;
2691 	if (val_len == 0)
2692 		return -EINVAL;
2693 
2694 	map->lock(map->lock_arg);
2695 
2696 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2697 		ret = -EINVAL;
2698 		goto out_unlock;
2699 	}
2700 
2701 	while (val_len) {
2702 		if (map->max_raw_read && map->max_raw_read < val_len)
2703 			read_len = map->max_raw_read;
2704 		else
2705 			read_len = val_len;
2706 		ret = _regmap_raw_read(map, reg, val, read_len);
2707 		if (ret)
2708 			goto out_unlock;
2709 		val = ((u8 *)val) + read_len;
2710 		val_len -= read_len;
2711 	}
2712 
2713 out_unlock:
2714 	map->unlock(map->lock_arg);
2715 	return ret;
2716 }
2717 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2718 
2719 /**
2720  * regmap_field_read(): Read a value to a single register field
2721  *
2722  * @field: Register field to read from
2723  * @val: Pointer to store read value
2724  *
2725  * A value of zero will be returned on success, a negative errno will
2726  * be returned in error cases.
2727  */
2728 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2729 {
2730 	int ret;
2731 	unsigned int reg_val;
2732 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2733 	if (ret != 0)
2734 		return ret;
2735 
2736 	reg_val &= field->mask;
2737 	reg_val >>= field->shift;
2738 	*val = reg_val;
2739 
2740 	return ret;
2741 }
2742 EXPORT_SYMBOL_GPL(regmap_field_read);
2743 
2744 /**
2745  * regmap_fields_read() - Read a value to a single register field with port ID
2746  *
2747  * @field: Register field to read from
2748  * @id: port ID
2749  * @val: Pointer to store read value
2750  *
2751  * A value of zero will be returned on success, a negative errno will
2752  * be returned in error cases.
2753  */
2754 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2755 		       unsigned int *val)
2756 {
2757 	int ret;
2758 	unsigned int reg_val;
2759 
2760 	if (id >= field->id_size)
2761 		return -EINVAL;
2762 
2763 	ret = regmap_read(field->regmap,
2764 			  field->reg + (field->id_offset * id),
2765 			  &reg_val);
2766 	if (ret != 0)
2767 		return ret;
2768 
2769 	reg_val &= field->mask;
2770 	reg_val >>= field->shift;
2771 	*val = reg_val;
2772 
2773 	return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(regmap_fields_read);
2776 
2777 /**
2778  * regmap_bulk_read() - Read multiple registers from the device
2779  *
2780  * @map: Register map to read from
2781  * @reg: First register to be read from
2782  * @val: Pointer to store read value, in native register size for device
2783  * @val_count: Number of registers to read
2784  *
2785  * A value of zero will be returned on success, a negative errno will
2786  * be returned in error cases.
2787  */
2788 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2789 		     size_t val_count)
2790 {
2791 	int ret, i;
2792 	size_t val_bytes = map->format.val_bytes;
2793 	bool vol = regmap_volatile_range(map, reg, val_count);
2794 
2795 	if (!IS_ALIGNED(reg, map->reg_stride))
2796 		return -EINVAL;
2797 	if (val_count == 0)
2798 		return -EINVAL;
2799 
2800 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2801 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2802 		if (ret != 0)
2803 			return ret;
2804 
2805 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2806 			map->format.parse_inplace(val + i);
2807 	} else {
2808 #ifdef CONFIG_64BIT
2809 		u64 *u64 = val;
2810 #endif
2811 		u32 *u32 = val;
2812 		u16 *u16 = val;
2813 		u8 *u8 = val;
2814 
2815 		map->lock(map->lock_arg);
2816 
2817 		for (i = 0; i < val_count; i++) {
2818 			unsigned int ival;
2819 
2820 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2821 					   &ival);
2822 			if (ret != 0)
2823 				goto out;
2824 
2825 			switch (map->format.val_bytes) {
2826 #ifdef CONFIG_64BIT
2827 			case 8:
2828 				u64[i] = ival;
2829 				break;
2830 #endif
2831 			case 4:
2832 				u32[i] = ival;
2833 				break;
2834 			case 2:
2835 				u16[i] = ival;
2836 				break;
2837 			case 1:
2838 				u8[i] = ival;
2839 				break;
2840 			default:
2841 				ret = -EINVAL;
2842 				goto out;
2843 			}
2844 		}
2845 
2846 out:
2847 		map->unlock(map->lock_arg);
2848 	}
2849 
2850 	return ret;
2851 }
2852 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2853 
2854 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2855 			       unsigned int mask, unsigned int val,
2856 			       bool *change, bool force_write)
2857 {
2858 	int ret;
2859 	unsigned int tmp, orig;
2860 
2861 	if (change)
2862 		*change = false;
2863 
2864 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2865 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2866 		if (ret == 0 && change)
2867 			*change = true;
2868 	} else {
2869 		ret = _regmap_read(map, reg, &orig);
2870 		if (ret != 0)
2871 			return ret;
2872 
2873 		tmp = orig & ~mask;
2874 		tmp |= val & mask;
2875 
2876 		if (force_write || (tmp != orig)) {
2877 			ret = _regmap_write(map, reg, tmp);
2878 			if (ret == 0 && change)
2879 				*change = true;
2880 		}
2881 	}
2882 
2883 	return ret;
2884 }
2885 
2886 /**
2887  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2888  *
2889  * @map: Register map to update
2890  * @reg: Register to update
2891  * @mask: Bitmask to change
2892  * @val: New value for bitmask
2893  * @change: Boolean indicating if a write was done
2894  * @async: Boolean indicating asynchronously
2895  * @force: Boolean indicating use force update
2896  *
2897  * Perform a read/modify/write cycle on a register map with change, async, force
2898  * options.
2899  *
2900  * If async is true:
2901  *
2902  * With most buses the read must be done synchronously so this is most useful
2903  * for devices with a cache which do not need to interact with the hardware to
2904  * determine the current register value.
2905  *
2906  * Returns zero for success, a negative number on error.
2907  */
2908 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2909 			    unsigned int mask, unsigned int val,
2910 			    bool *change, bool async, bool force)
2911 {
2912 	int ret;
2913 
2914 	map->lock(map->lock_arg);
2915 
2916 	map->async = async;
2917 
2918 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2919 
2920 	map->async = false;
2921 
2922 	map->unlock(map->lock_arg);
2923 
2924 	return ret;
2925 }
2926 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2927 
2928 /**
2929  * regmap_test_bits() - Check if all specified bits are set in a register.
2930  *
2931  * @map: Register map to operate on
2932  * @reg: Register to read from
2933  * @bits: Bits to test
2934  *
2935  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
2936  * bits are set and a negative error number if the underlying regmap_read()
2937  * fails.
2938  */
2939 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
2940 {
2941 	unsigned int val, ret;
2942 
2943 	ret = regmap_read(map, reg, &val);
2944 	if (ret)
2945 		return ret;
2946 
2947 	return (val & bits) == bits;
2948 }
2949 EXPORT_SYMBOL_GPL(regmap_test_bits);
2950 
2951 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2952 {
2953 	struct regmap *map = async->map;
2954 	bool wake;
2955 
2956 	trace_regmap_async_io_complete(map);
2957 
2958 	spin_lock(&map->async_lock);
2959 	list_move(&async->list, &map->async_free);
2960 	wake = list_empty(&map->async_list);
2961 
2962 	if (ret != 0)
2963 		map->async_ret = ret;
2964 
2965 	spin_unlock(&map->async_lock);
2966 
2967 	if (wake)
2968 		wake_up(&map->async_waitq);
2969 }
2970 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2971 
2972 static int regmap_async_is_done(struct regmap *map)
2973 {
2974 	unsigned long flags;
2975 	int ret;
2976 
2977 	spin_lock_irqsave(&map->async_lock, flags);
2978 	ret = list_empty(&map->async_list);
2979 	spin_unlock_irqrestore(&map->async_lock, flags);
2980 
2981 	return ret;
2982 }
2983 
2984 /**
2985  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2986  *
2987  * @map: Map to operate on.
2988  *
2989  * Blocks until any pending asynchronous I/O has completed.  Returns
2990  * an error code for any failed I/O operations.
2991  */
2992 int regmap_async_complete(struct regmap *map)
2993 {
2994 	unsigned long flags;
2995 	int ret;
2996 
2997 	/* Nothing to do with no async support */
2998 	if (!map->bus || !map->bus->async_write)
2999 		return 0;
3000 
3001 	trace_regmap_async_complete_start(map);
3002 
3003 	wait_event(map->async_waitq, regmap_async_is_done(map));
3004 
3005 	spin_lock_irqsave(&map->async_lock, flags);
3006 	ret = map->async_ret;
3007 	map->async_ret = 0;
3008 	spin_unlock_irqrestore(&map->async_lock, flags);
3009 
3010 	trace_regmap_async_complete_done(map);
3011 
3012 	return ret;
3013 }
3014 EXPORT_SYMBOL_GPL(regmap_async_complete);
3015 
3016 /**
3017  * regmap_register_patch - Register and apply register updates to be applied
3018  *                         on device initialistion
3019  *
3020  * @map: Register map to apply updates to.
3021  * @regs: Values to update.
3022  * @num_regs: Number of entries in regs.
3023  *
3024  * Register a set of register updates to be applied to the device
3025  * whenever the device registers are synchronised with the cache and
3026  * apply them immediately.  Typically this is used to apply
3027  * corrections to be applied to the device defaults on startup, such
3028  * as the updates some vendors provide to undocumented registers.
3029  *
3030  * The caller must ensure that this function cannot be called
3031  * concurrently with either itself or regcache_sync().
3032  */
3033 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3034 			  int num_regs)
3035 {
3036 	struct reg_sequence *p;
3037 	int ret;
3038 	bool bypass;
3039 
3040 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3041 	    num_regs))
3042 		return 0;
3043 
3044 	p = krealloc(map->patch,
3045 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3046 		     GFP_KERNEL);
3047 	if (p) {
3048 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3049 		map->patch = p;
3050 		map->patch_regs += num_regs;
3051 	} else {
3052 		return -ENOMEM;
3053 	}
3054 
3055 	map->lock(map->lock_arg);
3056 
3057 	bypass = map->cache_bypass;
3058 
3059 	map->cache_bypass = true;
3060 	map->async = true;
3061 
3062 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3063 
3064 	map->async = false;
3065 	map->cache_bypass = bypass;
3066 
3067 	map->unlock(map->lock_arg);
3068 
3069 	regmap_async_complete(map);
3070 
3071 	return ret;
3072 }
3073 EXPORT_SYMBOL_GPL(regmap_register_patch);
3074 
3075 /**
3076  * regmap_get_val_bytes() - Report the size of a register value
3077  *
3078  * @map: Register map to operate on.
3079  *
3080  * Report the size of a register value, mainly intended to for use by
3081  * generic infrastructure built on top of regmap.
3082  */
3083 int regmap_get_val_bytes(struct regmap *map)
3084 {
3085 	if (map->format.format_write)
3086 		return -EINVAL;
3087 
3088 	return map->format.val_bytes;
3089 }
3090 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3091 
3092 /**
3093  * regmap_get_max_register() - Report the max register value
3094  *
3095  * @map: Register map to operate on.
3096  *
3097  * Report the max register value, mainly intended to for use by
3098  * generic infrastructure built on top of regmap.
3099  */
3100 int regmap_get_max_register(struct regmap *map)
3101 {
3102 	return map->max_register ? map->max_register : -EINVAL;
3103 }
3104 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3105 
3106 /**
3107  * regmap_get_reg_stride() - Report the register address stride
3108  *
3109  * @map: Register map to operate on.
3110  *
3111  * Report the register address stride, mainly intended to for use by
3112  * generic infrastructure built on top of regmap.
3113  */
3114 int regmap_get_reg_stride(struct regmap *map)
3115 {
3116 	return map->reg_stride;
3117 }
3118 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3119 
3120 int regmap_parse_val(struct regmap *map, const void *buf,
3121 			unsigned int *val)
3122 {
3123 	if (!map->format.parse_val)
3124 		return -EINVAL;
3125 
3126 	*val = map->format.parse_val(buf);
3127 
3128 	return 0;
3129 }
3130 EXPORT_SYMBOL_GPL(regmap_parse_val);
3131 
3132 static int __init regmap_initcall(void)
3133 {
3134 	regmap_debugfs_initcall();
3135 
3136 	return 0;
3137 }
3138 postcore_initcall(regmap_initcall);
3139