xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 476ec641)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 	put_unaligned_be24(val << shift, buf);
294 }
295 
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 	put_unaligned_be32(val << shift, buf);
299 }
300 
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 	put_unaligned_le32(val << shift, buf);
304 }
305 
306 static void regmap_format_32_native(void *buf, unsigned int val,
307 				    unsigned int shift)
308 {
309 	u32 v = val << shift;
310 
311 	memcpy(buf, &v, sizeof(v));
312 }
313 
314 #ifdef CONFIG_64BIT
315 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
316 {
317 	put_unaligned_be64((u64) val << shift, buf);
318 }
319 
320 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
321 {
322 	put_unaligned_le64((u64) val << shift, buf);
323 }
324 
325 static void regmap_format_64_native(void *buf, unsigned int val,
326 				    unsigned int shift)
327 {
328 	u64 v = (u64) val << shift;
329 
330 	memcpy(buf, &v, sizeof(v));
331 }
332 #endif
333 
334 static void regmap_parse_inplace_noop(void *buf)
335 {
336 }
337 
338 static unsigned int regmap_parse_8(const void *buf)
339 {
340 	const u8 *b = buf;
341 
342 	return b[0];
343 }
344 
345 static unsigned int regmap_parse_16_be(const void *buf)
346 {
347 	return get_unaligned_be16(buf);
348 }
349 
350 static unsigned int regmap_parse_16_le(const void *buf)
351 {
352 	return get_unaligned_le16(buf);
353 }
354 
355 static void regmap_parse_16_be_inplace(void *buf)
356 {
357 	u16 v = get_unaligned_be16(buf);
358 
359 	memcpy(buf, &v, sizeof(v));
360 }
361 
362 static void regmap_parse_16_le_inplace(void *buf)
363 {
364 	u16 v = get_unaligned_le16(buf);
365 
366 	memcpy(buf, &v, sizeof(v));
367 }
368 
369 static unsigned int regmap_parse_16_native(const void *buf)
370 {
371 	u16 v;
372 
373 	memcpy(&v, buf, sizeof(v));
374 	return v;
375 }
376 
377 static unsigned int regmap_parse_24_be(const void *buf)
378 {
379 	return get_unaligned_be24(buf);
380 }
381 
382 static unsigned int regmap_parse_32_be(const void *buf)
383 {
384 	return get_unaligned_be32(buf);
385 }
386 
387 static unsigned int regmap_parse_32_le(const void *buf)
388 {
389 	return get_unaligned_le32(buf);
390 }
391 
392 static void regmap_parse_32_be_inplace(void *buf)
393 {
394 	u32 v = get_unaligned_be32(buf);
395 
396 	memcpy(buf, &v, sizeof(v));
397 }
398 
399 static void regmap_parse_32_le_inplace(void *buf)
400 {
401 	u32 v = get_unaligned_le32(buf);
402 
403 	memcpy(buf, &v, sizeof(v));
404 }
405 
406 static unsigned int regmap_parse_32_native(const void *buf)
407 {
408 	u32 v;
409 
410 	memcpy(&v, buf, sizeof(v));
411 	return v;
412 }
413 
414 #ifdef CONFIG_64BIT
415 static unsigned int regmap_parse_64_be(const void *buf)
416 {
417 	return get_unaligned_be64(buf);
418 }
419 
420 static unsigned int regmap_parse_64_le(const void *buf)
421 {
422 	return get_unaligned_le64(buf);
423 }
424 
425 static void regmap_parse_64_be_inplace(void *buf)
426 {
427 	u64 v =  get_unaligned_be64(buf);
428 
429 	memcpy(buf, &v, sizeof(v));
430 }
431 
432 static void regmap_parse_64_le_inplace(void *buf)
433 {
434 	u64 v = get_unaligned_le64(buf);
435 
436 	memcpy(buf, &v, sizeof(v));
437 }
438 
439 static unsigned int regmap_parse_64_native(const void *buf)
440 {
441 	u64 v;
442 
443 	memcpy(&v, buf, sizeof(v));
444 	return v;
445 }
446 #endif
447 
448 static void regmap_lock_hwlock(void *__map)
449 {
450 	struct regmap *map = __map;
451 
452 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
453 }
454 
455 static void regmap_lock_hwlock_irq(void *__map)
456 {
457 	struct regmap *map = __map;
458 
459 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
460 }
461 
462 static void regmap_lock_hwlock_irqsave(void *__map)
463 {
464 	struct regmap *map = __map;
465 
466 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
467 				    &map->spinlock_flags);
468 }
469 
470 static void regmap_unlock_hwlock(void *__map)
471 {
472 	struct regmap *map = __map;
473 
474 	hwspin_unlock(map->hwlock);
475 }
476 
477 static void regmap_unlock_hwlock_irq(void *__map)
478 {
479 	struct regmap *map = __map;
480 
481 	hwspin_unlock_irq(map->hwlock);
482 }
483 
484 static void regmap_unlock_hwlock_irqrestore(void *__map)
485 {
486 	struct regmap *map = __map;
487 
488 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
489 }
490 
491 static void regmap_lock_unlock_none(void *__map)
492 {
493 
494 }
495 
496 static void regmap_lock_mutex(void *__map)
497 {
498 	struct regmap *map = __map;
499 	mutex_lock(&map->mutex);
500 }
501 
502 static void regmap_unlock_mutex(void *__map)
503 {
504 	struct regmap *map = __map;
505 	mutex_unlock(&map->mutex);
506 }
507 
508 static void regmap_lock_spinlock(void *__map)
509 __acquires(&map->spinlock)
510 {
511 	struct regmap *map = __map;
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&map->spinlock, flags);
515 	map->spinlock_flags = flags;
516 }
517 
518 static void regmap_unlock_spinlock(void *__map)
519 __releases(&map->spinlock)
520 {
521 	struct regmap *map = __map;
522 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
523 }
524 
525 static void regmap_lock_raw_spinlock(void *__map)
526 __acquires(&map->raw_spinlock)
527 {
528 	struct regmap *map = __map;
529 	unsigned long flags;
530 
531 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
532 	map->raw_spinlock_flags = flags;
533 }
534 
535 static void regmap_unlock_raw_spinlock(void *__map)
536 __releases(&map->raw_spinlock)
537 {
538 	struct regmap *map = __map;
539 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
540 }
541 
542 static void dev_get_regmap_release(struct device *dev, void *res)
543 {
544 	/*
545 	 * We don't actually have anything to do here; the goal here
546 	 * is not to manage the regmap but to provide a simple way to
547 	 * get the regmap back given a struct device.
548 	 */
549 }
550 
551 static bool _regmap_range_add(struct regmap *map,
552 			      struct regmap_range_node *data)
553 {
554 	struct rb_root *root = &map->range_tree;
555 	struct rb_node **new = &(root->rb_node), *parent = NULL;
556 
557 	while (*new) {
558 		struct regmap_range_node *this =
559 			rb_entry(*new, struct regmap_range_node, node);
560 
561 		parent = *new;
562 		if (data->range_max < this->range_min)
563 			new = &((*new)->rb_left);
564 		else if (data->range_min > this->range_max)
565 			new = &((*new)->rb_right);
566 		else
567 			return false;
568 	}
569 
570 	rb_link_node(&data->node, parent, new);
571 	rb_insert_color(&data->node, root);
572 
573 	return true;
574 }
575 
576 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
577 						      unsigned int reg)
578 {
579 	struct rb_node *node = map->range_tree.rb_node;
580 
581 	while (node) {
582 		struct regmap_range_node *this =
583 			rb_entry(node, struct regmap_range_node, node);
584 
585 		if (reg < this->range_min)
586 			node = node->rb_left;
587 		else if (reg > this->range_max)
588 			node = node->rb_right;
589 		else
590 			return this;
591 	}
592 
593 	return NULL;
594 }
595 
596 static void regmap_range_exit(struct regmap *map)
597 {
598 	struct rb_node *next;
599 	struct regmap_range_node *range_node;
600 
601 	next = rb_first(&map->range_tree);
602 	while (next) {
603 		range_node = rb_entry(next, struct regmap_range_node, node);
604 		next = rb_next(&range_node->node);
605 		rb_erase(&range_node->node, &map->range_tree);
606 		kfree(range_node);
607 	}
608 
609 	kfree(map->selector_work_buf);
610 }
611 
612 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
613 {
614 	if (config->name) {
615 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
616 
617 		if (!name)
618 			return -ENOMEM;
619 
620 		kfree_const(map->name);
621 		map->name = name;
622 	}
623 
624 	return 0;
625 }
626 
627 int regmap_attach_dev(struct device *dev, struct regmap *map,
628 		      const struct regmap_config *config)
629 {
630 	struct regmap **m;
631 	int ret;
632 
633 	map->dev = dev;
634 
635 	ret = regmap_set_name(map, config);
636 	if (ret)
637 		return ret;
638 
639 	regmap_debugfs_exit(map);
640 	regmap_debugfs_init(map);
641 
642 	/* Add a devres resource for dev_get_regmap() */
643 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
644 	if (!m) {
645 		regmap_debugfs_exit(map);
646 		return -ENOMEM;
647 	}
648 	*m = map;
649 	devres_add(dev, m);
650 
651 	return 0;
652 }
653 EXPORT_SYMBOL_GPL(regmap_attach_dev);
654 
655 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
656 					const struct regmap_config *config)
657 {
658 	enum regmap_endian endian;
659 
660 	/* Retrieve the endianness specification from the regmap config */
661 	endian = config->reg_format_endian;
662 
663 	/* If the regmap config specified a non-default value, use that */
664 	if (endian != REGMAP_ENDIAN_DEFAULT)
665 		return endian;
666 
667 	/* Retrieve the endianness specification from the bus config */
668 	if (bus && bus->reg_format_endian_default)
669 		endian = bus->reg_format_endian_default;
670 
671 	/* If the bus specified a non-default value, use that */
672 	if (endian != REGMAP_ENDIAN_DEFAULT)
673 		return endian;
674 
675 	/* Use this if no other value was found */
676 	return REGMAP_ENDIAN_BIG;
677 }
678 
679 enum regmap_endian regmap_get_val_endian(struct device *dev,
680 					 const struct regmap_bus *bus,
681 					 const struct regmap_config *config)
682 {
683 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
684 	enum regmap_endian endian;
685 
686 	/* Retrieve the endianness specification from the regmap config */
687 	endian = config->val_format_endian;
688 
689 	/* If the regmap config specified a non-default value, use that */
690 	if (endian != REGMAP_ENDIAN_DEFAULT)
691 		return endian;
692 
693 	/* If the firmware node exist try to get endianness from it */
694 	if (fwnode_property_read_bool(fwnode, "big-endian"))
695 		endian = REGMAP_ENDIAN_BIG;
696 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
697 		endian = REGMAP_ENDIAN_LITTLE;
698 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
699 		endian = REGMAP_ENDIAN_NATIVE;
700 
701 	/* If the endianness was specified in fwnode, use that */
702 	if (endian != REGMAP_ENDIAN_DEFAULT)
703 		return endian;
704 
705 	/* Retrieve the endianness specification from the bus config */
706 	if (bus && bus->val_format_endian_default)
707 		endian = bus->val_format_endian_default;
708 
709 	/* If the bus specified a non-default value, use that */
710 	if (endian != REGMAP_ENDIAN_DEFAULT)
711 		return endian;
712 
713 	/* Use this if no other value was found */
714 	return REGMAP_ENDIAN_BIG;
715 }
716 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
717 
718 struct regmap *__regmap_init(struct device *dev,
719 			     const struct regmap_bus *bus,
720 			     void *bus_context,
721 			     const struct regmap_config *config,
722 			     struct lock_class_key *lock_key,
723 			     const char *lock_name)
724 {
725 	struct regmap *map;
726 	int ret = -EINVAL;
727 	enum regmap_endian reg_endian, val_endian;
728 	int i, j;
729 
730 	if (!config)
731 		goto err;
732 
733 	map = kzalloc(sizeof(*map), GFP_KERNEL);
734 	if (map == NULL) {
735 		ret = -ENOMEM;
736 		goto err;
737 	}
738 
739 	ret = regmap_set_name(map, config);
740 	if (ret)
741 		goto err_map;
742 
743 	ret = -EINVAL; /* Later error paths rely on this */
744 
745 	if (config->disable_locking) {
746 		map->lock = map->unlock = regmap_lock_unlock_none;
747 		map->can_sleep = config->can_sleep;
748 		regmap_debugfs_disable(map);
749 	} else if (config->lock && config->unlock) {
750 		map->lock = config->lock;
751 		map->unlock = config->unlock;
752 		map->lock_arg = config->lock_arg;
753 		map->can_sleep = config->can_sleep;
754 	} else if (config->use_hwlock) {
755 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
756 		if (!map->hwlock) {
757 			ret = -ENXIO;
758 			goto err_name;
759 		}
760 
761 		switch (config->hwlock_mode) {
762 		case HWLOCK_IRQSTATE:
763 			map->lock = regmap_lock_hwlock_irqsave;
764 			map->unlock = regmap_unlock_hwlock_irqrestore;
765 			break;
766 		case HWLOCK_IRQ:
767 			map->lock = regmap_lock_hwlock_irq;
768 			map->unlock = regmap_unlock_hwlock_irq;
769 			break;
770 		default:
771 			map->lock = regmap_lock_hwlock;
772 			map->unlock = regmap_unlock_hwlock;
773 			break;
774 		}
775 
776 		map->lock_arg = map;
777 	} else {
778 		if ((bus && bus->fast_io) ||
779 		    config->fast_io) {
780 			if (config->use_raw_spinlock) {
781 				raw_spin_lock_init(&map->raw_spinlock);
782 				map->lock = regmap_lock_raw_spinlock;
783 				map->unlock = regmap_unlock_raw_spinlock;
784 				lockdep_set_class_and_name(&map->raw_spinlock,
785 							   lock_key, lock_name);
786 			} else {
787 				spin_lock_init(&map->spinlock);
788 				map->lock = regmap_lock_spinlock;
789 				map->unlock = regmap_unlock_spinlock;
790 				lockdep_set_class_and_name(&map->spinlock,
791 							   lock_key, lock_name);
792 			}
793 		} else {
794 			mutex_init(&map->mutex);
795 			map->lock = regmap_lock_mutex;
796 			map->unlock = regmap_unlock_mutex;
797 			map->can_sleep = true;
798 			lockdep_set_class_and_name(&map->mutex,
799 						   lock_key, lock_name);
800 		}
801 		map->lock_arg = map;
802 	}
803 
804 	/*
805 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
806 	 * scratch buffers with sleeping allocations.
807 	 */
808 	if ((bus && bus->fast_io) || config->fast_io)
809 		map->alloc_flags = GFP_ATOMIC;
810 	else
811 		map->alloc_flags = GFP_KERNEL;
812 
813 	map->reg_base = config->reg_base;
814 
815 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
816 	map->format.pad_bytes = config->pad_bits / 8;
817 	map->format.reg_shift = config->reg_shift;
818 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
819 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
820 			config->val_bits + config->pad_bits, 8);
821 	map->reg_shift = config->pad_bits % 8;
822 	if (config->reg_stride)
823 		map->reg_stride = config->reg_stride;
824 	else
825 		map->reg_stride = 1;
826 	if (is_power_of_2(map->reg_stride))
827 		map->reg_stride_order = ilog2(map->reg_stride);
828 	else
829 		map->reg_stride_order = -1;
830 	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
831 	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
832 	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
833 	if (bus) {
834 		map->max_raw_read = bus->max_raw_read;
835 		map->max_raw_write = bus->max_raw_write;
836 	} else if (config->max_raw_read && config->max_raw_write) {
837 		map->max_raw_read = config->max_raw_read;
838 		map->max_raw_write = config->max_raw_write;
839 	}
840 	map->dev = dev;
841 	map->bus = bus;
842 	map->bus_context = bus_context;
843 	map->max_register = config->max_register;
844 	map->wr_table = config->wr_table;
845 	map->rd_table = config->rd_table;
846 	map->volatile_table = config->volatile_table;
847 	map->precious_table = config->precious_table;
848 	map->wr_noinc_table = config->wr_noinc_table;
849 	map->rd_noinc_table = config->rd_noinc_table;
850 	map->writeable_reg = config->writeable_reg;
851 	map->readable_reg = config->readable_reg;
852 	map->volatile_reg = config->volatile_reg;
853 	map->precious_reg = config->precious_reg;
854 	map->writeable_noinc_reg = config->writeable_noinc_reg;
855 	map->readable_noinc_reg = config->readable_noinc_reg;
856 	map->cache_type = config->cache_type;
857 
858 	spin_lock_init(&map->async_lock);
859 	INIT_LIST_HEAD(&map->async_list);
860 	INIT_LIST_HEAD(&map->async_free);
861 	init_waitqueue_head(&map->async_waitq);
862 
863 	if (config->read_flag_mask ||
864 	    config->write_flag_mask ||
865 	    config->zero_flag_mask) {
866 		map->read_flag_mask = config->read_flag_mask;
867 		map->write_flag_mask = config->write_flag_mask;
868 	} else if (bus) {
869 		map->read_flag_mask = bus->read_flag_mask;
870 	}
871 
872 	if (config && config->read && config->write) {
873 		map->reg_read  = _regmap_bus_read;
874 		if (config->reg_update_bits)
875 			map->reg_update_bits = config->reg_update_bits;
876 
877 		/* Bulk read/write */
878 		map->read = config->read;
879 		map->write = config->write;
880 
881 		reg_endian = REGMAP_ENDIAN_NATIVE;
882 		val_endian = REGMAP_ENDIAN_NATIVE;
883 	} else if (!bus) {
884 		map->reg_read  = config->reg_read;
885 		map->reg_write = config->reg_write;
886 		map->reg_update_bits = config->reg_update_bits;
887 
888 		map->defer_caching = false;
889 		goto skip_format_initialization;
890 	} else if (!bus->read || !bus->write) {
891 		map->reg_read = _regmap_bus_reg_read;
892 		map->reg_write = _regmap_bus_reg_write;
893 		map->reg_update_bits = bus->reg_update_bits;
894 
895 		map->defer_caching = false;
896 		goto skip_format_initialization;
897 	} else {
898 		map->reg_read  = _regmap_bus_read;
899 		map->reg_update_bits = bus->reg_update_bits;
900 		/* Bulk read/write */
901 		map->read = bus->read;
902 		map->write = bus->write;
903 
904 		reg_endian = regmap_get_reg_endian(bus, config);
905 		val_endian = regmap_get_val_endian(dev, bus, config);
906 	}
907 
908 	switch (config->reg_bits + map->reg_shift) {
909 	case 2:
910 		switch (config->val_bits) {
911 		case 6:
912 			map->format.format_write = regmap_format_2_6_write;
913 			break;
914 		default:
915 			goto err_hwlock;
916 		}
917 		break;
918 
919 	case 4:
920 		switch (config->val_bits) {
921 		case 12:
922 			map->format.format_write = regmap_format_4_12_write;
923 			break;
924 		default:
925 			goto err_hwlock;
926 		}
927 		break;
928 
929 	case 7:
930 		switch (config->val_bits) {
931 		case 9:
932 			map->format.format_write = regmap_format_7_9_write;
933 			break;
934 		case 17:
935 			map->format.format_write = regmap_format_7_17_write;
936 			break;
937 		default:
938 			goto err_hwlock;
939 		}
940 		break;
941 
942 	case 10:
943 		switch (config->val_bits) {
944 		case 14:
945 			map->format.format_write = regmap_format_10_14_write;
946 			break;
947 		default:
948 			goto err_hwlock;
949 		}
950 		break;
951 
952 	case 12:
953 		switch (config->val_bits) {
954 		case 20:
955 			map->format.format_write = regmap_format_12_20_write;
956 			break;
957 		default:
958 			goto err_hwlock;
959 		}
960 		break;
961 
962 	case 8:
963 		map->format.format_reg = regmap_format_8;
964 		break;
965 
966 	case 16:
967 		switch (reg_endian) {
968 		case REGMAP_ENDIAN_BIG:
969 			map->format.format_reg = regmap_format_16_be;
970 			break;
971 		case REGMAP_ENDIAN_LITTLE:
972 			map->format.format_reg = regmap_format_16_le;
973 			break;
974 		case REGMAP_ENDIAN_NATIVE:
975 			map->format.format_reg = regmap_format_16_native;
976 			break;
977 		default:
978 			goto err_hwlock;
979 		}
980 		break;
981 
982 	case 24:
983 		switch (reg_endian) {
984 		case REGMAP_ENDIAN_BIG:
985 			map->format.format_reg = regmap_format_24_be;
986 			break;
987 		default:
988 			goto err_hwlock;
989 		}
990 		break;
991 
992 	case 32:
993 		switch (reg_endian) {
994 		case REGMAP_ENDIAN_BIG:
995 			map->format.format_reg = regmap_format_32_be;
996 			break;
997 		case REGMAP_ENDIAN_LITTLE:
998 			map->format.format_reg = regmap_format_32_le;
999 			break;
1000 		case REGMAP_ENDIAN_NATIVE:
1001 			map->format.format_reg = regmap_format_32_native;
1002 			break;
1003 		default:
1004 			goto err_hwlock;
1005 		}
1006 		break;
1007 
1008 #ifdef CONFIG_64BIT
1009 	case 64:
1010 		switch (reg_endian) {
1011 		case REGMAP_ENDIAN_BIG:
1012 			map->format.format_reg = regmap_format_64_be;
1013 			break;
1014 		case REGMAP_ENDIAN_LITTLE:
1015 			map->format.format_reg = regmap_format_64_le;
1016 			break;
1017 		case REGMAP_ENDIAN_NATIVE:
1018 			map->format.format_reg = regmap_format_64_native;
1019 			break;
1020 		default:
1021 			goto err_hwlock;
1022 		}
1023 		break;
1024 #endif
1025 
1026 	default:
1027 		goto err_hwlock;
1028 	}
1029 
1030 	if (val_endian == REGMAP_ENDIAN_NATIVE)
1031 		map->format.parse_inplace = regmap_parse_inplace_noop;
1032 
1033 	switch (config->val_bits) {
1034 	case 8:
1035 		map->format.format_val = regmap_format_8;
1036 		map->format.parse_val = regmap_parse_8;
1037 		map->format.parse_inplace = regmap_parse_inplace_noop;
1038 		break;
1039 	case 16:
1040 		switch (val_endian) {
1041 		case REGMAP_ENDIAN_BIG:
1042 			map->format.format_val = regmap_format_16_be;
1043 			map->format.parse_val = regmap_parse_16_be;
1044 			map->format.parse_inplace = regmap_parse_16_be_inplace;
1045 			break;
1046 		case REGMAP_ENDIAN_LITTLE:
1047 			map->format.format_val = regmap_format_16_le;
1048 			map->format.parse_val = regmap_parse_16_le;
1049 			map->format.parse_inplace = regmap_parse_16_le_inplace;
1050 			break;
1051 		case REGMAP_ENDIAN_NATIVE:
1052 			map->format.format_val = regmap_format_16_native;
1053 			map->format.parse_val = regmap_parse_16_native;
1054 			break;
1055 		default:
1056 			goto err_hwlock;
1057 		}
1058 		break;
1059 	case 24:
1060 		switch (val_endian) {
1061 		case REGMAP_ENDIAN_BIG:
1062 			map->format.format_val = regmap_format_24_be;
1063 			map->format.parse_val = regmap_parse_24_be;
1064 			break;
1065 		default:
1066 			goto err_hwlock;
1067 		}
1068 		break;
1069 	case 32:
1070 		switch (val_endian) {
1071 		case REGMAP_ENDIAN_BIG:
1072 			map->format.format_val = regmap_format_32_be;
1073 			map->format.parse_val = regmap_parse_32_be;
1074 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1075 			break;
1076 		case REGMAP_ENDIAN_LITTLE:
1077 			map->format.format_val = regmap_format_32_le;
1078 			map->format.parse_val = regmap_parse_32_le;
1079 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1080 			break;
1081 		case REGMAP_ENDIAN_NATIVE:
1082 			map->format.format_val = regmap_format_32_native;
1083 			map->format.parse_val = regmap_parse_32_native;
1084 			break;
1085 		default:
1086 			goto err_hwlock;
1087 		}
1088 		break;
1089 #ifdef CONFIG_64BIT
1090 	case 64:
1091 		switch (val_endian) {
1092 		case REGMAP_ENDIAN_BIG:
1093 			map->format.format_val = regmap_format_64_be;
1094 			map->format.parse_val = regmap_parse_64_be;
1095 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1096 			break;
1097 		case REGMAP_ENDIAN_LITTLE:
1098 			map->format.format_val = regmap_format_64_le;
1099 			map->format.parse_val = regmap_parse_64_le;
1100 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1101 			break;
1102 		case REGMAP_ENDIAN_NATIVE:
1103 			map->format.format_val = regmap_format_64_native;
1104 			map->format.parse_val = regmap_parse_64_native;
1105 			break;
1106 		default:
1107 			goto err_hwlock;
1108 		}
1109 		break;
1110 #endif
1111 	}
1112 
1113 	if (map->format.format_write) {
1114 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1115 		    (val_endian != REGMAP_ENDIAN_BIG))
1116 			goto err_hwlock;
1117 		map->use_single_write = true;
1118 	}
1119 
1120 	if (!map->format.format_write &&
1121 	    !(map->format.format_reg && map->format.format_val))
1122 		goto err_hwlock;
1123 
1124 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1125 	if (map->work_buf == NULL) {
1126 		ret = -ENOMEM;
1127 		goto err_hwlock;
1128 	}
1129 
1130 	if (map->format.format_write) {
1131 		map->defer_caching = false;
1132 		map->reg_write = _regmap_bus_formatted_write;
1133 	} else if (map->format.format_val) {
1134 		map->defer_caching = true;
1135 		map->reg_write = _regmap_bus_raw_write;
1136 	}
1137 
1138 skip_format_initialization:
1139 
1140 	map->range_tree = RB_ROOT;
1141 	for (i = 0; i < config->num_ranges; i++) {
1142 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1143 		struct regmap_range_node *new;
1144 
1145 		/* Sanity check */
1146 		if (range_cfg->range_max < range_cfg->range_min) {
1147 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1148 				range_cfg->range_max, range_cfg->range_min);
1149 			goto err_range;
1150 		}
1151 
1152 		if (range_cfg->range_max > map->max_register) {
1153 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1154 				range_cfg->range_max, map->max_register);
1155 			goto err_range;
1156 		}
1157 
1158 		if (range_cfg->selector_reg > map->max_register) {
1159 			dev_err(map->dev,
1160 				"Invalid range %d: selector out of map\n", i);
1161 			goto err_range;
1162 		}
1163 
1164 		if (range_cfg->window_len == 0) {
1165 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1166 				i);
1167 			goto err_range;
1168 		}
1169 
1170 		/* Make sure, that this register range has no selector
1171 		   or data window within its boundary */
1172 		for (j = 0; j < config->num_ranges; j++) {
1173 			unsigned int sel_reg = config->ranges[j].selector_reg;
1174 			unsigned int win_min = config->ranges[j].window_start;
1175 			unsigned int win_max = win_min +
1176 					       config->ranges[j].window_len - 1;
1177 
1178 			/* Allow data window inside its own virtual range */
1179 			if (j == i)
1180 				continue;
1181 
1182 			if (range_cfg->range_min <= sel_reg &&
1183 			    sel_reg <= range_cfg->range_max) {
1184 				dev_err(map->dev,
1185 					"Range %d: selector for %d in window\n",
1186 					i, j);
1187 				goto err_range;
1188 			}
1189 
1190 			if (!(win_max < range_cfg->range_min ||
1191 			      win_min > range_cfg->range_max)) {
1192 				dev_err(map->dev,
1193 					"Range %d: window for %d in window\n",
1194 					i, j);
1195 				goto err_range;
1196 			}
1197 		}
1198 
1199 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1200 		if (new == NULL) {
1201 			ret = -ENOMEM;
1202 			goto err_range;
1203 		}
1204 
1205 		new->map = map;
1206 		new->name = range_cfg->name;
1207 		new->range_min = range_cfg->range_min;
1208 		new->range_max = range_cfg->range_max;
1209 		new->selector_reg = range_cfg->selector_reg;
1210 		new->selector_mask = range_cfg->selector_mask;
1211 		new->selector_shift = range_cfg->selector_shift;
1212 		new->window_start = range_cfg->window_start;
1213 		new->window_len = range_cfg->window_len;
1214 
1215 		if (!_regmap_range_add(map, new)) {
1216 			dev_err(map->dev, "Failed to add range %d\n", i);
1217 			kfree(new);
1218 			goto err_range;
1219 		}
1220 
1221 		if (map->selector_work_buf == NULL) {
1222 			map->selector_work_buf =
1223 				kzalloc(map->format.buf_size, GFP_KERNEL);
1224 			if (map->selector_work_buf == NULL) {
1225 				ret = -ENOMEM;
1226 				goto err_range;
1227 			}
1228 		}
1229 	}
1230 
1231 	ret = regcache_init(map, config);
1232 	if (ret != 0)
1233 		goto err_range;
1234 
1235 	if (dev) {
1236 		ret = regmap_attach_dev(dev, map, config);
1237 		if (ret != 0)
1238 			goto err_regcache;
1239 	} else {
1240 		regmap_debugfs_init(map);
1241 	}
1242 
1243 	return map;
1244 
1245 err_regcache:
1246 	regcache_exit(map);
1247 err_range:
1248 	regmap_range_exit(map);
1249 	kfree(map->work_buf);
1250 err_hwlock:
1251 	if (map->hwlock)
1252 		hwspin_lock_free(map->hwlock);
1253 err_name:
1254 	kfree_const(map->name);
1255 err_map:
1256 	kfree(map);
1257 err:
1258 	return ERR_PTR(ret);
1259 }
1260 EXPORT_SYMBOL_GPL(__regmap_init);
1261 
1262 static void devm_regmap_release(struct device *dev, void *res)
1263 {
1264 	regmap_exit(*(struct regmap **)res);
1265 }
1266 
1267 struct regmap *__devm_regmap_init(struct device *dev,
1268 				  const struct regmap_bus *bus,
1269 				  void *bus_context,
1270 				  const struct regmap_config *config,
1271 				  struct lock_class_key *lock_key,
1272 				  const char *lock_name)
1273 {
1274 	struct regmap **ptr, *regmap;
1275 
1276 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1277 	if (!ptr)
1278 		return ERR_PTR(-ENOMEM);
1279 
1280 	regmap = __regmap_init(dev, bus, bus_context, config,
1281 			       lock_key, lock_name);
1282 	if (!IS_ERR(regmap)) {
1283 		*ptr = regmap;
1284 		devres_add(dev, ptr);
1285 	} else {
1286 		devres_free(ptr);
1287 	}
1288 
1289 	return regmap;
1290 }
1291 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1292 
1293 static void regmap_field_init(struct regmap_field *rm_field,
1294 	struct regmap *regmap, struct reg_field reg_field)
1295 {
1296 	rm_field->regmap = regmap;
1297 	rm_field->reg = reg_field.reg;
1298 	rm_field->shift = reg_field.lsb;
1299 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1300 
1301 	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1302 
1303 	rm_field->id_size = reg_field.id_size;
1304 	rm_field->id_offset = reg_field.id_offset;
1305 }
1306 
1307 /**
1308  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1309  *
1310  * @dev: Device that will be interacted with
1311  * @regmap: regmap bank in which this register field is located.
1312  * @reg_field: Register field with in the bank.
1313  *
1314  * The return value will be an ERR_PTR() on error or a valid pointer
1315  * to a struct regmap_field. The regmap_field will be automatically freed
1316  * by the device management code.
1317  */
1318 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1319 		struct regmap *regmap, struct reg_field reg_field)
1320 {
1321 	struct regmap_field *rm_field = devm_kzalloc(dev,
1322 					sizeof(*rm_field), GFP_KERNEL);
1323 	if (!rm_field)
1324 		return ERR_PTR(-ENOMEM);
1325 
1326 	regmap_field_init(rm_field, regmap, reg_field);
1327 
1328 	return rm_field;
1329 
1330 }
1331 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1332 
1333 
1334 /**
1335  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1336  *
1337  * @regmap: regmap bank in which this register field is located.
1338  * @rm_field: regmap register fields within the bank.
1339  * @reg_field: Register fields within the bank.
1340  * @num_fields: Number of register fields.
1341  *
1342  * The return value will be an -ENOMEM on error or zero for success.
1343  * Newly allocated regmap_fields should be freed by calling
1344  * regmap_field_bulk_free()
1345  */
1346 int regmap_field_bulk_alloc(struct regmap *regmap,
1347 			    struct regmap_field **rm_field,
1348 			    const struct reg_field *reg_field,
1349 			    int num_fields)
1350 {
1351 	struct regmap_field *rf;
1352 	int i;
1353 
1354 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1355 	if (!rf)
1356 		return -ENOMEM;
1357 
1358 	for (i = 0; i < num_fields; i++) {
1359 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1360 		rm_field[i] = &rf[i];
1361 	}
1362 
1363 	return 0;
1364 }
1365 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1366 
1367 /**
1368  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1369  * fields.
1370  *
1371  * @dev: Device that will be interacted with
1372  * @regmap: regmap bank in which this register field is located.
1373  * @rm_field: regmap register fields within the bank.
1374  * @reg_field: Register fields within the bank.
1375  * @num_fields: Number of register fields.
1376  *
1377  * The return value will be an -ENOMEM on error or zero for success.
1378  * Newly allocated regmap_fields will be automatically freed by the
1379  * device management code.
1380  */
1381 int devm_regmap_field_bulk_alloc(struct device *dev,
1382 				 struct regmap *regmap,
1383 				 struct regmap_field **rm_field,
1384 				 const struct reg_field *reg_field,
1385 				 int num_fields)
1386 {
1387 	struct regmap_field *rf;
1388 	int i;
1389 
1390 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1391 	if (!rf)
1392 		return -ENOMEM;
1393 
1394 	for (i = 0; i < num_fields; i++) {
1395 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1396 		rm_field[i] = &rf[i];
1397 	}
1398 
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1402 
1403 /**
1404  * regmap_field_bulk_free() - Free register field allocated using
1405  *                       regmap_field_bulk_alloc.
1406  *
1407  * @field: regmap fields which should be freed.
1408  */
1409 void regmap_field_bulk_free(struct regmap_field *field)
1410 {
1411 	kfree(field);
1412 }
1413 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1414 
1415 /**
1416  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1417  *                            devm_regmap_field_bulk_alloc.
1418  *
1419  * @dev: Device that will be interacted with
1420  * @field: regmap field which should be freed.
1421  *
1422  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1423  * drivers need not call this function, as the memory allocated via devm
1424  * will be freed as per device-driver life-cycle.
1425  */
1426 void devm_regmap_field_bulk_free(struct device *dev,
1427 				 struct regmap_field *field)
1428 {
1429 	devm_kfree(dev, field);
1430 }
1431 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1432 
1433 /**
1434  * devm_regmap_field_free() - Free a register field allocated using
1435  *                            devm_regmap_field_alloc.
1436  *
1437  * @dev: Device that will be interacted with
1438  * @field: regmap field which should be freed.
1439  *
1440  * Free register field allocated using devm_regmap_field_alloc(). Usually
1441  * drivers need not call this function, as the memory allocated via devm
1442  * will be freed as per device-driver life-cyle.
1443  */
1444 void devm_regmap_field_free(struct device *dev,
1445 	struct regmap_field *field)
1446 {
1447 	devm_kfree(dev, field);
1448 }
1449 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1450 
1451 /**
1452  * regmap_field_alloc() - Allocate and initialise a register field.
1453  *
1454  * @regmap: regmap bank in which this register field is located.
1455  * @reg_field: Register field with in the bank.
1456  *
1457  * The return value will be an ERR_PTR() on error or a valid pointer
1458  * to a struct regmap_field. The regmap_field should be freed by the
1459  * user once its finished working with it using regmap_field_free().
1460  */
1461 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1462 		struct reg_field reg_field)
1463 {
1464 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1465 
1466 	if (!rm_field)
1467 		return ERR_PTR(-ENOMEM);
1468 
1469 	regmap_field_init(rm_field, regmap, reg_field);
1470 
1471 	return rm_field;
1472 }
1473 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1474 
1475 /**
1476  * regmap_field_free() - Free register field allocated using
1477  *                       regmap_field_alloc.
1478  *
1479  * @field: regmap field which should be freed.
1480  */
1481 void regmap_field_free(struct regmap_field *field)
1482 {
1483 	kfree(field);
1484 }
1485 EXPORT_SYMBOL_GPL(regmap_field_free);
1486 
1487 /**
1488  * regmap_reinit_cache() - Reinitialise the current register cache
1489  *
1490  * @map: Register map to operate on.
1491  * @config: New configuration.  Only the cache data will be used.
1492  *
1493  * Discard any existing register cache for the map and initialize a
1494  * new cache.  This can be used to restore the cache to defaults or to
1495  * update the cache configuration to reflect runtime discovery of the
1496  * hardware.
1497  *
1498  * No explicit locking is done here, the user needs to ensure that
1499  * this function will not race with other calls to regmap.
1500  */
1501 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1502 {
1503 	int ret;
1504 
1505 	regcache_exit(map);
1506 	regmap_debugfs_exit(map);
1507 
1508 	map->max_register = config->max_register;
1509 	map->writeable_reg = config->writeable_reg;
1510 	map->readable_reg = config->readable_reg;
1511 	map->volatile_reg = config->volatile_reg;
1512 	map->precious_reg = config->precious_reg;
1513 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1514 	map->readable_noinc_reg = config->readable_noinc_reg;
1515 	map->cache_type = config->cache_type;
1516 
1517 	ret = regmap_set_name(map, config);
1518 	if (ret)
1519 		return ret;
1520 
1521 	regmap_debugfs_init(map);
1522 
1523 	map->cache_bypass = false;
1524 	map->cache_only = false;
1525 
1526 	return regcache_init(map, config);
1527 }
1528 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1529 
1530 /**
1531  * regmap_exit() - Free a previously allocated register map
1532  *
1533  * @map: Register map to operate on.
1534  */
1535 void regmap_exit(struct regmap *map)
1536 {
1537 	struct regmap_async *async;
1538 
1539 	regcache_exit(map);
1540 	regmap_debugfs_exit(map);
1541 	regmap_range_exit(map);
1542 	if (map->bus && map->bus->free_context)
1543 		map->bus->free_context(map->bus_context);
1544 	kfree(map->work_buf);
1545 	while (!list_empty(&map->async_free)) {
1546 		async = list_first_entry_or_null(&map->async_free,
1547 						 struct regmap_async,
1548 						 list);
1549 		list_del(&async->list);
1550 		kfree(async->work_buf);
1551 		kfree(async);
1552 	}
1553 	if (map->hwlock)
1554 		hwspin_lock_free(map->hwlock);
1555 	if (map->lock == regmap_lock_mutex)
1556 		mutex_destroy(&map->mutex);
1557 	kfree_const(map->name);
1558 	kfree(map->patch);
1559 	if (map->bus && map->bus->free_on_exit)
1560 		kfree(map->bus);
1561 	kfree(map);
1562 }
1563 EXPORT_SYMBOL_GPL(regmap_exit);
1564 
1565 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1566 {
1567 	struct regmap **r = res;
1568 	if (!r || !*r) {
1569 		WARN_ON(!r || !*r);
1570 		return 0;
1571 	}
1572 
1573 	/* If the user didn't specify a name match any */
1574 	if (data)
1575 		return !strcmp((*r)->name, data);
1576 	else
1577 		return 1;
1578 }
1579 
1580 /**
1581  * dev_get_regmap() - Obtain the regmap (if any) for a device
1582  *
1583  * @dev: Device to retrieve the map for
1584  * @name: Optional name for the register map, usually NULL.
1585  *
1586  * Returns the regmap for the device if one is present, or NULL.  If
1587  * name is specified then it must match the name specified when
1588  * registering the device, if it is NULL then the first regmap found
1589  * will be used.  Devices with multiple register maps are very rare,
1590  * generic code should normally not need to specify a name.
1591  */
1592 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1593 {
1594 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1595 					dev_get_regmap_match, (void *)name);
1596 
1597 	if (!r)
1598 		return NULL;
1599 	return *r;
1600 }
1601 EXPORT_SYMBOL_GPL(dev_get_regmap);
1602 
1603 /**
1604  * regmap_get_device() - Obtain the device from a regmap
1605  *
1606  * @map: Register map to operate on.
1607  *
1608  * Returns the underlying device that the regmap has been created for.
1609  */
1610 struct device *regmap_get_device(struct regmap *map)
1611 {
1612 	return map->dev;
1613 }
1614 EXPORT_SYMBOL_GPL(regmap_get_device);
1615 
1616 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1617 			       struct regmap_range_node *range,
1618 			       unsigned int val_num)
1619 {
1620 	void *orig_work_buf;
1621 	unsigned int win_offset;
1622 	unsigned int win_page;
1623 	bool page_chg;
1624 	int ret;
1625 
1626 	win_offset = (*reg - range->range_min) % range->window_len;
1627 	win_page = (*reg - range->range_min) / range->window_len;
1628 
1629 	if (val_num > 1) {
1630 		/* Bulk write shouldn't cross range boundary */
1631 		if (*reg + val_num - 1 > range->range_max)
1632 			return -EINVAL;
1633 
1634 		/* ... or single page boundary */
1635 		if (val_num > range->window_len - win_offset)
1636 			return -EINVAL;
1637 	}
1638 
1639 	/* It is possible to have selector register inside data window.
1640 	   In that case, selector register is located on every page and
1641 	   it needs no page switching, when accessed alone. */
1642 	if (val_num > 1 ||
1643 	    range->window_start + win_offset != range->selector_reg) {
1644 		/* Use separate work_buf during page switching */
1645 		orig_work_buf = map->work_buf;
1646 		map->work_buf = map->selector_work_buf;
1647 
1648 		ret = _regmap_update_bits(map, range->selector_reg,
1649 					  range->selector_mask,
1650 					  win_page << range->selector_shift,
1651 					  &page_chg, false);
1652 
1653 		map->work_buf = orig_work_buf;
1654 
1655 		if (ret != 0)
1656 			return ret;
1657 	}
1658 
1659 	*reg = range->window_start + win_offset;
1660 
1661 	return 0;
1662 }
1663 
1664 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1665 					  unsigned long mask)
1666 {
1667 	u8 *buf;
1668 	int i;
1669 
1670 	if (!mask || !map->work_buf)
1671 		return;
1672 
1673 	buf = map->work_buf;
1674 
1675 	for (i = 0; i < max_bytes; i++)
1676 		buf[i] |= (mask >> (8 * i)) & 0xff;
1677 }
1678 
1679 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1680 {
1681 	reg += map->reg_base;
1682 
1683 	if (map->format.reg_shift > 0)
1684 		reg >>= map->format.reg_shift;
1685 	else if (map->format.reg_shift < 0)
1686 		reg <<= -(map->format.reg_shift);
1687 
1688 	return reg;
1689 }
1690 
1691 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1692 				  const void *val, size_t val_len, bool noinc)
1693 {
1694 	struct regmap_range_node *range;
1695 	unsigned long flags;
1696 	void *work_val = map->work_buf + map->format.reg_bytes +
1697 		map->format.pad_bytes;
1698 	void *buf;
1699 	int ret = -ENOTSUPP;
1700 	size_t len;
1701 	int i;
1702 
1703 	/* Check for unwritable or noinc registers in range
1704 	 * before we start
1705 	 */
1706 	if (!regmap_writeable_noinc(map, reg)) {
1707 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1708 			unsigned int element =
1709 				reg + regmap_get_offset(map, i);
1710 			if (!regmap_writeable(map, element) ||
1711 				regmap_writeable_noinc(map, element))
1712 				return -EINVAL;
1713 		}
1714 	}
1715 
1716 	if (!map->cache_bypass && map->format.parse_val) {
1717 		unsigned int ival;
1718 		int val_bytes = map->format.val_bytes;
1719 		for (i = 0; i < val_len / val_bytes; i++) {
1720 			ival = map->format.parse_val(val + (i * val_bytes));
1721 			ret = regcache_write(map,
1722 					     reg + regmap_get_offset(map, i),
1723 					     ival);
1724 			if (ret) {
1725 				dev_err(map->dev,
1726 					"Error in caching of register: %x ret: %d\n",
1727 					reg + regmap_get_offset(map, i), ret);
1728 				return ret;
1729 			}
1730 		}
1731 		if (map->cache_only) {
1732 			map->cache_dirty = true;
1733 			return 0;
1734 		}
1735 	}
1736 
1737 	range = _regmap_range_lookup(map, reg);
1738 	if (range) {
1739 		int val_num = val_len / map->format.val_bytes;
1740 		int win_offset = (reg - range->range_min) % range->window_len;
1741 		int win_residue = range->window_len - win_offset;
1742 
1743 		/* If the write goes beyond the end of the window split it */
1744 		while (val_num > win_residue) {
1745 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1746 				win_residue, val_len / map->format.val_bytes);
1747 			ret = _regmap_raw_write_impl(map, reg, val,
1748 						     win_residue *
1749 						     map->format.val_bytes, noinc);
1750 			if (ret != 0)
1751 				return ret;
1752 
1753 			reg += win_residue;
1754 			val_num -= win_residue;
1755 			val += win_residue * map->format.val_bytes;
1756 			val_len -= win_residue * map->format.val_bytes;
1757 
1758 			win_offset = (reg - range->range_min) %
1759 				range->window_len;
1760 			win_residue = range->window_len - win_offset;
1761 		}
1762 
1763 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1764 		if (ret != 0)
1765 			return ret;
1766 	}
1767 
1768 	reg = regmap_reg_addr(map, reg);
1769 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1770 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1771 				      map->write_flag_mask);
1772 
1773 	/*
1774 	 * Essentially all I/O mechanisms will be faster with a single
1775 	 * buffer to write.  Since register syncs often generate raw
1776 	 * writes of single registers optimise that case.
1777 	 */
1778 	if (val != work_val && val_len == map->format.val_bytes) {
1779 		memcpy(work_val, val, map->format.val_bytes);
1780 		val = work_val;
1781 	}
1782 
1783 	if (map->async && map->bus && map->bus->async_write) {
1784 		struct regmap_async *async;
1785 
1786 		trace_regmap_async_write_start(map, reg, val_len);
1787 
1788 		spin_lock_irqsave(&map->async_lock, flags);
1789 		async = list_first_entry_or_null(&map->async_free,
1790 						 struct regmap_async,
1791 						 list);
1792 		if (async)
1793 			list_del(&async->list);
1794 		spin_unlock_irqrestore(&map->async_lock, flags);
1795 
1796 		if (!async) {
1797 			async = map->bus->async_alloc();
1798 			if (!async)
1799 				return -ENOMEM;
1800 
1801 			async->work_buf = kzalloc(map->format.buf_size,
1802 						  GFP_KERNEL | GFP_DMA);
1803 			if (!async->work_buf) {
1804 				kfree(async);
1805 				return -ENOMEM;
1806 			}
1807 		}
1808 
1809 		async->map = map;
1810 
1811 		/* If the caller supplied the value we can use it safely. */
1812 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1813 		       map->format.reg_bytes + map->format.val_bytes);
1814 
1815 		spin_lock_irqsave(&map->async_lock, flags);
1816 		list_add_tail(&async->list, &map->async_list);
1817 		spin_unlock_irqrestore(&map->async_lock, flags);
1818 
1819 		if (val != work_val)
1820 			ret = map->bus->async_write(map->bus_context,
1821 						    async->work_buf,
1822 						    map->format.reg_bytes +
1823 						    map->format.pad_bytes,
1824 						    val, val_len, async);
1825 		else
1826 			ret = map->bus->async_write(map->bus_context,
1827 						    async->work_buf,
1828 						    map->format.reg_bytes +
1829 						    map->format.pad_bytes +
1830 						    val_len, NULL, 0, async);
1831 
1832 		if (ret != 0) {
1833 			dev_err(map->dev, "Failed to schedule write: %d\n",
1834 				ret);
1835 
1836 			spin_lock_irqsave(&map->async_lock, flags);
1837 			list_move(&async->list, &map->async_free);
1838 			spin_unlock_irqrestore(&map->async_lock, flags);
1839 		}
1840 
1841 		return ret;
1842 	}
1843 
1844 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1845 
1846 	/* If we're doing a single register write we can probably just
1847 	 * send the work_buf directly, otherwise try to do a gather
1848 	 * write.
1849 	 */
1850 	if (val == work_val)
1851 		ret = map->write(map->bus_context, map->work_buf,
1852 				 map->format.reg_bytes +
1853 				 map->format.pad_bytes +
1854 				 val_len);
1855 	else if (map->bus && map->bus->gather_write)
1856 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1857 					     map->format.reg_bytes +
1858 					     map->format.pad_bytes,
1859 					     val, val_len);
1860 	else
1861 		ret = -ENOTSUPP;
1862 
1863 	/* If that didn't work fall back on linearising by hand. */
1864 	if (ret == -ENOTSUPP) {
1865 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1866 		buf = kzalloc(len, GFP_KERNEL);
1867 		if (!buf)
1868 			return -ENOMEM;
1869 
1870 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1871 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1872 		       val, val_len);
1873 		ret = map->write(map->bus_context, buf, len);
1874 
1875 		kfree(buf);
1876 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1877 		/* regcache_drop_region() takes lock that we already have,
1878 		 * thus call map->cache_ops->drop() directly
1879 		 */
1880 		if (map->cache_ops && map->cache_ops->drop)
1881 			map->cache_ops->drop(map, reg, reg + 1);
1882 	}
1883 
1884 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1885 
1886 	return ret;
1887 }
1888 
1889 /**
1890  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1891  *
1892  * @map: Map to check.
1893  */
1894 bool regmap_can_raw_write(struct regmap *map)
1895 {
1896 	return map->write && map->format.format_val && map->format.format_reg;
1897 }
1898 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1899 
1900 /**
1901  * regmap_get_raw_read_max - Get the maximum size we can read
1902  *
1903  * @map: Map to check.
1904  */
1905 size_t regmap_get_raw_read_max(struct regmap *map)
1906 {
1907 	return map->max_raw_read;
1908 }
1909 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1910 
1911 /**
1912  * regmap_get_raw_write_max - Get the maximum size we can read
1913  *
1914  * @map: Map to check.
1915  */
1916 size_t regmap_get_raw_write_max(struct regmap *map)
1917 {
1918 	return map->max_raw_write;
1919 }
1920 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1921 
1922 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1923 				       unsigned int val)
1924 {
1925 	int ret;
1926 	struct regmap_range_node *range;
1927 	struct regmap *map = context;
1928 
1929 	WARN_ON(!map->format.format_write);
1930 
1931 	range = _regmap_range_lookup(map, reg);
1932 	if (range) {
1933 		ret = _regmap_select_page(map, &reg, range, 1);
1934 		if (ret != 0)
1935 			return ret;
1936 	}
1937 
1938 	reg = regmap_reg_addr(map, reg);
1939 	map->format.format_write(map, reg, val);
1940 
1941 	trace_regmap_hw_write_start(map, reg, 1);
1942 
1943 	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1944 
1945 	trace_regmap_hw_write_done(map, reg, 1);
1946 
1947 	return ret;
1948 }
1949 
1950 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1951 				 unsigned int val)
1952 {
1953 	struct regmap *map = context;
1954 	struct regmap_range_node *range;
1955 	int ret;
1956 
1957 	range = _regmap_range_lookup(map, reg);
1958 	if (range) {
1959 		ret = _regmap_select_page(map, &reg, range, 1);
1960 		if (ret != 0)
1961 			return ret;
1962 	}
1963 
1964 	reg = regmap_reg_addr(map, reg);
1965 	return map->bus->reg_write(map->bus_context, reg, val);
1966 }
1967 
1968 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1969 				 unsigned int val)
1970 {
1971 	struct regmap *map = context;
1972 
1973 	WARN_ON(!map->format.format_val);
1974 
1975 	map->format.format_val(map->work_buf + map->format.reg_bytes
1976 			       + map->format.pad_bytes, val, 0);
1977 	return _regmap_raw_write_impl(map, reg,
1978 				      map->work_buf +
1979 				      map->format.reg_bytes +
1980 				      map->format.pad_bytes,
1981 				      map->format.val_bytes,
1982 				      false);
1983 }
1984 
1985 static inline void *_regmap_map_get_context(struct regmap *map)
1986 {
1987 	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1988 }
1989 
1990 int _regmap_write(struct regmap *map, unsigned int reg,
1991 		  unsigned int val)
1992 {
1993 	int ret;
1994 	void *context = _regmap_map_get_context(map);
1995 
1996 	if (!regmap_writeable(map, reg))
1997 		return -EIO;
1998 
1999 	if (!map->cache_bypass && !map->defer_caching) {
2000 		ret = regcache_write(map, reg, val);
2001 		if (ret != 0)
2002 			return ret;
2003 		if (map->cache_only) {
2004 			map->cache_dirty = true;
2005 			return 0;
2006 		}
2007 	}
2008 
2009 	ret = map->reg_write(context, reg, val);
2010 	if (ret == 0) {
2011 		if (regmap_should_log(map))
2012 			dev_info(map->dev, "%x <= %x\n", reg, val);
2013 
2014 		trace_regmap_reg_write(map, reg, val);
2015 	}
2016 
2017 	return ret;
2018 }
2019 
2020 /**
2021  * regmap_write() - Write a value to a single register
2022  *
2023  * @map: Register map to write to
2024  * @reg: Register to write to
2025  * @val: Value to be written
2026  *
2027  * A value of zero will be returned on success, a negative errno will
2028  * be returned in error cases.
2029  */
2030 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2031 {
2032 	int ret;
2033 
2034 	if (!IS_ALIGNED(reg, map->reg_stride))
2035 		return -EINVAL;
2036 
2037 	map->lock(map->lock_arg);
2038 
2039 	ret = _regmap_write(map, reg, val);
2040 
2041 	map->unlock(map->lock_arg);
2042 
2043 	return ret;
2044 }
2045 EXPORT_SYMBOL_GPL(regmap_write);
2046 
2047 /**
2048  * regmap_write_async() - Write a value to a single register asynchronously
2049  *
2050  * @map: Register map to write to
2051  * @reg: Register to write to
2052  * @val: Value to be written
2053  *
2054  * A value of zero will be returned on success, a negative errno will
2055  * be returned in error cases.
2056  */
2057 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2058 {
2059 	int ret;
2060 
2061 	if (!IS_ALIGNED(reg, map->reg_stride))
2062 		return -EINVAL;
2063 
2064 	map->lock(map->lock_arg);
2065 
2066 	map->async = true;
2067 
2068 	ret = _regmap_write(map, reg, val);
2069 
2070 	map->async = false;
2071 
2072 	map->unlock(map->lock_arg);
2073 
2074 	return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(regmap_write_async);
2077 
2078 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2079 		      const void *val, size_t val_len, bool noinc)
2080 {
2081 	size_t val_bytes = map->format.val_bytes;
2082 	size_t val_count = val_len / val_bytes;
2083 	size_t chunk_count, chunk_bytes;
2084 	size_t chunk_regs = val_count;
2085 	size_t max_data = map->max_raw_write - map->format.reg_bytes -
2086 			map->format.pad_bytes;
2087 	int ret, i;
2088 
2089 	if (!val_count)
2090 		return -EINVAL;
2091 
2092 	if (map->use_single_write)
2093 		chunk_regs = 1;
2094 	else if (map->max_raw_write && val_len > max_data)
2095 		chunk_regs = max_data / val_bytes;
2096 
2097 	chunk_count = val_count / chunk_regs;
2098 	chunk_bytes = chunk_regs * val_bytes;
2099 
2100 	/* Write as many bytes as possible with chunk_size */
2101 	for (i = 0; i < chunk_count; i++) {
2102 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2103 		if (ret)
2104 			return ret;
2105 
2106 		reg += regmap_get_offset(map, chunk_regs);
2107 		val += chunk_bytes;
2108 		val_len -= chunk_bytes;
2109 	}
2110 
2111 	/* Write remaining bytes */
2112 	if (val_len)
2113 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2114 
2115 	return ret;
2116 }
2117 
2118 /**
2119  * regmap_raw_write() - Write raw values to one or more registers
2120  *
2121  * @map: Register map to write to
2122  * @reg: Initial register to write to
2123  * @val: Block of data to be written, laid out for direct transmission to the
2124  *       device
2125  * @val_len: Length of data pointed to by val.
2126  *
2127  * This function is intended to be used for things like firmware
2128  * download where a large block of data needs to be transferred to the
2129  * device.  No formatting will be done on the data provided.
2130  *
2131  * A value of zero will be returned on success, a negative errno will
2132  * be returned in error cases.
2133  */
2134 int regmap_raw_write(struct regmap *map, unsigned int reg,
2135 		     const void *val, size_t val_len)
2136 {
2137 	int ret;
2138 
2139 	if (!regmap_can_raw_write(map))
2140 		return -EINVAL;
2141 	if (val_len % map->format.val_bytes)
2142 		return -EINVAL;
2143 
2144 	map->lock(map->lock_arg);
2145 
2146 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2147 
2148 	map->unlock(map->lock_arg);
2149 
2150 	return ret;
2151 }
2152 EXPORT_SYMBOL_GPL(regmap_raw_write);
2153 
2154 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2155 				  void *val, unsigned int val_len, bool write)
2156 {
2157 	size_t val_bytes = map->format.val_bytes;
2158 	size_t val_count = val_len / val_bytes;
2159 	unsigned int lastval;
2160 	u8 *u8p;
2161 	u16 *u16p;
2162 	u32 *u32p;
2163 #ifdef CONFIG_64BIT
2164 	u64 *u64p;
2165 #endif
2166 	int ret;
2167 	int i;
2168 
2169 	switch (val_bytes) {
2170 	case 1:
2171 		u8p = val;
2172 		if (write)
2173 			lastval = (unsigned int)u8p[val_count - 1];
2174 		break;
2175 	case 2:
2176 		u16p = val;
2177 		if (write)
2178 			lastval = (unsigned int)u16p[val_count - 1];
2179 		break;
2180 	case 4:
2181 		u32p = val;
2182 		if (write)
2183 			lastval = (unsigned int)u32p[val_count - 1];
2184 		break;
2185 #ifdef CONFIG_64BIT
2186 	case 8:
2187 		u64p = val;
2188 		if (write)
2189 			lastval = (unsigned int)u64p[val_count - 1];
2190 		break;
2191 #endif
2192 	default:
2193 		return -EINVAL;
2194 	}
2195 
2196 	/*
2197 	 * Update the cache with the last value we write, the rest is just
2198 	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2199 	 * sure a single read from the cache will work.
2200 	 */
2201 	if (write) {
2202 		if (!map->cache_bypass && !map->defer_caching) {
2203 			ret = regcache_write(map, reg, lastval);
2204 			if (ret != 0)
2205 				return ret;
2206 			if (map->cache_only) {
2207 				map->cache_dirty = true;
2208 				return 0;
2209 			}
2210 		}
2211 		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2212 	} else {
2213 		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2214 	}
2215 
2216 	if (!ret && regmap_should_log(map)) {
2217 		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2218 		for (i = 0; i < val_count; i++) {
2219 			switch (val_bytes) {
2220 			case 1:
2221 				pr_cont("%x", u8p[i]);
2222 				break;
2223 			case 2:
2224 				pr_cont("%x", u16p[i]);
2225 				break;
2226 			case 4:
2227 				pr_cont("%x", u32p[i]);
2228 				break;
2229 #ifdef CONFIG_64BIT
2230 			case 8:
2231 				pr_cont("%llx", u64p[i]);
2232 				break;
2233 #endif
2234 			default:
2235 				break;
2236 			}
2237 			if (i == (val_count - 1))
2238 				pr_cont("]\n");
2239 			else
2240 				pr_cont(",");
2241 		}
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 /**
2248  * regmap_noinc_write(): Write data from a register without incrementing the
2249  *			register number
2250  *
2251  * @map: Register map to write to
2252  * @reg: Register to write to
2253  * @val: Pointer to data buffer
2254  * @val_len: Length of output buffer in bytes.
2255  *
2256  * The regmap API usually assumes that bulk bus write operations will write a
2257  * range of registers. Some devices have certain registers for which a write
2258  * operation can write to an internal FIFO.
2259  *
2260  * The target register must be volatile but registers after it can be
2261  * completely unrelated cacheable registers.
2262  *
2263  * This will attempt multiple writes as required to write val_len bytes.
2264  *
2265  * A value of zero will be returned on success, a negative errno will be
2266  * returned in error cases.
2267  */
2268 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2269 		      const void *val, size_t val_len)
2270 {
2271 	size_t write_len;
2272 	int ret;
2273 
2274 	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2275 		return -EINVAL;
2276 	if (val_len % map->format.val_bytes)
2277 		return -EINVAL;
2278 	if (!IS_ALIGNED(reg, map->reg_stride))
2279 		return -EINVAL;
2280 	if (val_len == 0)
2281 		return -EINVAL;
2282 
2283 	map->lock(map->lock_arg);
2284 
2285 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2286 		ret = -EINVAL;
2287 		goto out_unlock;
2288 	}
2289 
2290 	/*
2291 	 * Use the accelerated operation if we can. The val drops the const
2292 	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2293 	 */
2294 	if (map->bus->reg_noinc_write) {
2295 		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2296 		goto out_unlock;
2297 	}
2298 
2299 	while (val_len) {
2300 		if (map->max_raw_write && map->max_raw_write < val_len)
2301 			write_len = map->max_raw_write;
2302 		else
2303 			write_len = val_len;
2304 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2305 		if (ret)
2306 			goto out_unlock;
2307 		val = ((u8 *)val) + write_len;
2308 		val_len -= write_len;
2309 	}
2310 
2311 out_unlock:
2312 	map->unlock(map->lock_arg);
2313 	return ret;
2314 }
2315 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2316 
2317 /**
2318  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2319  *                                   register field.
2320  *
2321  * @field: Register field to write to
2322  * @mask: Bitmask to change
2323  * @val: Value to be written
2324  * @change: Boolean indicating if a write was done
2325  * @async: Boolean indicating asynchronously
2326  * @force: Boolean indicating use force update
2327  *
2328  * Perform a read/modify/write cycle on the register field with change,
2329  * async, force option.
2330  *
2331  * A value of zero will be returned on success, a negative errno will
2332  * be returned in error cases.
2333  */
2334 int regmap_field_update_bits_base(struct regmap_field *field,
2335 				  unsigned int mask, unsigned int val,
2336 				  bool *change, bool async, bool force)
2337 {
2338 	mask = (mask << field->shift) & field->mask;
2339 
2340 	return regmap_update_bits_base(field->regmap, field->reg,
2341 				       mask, val << field->shift,
2342 				       change, async, force);
2343 }
2344 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2345 
2346 /**
2347  * regmap_field_test_bits() - Check if all specified bits are set in a
2348  *                            register field.
2349  *
2350  * @field: Register field to operate on
2351  * @bits: Bits to test
2352  *
2353  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2354  * tested bits is not set and 1 if all tested bits are set.
2355  */
2356 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2357 {
2358 	unsigned int val, ret;
2359 
2360 	ret = regmap_field_read(field, &val);
2361 	if (ret)
2362 		return ret;
2363 
2364 	return (val & bits) == bits;
2365 }
2366 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2367 
2368 /**
2369  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2370  *                                    register field with port ID
2371  *
2372  * @field: Register field to write to
2373  * @id: port ID
2374  * @mask: Bitmask to change
2375  * @val: Value to be written
2376  * @change: Boolean indicating if a write was done
2377  * @async: Boolean indicating asynchronously
2378  * @force: Boolean indicating use force update
2379  *
2380  * A value of zero will be returned on success, a negative errno will
2381  * be returned in error cases.
2382  */
2383 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2384 				   unsigned int mask, unsigned int val,
2385 				   bool *change, bool async, bool force)
2386 {
2387 	if (id >= field->id_size)
2388 		return -EINVAL;
2389 
2390 	mask = (mask << field->shift) & field->mask;
2391 
2392 	return regmap_update_bits_base(field->regmap,
2393 				       field->reg + (field->id_offset * id),
2394 				       mask, val << field->shift,
2395 				       change, async, force);
2396 }
2397 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2398 
2399 /**
2400  * regmap_bulk_write() - Write multiple registers to the device
2401  *
2402  * @map: Register map to write to
2403  * @reg: First register to be write from
2404  * @val: Block of data to be written, in native register size for device
2405  * @val_count: Number of registers to write
2406  *
2407  * This function is intended to be used for writing a large block of
2408  * data to the device either in single transfer or multiple transfer.
2409  *
2410  * A value of zero will be returned on success, a negative errno will
2411  * be returned in error cases.
2412  */
2413 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2414 		     size_t val_count)
2415 {
2416 	int ret = 0, i;
2417 	size_t val_bytes = map->format.val_bytes;
2418 
2419 	if (!IS_ALIGNED(reg, map->reg_stride))
2420 		return -EINVAL;
2421 
2422 	/*
2423 	 * Some devices don't support bulk write, for them we have a series of
2424 	 * single write operations.
2425 	 */
2426 	if (!map->write || !map->format.parse_inplace) {
2427 		map->lock(map->lock_arg);
2428 		for (i = 0; i < val_count; i++) {
2429 			unsigned int ival;
2430 
2431 			switch (val_bytes) {
2432 			case 1:
2433 				ival = *(u8 *)(val + (i * val_bytes));
2434 				break;
2435 			case 2:
2436 				ival = *(u16 *)(val + (i * val_bytes));
2437 				break;
2438 			case 4:
2439 				ival = *(u32 *)(val + (i * val_bytes));
2440 				break;
2441 #ifdef CONFIG_64BIT
2442 			case 8:
2443 				ival = *(u64 *)(val + (i * val_bytes));
2444 				break;
2445 #endif
2446 			default:
2447 				ret = -EINVAL;
2448 				goto out;
2449 			}
2450 
2451 			ret = _regmap_write(map,
2452 					    reg + regmap_get_offset(map, i),
2453 					    ival);
2454 			if (ret != 0)
2455 				goto out;
2456 		}
2457 out:
2458 		map->unlock(map->lock_arg);
2459 	} else {
2460 		void *wval;
2461 
2462 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2463 		if (!wval)
2464 			return -ENOMEM;
2465 
2466 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2467 			map->format.parse_inplace(wval + i);
2468 
2469 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2470 
2471 		kfree(wval);
2472 	}
2473 
2474 	if (!ret)
2475 		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2476 
2477 	return ret;
2478 }
2479 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2480 
2481 /*
2482  * _regmap_raw_multi_reg_write()
2483  *
2484  * the (register,newvalue) pairs in regs have not been formatted, but
2485  * they are all in the same page and have been changed to being page
2486  * relative. The page register has been written if that was necessary.
2487  */
2488 static int _regmap_raw_multi_reg_write(struct regmap *map,
2489 				       const struct reg_sequence *regs,
2490 				       size_t num_regs)
2491 {
2492 	int ret;
2493 	void *buf;
2494 	int i;
2495 	u8 *u8;
2496 	size_t val_bytes = map->format.val_bytes;
2497 	size_t reg_bytes = map->format.reg_bytes;
2498 	size_t pad_bytes = map->format.pad_bytes;
2499 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2500 	size_t len = pair_size * num_regs;
2501 
2502 	if (!len)
2503 		return -EINVAL;
2504 
2505 	buf = kzalloc(len, GFP_KERNEL);
2506 	if (!buf)
2507 		return -ENOMEM;
2508 
2509 	/* We have to linearise by hand. */
2510 
2511 	u8 = buf;
2512 
2513 	for (i = 0; i < num_regs; i++) {
2514 		unsigned int reg = regs[i].reg;
2515 		unsigned int val = regs[i].def;
2516 		trace_regmap_hw_write_start(map, reg, 1);
2517 		reg = regmap_reg_addr(map, reg);
2518 		map->format.format_reg(u8, reg, map->reg_shift);
2519 		u8 += reg_bytes + pad_bytes;
2520 		map->format.format_val(u8, val, 0);
2521 		u8 += val_bytes;
2522 	}
2523 	u8 = buf;
2524 	*u8 |= map->write_flag_mask;
2525 
2526 	ret = map->write(map->bus_context, buf, len);
2527 
2528 	kfree(buf);
2529 
2530 	for (i = 0; i < num_regs; i++) {
2531 		int reg = regs[i].reg;
2532 		trace_regmap_hw_write_done(map, reg, 1);
2533 	}
2534 	return ret;
2535 }
2536 
2537 static unsigned int _regmap_register_page(struct regmap *map,
2538 					  unsigned int reg,
2539 					  struct regmap_range_node *range)
2540 {
2541 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2542 
2543 	return win_page;
2544 }
2545 
2546 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2547 					       struct reg_sequence *regs,
2548 					       size_t num_regs)
2549 {
2550 	int ret;
2551 	int i, n;
2552 	struct reg_sequence *base;
2553 	unsigned int this_page = 0;
2554 	unsigned int page_change = 0;
2555 	/*
2556 	 * the set of registers are not neccessarily in order, but
2557 	 * since the order of write must be preserved this algorithm
2558 	 * chops the set each time the page changes. This also applies
2559 	 * if there is a delay required at any point in the sequence.
2560 	 */
2561 	base = regs;
2562 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2563 		unsigned int reg = regs[i].reg;
2564 		struct regmap_range_node *range;
2565 
2566 		range = _regmap_range_lookup(map, reg);
2567 		if (range) {
2568 			unsigned int win_page = _regmap_register_page(map, reg,
2569 								      range);
2570 
2571 			if (i == 0)
2572 				this_page = win_page;
2573 			if (win_page != this_page) {
2574 				this_page = win_page;
2575 				page_change = 1;
2576 			}
2577 		}
2578 
2579 		/* If we have both a page change and a delay make sure to
2580 		 * write the regs and apply the delay before we change the
2581 		 * page.
2582 		 */
2583 
2584 		if (page_change || regs[i].delay_us) {
2585 
2586 				/* For situations where the first write requires
2587 				 * a delay we need to make sure we don't call
2588 				 * raw_multi_reg_write with n=0
2589 				 * This can't occur with page breaks as we
2590 				 * never write on the first iteration
2591 				 */
2592 				if (regs[i].delay_us && i == 0)
2593 					n = 1;
2594 
2595 				ret = _regmap_raw_multi_reg_write(map, base, n);
2596 				if (ret != 0)
2597 					return ret;
2598 
2599 				if (regs[i].delay_us) {
2600 					if (map->can_sleep)
2601 						fsleep(regs[i].delay_us);
2602 					else
2603 						udelay(regs[i].delay_us);
2604 				}
2605 
2606 				base += n;
2607 				n = 0;
2608 
2609 				if (page_change) {
2610 					ret = _regmap_select_page(map,
2611 								  &base[n].reg,
2612 								  range, 1);
2613 					if (ret != 0)
2614 						return ret;
2615 
2616 					page_change = 0;
2617 				}
2618 
2619 		}
2620 
2621 	}
2622 	if (n > 0)
2623 		return _regmap_raw_multi_reg_write(map, base, n);
2624 	return 0;
2625 }
2626 
2627 static int _regmap_multi_reg_write(struct regmap *map,
2628 				   const struct reg_sequence *regs,
2629 				   size_t num_regs)
2630 {
2631 	int i;
2632 	int ret;
2633 
2634 	if (!map->can_multi_write) {
2635 		for (i = 0; i < num_regs; i++) {
2636 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2637 			if (ret != 0)
2638 				return ret;
2639 
2640 			if (regs[i].delay_us) {
2641 				if (map->can_sleep)
2642 					fsleep(regs[i].delay_us);
2643 				else
2644 					udelay(regs[i].delay_us);
2645 			}
2646 		}
2647 		return 0;
2648 	}
2649 
2650 	if (!map->format.parse_inplace)
2651 		return -EINVAL;
2652 
2653 	if (map->writeable_reg)
2654 		for (i = 0; i < num_regs; i++) {
2655 			int reg = regs[i].reg;
2656 			if (!map->writeable_reg(map->dev, reg))
2657 				return -EINVAL;
2658 			if (!IS_ALIGNED(reg, map->reg_stride))
2659 				return -EINVAL;
2660 		}
2661 
2662 	if (!map->cache_bypass) {
2663 		for (i = 0; i < num_regs; i++) {
2664 			unsigned int val = regs[i].def;
2665 			unsigned int reg = regs[i].reg;
2666 			ret = regcache_write(map, reg, val);
2667 			if (ret) {
2668 				dev_err(map->dev,
2669 				"Error in caching of register: %x ret: %d\n",
2670 								reg, ret);
2671 				return ret;
2672 			}
2673 		}
2674 		if (map->cache_only) {
2675 			map->cache_dirty = true;
2676 			return 0;
2677 		}
2678 	}
2679 
2680 	WARN_ON(!map->bus);
2681 
2682 	for (i = 0; i < num_regs; i++) {
2683 		unsigned int reg = regs[i].reg;
2684 		struct regmap_range_node *range;
2685 
2686 		/* Coalesce all the writes between a page break or a delay
2687 		 * in a sequence
2688 		 */
2689 		range = _regmap_range_lookup(map, reg);
2690 		if (range || regs[i].delay_us) {
2691 			size_t len = sizeof(struct reg_sequence)*num_regs;
2692 			struct reg_sequence *base = kmemdup(regs, len,
2693 							   GFP_KERNEL);
2694 			if (!base)
2695 				return -ENOMEM;
2696 			ret = _regmap_range_multi_paged_reg_write(map, base,
2697 								  num_regs);
2698 			kfree(base);
2699 
2700 			return ret;
2701 		}
2702 	}
2703 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2704 }
2705 
2706 /**
2707  * regmap_multi_reg_write() - Write multiple registers to the device
2708  *
2709  * @map: Register map to write to
2710  * @regs: Array of structures containing register,value to be written
2711  * @num_regs: Number of registers to write
2712  *
2713  * Write multiple registers to the device where the set of register, value
2714  * pairs are supplied in any order, possibly not all in a single range.
2715  *
2716  * The 'normal' block write mode will send ultimately send data on the
2717  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2718  * addressed. However, this alternative block multi write mode will send
2719  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2720  * must of course support the mode.
2721  *
2722  * A value of zero will be returned on success, a negative errno will be
2723  * returned in error cases.
2724  */
2725 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2726 			   int num_regs)
2727 {
2728 	int ret;
2729 
2730 	map->lock(map->lock_arg);
2731 
2732 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2733 
2734 	map->unlock(map->lock_arg);
2735 
2736 	return ret;
2737 }
2738 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2739 
2740 /**
2741  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2742  *                                     device but not the cache
2743  *
2744  * @map: Register map to write to
2745  * @regs: Array of structures containing register,value to be written
2746  * @num_regs: Number of registers to write
2747  *
2748  * Write multiple registers to the device but not the cache where the set
2749  * of register are supplied in any order.
2750  *
2751  * This function is intended to be used for writing a large block of data
2752  * atomically to the device in single transfer for those I2C client devices
2753  * that implement this alternative block write mode.
2754  *
2755  * A value of zero will be returned on success, a negative errno will
2756  * be returned in error cases.
2757  */
2758 int regmap_multi_reg_write_bypassed(struct regmap *map,
2759 				    const struct reg_sequence *regs,
2760 				    int num_regs)
2761 {
2762 	int ret;
2763 	bool bypass;
2764 
2765 	map->lock(map->lock_arg);
2766 
2767 	bypass = map->cache_bypass;
2768 	map->cache_bypass = true;
2769 
2770 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2771 
2772 	map->cache_bypass = bypass;
2773 
2774 	map->unlock(map->lock_arg);
2775 
2776 	return ret;
2777 }
2778 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2779 
2780 /**
2781  * regmap_raw_write_async() - Write raw values to one or more registers
2782  *                            asynchronously
2783  *
2784  * @map: Register map to write to
2785  * @reg: Initial register to write to
2786  * @val: Block of data to be written, laid out for direct transmission to the
2787  *       device.  Must be valid until regmap_async_complete() is called.
2788  * @val_len: Length of data pointed to by val.
2789  *
2790  * This function is intended to be used for things like firmware
2791  * download where a large block of data needs to be transferred to the
2792  * device.  No formatting will be done on the data provided.
2793  *
2794  * If supported by the underlying bus the write will be scheduled
2795  * asynchronously, helping maximise I/O speed on higher speed buses
2796  * like SPI.  regmap_async_complete() can be called to ensure that all
2797  * asynchrnous writes have been completed.
2798  *
2799  * A value of zero will be returned on success, a negative errno will
2800  * be returned in error cases.
2801  */
2802 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2803 			   const void *val, size_t val_len)
2804 {
2805 	int ret;
2806 
2807 	if (val_len % map->format.val_bytes)
2808 		return -EINVAL;
2809 	if (!IS_ALIGNED(reg, map->reg_stride))
2810 		return -EINVAL;
2811 
2812 	map->lock(map->lock_arg);
2813 
2814 	map->async = true;
2815 
2816 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2817 
2818 	map->async = false;
2819 
2820 	map->unlock(map->lock_arg);
2821 
2822 	return ret;
2823 }
2824 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2825 
2826 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2827 			    unsigned int val_len, bool noinc)
2828 {
2829 	struct regmap_range_node *range;
2830 	int ret;
2831 
2832 	if (!map->read)
2833 		return -EINVAL;
2834 
2835 	range = _regmap_range_lookup(map, reg);
2836 	if (range) {
2837 		ret = _regmap_select_page(map, &reg, range,
2838 					  noinc ? 1 : val_len / map->format.val_bytes);
2839 		if (ret != 0)
2840 			return ret;
2841 	}
2842 
2843 	reg = regmap_reg_addr(map, reg);
2844 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2845 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2846 				      map->read_flag_mask);
2847 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2848 
2849 	ret = map->read(map->bus_context, map->work_buf,
2850 			map->format.reg_bytes + map->format.pad_bytes,
2851 			val, val_len);
2852 
2853 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2854 
2855 	return ret;
2856 }
2857 
2858 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2859 				unsigned int *val)
2860 {
2861 	struct regmap *map = context;
2862 	struct regmap_range_node *range;
2863 	int ret;
2864 
2865 	range = _regmap_range_lookup(map, reg);
2866 	if (range) {
2867 		ret = _regmap_select_page(map, &reg, range, 1);
2868 		if (ret != 0)
2869 			return ret;
2870 	}
2871 
2872 	reg = regmap_reg_addr(map, reg);
2873 	return map->bus->reg_read(map->bus_context, reg, val);
2874 }
2875 
2876 static int _regmap_bus_read(void *context, unsigned int reg,
2877 			    unsigned int *val)
2878 {
2879 	int ret;
2880 	struct regmap *map = context;
2881 	void *work_val = map->work_buf + map->format.reg_bytes +
2882 		map->format.pad_bytes;
2883 
2884 	if (!map->format.parse_val)
2885 		return -EINVAL;
2886 
2887 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2888 	if (ret == 0)
2889 		*val = map->format.parse_val(work_val);
2890 
2891 	return ret;
2892 }
2893 
2894 static int _regmap_read(struct regmap *map, unsigned int reg,
2895 			unsigned int *val)
2896 {
2897 	int ret;
2898 	void *context = _regmap_map_get_context(map);
2899 
2900 	if (!map->cache_bypass) {
2901 		ret = regcache_read(map, reg, val);
2902 		if (ret == 0)
2903 			return 0;
2904 	}
2905 
2906 	if (map->cache_only)
2907 		return -EBUSY;
2908 
2909 	if (!regmap_readable(map, reg))
2910 		return -EIO;
2911 
2912 	ret = map->reg_read(context, reg, val);
2913 	if (ret == 0) {
2914 		if (regmap_should_log(map))
2915 			dev_info(map->dev, "%x => %x\n", reg, *val);
2916 
2917 		trace_regmap_reg_read(map, reg, *val);
2918 
2919 		if (!map->cache_bypass)
2920 			regcache_write(map, reg, *val);
2921 	}
2922 
2923 	return ret;
2924 }
2925 
2926 /**
2927  * regmap_read() - Read a value from a single register
2928  *
2929  * @map: Register map to read from
2930  * @reg: Register to be read from
2931  * @val: Pointer to store read value
2932  *
2933  * A value of zero will be returned on success, a negative errno will
2934  * be returned in error cases.
2935  */
2936 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2937 {
2938 	int ret;
2939 
2940 	if (!IS_ALIGNED(reg, map->reg_stride))
2941 		return -EINVAL;
2942 
2943 	map->lock(map->lock_arg);
2944 
2945 	ret = _regmap_read(map, reg, val);
2946 
2947 	map->unlock(map->lock_arg);
2948 
2949 	return ret;
2950 }
2951 EXPORT_SYMBOL_GPL(regmap_read);
2952 
2953 /**
2954  * regmap_raw_read() - Read raw data from the device
2955  *
2956  * @map: Register map to read from
2957  * @reg: First register to be read from
2958  * @val: Pointer to store read value
2959  * @val_len: Size of data to read
2960  *
2961  * A value of zero will be returned on success, a negative errno will
2962  * be returned in error cases.
2963  */
2964 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2965 		    size_t val_len)
2966 {
2967 	size_t val_bytes = map->format.val_bytes;
2968 	size_t val_count = val_len / val_bytes;
2969 	unsigned int v;
2970 	int ret, i;
2971 
2972 	if (val_len % map->format.val_bytes)
2973 		return -EINVAL;
2974 	if (!IS_ALIGNED(reg, map->reg_stride))
2975 		return -EINVAL;
2976 	if (val_count == 0)
2977 		return -EINVAL;
2978 
2979 	map->lock(map->lock_arg);
2980 
2981 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2982 	    map->cache_type == REGCACHE_NONE) {
2983 		size_t chunk_count, chunk_bytes;
2984 		size_t chunk_regs = val_count;
2985 
2986 		if (!map->cache_bypass && map->cache_only) {
2987 			ret = -EBUSY;
2988 			goto out;
2989 		}
2990 
2991 		if (!map->read) {
2992 			ret = -ENOTSUPP;
2993 			goto out;
2994 		}
2995 
2996 		if (map->use_single_read)
2997 			chunk_regs = 1;
2998 		else if (map->max_raw_read && val_len > map->max_raw_read)
2999 			chunk_regs = map->max_raw_read / val_bytes;
3000 
3001 		chunk_count = val_count / chunk_regs;
3002 		chunk_bytes = chunk_regs * val_bytes;
3003 
3004 		/* Read bytes that fit into whole chunks */
3005 		for (i = 0; i < chunk_count; i++) {
3006 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
3007 			if (ret != 0)
3008 				goto out;
3009 
3010 			reg += regmap_get_offset(map, chunk_regs);
3011 			val += chunk_bytes;
3012 			val_len -= chunk_bytes;
3013 		}
3014 
3015 		/* Read remaining bytes */
3016 		if (val_len) {
3017 			ret = _regmap_raw_read(map, reg, val, val_len, false);
3018 			if (ret != 0)
3019 				goto out;
3020 		}
3021 	} else {
3022 		/* Otherwise go word by word for the cache; should be low
3023 		 * cost as we expect to hit the cache.
3024 		 */
3025 		for (i = 0; i < val_count; i++) {
3026 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3027 					   &v);
3028 			if (ret != 0)
3029 				goto out;
3030 
3031 			map->format.format_val(val + (i * val_bytes), v, 0);
3032 		}
3033 	}
3034 
3035  out:
3036 	map->unlock(map->lock_arg);
3037 
3038 	return ret;
3039 }
3040 EXPORT_SYMBOL_GPL(regmap_raw_read);
3041 
3042 /**
3043  * regmap_noinc_read(): Read data from a register without incrementing the
3044  *			register number
3045  *
3046  * @map: Register map to read from
3047  * @reg: Register to read from
3048  * @val: Pointer to data buffer
3049  * @val_len: Length of output buffer in bytes.
3050  *
3051  * The regmap API usually assumes that bulk read operations will read a
3052  * range of registers. Some devices have certain registers for which a read
3053  * operation read will read from an internal FIFO.
3054  *
3055  * The target register must be volatile but registers after it can be
3056  * completely unrelated cacheable registers.
3057  *
3058  * This will attempt multiple reads as required to read val_len bytes.
3059  *
3060  * A value of zero will be returned on success, a negative errno will be
3061  * returned in error cases.
3062  */
3063 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3064 		      void *val, size_t val_len)
3065 {
3066 	size_t read_len;
3067 	int ret;
3068 
3069 	if (!map->read)
3070 		return -ENOTSUPP;
3071 
3072 	if (val_len % map->format.val_bytes)
3073 		return -EINVAL;
3074 	if (!IS_ALIGNED(reg, map->reg_stride))
3075 		return -EINVAL;
3076 	if (val_len == 0)
3077 		return -EINVAL;
3078 
3079 	map->lock(map->lock_arg);
3080 
3081 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3082 		ret = -EINVAL;
3083 		goto out_unlock;
3084 	}
3085 
3086 	/*
3087 	 * We have not defined the FIFO semantics for cache, as the
3088 	 * cache is just one value deep. Should we return the last
3089 	 * written value? Just avoid this by always reading the FIFO
3090 	 * even when using cache. Cache only will not work.
3091 	 */
3092 	if (!map->cache_bypass && map->cache_only) {
3093 		ret = -EBUSY;
3094 		goto out_unlock;
3095 	}
3096 
3097 	/* Use the accelerated operation if we can */
3098 	if (map->bus->reg_noinc_read) {
3099 		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3100 		goto out_unlock;
3101 	}
3102 
3103 	while (val_len) {
3104 		if (map->max_raw_read && map->max_raw_read < val_len)
3105 			read_len = map->max_raw_read;
3106 		else
3107 			read_len = val_len;
3108 		ret = _regmap_raw_read(map, reg, val, read_len, true);
3109 		if (ret)
3110 			goto out_unlock;
3111 		val = ((u8 *)val) + read_len;
3112 		val_len -= read_len;
3113 	}
3114 
3115 out_unlock:
3116 	map->unlock(map->lock_arg);
3117 	return ret;
3118 }
3119 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3120 
3121 /**
3122  * regmap_field_read(): Read a value to a single register field
3123  *
3124  * @field: Register field to read from
3125  * @val: Pointer to store read value
3126  *
3127  * A value of zero will be returned on success, a negative errno will
3128  * be returned in error cases.
3129  */
3130 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3131 {
3132 	int ret;
3133 	unsigned int reg_val;
3134 	ret = regmap_read(field->regmap, field->reg, &reg_val);
3135 	if (ret != 0)
3136 		return ret;
3137 
3138 	reg_val &= field->mask;
3139 	reg_val >>= field->shift;
3140 	*val = reg_val;
3141 
3142 	return ret;
3143 }
3144 EXPORT_SYMBOL_GPL(regmap_field_read);
3145 
3146 /**
3147  * regmap_fields_read() - Read a value to a single register field with port ID
3148  *
3149  * @field: Register field to read from
3150  * @id: port ID
3151  * @val: Pointer to store read value
3152  *
3153  * A value of zero will be returned on success, a negative errno will
3154  * be returned in error cases.
3155  */
3156 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3157 		       unsigned int *val)
3158 {
3159 	int ret;
3160 	unsigned int reg_val;
3161 
3162 	if (id >= field->id_size)
3163 		return -EINVAL;
3164 
3165 	ret = regmap_read(field->regmap,
3166 			  field->reg + (field->id_offset * id),
3167 			  &reg_val);
3168 	if (ret != 0)
3169 		return ret;
3170 
3171 	reg_val &= field->mask;
3172 	reg_val >>= field->shift;
3173 	*val = reg_val;
3174 
3175 	return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(regmap_fields_read);
3178 
3179 /**
3180  * regmap_bulk_read() - Read multiple registers from the device
3181  *
3182  * @map: Register map to read from
3183  * @reg: First register to be read from
3184  * @val: Pointer to store read value, in native register size for device
3185  * @val_count: Number of registers to read
3186  *
3187  * A value of zero will be returned on success, a negative errno will
3188  * be returned in error cases.
3189  */
3190 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3191 		     size_t val_count)
3192 {
3193 	int ret, i;
3194 	size_t val_bytes = map->format.val_bytes;
3195 	bool vol = regmap_volatile_range(map, reg, val_count);
3196 
3197 	if (!IS_ALIGNED(reg, map->reg_stride))
3198 		return -EINVAL;
3199 	if (val_count == 0)
3200 		return -EINVAL;
3201 
3202 	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3203 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3204 		if (ret != 0)
3205 			return ret;
3206 
3207 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3208 			map->format.parse_inplace(val + i);
3209 	} else {
3210 #ifdef CONFIG_64BIT
3211 		u64 *u64 = val;
3212 #endif
3213 		u32 *u32 = val;
3214 		u16 *u16 = val;
3215 		u8 *u8 = val;
3216 
3217 		map->lock(map->lock_arg);
3218 
3219 		for (i = 0; i < val_count; i++) {
3220 			unsigned int ival;
3221 
3222 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3223 					   &ival);
3224 			if (ret != 0)
3225 				goto out;
3226 
3227 			switch (map->format.val_bytes) {
3228 #ifdef CONFIG_64BIT
3229 			case 8:
3230 				u64[i] = ival;
3231 				break;
3232 #endif
3233 			case 4:
3234 				u32[i] = ival;
3235 				break;
3236 			case 2:
3237 				u16[i] = ival;
3238 				break;
3239 			case 1:
3240 				u8[i] = ival;
3241 				break;
3242 			default:
3243 				ret = -EINVAL;
3244 				goto out;
3245 			}
3246 		}
3247 
3248 out:
3249 		map->unlock(map->lock_arg);
3250 	}
3251 
3252 	if (!ret)
3253 		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3254 
3255 	return ret;
3256 }
3257 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3258 
3259 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3260 			       unsigned int mask, unsigned int val,
3261 			       bool *change, bool force_write)
3262 {
3263 	int ret;
3264 	unsigned int tmp, orig;
3265 
3266 	if (change)
3267 		*change = false;
3268 
3269 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3270 		reg = regmap_reg_addr(map, reg);
3271 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3272 		if (ret == 0 && change)
3273 			*change = true;
3274 	} else {
3275 		ret = _regmap_read(map, reg, &orig);
3276 		if (ret != 0)
3277 			return ret;
3278 
3279 		tmp = orig & ~mask;
3280 		tmp |= val & mask;
3281 
3282 		if (force_write || (tmp != orig) || map->force_write_field) {
3283 			ret = _regmap_write(map, reg, tmp);
3284 			if (ret == 0 && change)
3285 				*change = true;
3286 		}
3287 	}
3288 
3289 	return ret;
3290 }
3291 
3292 /**
3293  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3294  *
3295  * @map: Register map to update
3296  * @reg: Register to update
3297  * @mask: Bitmask to change
3298  * @val: New value for bitmask
3299  * @change: Boolean indicating if a write was done
3300  * @async: Boolean indicating asynchronously
3301  * @force: Boolean indicating use force update
3302  *
3303  * Perform a read/modify/write cycle on a register map with change, async, force
3304  * options.
3305  *
3306  * If async is true:
3307  *
3308  * With most buses the read must be done synchronously so this is most useful
3309  * for devices with a cache which do not need to interact with the hardware to
3310  * determine the current register value.
3311  *
3312  * Returns zero for success, a negative number on error.
3313  */
3314 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3315 			    unsigned int mask, unsigned int val,
3316 			    bool *change, bool async, bool force)
3317 {
3318 	int ret;
3319 
3320 	map->lock(map->lock_arg);
3321 
3322 	map->async = async;
3323 
3324 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3325 
3326 	map->async = false;
3327 
3328 	map->unlock(map->lock_arg);
3329 
3330 	return ret;
3331 }
3332 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3333 
3334 /**
3335  * regmap_test_bits() - Check if all specified bits are set in a register.
3336  *
3337  * @map: Register map to operate on
3338  * @reg: Register to read from
3339  * @bits: Bits to test
3340  *
3341  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3342  * bits are set and a negative error number if the underlying regmap_read()
3343  * fails.
3344  */
3345 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3346 {
3347 	unsigned int val, ret;
3348 
3349 	ret = regmap_read(map, reg, &val);
3350 	if (ret)
3351 		return ret;
3352 
3353 	return (val & bits) == bits;
3354 }
3355 EXPORT_SYMBOL_GPL(regmap_test_bits);
3356 
3357 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3358 {
3359 	struct regmap *map = async->map;
3360 	bool wake;
3361 
3362 	trace_regmap_async_io_complete(map);
3363 
3364 	spin_lock(&map->async_lock);
3365 	list_move(&async->list, &map->async_free);
3366 	wake = list_empty(&map->async_list);
3367 
3368 	if (ret != 0)
3369 		map->async_ret = ret;
3370 
3371 	spin_unlock(&map->async_lock);
3372 
3373 	if (wake)
3374 		wake_up(&map->async_waitq);
3375 }
3376 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3377 
3378 static int regmap_async_is_done(struct regmap *map)
3379 {
3380 	unsigned long flags;
3381 	int ret;
3382 
3383 	spin_lock_irqsave(&map->async_lock, flags);
3384 	ret = list_empty(&map->async_list);
3385 	spin_unlock_irqrestore(&map->async_lock, flags);
3386 
3387 	return ret;
3388 }
3389 
3390 /**
3391  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3392  *
3393  * @map: Map to operate on.
3394  *
3395  * Blocks until any pending asynchronous I/O has completed.  Returns
3396  * an error code for any failed I/O operations.
3397  */
3398 int regmap_async_complete(struct regmap *map)
3399 {
3400 	unsigned long flags;
3401 	int ret;
3402 
3403 	/* Nothing to do with no async support */
3404 	if (!map->bus || !map->bus->async_write)
3405 		return 0;
3406 
3407 	trace_regmap_async_complete_start(map);
3408 
3409 	wait_event(map->async_waitq, regmap_async_is_done(map));
3410 
3411 	spin_lock_irqsave(&map->async_lock, flags);
3412 	ret = map->async_ret;
3413 	map->async_ret = 0;
3414 	spin_unlock_irqrestore(&map->async_lock, flags);
3415 
3416 	trace_regmap_async_complete_done(map);
3417 
3418 	return ret;
3419 }
3420 EXPORT_SYMBOL_GPL(regmap_async_complete);
3421 
3422 /**
3423  * regmap_register_patch - Register and apply register updates to be applied
3424  *                         on device initialistion
3425  *
3426  * @map: Register map to apply updates to.
3427  * @regs: Values to update.
3428  * @num_regs: Number of entries in regs.
3429  *
3430  * Register a set of register updates to be applied to the device
3431  * whenever the device registers are synchronised with the cache and
3432  * apply them immediately.  Typically this is used to apply
3433  * corrections to be applied to the device defaults on startup, such
3434  * as the updates some vendors provide to undocumented registers.
3435  *
3436  * The caller must ensure that this function cannot be called
3437  * concurrently with either itself or regcache_sync().
3438  */
3439 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3440 			  int num_regs)
3441 {
3442 	struct reg_sequence *p;
3443 	int ret;
3444 	bool bypass;
3445 
3446 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3447 	    num_regs))
3448 		return 0;
3449 
3450 	p = krealloc(map->patch,
3451 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3452 		     GFP_KERNEL);
3453 	if (p) {
3454 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3455 		map->patch = p;
3456 		map->patch_regs += num_regs;
3457 	} else {
3458 		return -ENOMEM;
3459 	}
3460 
3461 	map->lock(map->lock_arg);
3462 
3463 	bypass = map->cache_bypass;
3464 
3465 	map->cache_bypass = true;
3466 	map->async = true;
3467 
3468 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3469 
3470 	map->async = false;
3471 	map->cache_bypass = bypass;
3472 
3473 	map->unlock(map->lock_arg);
3474 
3475 	regmap_async_complete(map);
3476 
3477 	return ret;
3478 }
3479 EXPORT_SYMBOL_GPL(regmap_register_patch);
3480 
3481 /**
3482  * regmap_get_val_bytes() - Report the size of a register value
3483  *
3484  * @map: Register map to operate on.
3485  *
3486  * Report the size of a register value, mainly intended to for use by
3487  * generic infrastructure built on top of regmap.
3488  */
3489 int regmap_get_val_bytes(struct regmap *map)
3490 {
3491 	if (map->format.format_write)
3492 		return -EINVAL;
3493 
3494 	return map->format.val_bytes;
3495 }
3496 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3497 
3498 /**
3499  * regmap_get_max_register() - Report the max register value
3500  *
3501  * @map: Register map to operate on.
3502  *
3503  * Report the max register value, mainly intended to for use by
3504  * generic infrastructure built on top of regmap.
3505  */
3506 int regmap_get_max_register(struct regmap *map)
3507 {
3508 	return map->max_register ? map->max_register : -EINVAL;
3509 }
3510 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3511 
3512 /**
3513  * regmap_get_reg_stride() - Report the register address stride
3514  *
3515  * @map: Register map to operate on.
3516  *
3517  * Report the register address stride, mainly intended to for use by
3518  * generic infrastructure built on top of regmap.
3519  */
3520 int regmap_get_reg_stride(struct regmap *map)
3521 {
3522 	return map->reg_stride;
3523 }
3524 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3525 
3526 /**
3527  * regmap_might_sleep() - Returns whether a regmap access might sleep.
3528  *
3529  * @map: Register map to operate on.
3530  *
3531  * Returns true if an access to the register might sleep, else false.
3532  */
3533 bool regmap_might_sleep(struct regmap *map)
3534 {
3535 	return map->can_sleep;
3536 }
3537 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3538 
3539 int regmap_parse_val(struct regmap *map, const void *buf,
3540 			unsigned int *val)
3541 {
3542 	if (!map->format.parse_val)
3543 		return -EINVAL;
3544 
3545 	*val = map->format.parse_val(buf);
3546 
3547 	return 0;
3548 }
3549 EXPORT_SYMBOL_GPL(regmap_parse_val);
3550 
3551 static int __init regmap_initcall(void)
3552 {
3553 	regmap_debugfs_initcall();
3554 
3555 	return 0;
3556 }
3557 postcore_initcall(regmap_initcall);
3558