xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 2fa49589)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include "trace.h"
27 
28 #include "internal.h"
29 
30 /*
31  * Sometimes for failures during very early init the trace
32  * infrastructure isn't available early enough to be used.  For this
33  * sort of problem defining LOG_DEVICE will add printks for basic
34  * register I/O on a specific device.
35  */
36 #undef LOG_DEVICE
37 
38 #ifdef LOG_DEVICE
39 static inline bool regmap_should_log(struct regmap *map)
40 {
41 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
42 }
43 #else
44 static inline bool regmap_should_log(struct regmap *map) { return false; }
45 #endif
46 
47 
48 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
49 			       unsigned int mask, unsigned int val,
50 			       bool *change, bool force_write);
51 
52 static int _regmap_bus_reg_read(void *context, unsigned int reg,
53 				unsigned int *val);
54 static int _regmap_bus_read(void *context, unsigned int reg,
55 			    unsigned int *val);
56 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
57 				       unsigned int val);
58 static int _regmap_bus_reg_write(void *context, unsigned int reg,
59 				 unsigned int val);
60 static int _regmap_bus_raw_write(void *context, unsigned int reg,
61 				 unsigned int val);
62 
63 bool regmap_reg_in_ranges(unsigned int reg,
64 			  const struct regmap_range *ranges,
65 			  unsigned int nranges)
66 {
67 	const struct regmap_range *r;
68 	int i;
69 
70 	for (i = 0, r = ranges; i < nranges; i++, r++)
71 		if (regmap_reg_in_range(reg, r))
72 			return true;
73 	return false;
74 }
75 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
76 
77 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
78 			      const struct regmap_access_table *table)
79 {
80 	/* Check "no ranges" first */
81 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
82 		return false;
83 
84 	/* In case zero "yes ranges" are supplied, any reg is OK */
85 	if (!table->n_yes_ranges)
86 		return true;
87 
88 	return regmap_reg_in_ranges(reg, table->yes_ranges,
89 				    table->n_yes_ranges);
90 }
91 EXPORT_SYMBOL_GPL(regmap_check_range_table);
92 
93 bool regmap_writeable(struct regmap *map, unsigned int reg)
94 {
95 	if (map->max_register && reg > map->max_register)
96 		return false;
97 
98 	if (map->writeable_reg)
99 		return map->writeable_reg(map->dev, reg);
100 
101 	if (map->wr_table)
102 		return regmap_check_range_table(map, reg, map->wr_table);
103 
104 	return true;
105 }
106 
107 bool regmap_cached(struct regmap *map, unsigned int reg)
108 {
109 	int ret;
110 	unsigned int val;
111 
112 	if (map->cache_type == REGCACHE_NONE)
113 		return false;
114 
115 	if (!map->cache_ops)
116 		return false;
117 
118 	if (map->max_register && reg > map->max_register)
119 		return false;
120 
121 	map->lock(map->lock_arg);
122 	ret = regcache_read(map, reg, &val);
123 	map->unlock(map->lock_arg);
124 	if (ret)
125 		return false;
126 
127 	return true;
128 }
129 
130 bool regmap_readable(struct regmap *map, unsigned int reg)
131 {
132 	if (!map->reg_read)
133 		return false;
134 
135 	if (map->max_register && reg > map->max_register)
136 		return false;
137 
138 	if (map->format.format_write)
139 		return false;
140 
141 	if (map->readable_reg)
142 		return map->readable_reg(map->dev, reg);
143 
144 	if (map->rd_table)
145 		return regmap_check_range_table(map, reg, map->rd_table);
146 
147 	return true;
148 }
149 
150 bool regmap_volatile(struct regmap *map, unsigned int reg)
151 {
152 	if (!map->format.format_write && !regmap_readable(map, reg))
153 		return false;
154 
155 	if (map->volatile_reg)
156 		return map->volatile_reg(map->dev, reg);
157 
158 	if (map->volatile_table)
159 		return regmap_check_range_table(map, reg, map->volatile_table);
160 
161 	if (map->cache_ops)
162 		return false;
163 	else
164 		return true;
165 }
166 
167 bool regmap_precious(struct regmap *map, unsigned int reg)
168 {
169 	if (!regmap_readable(map, reg))
170 		return false;
171 
172 	if (map->precious_reg)
173 		return map->precious_reg(map->dev, reg);
174 
175 	if (map->precious_table)
176 		return regmap_check_range_table(map, reg, map->precious_table);
177 
178 	return false;
179 }
180 
181 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
182 {
183 	if (map->writeable_noinc_reg)
184 		return map->writeable_noinc_reg(map->dev, reg);
185 
186 	if (map->wr_noinc_table)
187 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
188 
189 	return true;
190 }
191 
192 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
193 {
194 	if (map->readable_noinc_reg)
195 		return map->readable_noinc_reg(map->dev, reg);
196 
197 	if (map->rd_noinc_table)
198 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
199 
200 	return true;
201 }
202 
203 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
204 	size_t num)
205 {
206 	unsigned int i;
207 
208 	for (i = 0; i < num; i++)
209 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
210 			return false;
211 
212 	return true;
213 }
214 
215 static void regmap_format_2_6_write(struct regmap *map,
216 				     unsigned int reg, unsigned int val)
217 {
218 	u8 *out = map->work_buf;
219 
220 	*out = (reg << 6) | val;
221 }
222 
223 static void regmap_format_4_12_write(struct regmap *map,
224 				     unsigned int reg, unsigned int val)
225 {
226 	__be16 *out = map->work_buf;
227 	*out = cpu_to_be16((reg << 12) | val);
228 }
229 
230 static void regmap_format_7_9_write(struct regmap *map,
231 				    unsigned int reg, unsigned int val)
232 {
233 	__be16 *out = map->work_buf;
234 	*out = cpu_to_be16((reg << 9) | val);
235 }
236 
237 static void regmap_format_10_14_write(struct regmap *map,
238 				    unsigned int reg, unsigned int val)
239 {
240 	u8 *out = map->work_buf;
241 
242 	out[2] = val;
243 	out[1] = (val >> 8) | (reg << 6);
244 	out[0] = reg >> 2;
245 }
246 
247 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
248 {
249 	u8 *b = buf;
250 
251 	b[0] = val << shift;
252 }
253 
254 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
255 {
256 	__be16 *b = buf;
257 
258 	b[0] = cpu_to_be16(val << shift);
259 }
260 
261 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
262 {
263 	__le16 *b = buf;
264 
265 	b[0] = cpu_to_le16(val << shift);
266 }
267 
268 static void regmap_format_16_native(void *buf, unsigned int val,
269 				    unsigned int shift)
270 {
271 	*(u16 *)buf = val << shift;
272 }
273 
274 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
275 {
276 	u8 *b = buf;
277 
278 	val <<= shift;
279 
280 	b[0] = val >> 16;
281 	b[1] = val >> 8;
282 	b[2] = val;
283 }
284 
285 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
286 {
287 	__be32 *b = buf;
288 
289 	b[0] = cpu_to_be32(val << shift);
290 }
291 
292 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
293 {
294 	__le32 *b = buf;
295 
296 	b[0] = cpu_to_le32(val << shift);
297 }
298 
299 static void regmap_format_32_native(void *buf, unsigned int val,
300 				    unsigned int shift)
301 {
302 	*(u32 *)buf = val << shift;
303 }
304 
305 #ifdef CONFIG_64BIT
306 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
307 {
308 	__be64 *b = buf;
309 
310 	b[0] = cpu_to_be64((u64)val << shift);
311 }
312 
313 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
314 {
315 	__le64 *b = buf;
316 
317 	b[0] = cpu_to_le64((u64)val << shift);
318 }
319 
320 static void regmap_format_64_native(void *buf, unsigned int val,
321 				    unsigned int shift)
322 {
323 	*(u64 *)buf = (u64)val << shift;
324 }
325 #endif
326 
327 static void regmap_parse_inplace_noop(void *buf)
328 {
329 }
330 
331 static unsigned int regmap_parse_8(const void *buf)
332 {
333 	const u8 *b = buf;
334 
335 	return b[0];
336 }
337 
338 static unsigned int regmap_parse_16_be(const void *buf)
339 {
340 	const __be16 *b = buf;
341 
342 	return be16_to_cpu(b[0]);
343 }
344 
345 static unsigned int regmap_parse_16_le(const void *buf)
346 {
347 	const __le16 *b = buf;
348 
349 	return le16_to_cpu(b[0]);
350 }
351 
352 static void regmap_parse_16_be_inplace(void *buf)
353 {
354 	__be16 *b = buf;
355 
356 	b[0] = be16_to_cpu(b[0]);
357 }
358 
359 static void regmap_parse_16_le_inplace(void *buf)
360 {
361 	__le16 *b = buf;
362 
363 	b[0] = le16_to_cpu(b[0]);
364 }
365 
366 static unsigned int regmap_parse_16_native(const void *buf)
367 {
368 	return *(u16 *)buf;
369 }
370 
371 static unsigned int regmap_parse_24(const void *buf)
372 {
373 	const u8 *b = buf;
374 	unsigned int ret = b[2];
375 	ret |= ((unsigned int)b[1]) << 8;
376 	ret |= ((unsigned int)b[0]) << 16;
377 
378 	return ret;
379 }
380 
381 static unsigned int regmap_parse_32_be(const void *buf)
382 {
383 	const __be32 *b = buf;
384 
385 	return be32_to_cpu(b[0]);
386 }
387 
388 static unsigned int regmap_parse_32_le(const void *buf)
389 {
390 	const __le32 *b = buf;
391 
392 	return le32_to_cpu(b[0]);
393 }
394 
395 static void regmap_parse_32_be_inplace(void *buf)
396 {
397 	__be32 *b = buf;
398 
399 	b[0] = be32_to_cpu(b[0]);
400 }
401 
402 static void regmap_parse_32_le_inplace(void *buf)
403 {
404 	__le32 *b = buf;
405 
406 	b[0] = le32_to_cpu(b[0]);
407 }
408 
409 static unsigned int regmap_parse_32_native(const void *buf)
410 {
411 	return *(u32 *)buf;
412 }
413 
414 #ifdef CONFIG_64BIT
415 static unsigned int regmap_parse_64_be(const void *buf)
416 {
417 	const __be64 *b = buf;
418 
419 	return be64_to_cpu(b[0]);
420 }
421 
422 static unsigned int regmap_parse_64_le(const void *buf)
423 {
424 	const __le64 *b = buf;
425 
426 	return le64_to_cpu(b[0]);
427 }
428 
429 static void regmap_parse_64_be_inplace(void *buf)
430 {
431 	__be64 *b = buf;
432 
433 	b[0] = be64_to_cpu(b[0]);
434 }
435 
436 static void regmap_parse_64_le_inplace(void *buf)
437 {
438 	__le64 *b = buf;
439 
440 	b[0] = le64_to_cpu(b[0]);
441 }
442 
443 static unsigned int regmap_parse_64_native(const void *buf)
444 {
445 	return *(u64 *)buf;
446 }
447 #endif
448 
449 static void regmap_lock_hwlock(void *__map)
450 {
451 	struct regmap *map = __map;
452 
453 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
454 }
455 
456 static void regmap_lock_hwlock_irq(void *__map)
457 {
458 	struct regmap *map = __map;
459 
460 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
461 }
462 
463 static void regmap_lock_hwlock_irqsave(void *__map)
464 {
465 	struct regmap *map = __map;
466 
467 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
468 				    &map->spinlock_flags);
469 }
470 
471 static void regmap_unlock_hwlock(void *__map)
472 {
473 	struct regmap *map = __map;
474 
475 	hwspin_unlock(map->hwlock);
476 }
477 
478 static void regmap_unlock_hwlock_irq(void *__map)
479 {
480 	struct regmap *map = __map;
481 
482 	hwspin_unlock_irq(map->hwlock);
483 }
484 
485 static void regmap_unlock_hwlock_irqrestore(void *__map)
486 {
487 	struct regmap *map = __map;
488 
489 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
490 }
491 
492 static void regmap_lock_unlock_none(void *__map)
493 {
494 
495 }
496 
497 static void regmap_lock_mutex(void *__map)
498 {
499 	struct regmap *map = __map;
500 	mutex_lock(&map->mutex);
501 }
502 
503 static void regmap_unlock_mutex(void *__map)
504 {
505 	struct regmap *map = __map;
506 	mutex_unlock(&map->mutex);
507 }
508 
509 static void regmap_lock_spinlock(void *__map)
510 __acquires(&map->spinlock)
511 {
512 	struct regmap *map = __map;
513 	unsigned long flags;
514 
515 	spin_lock_irqsave(&map->spinlock, flags);
516 	map->spinlock_flags = flags;
517 }
518 
519 static void regmap_unlock_spinlock(void *__map)
520 __releases(&map->spinlock)
521 {
522 	struct regmap *map = __map;
523 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
524 }
525 
526 static void dev_get_regmap_release(struct device *dev, void *res)
527 {
528 	/*
529 	 * We don't actually have anything to do here; the goal here
530 	 * is not to manage the regmap but to provide a simple way to
531 	 * get the regmap back given a struct device.
532 	 */
533 }
534 
535 static bool _regmap_range_add(struct regmap *map,
536 			      struct regmap_range_node *data)
537 {
538 	struct rb_root *root = &map->range_tree;
539 	struct rb_node **new = &(root->rb_node), *parent = NULL;
540 
541 	while (*new) {
542 		struct regmap_range_node *this =
543 			rb_entry(*new, struct regmap_range_node, node);
544 
545 		parent = *new;
546 		if (data->range_max < this->range_min)
547 			new = &((*new)->rb_left);
548 		else if (data->range_min > this->range_max)
549 			new = &((*new)->rb_right);
550 		else
551 			return false;
552 	}
553 
554 	rb_link_node(&data->node, parent, new);
555 	rb_insert_color(&data->node, root);
556 
557 	return true;
558 }
559 
560 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
561 						      unsigned int reg)
562 {
563 	struct rb_node *node = map->range_tree.rb_node;
564 
565 	while (node) {
566 		struct regmap_range_node *this =
567 			rb_entry(node, struct regmap_range_node, node);
568 
569 		if (reg < this->range_min)
570 			node = node->rb_left;
571 		else if (reg > this->range_max)
572 			node = node->rb_right;
573 		else
574 			return this;
575 	}
576 
577 	return NULL;
578 }
579 
580 static void regmap_range_exit(struct regmap *map)
581 {
582 	struct rb_node *next;
583 	struct regmap_range_node *range_node;
584 
585 	next = rb_first(&map->range_tree);
586 	while (next) {
587 		range_node = rb_entry(next, struct regmap_range_node, node);
588 		next = rb_next(&range_node->node);
589 		rb_erase(&range_node->node, &map->range_tree);
590 		kfree(range_node);
591 	}
592 
593 	kfree(map->selector_work_buf);
594 }
595 
596 int regmap_attach_dev(struct device *dev, struct regmap *map,
597 		      const struct regmap_config *config)
598 {
599 	struct regmap **m;
600 
601 	map->dev = dev;
602 
603 	regmap_debugfs_init(map, config->name);
604 
605 	/* Add a devres resource for dev_get_regmap() */
606 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
607 	if (!m) {
608 		regmap_debugfs_exit(map);
609 		return -ENOMEM;
610 	}
611 	*m = map;
612 	devres_add(dev, m);
613 
614 	return 0;
615 }
616 EXPORT_SYMBOL_GPL(regmap_attach_dev);
617 
618 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
619 					const struct regmap_config *config)
620 {
621 	enum regmap_endian endian;
622 
623 	/* Retrieve the endianness specification from the regmap config */
624 	endian = config->reg_format_endian;
625 
626 	/* If the regmap config specified a non-default value, use that */
627 	if (endian != REGMAP_ENDIAN_DEFAULT)
628 		return endian;
629 
630 	/* Retrieve the endianness specification from the bus config */
631 	if (bus && bus->reg_format_endian_default)
632 		endian = bus->reg_format_endian_default;
633 
634 	/* If the bus specified a non-default value, use that */
635 	if (endian != REGMAP_ENDIAN_DEFAULT)
636 		return endian;
637 
638 	/* Use this if no other value was found */
639 	return REGMAP_ENDIAN_BIG;
640 }
641 
642 enum regmap_endian regmap_get_val_endian(struct device *dev,
643 					 const struct regmap_bus *bus,
644 					 const struct regmap_config *config)
645 {
646 	struct device_node *np;
647 	enum regmap_endian endian;
648 
649 	/* Retrieve the endianness specification from the regmap config */
650 	endian = config->val_format_endian;
651 
652 	/* If the regmap config specified a non-default value, use that */
653 	if (endian != REGMAP_ENDIAN_DEFAULT)
654 		return endian;
655 
656 	/* If the dev and dev->of_node exist try to get endianness from DT */
657 	if (dev && dev->of_node) {
658 		np = dev->of_node;
659 
660 		/* Parse the device's DT node for an endianness specification */
661 		if (of_property_read_bool(np, "big-endian"))
662 			endian = REGMAP_ENDIAN_BIG;
663 		else if (of_property_read_bool(np, "little-endian"))
664 			endian = REGMAP_ENDIAN_LITTLE;
665 		else if (of_property_read_bool(np, "native-endian"))
666 			endian = REGMAP_ENDIAN_NATIVE;
667 
668 		/* If the endianness was specified in DT, use that */
669 		if (endian != REGMAP_ENDIAN_DEFAULT)
670 			return endian;
671 	}
672 
673 	/* Retrieve the endianness specification from the bus config */
674 	if (bus && bus->val_format_endian_default)
675 		endian = bus->val_format_endian_default;
676 
677 	/* If the bus specified a non-default value, use that */
678 	if (endian != REGMAP_ENDIAN_DEFAULT)
679 		return endian;
680 
681 	/* Use this if no other value was found */
682 	return REGMAP_ENDIAN_BIG;
683 }
684 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
685 
686 struct regmap *__regmap_init(struct device *dev,
687 			     const struct regmap_bus *bus,
688 			     void *bus_context,
689 			     const struct regmap_config *config,
690 			     struct lock_class_key *lock_key,
691 			     const char *lock_name)
692 {
693 	struct regmap *map;
694 	int ret = -EINVAL;
695 	enum regmap_endian reg_endian, val_endian;
696 	int i, j;
697 
698 	if (!config)
699 		goto err;
700 
701 	map = kzalloc(sizeof(*map), GFP_KERNEL);
702 	if (map == NULL) {
703 		ret = -ENOMEM;
704 		goto err;
705 	}
706 
707 	if (config->name) {
708 		map->name = kstrdup_const(config->name, GFP_KERNEL);
709 		if (!map->name) {
710 			ret = -ENOMEM;
711 			goto err_map;
712 		}
713 	}
714 
715 	if (config->disable_locking) {
716 		map->lock = map->unlock = regmap_lock_unlock_none;
717 		regmap_debugfs_disable(map);
718 	} else if (config->lock && config->unlock) {
719 		map->lock = config->lock;
720 		map->unlock = config->unlock;
721 		map->lock_arg = config->lock_arg;
722 	} else if (config->use_hwlock) {
723 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
724 		if (!map->hwlock) {
725 			ret = -ENXIO;
726 			goto err_name;
727 		}
728 
729 		switch (config->hwlock_mode) {
730 		case HWLOCK_IRQSTATE:
731 			map->lock = regmap_lock_hwlock_irqsave;
732 			map->unlock = regmap_unlock_hwlock_irqrestore;
733 			break;
734 		case HWLOCK_IRQ:
735 			map->lock = regmap_lock_hwlock_irq;
736 			map->unlock = regmap_unlock_hwlock_irq;
737 			break;
738 		default:
739 			map->lock = regmap_lock_hwlock;
740 			map->unlock = regmap_unlock_hwlock;
741 			break;
742 		}
743 
744 		map->lock_arg = map;
745 	} else {
746 		if ((bus && bus->fast_io) ||
747 		    config->fast_io) {
748 			spin_lock_init(&map->spinlock);
749 			map->lock = regmap_lock_spinlock;
750 			map->unlock = regmap_unlock_spinlock;
751 			lockdep_set_class_and_name(&map->spinlock,
752 						   lock_key, lock_name);
753 		} else {
754 			mutex_init(&map->mutex);
755 			map->lock = regmap_lock_mutex;
756 			map->unlock = regmap_unlock_mutex;
757 			lockdep_set_class_and_name(&map->mutex,
758 						   lock_key, lock_name);
759 		}
760 		map->lock_arg = map;
761 	}
762 
763 	/*
764 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
765 	 * scratch buffers with sleeping allocations.
766 	 */
767 	if ((bus && bus->fast_io) || config->fast_io)
768 		map->alloc_flags = GFP_ATOMIC;
769 	else
770 		map->alloc_flags = GFP_KERNEL;
771 
772 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
773 	map->format.pad_bytes = config->pad_bits / 8;
774 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
775 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
776 			config->val_bits + config->pad_bits, 8);
777 	map->reg_shift = config->pad_bits % 8;
778 	if (config->reg_stride)
779 		map->reg_stride = config->reg_stride;
780 	else
781 		map->reg_stride = 1;
782 	if (is_power_of_2(map->reg_stride))
783 		map->reg_stride_order = ilog2(map->reg_stride);
784 	else
785 		map->reg_stride_order = -1;
786 	map->use_single_read = config->use_single_read || !bus || !bus->read;
787 	map->use_single_write = config->use_single_write || !bus || !bus->write;
788 	map->can_multi_write = config->can_multi_write && bus && bus->write;
789 	if (bus) {
790 		map->max_raw_read = bus->max_raw_read;
791 		map->max_raw_write = bus->max_raw_write;
792 	}
793 	map->dev = dev;
794 	map->bus = bus;
795 	map->bus_context = bus_context;
796 	map->max_register = config->max_register;
797 	map->wr_table = config->wr_table;
798 	map->rd_table = config->rd_table;
799 	map->volatile_table = config->volatile_table;
800 	map->precious_table = config->precious_table;
801 	map->wr_noinc_table = config->wr_noinc_table;
802 	map->rd_noinc_table = config->rd_noinc_table;
803 	map->writeable_reg = config->writeable_reg;
804 	map->readable_reg = config->readable_reg;
805 	map->volatile_reg = config->volatile_reg;
806 	map->precious_reg = config->precious_reg;
807 	map->writeable_noinc_reg = config->writeable_noinc_reg;
808 	map->readable_noinc_reg = config->readable_noinc_reg;
809 	map->cache_type = config->cache_type;
810 
811 	spin_lock_init(&map->async_lock);
812 	INIT_LIST_HEAD(&map->async_list);
813 	INIT_LIST_HEAD(&map->async_free);
814 	init_waitqueue_head(&map->async_waitq);
815 
816 	if (config->read_flag_mask ||
817 	    config->write_flag_mask ||
818 	    config->zero_flag_mask) {
819 		map->read_flag_mask = config->read_flag_mask;
820 		map->write_flag_mask = config->write_flag_mask;
821 	} else if (bus) {
822 		map->read_flag_mask = bus->read_flag_mask;
823 	}
824 
825 	if (!bus) {
826 		map->reg_read  = config->reg_read;
827 		map->reg_write = config->reg_write;
828 
829 		map->defer_caching = false;
830 		goto skip_format_initialization;
831 	} else if (!bus->read || !bus->write) {
832 		map->reg_read = _regmap_bus_reg_read;
833 		map->reg_write = _regmap_bus_reg_write;
834 
835 		map->defer_caching = false;
836 		goto skip_format_initialization;
837 	} else {
838 		map->reg_read  = _regmap_bus_read;
839 		map->reg_update_bits = bus->reg_update_bits;
840 	}
841 
842 	reg_endian = regmap_get_reg_endian(bus, config);
843 	val_endian = regmap_get_val_endian(dev, bus, config);
844 
845 	switch (config->reg_bits + map->reg_shift) {
846 	case 2:
847 		switch (config->val_bits) {
848 		case 6:
849 			map->format.format_write = regmap_format_2_6_write;
850 			break;
851 		default:
852 			goto err_hwlock;
853 		}
854 		break;
855 
856 	case 4:
857 		switch (config->val_bits) {
858 		case 12:
859 			map->format.format_write = regmap_format_4_12_write;
860 			break;
861 		default:
862 			goto err_hwlock;
863 		}
864 		break;
865 
866 	case 7:
867 		switch (config->val_bits) {
868 		case 9:
869 			map->format.format_write = regmap_format_7_9_write;
870 			break;
871 		default:
872 			goto err_hwlock;
873 		}
874 		break;
875 
876 	case 10:
877 		switch (config->val_bits) {
878 		case 14:
879 			map->format.format_write = regmap_format_10_14_write;
880 			break;
881 		default:
882 			goto err_hwlock;
883 		}
884 		break;
885 
886 	case 8:
887 		map->format.format_reg = regmap_format_8;
888 		break;
889 
890 	case 16:
891 		switch (reg_endian) {
892 		case REGMAP_ENDIAN_BIG:
893 			map->format.format_reg = regmap_format_16_be;
894 			break;
895 		case REGMAP_ENDIAN_LITTLE:
896 			map->format.format_reg = regmap_format_16_le;
897 			break;
898 		case REGMAP_ENDIAN_NATIVE:
899 			map->format.format_reg = regmap_format_16_native;
900 			break;
901 		default:
902 			goto err_hwlock;
903 		}
904 		break;
905 
906 	case 24:
907 		if (reg_endian != REGMAP_ENDIAN_BIG)
908 			goto err_hwlock;
909 		map->format.format_reg = regmap_format_24;
910 		break;
911 
912 	case 32:
913 		switch (reg_endian) {
914 		case REGMAP_ENDIAN_BIG:
915 			map->format.format_reg = regmap_format_32_be;
916 			break;
917 		case REGMAP_ENDIAN_LITTLE:
918 			map->format.format_reg = regmap_format_32_le;
919 			break;
920 		case REGMAP_ENDIAN_NATIVE:
921 			map->format.format_reg = regmap_format_32_native;
922 			break;
923 		default:
924 			goto err_hwlock;
925 		}
926 		break;
927 
928 #ifdef CONFIG_64BIT
929 	case 64:
930 		switch (reg_endian) {
931 		case REGMAP_ENDIAN_BIG:
932 			map->format.format_reg = regmap_format_64_be;
933 			break;
934 		case REGMAP_ENDIAN_LITTLE:
935 			map->format.format_reg = regmap_format_64_le;
936 			break;
937 		case REGMAP_ENDIAN_NATIVE:
938 			map->format.format_reg = regmap_format_64_native;
939 			break;
940 		default:
941 			goto err_hwlock;
942 		}
943 		break;
944 #endif
945 
946 	default:
947 		goto err_hwlock;
948 	}
949 
950 	if (val_endian == REGMAP_ENDIAN_NATIVE)
951 		map->format.parse_inplace = regmap_parse_inplace_noop;
952 
953 	switch (config->val_bits) {
954 	case 8:
955 		map->format.format_val = regmap_format_8;
956 		map->format.parse_val = regmap_parse_8;
957 		map->format.parse_inplace = regmap_parse_inplace_noop;
958 		break;
959 	case 16:
960 		switch (val_endian) {
961 		case REGMAP_ENDIAN_BIG:
962 			map->format.format_val = regmap_format_16_be;
963 			map->format.parse_val = regmap_parse_16_be;
964 			map->format.parse_inplace = regmap_parse_16_be_inplace;
965 			break;
966 		case REGMAP_ENDIAN_LITTLE:
967 			map->format.format_val = regmap_format_16_le;
968 			map->format.parse_val = regmap_parse_16_le;
969 			map->format.parse_inplace = regmap_parse_16_le_inplace;
970 			break;
971 		case REGMAP_ENDIAN_NATIVE:
972 			map->format.format_val = regmap_format_16_native;
973 			map->format.parse_val = regmap_parse_16_native;
974 			break;
975 		default:
976 			goto err_hwlock;
977 		}
978 		break;
979 	case 24:
980 		if (val_endian != REGMAP_ENDIAN_BIG)
981 			goto err_hwlock;
982 		map->format.format_val = regmap_format_24;
983 		map->format.parse_val = regmap_parse_24;
984 		break;
985 	case 32:
986 		switch (val_endian) {
987 		case REGMAP_ENDIAN_BIG:
988 			map->format.format_val = regmap_format_32_be;
989 			map->format.parse_val = regmap_parse_32_be;
990 			map->format.parse_inplace = regmap_parse_32_be_inplace;
991 			break;
992 		case REGMAP_ENDIAN_LITTLE:
993 			map->format.format_val = regmap_format_32_le;
994 			map->format.parse_val = regmap_parse_32_le;
995 			map->format.parse_inplace = regmap_parse_32_le_inplace;
996 			break;
997 		case REGMAP_ENDIAN_NATIVE:
998 			map->format.format_val = regmap_format_32_native;
999 			map->format.parse_val = regmap_parse_32_native;
1000 			break;
1001 		default:
1002 			goto err_hwlock;
1003 		}
1004 		break;
1005 #ifdef CONFIG_64BIT
1006 	case 64:
1007 		switch (val_endian) {
1008 		case REGMAP_ENDIAN_BIG:
1009 			map->format.format_val = regmap_format_64_be;
1010 			map->format.parse_val = regmap_parse_64_be;
1011 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1012 			break;
1013 		case REGMAP_ENDIAN_LITTLE:
1014 			map->format.format_val = regmap_format_64_le;
1015 			map->format.parse_val = regmap_parse_64_le;
1016 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1017 			break;
1018 		case REGMAP_ENDIAN_NATIVE:
1019 			map->format.format_val = regmap_format_64_native;
1020 			map->format.parse_val = regmap_parse_64_native;
1021 			break;
1022 		default:
1023 			goto err_hwlock;
1024 		}
1025 		break;
1026 #endif
1027 	}
1028 
1029 	if (map->format.format_write) {
1030 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1031 		    (val_endian != REGMAP_ENDIAN_BIG))
1032 			goto err_hwlock;
1033 		map->use_single_write = true;
1034 	}
1035 
1036 	if (!map->format.format_write &&
1037 	    !(map->format.format_reg && map->format.format_val))
1038 		goto err_hwlock;
1039 
1040 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1041 	if (map->work_buf == NULL) {
1042 		ret = -ENOMEM;
1043 		goto err_hwlock;
1044 	}
1045 
1046 	if (map->format.format_write) {
1047 		map->defer_caching = false;
1048 		map->reg_write = _regmap_bus_formatted_write;
1049 	} else if (map->format.format_val) {
1050 		map->defer_caching = true;
1051 		map->reg_write = _regmap_bus_raw_write;
1052 	}
1053 
1054 skip_format_initialization:
1055 
1056 	map->range_tree = RB_ROOT;
1057 	for (i = 0; i < config->num_ranges; i++) {
1058 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1059 		struct regmap_range_node *new;
1060 
1061 		/* Sanity check */
1062 		if (range_cfg->range_max < range_cfg->range_min) {
1063 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1064 				range_cfg->range_max, range_cfg->range_min);
1065 			goto err_range;
1066 		}
1067 
1068 		if (range_cfg->range_max > map->max_register) {
1069 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1070 				range_cfg->range_max, map->max_register);
1071 			goto err_range;
1072 		}
1073 
1074 		if (range_cfg->selector_reg > map->max_register) {
1075 			dev_err(map->dev,
1076 				"Invalid range %d: selector out of map\n", i);
1077 			goto err_range;
1078 		}
1079 
1080 		if (range_cfg->window_len == 0) {
1081 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1082 				i);
1083 			goto err_range;
1084 		}
1085 
1086 		/* Make sure, that this register range has no selector
1087 		   or data window within its boundary */
1088 		for (j = 0; j < config->num_ranges; j++) {
1089 			unsigned sel_reg = config->ranges[j].selector_reg;
1090 			unsigned win_min = config->ranges[j].window_start;
1091 			unsigned win_max = win_min +
1092 					   config->ranges[j].window_len - 1;
1093 
1094 			/* Allow data window inside its own virtual range */
1095 			if (j == i)
1096 				continue;
1097 
1098 			if (range_cfg->range_min <= sel_reg &&
1099 			    sel_reg <= range_cfg->range_max) {
1100 				dev_err(map->dev,
1101 					"Range %d: selector for %d in window\n",
1102 					i, j);
1103 				goto err_range;
1104 			}
1105 
1106 			if (!(win_max < range_cfg->range_min ||
1107 			      win_min > range_cfg->range_max)) {
1108 				dev_err(map->dev,
1109 					"Range %d: window for %d in window\n",
1110 					i, j);
1111 				goto err_range;
1112 			}
1113 		}
1114 
1115 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1116 		if (new == NULL) {
1117 			ret = -ENOMEM;
1118 			goto err_range;
1119 		}
1120 
1121 		new->map = map;
1122 		new->name = range_cfg->name;
1123 		new->range_min = range_cfg->range_min;
1124 		new->range_max = range_cfg->range_max;
1125 		new->selector_reg = range_cfg->selector_reg;
1126 		new->selector_mask = range_cfg->selector_mask;
1127 		new->selector_shift = range_cfg->selector_shift;
1128 		new->window_start = range_cfg->window_start;
1129 		new->window_len = range_cfg->window_len;
1130 
1131 		if (!_regmap_range_add(map, new)) {
1132 			dev_err(map->dev, "Failed to add range %d\n", i);
1133 			kfree(new);
1134 			goto err_range;
1135 		}
1136 
1137 		if (map->selector_work_buf == NULL) {
1138 			map->selector_work_buf =
1139 				kzalloc(map->format.buf_size, GFP_KERNEL);
1140 			if (map->selector_work_buf == NULL) {
1141 				ret = -ENOMEM;
1142 				goto err_range;
1143 			}
1144 		}
1145 	}
1146 
1147 	ret = regcache_init(map, config);
1148 	if (ret != 0)
1149 		goto err_range;
1150 
1151 	if (dev) {
1152 		ret = regmap_attach_dev(dev, map, config);
1153 		if (ret != 0)
1154 			goto err_regcache;
1155 	} else {
1156 		regmap_debugfs_init(map, config->name);
1157 	}
1158 
1159 	return map;
1160 
1161 err_regcache:
1162 	regcache_exit(map);
1163 err_range:
1164 	regmap_range_exit(map);
1165 	kfree(map->work_buf);
1166 err_hwlock:
1167 	if (map->hwlock)
1168 		hwspin_lock_free(map->hwlock);
1169 err_name:
1170 	kfree_const(map->name);
1171 err_map:
1172 	kfree(map);
1173 err:
1174 	return ERR_PTR(ret);
1175 }
1176 EXPORT_SYMBOL_GPL(__regmap_init);
1177 
1178 static void devm_regmap_release(struct device *dev, void *res)
1179 {
1180 	regmap_exit(*(struct regmap **)res);
1181 }
1182 
1183 struct regmap *__devm_regmap_init(struct device *dev,
1184 				  const struct regmap_bus *bus,
1185 				  void *bus_context,
1186 				  const struct regmap_config *config,
1187 				  struct lock_class_key *lock_key,
1188 				  const char *lock_name)
1189 {
1190 	struct regmap **ptr, *regmap;
1191 
1192 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1193 	if (!ptr)
1194 		return ERR_PTR(-ENOMEM);
1195 
1196 	regmap = __regmap_init(dev, bus, bus_context, config,
1197 			       lock_key, lock_name);
1198 	if (!IS_ERR(regmap)) {
1199 		*ptr = regmap;
1200 		devres_add(dev, ptr);
1201 	} else {
1202 		devres_free(ptr);
1203 	}
1204 
1205 	return regmap;
1206 }
1207 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1208 
1209 static void regmap_field_init(struct regmap_field *rm_field,
1210 	struct regmap *regmap, struct reg_field reg_field)
1211 {
1212 	rm_field->regmap = regmap;
1213 	rm_field->reg = reg_field.reg;
1214 	rm_field->shift = reg_field.lsb;
1215 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1216 	rm_field->id_size = reg_field.id_size;
1217 	rm_field->id_offset = reg_field.id_offset;
1218 }
1219 
1220 /**
1221  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1222  *
1223  * @dev: Device that will be interacted with
1224  * @regmap: regmap bank in which this register field is located.
1225  * @reg_field: Register field with in the bank.
1226  *
1227  * The return value will be an ERR_PTR() on error or a valid pointer
1228  * to a struct regmap_field. The regmap_field will be automatically freed
1229  * by the device management code.
1230  */
1231 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1232 		struct regmap *regmap, struct reg_field reg_field)
1233 {
1234 	struct regmap_field *rm_field = devm_kzalloc(dev,
1235 					sizeof(*rm_field), GFP_KERNEL);
1236 	if (!rm_field)
1237 		return ERR_PTR(-ENOMEM);
1238 
1239 	regmap_field_init(rm_field, regmap, reg_field);
1240 
1241 	return rm_field;
1242 
1243 }
1244 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1245 
1246 /**
1247  * devm_regmap_field_free() - Free a register field allocated using
1248  *                            devm_regmap_field_alloc.
1249  *
1250  * @dev: Device that will be interacted with
1251  * @field: regmap field which should be freed.
1252  *
1253  * Free register field allocated using devm_regmap_field_alloc(). Usually
1254  * drivers need not call this function, as the memory allocated via devm
1255  * will be freed as per device-driver life-cyle.
1256  */
1257 void devm_regmap_field_free(struct device *dev,
1258 	struct regmap_field *field)
1259 {
1260 	devm_kfree(dev, field);
1261 }
1262 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1263 
1264 /**
1265  * regmap_field_alloc() - Allocate and initialise a register field.
1266  *
1267  * @regmap: regmap bank in which this register field is located.
1268  * @reg_field: Register field with in the bank.
1269  *
1270  * The return value will be an ERR_PTR() on error or a valid pointer
1271  * to a struct regmap_field. The regmap_field should be freed by the
1272  * user once its finished working with it using regmap_field_free().
1273  */
1274 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1275 		struct reg_field reg_field)
1276 {
1277 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1278 
1279 	if (!rm_field)
1280 		return ERR_PTR(-ENOMEM);
1281 
1282 	regmap_field_init(rm_field, regmap, reg_field);
1283 
1284 	return rm_field;
1285 }
1286 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1287 
1288 /**
1289  * regmap_field_free() - Free register field allocated using
1290  *                       regmap_field_alloc.
1291  *
1292  * @field: regmap field which should be freed.
1293  */
1294 void regmap_field_free(struct regmap_field *field)
1295 {
1296 	kfree(field);
1297 }
1298 EXPORT_SYMBOL_GPL(regmap_field_free);
1299 
1300 /**
1301  * regmap_reinit_cache() - Reinitialise the current register cache
1302  *
1303  * @map: Register map to operate on.
1304  * @config: New configuration.  Only the cache data will be used.
1305  *
1306  * Discard any existing register cache for the map and initialize a
1307  * new cache.  This can be used to restore the cache to defaults or to
1308  * update the cache configuration to reflect runtime discovery of the
1309  * hardware.
1310  *
1311  * No explicit locking is done here, the user needs to ensure that
1312  * this function will not race with other calls to regmap.
1313  */
1314 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1315 {
1316 	regcache_exit(map);
1317 	regmap_debugfs_exit(map);
1318 
1319 	map->max_register = config->max_register;
1320 	map->writeable_reg = config->writeable_reg;
1321 	map->readable_reg = config->readable_reg;
1322 	map->volatile_reg = config->volatile_reg;
1323 	map->precious_reg = config->precious_reg;
1324 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1325 	map->readable_noinc_reg = config->readable_noinc_reg;
1326 	map->cache_type = config->cache_type;
1327 
1328 	regmap_debugfs_init(map, config->name);
1329 
1330 	map->cache_bypass = false;
1331 	map->cache_only = false;
1332 
1333 	return regcache_init(map, config);
1334 }
1335 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1336 
1337 /**
1338  * regmap_exit() - Free a previously allocated register map
1339  *
1340  * @map: Register map to operate on.
1341  */
1342 void regmap_exit(struct regmap *map)
1343 {
1344 	struct regmap_async *async;
1345 
1346 	regcache_exit(map);
1347 	regmap_debugfs_exit(map);
1348 	regmap_range_exit(map);
1349 	if (map->bus && map->bus->free_context)
1350 		map->bus->free_context(map->bus_context);
1351 	kfree(map->work_buf);
1352 	while (!list_empty(&map->async_free)) {
1353 		async = list_first_entry_or_null(&map->async_free,
1354 						 struct regmap_async,
1355 						 list);
1356 		list_del(&async->list);
1357 		kfree(async->work_buf);
1358 		kfree(async);
1359 	}
1360 	if (map->hwlock)
1361 		hwspin_lock_free(map->hwlock);
1362 	kfree_const(map->name);
1363 	kfree(map);
1364 }
1365 EXPORT_SYMBOL_GPL(regmap_exit);
1366 
1367 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1368 {
1369 	struct regmap **r = res;
1370 	if (!r || !*r) {
1371 		WARN_ON(!r || !*r);
1372 		return 0;
1373 	}
1374 
1375 	/* If the user didn't specify a name match any */
1376 	if (data)
1377 		return (*r)->name == data;
1378 	else
1379 		return 1;
1380 }
1381 
1382 /**
1383  * dev_get_regmap() - Obtain the regmap (if any) for a device
1384  *
1385  * @dev: Device to retrieve the map for
1386  * @name: Optional name for the register map, usually NULL.
1387  *
1388  * Returns the regmap for the device if one is present, or NULL.  If
1389  * name is specified then it must match the name specified when
1390  * registering the device, if it is NULL then the first regmap found
1391  * will be used.  Devices with multiple register maps are very rare,
1392  * generic code should normally not need to specify a name.
1393  */
1394 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1395 {
1396 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1397 					dev_get_regmap_match, (void *)name);
1398 
1399 	if (!r)
1400 		return NULL;
1401 	return *r;
1402 }
1403 EXPORT_SYMBOL_GPL(dev_get_regmap);
1404 
1405 /**
1406  * regmap_get_device() - Obtain the device from a regmap
1407  *
1408  * @map: Register map to operate on.
1409  *
1410  * Returns the underlying device that the regmap has been created for.
1411  */
1412 struct device *regmap_get_device(struct regmap *map)
1413 {
1414 	return map->dev;
1415 }
1416 EXPORT_SYMBOL_GPL(regmap_get_device);
1417 
1418 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1419 			       struct regmap_range_node *range,
1420 			       unsigned int val_num)
1421 {
1422 	void *orig_work_buf;
1423 	unsigned int win_offset;
1424 	unsigned int win_page;
1425 	bool page_chg;
1426 	int ret;
1427 
1428 	win_offset = (*reg - range->range_min) % range->window_len;
1429 	win_page = (*reg - range->range_min) / range->window_len;
1430 
1431 	if (val_num > 1) {
1432 		/* Bulk write shouldn't cross range boundary */
1433 		if (*reg + val_num - 1 > range->range_max)
1434 			return -EINVAL;
1435 
1436 		/* ... or single page boundary */
1437 		if (val_num > range->window_len - win_offset)
1438 			return -EINVAL;
1439 	}
1440 
1441 	/* It is possible to have selector register inside data window.
1442 	   In that case, selector register is located on every page and
1443 	   it needs no page switching, when accessed alone. */
1444 	if (val_num > 1 ||
1445 	    range->window_start + win_offset != range->selector_reg) {
1446 		/* Use separate work_buf during page switching */
1447 		orig_work_buf = map->work_buf;
1448 		map->work_buf = map->selector_work_buf;
1449 
1450 		ret = _regmap_update_bits(map, range->selector_reg,
1451 					  range->selector_mask,
1452 					  win_page << range->selector_shift,
1453 					  &page_chg, false);
1454 
1455 		map->work_buf = orig_work_buf;
1456 
1457 		if (ret != 0)
1458 			return ret;
1459 	}
1460 
1461 	*reg = range->window_start + win_offset;
1462 
1463 	return 0;
1464 }
1465 
1466 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1467 					  unsigned long mask)
1468 {
1469 	u8 *buf;
1470 	int i;
1471 
1472 	if (!mask || !map->work_buf)
1473 		return;
1474 
1475 	buf = map->work_buf;
1476 
1477 	for (i = 0; i < max_bytes; i++)
1478 		buf[i] |= (mask >> (8 * i)) & 0xff;
1479 }
1480 
1481 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1482 				  const void *val, size_t val_len)
1483 {
1484 	struct regmap_range_node *range;
1485 	unsigned long flags;
1486 	void *work_val = map->work_buf + map->format.reg_bytes +
1487 		map->format.pad_bytes;
1488 	void *buf;
1489 	int ret = -ENOTSUPP;
1490 	size_t len;
1491 	int i;
1492 
1493 	WARN_ON(!map->bus);
1494 
1495 	/* Check for unwritable registers before we start */
1496 	if (map->writeable_reg)
1497 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1498 			if (!map->writeable_reg(map->dev,
1499 					       reg + regmap_get_offset(map, i)))
1500 				return -EINVAL;
1501 
1502 	if (!map->cache_bypass && map->format.parse_val) {
1503 		unsigned int ival;
1504 		int val_bytes = map->format.val_bytes;
1505 		for (i = 0; i < val_len / val_bytes; i++) {
1506 			ival = map->format.parse_val(val + (i * val_bytes));
1507 			ret = regcache_write(map,
1508 					     reg + regmap_get_offset(map, i),
1509 					     ival);
1510 			if (ret) {
1511 				dev_err(map->dev,
1512 					"Error in caching of register: %x ret: %d\n",
1513 					reg + i, ret);
1514 				return ret;
1515 			}
1516 		}
1517 		if (map->cache_only) {
1518 			map->cache_dirty = true;
1519 			return 0;
1520 		}
1521 	}
1522 
1523 	range = _regmap_range_lookup(map, reg);
1524 	if (range) {
1525 		int val_num = val_len / map->format.val_bytes;
1526 		int win_offset = (reg - range->range_min) % range->window_len;
1527 		int win_residue = range->window_len - win_offset;
1528 
1529 		/* If the write goes beyond the end of the window split it */
1530 		while (val_num > win_residue) {
1531 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1532 				win_residue, val_len / map->format.val_bytes);
1533 			ret = _regmap_raw_write_impl(map, reg, val,
1534 						     win_residue *
1535 						     map->format.val_bytes);
1536 			if (ret != 0)
1537 				return ret;
1538 
1539 			reg += win_residue;
1540 			val_num -= win_residue;
1541 			val += win_residue * map->format.val_bytes;
1542 			val_len -= win_residue * map->format.val_bytes;
1543 
1544 			win_offset = (reg - range->range_min) %
1545 				range->window_len;
1546 			win_residue = range->window_len - win_offset;
1547 		}
1548 
1549 		ret = _regmap_select_page(map, &reg, range, val_num);
1550 		if (ret != 0)
1551 			return ret;
1552 	}
1553 
1554 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1555 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1556 				      map->write_flag_mask);
1557 
1558 	/*
1559 	 * Essentially all I/O mechanisms will be faster with a single
1560 	 * buffer to write.  Since register syncs often generate raw
1561 	 * writes of single registers optimise that case.
1562 	 */
1563 	if (val != work_val && val_len == map->format.val_bytes) {
1564 		memcpy(work_val, val, map->format.val_bytes);
1565 		val = work_val;
1566 	}
1567 
1568 	if (map->async && map->bus->async_write) {
1569 		struct regmap_async *async;
1570 
1571 		trace_regmap_async_write_start(map, reg, val_len);
1572 
1573 		spin_lock_irqsave(&map->async_lock, flags);
1574 		async = list_first_entry_or_null(&map->async_free,
1575 						 struct regmap_async,
1576 						 list);
1577 		if (async)
1578 			list_del(&async->list);
1579 		spin_unlock_irqrestore(&map->async_lock, flags);
1580 
1581 		if (!async) {
1582 			async = map->bus->async_alloc();
1583 			if (!async)
1584 				return -ENOMEM;
1585 
1586 			async->work_buf = kzalloc(map->format.buf_size,
1587 						  GFP_KERNEL | GFP_DMA);
1588 			if (!async->work_buf) {
1589 				kfree(async);
1590 				return -ENOMEM;
1591 			}
1592 		}
1593 
1594 		async->map = map;
1595 
1596 		/* If the caller supplied the value we can use it safely. */
1597 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1598 		       map->format.reg_bytes + map->format.val_bytes);
1599 
1600 		spin_lock_irqsave(&map->async_lock, flags);
1601 		list_add_tail(&async->list, &map->async_list);
1602 		spin_unlock_irqrestore(&map->async_lock, flags);
1603 
1604 		if (val != work_val)
1605 			ret = map->bus->async_write(map->bus_context,
1606 						    async->work_buf,
1607 						    map->format.reg_bytes +
1608 						    map->format.pad_bytes,
1609 						    val, val_len, async);
1610 		else
1611 			ret = map->bus->async_write(map->bus_context,
1612 						    async->work_buf,
1613 						    map->format.reg_bytes +
1614 						    map->format.pad_bytes +
1615 						    val_len, NULL, 0, async);
1616 
1617 		if (ret != 0) {
1618 			dev_err(map->dev, "Failed to schedule write: %d\n",
1619 				ret);
1620 
1621 			spin_lock_irqsave(&map->async_lock, flags);
1622 			list_move(&async->list, &map->async_free);
1623 			spin_unlock_irqrestore(&map->async_lock, flags);
1624 		}
1625 
1626 		return ret;
1627 	}
1628 
1629 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1630 
1631 	/* If we're doing a single register write we can probably just
1632 	 * send the work_buf directly, otherwise try to do a gather
1633 	 * write.
1634 	 */
1635 	if (val == work_val)
1636 		ret = map->bus->write(map->bus_context, map->work_buf,
1637 				      map->format.reg_bytes +
1638 				      map->format.pad_bytes +
1639 				      val_len);
1640 	else if (map->bus->gather_write)
1641 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1642 					     map->format.reg_bytes +
1643 					     map->format.pad_bytes,
1644 					     val, val_len);
1645 
1646 	/* If that didn't work fall back on linearising by hand. */
1647 	if (ret == -ENOTSUPP) {
1648 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1649 		buf = kzalloc(len, GFP_KERNEL);
1650 		if (!buf)
1651 			return -ENOMEM;
1652 
1653 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1654 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1655 		       val, val_len);
1656 		ret = map->bus->write(map->bus_context, buf, len);
1657 
1658 		kfree(buf);
1659 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1660 		/* regcache_drop_region() takes lock that we already have,
1661 		 * thus call map->cache_ops->drop() directly
1662 		 */
1663 		if (map->cache_ops && map->cache_ops->drop)
1664 			map->cache_ops->drop(map, reg, reg + 1);
1665 	}
1666 
1667 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1668 
1669 	return ret;
1670 }
1671 
1672 /**
1673  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1674  *
1675  * @map: Map to check.
1676  */
1677 bool regmap_can_raw_write(struct regmap *map)
1678 {
1679 	return map->bus && map->bus->write && map->format.format_val &&
1680 		map->format.format_reg;
1681 }
1682 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1683 
1684 /**
1685  * regmap_get_raw_read_max - Get the maximum size we can read
1686  *
1687  * @map: Map to check.
1688  */
1689 size_t regmap_get_raw_read_max(struct regmap *map)
1690 {
1691 	return map->max_raw_read;
1692 }
1693 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1694 
1695 /**
1696  * regmap_get_raw_write_max - Get the maximum size we can read
1697  *
1698  * @map: Map to check.
1699  */
1700 size_t regmap_get_raw_write_max(struct regmap *map)
1701 {
1702 	return map->max_raw_write;
1703 }
1704 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1705 
1706 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1707 				       unsigned int val)
1708 {
1709 	int ret;
1710 	struct regmap_range_node *range;
1711 	struct regmap *map = context;
1712 
1713 	WARN_ON(!map->bus || !map->format.format_write);
1714 
1715 	range = _regmap_range_lookup(map, reg);
1716 	if (range) {
1717 		ret = _regmap_select_page(map, &reg, range, 1);
1718 		if (ret != 0)
1719 			return ret;
1720 	}
1721 
1722 	map->format.format_write(map, reg, val);
1723 
1724 	trace_regmap_hw_write_start(map, reg, 1);
1725 
1726 	ret = map->bus->write(map->bus_context, map->work_buf,
1727 			      map->format.buf_size);
1728 
1729 	trace_regmap_hw_write_done(map, reg, 1);
1730 
1731 	return ret;
1732 }
1733 
1734 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1735 				 unsigned int val)
1736 {
1737 	struct regmap *map = context;
1738 
1739 	return map->bus->reg_write(map->bus_context, reg, val);
1740 }
1741 
1742 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1743 				 unsigned int val)
1744 {
1745 	struct regmap *map = context;
1746 
1747 	WARN_ON(!map->bus || !map->format.format_val);
1748 
1749 	map->format.format_val(map->work_buf + map->format.reg_bytes
1750 			       + map->format.pad_bytes, val, 0);
1751 	return _regmap_raw_write_impl(map, reg,
1752 				      map->work_buf +
1753 				      map->format.reg_bytes +
1754 				      map->format.pad_bytes,
1755 				      map->format.val_bytes);
1756 }
1757 
1758 static inline void *_regmap_map_get_context(struct regmap *map)
1759 {
1760 	return (map->bus) ? map : map->bus_context;
1761 }
1762 
1763 int _regmap_write(struct regmap *map, unsigned int reg,
1764 		  unsigned int val)
1765 {
1766 	int ret;
1767 	void *context = _regmap_map_get_context(map);
1768 
1769 	if (!regmap_writeable(map, reg))
1770 		return -EIO;
1771 
1772 	if (!map->cache_bypass && !map->defer_caching) {
1773 		ret = regcache_write(map, reg, val);
1774 		if (ret != 0)
1775 			return ret;
1776 		if (map->cache_only) {
1777 			map->cache_dirty = true;
1778 			return 0;
1779 		}
1780 	}
1781 
1782 	if (regmap_should_log(map))
1783 		dev_info(map->dev, "%x <= %x\n", reg, val);
1784 
1785 	trace_regmap_reg_write(map, reg, val);
1786 
1787 	return map->reg_write(context, reg, val);
1788 }
1789 
1790 /**
1791  * regmap_write() - Write a value to a single register
1792  *
1793  * @map: Register map to write to
1794  * @reg: Register to write to
1795  * @val: Value to be written
1796  *
1797  * A value of zero will be returned on success, a negative errno will
1798  * be returned in error cases.
1799  */
1800 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1801 {
1802 	int ret;
1803 
1804 	if (!IS_ALIGNED(reg, map->reg_stride))
1805 		return -EINVAL;
1806 
1807 	map->lock(map->lock_arg);
1808 
1809 	ret = _regmap_write(map, reg, val);
1810 
1811 	map->unlock(map->lock_arg);
1812 
1813 	return ret;
1814 }
1815 EXPORT_SYMBOL_GPL(regmap_write);
1816 
1817 /**
1818  * regmap_write_async() - Write a value to a single register asynchronously
1819  *
1820  * @map: Register map to write to
1821  * @reg: Register to write to
1822  * @val: Value to be written
1823  *
1824  * A value of zero will be returned on success, a negative errno will
1825  * be returned in error cases.
1826  */
1827 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1828 {
1829 	int ret;
1830 
1831 	if (!IS_ALIGNED(reg, map->reg_stride))
1832 		return -EINVAL;
1833 
1834 	map->lock(map->lock_arg);
1835 
1836 	map->async = true;
1837 
1838 	ret = _regmap_write(map, reg, val);
1839 
1840 	map->async = false;
1841 
1842 	map->unlock(map->lock_arg);
1843 
1844 	return ret;
1845 }
1846 EXPORT_SYMBOL_GPL(regmap_write_async);
1847 
1848 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1849 		      const void *val, size_t val_len)
1850 {
1851 	size_t val_bytes = map->format.val_bytes;
1852 	size_t val_count = val_len / val_bytes;
1853 	size_t chunk_count, chunk_bytes;
1854 	size_t chunk_regs = val_count;
1855 	int ret, i;
1856 
1857 	if (!val_count)
1858 		return -EINVAL;
1859 
1860 	if (map->use_single_write)
1861 		chunk_regs = 1;
1862 	else if (map->max_raw_write && val_len > map->max_raw_write)
1863 		chunk_regs = map->max_raw_write / val_bytes;
1864 
1865 	chunk_count = val_count / chunk_regs;
1866 	chunk_bytes = chunk_regs * val_bytes;
1867 
1868 	/* Write as many bytes as possible with chunk_size */
1869 	for (i = 0; i < chunk_count; i++) {
1870 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1871 		if (ret)
1872 			return ret;
1873 
1874 		reg += regmap_get_offset(map, chunk_regs);
1875 		val += chunk_bytes;
1876 		val_len -= chunk_bytes;
1877 	}
1878 
1879 	/* Write remaining bytes */
1880 	if (val_len)
1881 		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1882 
1883 	return ret;
1884 }
1885 
1886 /**
1887  * regmap_raw_write() - Write raw values to one or more registers
1888  *
1889  * @map: Register map to write to
1890  * @reg: Initial register to write to
1891  * @val: Block of data to be written, laid out for direct transmission to the
1892  *       device
1893  * @val_len: Length of data pointed to by val.
1894  *
1895  * This function is intended to be used for things like firmware
1896  * download where a large block of data needs to be transferred to the
1897  * device.  No formatting will be done on the data provided.
1898  *
1899  * A value of zero will be returned on success, a negative errno will
1900  * be returned in error cases.
1901  */
1902 int regmap_raw_write(struct regmap *map, unsigned int reg,
1903 		     const void *val, size_t val_len)
1904 {
1905 	int ret;
1906 
1907 	if (!regmap_can_raw_write(map))
1908 		return -EINVAL;
1909 	if (val_len % map->format.val_bytes)
1910 		return -EINVAL;
1911 
1912 	map->lock(map->lock_arg);
1913 
1914 	ret = _regmap_raw_write(map, reg, val, val_len);
1915 
1916 	map->unlock(map->lock_arg);
1917 
1918 	return ret;
1919 }
1920 EXPORT_SYMBOL_GPL(regmap_raw_write);
1921 
1922 /**
1923  * regmap_noinc_write(): Write data from a register without incrementing the
1924  *			register number
1925  *
1926  * @map: Register map to write to
1927  * @reg: Register to write to
1928  * @val: Pointer to data buffer
1929  * @val_len: Length of output buffer in bytes.
1930  *
1931  * The regmap API usually assumes that bulk bus write operations will write a
1932  * range of registers. Some devices have certain registers for which a write
1933  * operation can write to an internal FIFO.
1934  *
1935  * The target register must be volatile but registers after it can be
1936  * completely unrelated cacheable registers.
1937  *
1938  * This will attempt multiple writes as required to write val_len bytes.
1939  *
1940  * A value of zero will be returned on success, a negative errno will be
1941  * returned in error cases.
1942  */
1943 int regmap_noinc_write(struct regmap *map, unsigned int reg,
1944 		      const void *val, size_t val_len)
1945 {
1946 	size_t write_len;
1947 	int ret;
1948 
1949 	if (!map->bus)
1950 		return -EINVAL;
1951 	if (!map->bus->write)
1952 		return -ENOTSUPP;
1953 	if (val_len % map->format.val_bytes)
1954 		return -EINVAL;
1955 	if (!IS_ALIGNED(reg, map->reg_stride))
1956 		return -EINVAL;
1957 	if (val_len == 0)
1958 		return -EINVAL;
1959 
1960 	map->lock(map->lock_arg);
1961 
1962 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1963 		ret = -EINVAL;
1964 		goto out_unlock;
1965 	}
1966 
1967 	while (val_len) {
1968 		if (map->max_raw_write && map->max_raw_write < val_len)
1969 			write_len = map->max_raw_write;
1970 		else
1971 			write_len = val_len;
1972 		ret = _regmap_raw_write(map, reg, val, write_len);
1973 		if (ret)
1974 			goto out_unlock;
1975 		val = ((u8 *)val) + write_len;
1976 		val_len -= write_len;
1977 	}
1978 
1979 out_unlock:
1980 	map->unlock(map->lock_arg);
1981 	return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(regmap_noinc_write);
1984 
1985 /**
1986  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1987  *                                   register field.
1988  *
1989  * @field: Register field to write to
1990  * @mask: Bitmask to change
1991  * @val: Value to be written
1992  * @change: Boolean indicating if a write was done
1993  * @async: Boolean indicating asynchronously
1994  * @force: Boolean indicating use force update
1995  *
1996  * Perform a read/modify/write cycle on the register field with change,
1997  * async, force option.
1998  *
1999  * A value of zero will be returned on success, a negative errno will
2000  * be returned in error cases.
2001  */
2002 int regmap_field_update_bits_base(struct regmap_field *field,
2003 				  unsigned int mask, unsigned int val,
2004 				  bool *change, bool async, bool force)
2005 {
2006 	mask = (mask << field->shift) & field->mask;
2007 
2008 	return regmap_update_bits_base(field->regmap, field->reg,
2009 				       mask, val << field->shift,
2010 				       change, async, force);
2011 }
2012 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2013 
2014 /**
2015  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2016  *                                    register field with port ID
2017  *
2018  * @field: Register field to write to
2019  * @id: port ID
2020  * @mask: Bitmask to change
2021  * @val: Value to be written
2022  * @change: Boolean indicating if a write was done
2023  * @async: Boolean indicating asynchronously
2024  * @force: Boolean indicating use force update
2025  *
2026  * A value of zero will be returned on success, a negative errno will
2027  * be returned in error cases.
2028  */
2029 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
2030 				   unsigned int mask, unsigned int val,
2031 				   bool *change, bool async, bool force)
2032 {
2033 	if (id >= field->id_size)
2034 		return -EINVAL;
2035 
2036 	mask = (mask << field->shift) & field->mask;
2037 
2038 	return regmap_update_bits_base(field->regmap,
2039 				       field->reg + (field->id_offset * id),
2040 				       mask, val << field->shift,
2041 				       change, async, force);
2042 }
2043 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2044 
2045 /**
2046  * regmap_bulk_write() - Write multiple registers to the device
2047  *
2048  * @map: Register map to write to
2049  * @reg: First register to be write from
2050  * @val: Block of data to be written, in native register size for device
2051  * @val_count: Number of registers to write
2052  *
2053  * This function is intended to be used for writing a large block of
2054  * data to the device either in single transfer or multiple transfer.
2055  *
2056  * A value of zero will be returned on success, a negative errno will
2057  * be returned in error cases.
2058  */
2059 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2060 		     size_t val_count)
2061 {
2062 	int ret = 0, i;
2063 	size_t val_bytes = map->format.val_bytes;
2064 
2065 	if (!IS_ALIGNED(reg, map->reg_stride))
2066 		return -EINVAL;
2067 
2068 	/*
2069 	 * Some devices don't support bulk write, for them we have a series of
2070 	 * single write operations.
2071 	 */
2072 	if (!map->bus || !map->format.parse_inplace) {
2073 		map->lock(map->lock_arg);
2074 		for (i = 0; i < val_count; i++) {
2075 			unsigned int ival;
2076 
2077 			switch (val_bytes) {
2078 			case 1:
2079 				ival = *(u8 *)(val + (i * val_bytes));
2080 				break;
2081 			case 2:
2082 				ival = *(u16 *)(val + (i * val_bytes));
2083 				break;
2084 			case 4:
2085 				ival = *(u32 *)(val + (i * val_bytes));
2086 				break;
2087 #ifdef CONFIG_64BIT
2088 			case 8:
2089 				ival = *(u64 *)(val + (i * val_bytes));
2090 				break;
2091 #endif
2092 			default:
2093 				ret = -EINVAL;
2094 				goto out;
2095 			}
2096 
2097 			ret = _regmap_write(map,
2098 					    reg + regmap_get_offset(map, i),
2099 					    ival);
2100 			if (ret != 0)
2101 				goto out;
2102 		}
2103 out:
2104 		map->unlock(map->lock_arg);
2105 	} else {
2106 		void *wval;
2107 
2108 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2109 		if (!wval)
2110 			return -ENOMEM;
2111 
2112 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2113 			map->format.parse_inplace(wval + i);
2114 
2115 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2116 
2117 		kfree(wval);
2118 	}
2119 	return ret;
2120 }
2121 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2122 
2123 /*
2124  * _regmap_raw_multi_reg_write()
2125  *
2126  * the (register,newvalue) pairs in regs have not been formatted, but
2127  * they are all in the same page and have been changed to being page
2128  * relative. The page register has been written if that was necessary.
2129  */
2130 static int _regmap_raw_multi_reg_write(struct regmap *map,
2131 				       const struct reg_sequence *regs,
2132 				       size_t num_regs)
2133 {
2134 	int ret;
2135 	void *buf;
2136 	int i;
2137 	u8 *u8;
2138 	size_t val_bytes = map->format.val_bytes;
2139 	size_t reg_bytes = map->format.reg_bytes;
2140 	size_t pad_bytes = map->format.pad_bytes;
2141 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2142 	size_t len = pair_size * num_regs;
2143 
2144 	if (!len)
2145 		return -EINVAL;
2146 
2147 	buf = kzalloc(len, GFP_KERNEL);
2148 	if (!buf)
2149 		return -ENOMEM;
2150 
2151 	/* We have to linearise by hand. */
2152 
2153 	u8 = buf;
2154 
2155 	for (i = 0; i < num_regs; i++) {
2156 		unsigned int reg = regs[i].reg;
2157 		unsigned int val = regs[i].def;
2158 		trace_regmap_hw_write_start(map, reg, 1);
2159 		map->format.format_reg(u8, reg, map->reg_shift);
2160 		u8 += reg_bytes + pad_bytes;
2161 		map->format.format_val(u8, val, 0);
2162 		u8 += val_bytes;
2163 	}
2164 	u8 = buf;
2165 	*u8 |= map->write_flag_mask;
2166 
2167 	ret = map->bus->write(map->bus_context, buf, len);
2168 
2169 	kfree(buf);
2170 
2171 	for (i = 0; i < num_regs; i++) {
2172 		int reg = regs[i].reg;
2173 		trace_regmap_hw_write_done(map, reg, 1);
2174 	}
2175 	return ret;
2176 }
2177 
2178 static unsigned int _regmap_register_page(struct regmap *map,
2179 					  unsigned int reg,
2180 					  struct regmap_range_node *range)
2181 {
2182 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2183 
2184 	return win_page;
2185 }
2186 
2187 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2188 					       struct reg_sequence *regs,
2189 					       size_t num_regs)
2190 {
2191 	int ret;
2192 	int i, n;
2193 	struct reg_sequence *base;
2194 	unsigned int this_page = 0;
2195 	unsigned int page_change = 0;
2196 	/*
2197 	 * the set of registers are not neccessarily in order, but
2198 	 * since the order of write must be preserved this algorithm
2199 	 * chops the set each time the page changes. This also applies
2200 	 * if there is a delay required at any point in the sequence.
2201 	 */
2202 	base = regs;
2203 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2204 		unsigned int reg = regs[i].reg;
2205 		struct regmap_range_node *range;
2206 
2207 		range = _regmap_range_lookup(map, reg);
2208 		if (range) {
2209 			unsigned int win_page = _regmap_register_page(map, reg,
2210 								      range);
2211 
2212 			if (i == 0)
2213 				this_page = win_page;
2214 			if (win_page != this_page) {
2215 				this_page = win_page;
2216 				page_change = 1;
2217 			}
2218 		}
2219 
2220 		/* If we have both a page change and a delay make sure to
2221 		 * write the regs and apply the delay before we change the
2222 		 * page.
2223 		 */
2224 
2225 		if (page_change || regs[i].delay_us) {
2226 
2227 				/* For situations where the first write requires
2228 				 * a delay we need to make sure we don't call
2229 				 * raw_multi_reg_write with n=0
2230 				 * This can't occur with page breaks as we
2231 				 * never write on the first iteration
2232 				 */
2233 				if (regs[i].delay_us && i == 0)
2234 					n = 1;
2235 
2236 				ret = _regmap_raw_multi_reg_write(map, base, n);
2237 				if (ret != 0)
2238 					return ret;
2239 
2240 				if (regs[i].delay_us)
2241 					udelay(regs[i].delay_us);
2242 
2243 				base += n;
2244 				n = 0;
2245 
2246 				if (page_change) {
2247 					ret = _regmap_select_page(map,
2248 								  &base[n].reg,
2249 								  range, 1);
2250 					if (ret != 0)
2251 						return ret;
2252 
2253 					page_change = 0;
2254 				}
2255 
2256 		}
2257 
2258 	}
2259 	if (n > 0)
2260 		return _regmap_raw_multi_reg_write(map, base, n);
2261 	return 0;
2262 }
2263 
2264 static int _regmap_multi_reg_write(struct regmap *map,
2265 				   const struct reg_sequence *regs,
2266 				   size_t num_regs)
2267 {
2268 	int i;
2269 	int ret;
2270 
2271 	if (!map->can_multi_write) {
2272 		for (i = 0; i < num_regs; i++) {
2273 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2274 			if (ret != 0)
2275 				return ret;
2276 
2277 			if (regs[i].delay_us)
2278 				udelay(regs[i].delay_us);
2279 		}
2280 		return 0;
2281 	}
2282 
2283 	if (!map->format.parse_inplace)
2284 		return -EINVAL;
2285 
2286 	if (map->writeable_reg)
2287 		for (i = 0; i < num_regs; i++) {
2288 			int reg = regs[i].reg;
2289 			if (!map->writeable_reg(map->dev, reg))
2290 				return -EINVAL;
2291 			if (!IS_ALIGNED(reg, map->reg_stride))
2292 				return -EINVAL;
2293 		}
2294 
2295 	if (!map->cache_bypass) {
2296 		for (i = 0; i < num_regs; i++) {
2297 			unsigned int val = regs[i].def;
2298 			unsigned int reg = regs[i].reg;
2299 			ret = regcache_write(map, reg, val);
2300 			if (ret) {
2301 				dev_err(map->dev,
2302 				"Error in caching of register: %x ret: %d\n",
2303 								reg, ret);
2304 				return ret;
2305 			}
2306 		}
2307 		if (map->cache_only) {
2308 			map->cache_dirty = true;
2309 			return 0;
2310 		}
2311 	}
2312 
2313 	WARN_ON(!map->bus);
2314 
2315 	for (i = 0; i < num_regs; i++) {
2316 		unsigned int reg = regs[i].reg;
2317 		struct regmap_range_node *range;
2318 
2319 		/* Coalesce all the writes between a page break or a delay
2320 		 * in a sequence
2321 		 */
2322 		range = _regmap_range_lookup(map, reg);
2323 		if (range || regs[i].delay_us) {
2324 			size_t len = sizeof(struct reg_sequence)*num_regs;
2325 			struct reg_sequence *base = kmemdup(regs, len,
2326 							   GFP_KERNEL);
2327 			if (!base)
2328 				return -ENOMEM;
2329 			ret = _regmap_range_multi_paged_reg_write(map, base,
2330 								  num_regs);
2331 			kfree(base);
2332 
2333 			return ret;
2334 		}
2335 	}
2336 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2337 }
2338 
2339 /**
2340  * regmap_multi_reg_write() - Write multiple registers to the device
2341  *
2342  * @map: Register map to write to
2343  * @regs: Array of structures containing register,value to be written
2344  * @num_regs: Number of registers to write
2345  *
2346  * Write multiple registers to the device where the set of register, value
2347  * pairs are supplied in any order, possibly not all in a single range.
2348  *
2349  * The 'normal' block write mode will send ultimately send data on the
2350  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2351  * addressed. However, this alternative block multi write mode will send
2352  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2353  * must of course support the mode.
2354  *
2355  * A value of zero will be returned on success, a negative errno will be
2356  * returned in error cases.
2357  */
2358 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2359 			   int num_regs)
2360 {
2361 	int ret;
2362 
2363 	map->lock(map->lock_arg);
2364 
2365 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2366 
2367 	map->unlock(map->lock_arg);
2368 
2369 	return ret;
2370 }
2371 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2372 
2373 /**
2374  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2375  *                                     device but not the cache
2376  *
2377  * @map: Register map to write to
2378  * @regs: Array of structures containing register,value to be written
2379  * @num_regs: Number of registers to write
2380  *
2381  * Write multiple registers to the device but not the cache where the set
2382  * of register are supplied in any order.
2383  *
2384  * This function is intended to be used for writing a large block of data
2385  * atomically to the device in single transfer for those I2C client devices
2386  * that implement this alternative block write mode.
2387  *
2388  * A value of zero will be returned on success, a negative errno will
2389  * be returned in error cases.
2390  */
2391 int regmap_multi_reg_write_bypassed(struct regmap *map,
2392 				    const struct reg_sequence *regs,
2393 				    int num_regs)
2394 {
2395 	int ret;
2396 	bool bypass;
2397 
2398 	map->lock(map->lock_arg);
2399 
2400 	bypass = map->cache_bypass;
2401 	map->cache_bypass = true;
2402 
2403 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2404 
2405 	map->cache_bypass = bypass;
2406 
2407 	map->unlock(map->lock_arg);
2408 
2409 	return ret;
2410 }
2411 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2412 
2413 /**
2414  * regmap_raw_write_async() - Write raw values to one or more registers
2415  *                            asynchronously
2416  *
2417  * @map: Register map to write to
2418  * @reg: Initial register to write to
2419  * @val: Block of data to be written, laid out for direct transmission to the
2420  *       device.  Must be valid until regmap_async_complete() is called.
2421  * @val_len: Length of data pointed to by val.
2422  *
2423  * This function is intended to be used for things like firmware
2424  * download where a large block of data needs to be transferred to the
2425  * device.  No formatting will be done on the data provided.
2426  *
2427  * If supported by the underlying bus the write will be scheduled
2428  * asynchronously, helping maximise I/O speed on higher speed buses
2429  * like SPI.  regmap_async_complete() can be called to ensure that all
2430  * asynchrnous writes have been completed.
2431  *
2432  * A value of zero will be returned on success, a negative errno will
2433  * be returned in error cases.
2434  */
2435 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2436 			   const void *val, size_t val_len)
2437 {
2438 	int ret;
2439 
2440 	if (val_len % map->format.val_bytes)
2441 		return -EINVAL;
2442 	if (!IS_ALIGNED(reg, map->reg_stride))
2443 		return -EINVAL;
2444 
2445 	map->lock(map->lock_arg);
2446 
2447 	map->async = true;
2448 
2449 	ret = _regmap_raw_write(map, reg, val, val_len);
2450 
2451 	map->async = false;
2452 
2453 	map->unlock(map->lock_arg);
2454 
2455 	return ret;
2456 }
2457 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2458 
2459 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2460 			    unsigned int val_len)
2461 {
2462 	struct regmap_range_node *range;
2463 	int ret;
2464 
2465 	WARN_ON(!map->bus);
2466 
2467 	if (!map->bus || !map->bus->read)
2468 		return -EINVAL;
2469 
2470 	range = _regmap_range_lookup(map, reg);
2471 	if (range) {
2472 		ret = _regmap_select_page(map, &reg, range,
2473 					  val_len / map->format.val_bytes);
2474 		if (ret != 0)
2475 			return ret;
2476 	}
2477 
2478 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2479 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2480 				      map->read_flag_mask);
2481 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2482 
2483 	ret = map->bus->read(map->bus_context, map->work_buf,
2484 			     map->format.reg_bytes + map->format.pad_bytes,
2485 			     val, val_len);
2486 
2487 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2488 
2489 	return ret;
2490 }
2491 
2492 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2493 				unsigned int *val)
2494 {
2495 	struct regmap *map = context;
2496 
2497 	return map->bus->reg_read(map->bus_context, reg, val);
2498 }
2499 
2500 static int _regmap_bus_read(void *context, unsigned int reg,
2501 			    unsigned int *val)
2502 {
2503 	int ret;
2504 	struct regmap *map = context;
2505 	void *work_val = map->work_buf + map->format.reg_bytes +
2506 		map->format.pad_bytes;
2507 
2508 	if (!map->format.parse_val)
2509 		return -EINVAL;
2510 
2511 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2512 	if (ret == 0)
2513 		*val = map->format.parse_val(work_val);
2514 
2515 	return ret;
2516 }
2517 
2518 static int _regmap_read(struct regmap *map, unsigned int reg,
2519 			unsigned int *val)
2520 {
2521 	int ret;
2522 	void *context = _regmap_map_get_context(map);
2523 
2524 	if (!map->cache_bypass) {
2525 		ret = regcache_read(map, reg, val);
2526 		if (ret == 0)
2527 			return 0;
2528 	}
2529 
2530 	if (map->cache_only)
2531 		return -EBUSY;
2532 
2533 	if (!regmap_readable(map, reg))
2534 		return -EIO;
2535 
2536 	ret = map->reg_read(context, reg, val);
2537 	if (ret == 0) {
2538 		if (regmap_should_log(map))
2539 			dev_info(map->dev, "%x => %x\n", reg, *val);
2540 
2541 		trace_regmap_reg_read(map, reg, *val);
2542 
2543 		if (!map->cache_bypass)
2544 			regcache_write(map, reg, *val);
2545 	}
2546 
2547 	return ret;
2548 }
2549 
2550 /**
2551  * regmap_read() - Read a value from a single register
2552  *
2553  * @map: Register map to read from
2554  * @reg: Register to be read from
2555  * @val: Pointer to store read value
2556  *
2557  * A value of zero will be returned on success, a negative errno will
2558  * be returned in error cases.
2559  */
2560 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2561 {
2562 	int ret;
2563 
2564 	if (!IS_ALIGNED(reg, map->reg_stride))
2565 		return -EINVAL;
2566 
2567 	map->lock(map->lock_arg);
2568 
2569 	ret = _regmap_read(map, reg, val);
2570 
2571 	map->unlock(map->lock_arg);
2572 
2573 	return ret;
2574 }
2575 EXPORT_SYMBOL_GPL(regmap_read);
2576 
2577 /**
2578  * regmap_raw_read() - Read raw data from the device
2579  *
2580  * @map: Register map to read from
2581  * @reg: First register to be read from
2582  * @val: Pointer to store read value
2583  * @val_len: Size of data to read
2584  *
2585  * A value of zero will be returned on success, a negative errno will
2586  * be returned in error cases.
2587  */
2588 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2589 		    size_t val_len)
2590 {
2591 	size_t val_bytes = map->format.val_bytes;
2592 	size_t val_count = val_len / val_bytes;
2593 	unsigned int v;
2594 	int ret, i;
2595 
2596 	if (!map->bus)
2597 		return -EINVAL;
2598 	if (val_len % map->format.val_bytes)
2599 		return -EINVAL;
2600 	if (!IS_ALIGNED(reg, map->reg_stride))
2601 		return -EINVAL;
2602 	if (val_count == 0)
2603 		return -EINVAL;
2604 
2605 	map->lock(map->lock_arg);
2606 
2607 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2608 	    map->cache_type == REGCACHE_NONE) {
2609 		size_t chunk_count, chunk_bytes;
2610 		size_t chunk_regs = val_count;
2611 
2612 		if (!map->bus->read) {
2613 			ret = -ENOTSUPP;
2614 			goto out;
2615 		}
2616 
2617 		if (map->use_single_read)
2618 			chunk_regs = 1;
2619 		else if (map->max_raw_read && val_len > map->max_raw_read)
2620 			chunk_regs = map->max_raw_read / val_bytes;
2621 
2622 		chunk_count = val_count / chunk_regs;
2623 		chunk_bytes = chunk_regs * val_bytes;
2624 
2625 		/* Read bytes that fit into whole chunks */
2626 		for (i = 0; i < chunk_count; i++) {
2627 			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2628 			if (ret != 0)
2629 				goto out;
2630 
2631 			reg += regmap_get_offset(map, chunk_regs);
2632 			val += chunk_bytes;
2633 			val_len -= chunk_bytes;
2634 		}
2635 
2636 		/* Read remaining bytes */
2637 		if (val_len) {
2638 			ret = _regmap_raw_read(map, reg, val, val_len);
2639 			if (ret != 0)
2640 				goto out;
2641 		}
2642 	} else {
2643 		/* Otherwise go word by word for the cache; should be low
2644 		 * cost as we expect to hit the cache.
2645 		 */
2646 		for (i = 0; i < val_count; i++) {
2647 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2648 					   &v);
2649 			if (ret != 0)
2650 				goto out;
2651 
2652 			map->format.format_val(val + (i * val_bytes), v, 0);
2653 		}
2654 	}
2655 
2656  out:
2657 	map->unlock(map->lock_arg);
2658 
2659 	return ret;
2660 }
2661 EXPORT_SYMBOL_GPL(regmap_raw_read);
2662 
2663 /**
2664  * regmap_noinc_read(): Read data from a register without incrementing the
2665  *			register number
2666  *
2667  * @map: Register map to read from
2668  * @reg: Register to read from
2669  * @val: Pointer to data buffer
2670  * @val_len: Length of output buffer in bytes.
2671  *
2672  * The regmap API usually assumes that bulk bus read operations will read a
2673  * range of registers. Some devices have certain registers for which a read
2674  * operation read will read from an internal FIFO.
2675  *
2676  * The target register must be volatile but registers after it can be
2677  * completely unrelated cacheable registers.
2678  *
2679  * This will attempt multiple reads as required to read val_len bytes.
2680  *
2681  * A value of zero will be returned on success, a negative errno will be
2682  * returned in error cases.
2683  */
2684 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2685 		      void *val, size_t val_len)
2686 {
2687 	size_t read_len;
2688 	int ret;
2689 
2690 	if (!map->bus)
2691 		return -EINVAL;
2692 	if (!map->bus->read)
2693 		return -ENOTSUPP;
2694 	if (val_len % map->format.val_bytes)
2695 		return -EINVAL;
2696 	if (!IS_ALIGNED(reg, map->reg_stride))
2697 		return -EINVAL;
2698 	if (val_len == 0)
2699 		return -EINVAL;
2700 
2701 	map->lock(map->lock_arg);
2702 
2703 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2704 		ret = -EINVAL;
2705 		goto out_unlock;
2706 	}
2707 
2708 	while (val_len) {
2709 		if (map->max_raw_read && map->max_raw_read < val_len)
2710 			read_len = map->max_raw_read;
2711 		else
2712 			read_len = val_len;
2713 		ret = _regmap_raw_read(map, reg, val, read_len);
2714 		if (ret)
2715 			goto out_unlock;
2716 		val = ((u8 *)val) + read_len;
2717 		val_len -= read_len;
2718 	}
2719 
2720 out_unlock:
2721 	map->unlock(map->lock_arg);
2722 	return ret;
2723 }
2724 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2725 
2726 /**
2727  * regmap_field_read(): Read a value to a single register field
2728  *
2729  * @field: Register field to read from
2730  * @val: Pointer to store read value
2731  *
2732  * A value of zero will be returned on success, a negative errno will
2733  * be returned in error cases.
2734  */
2735 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2736 {
2737 	int ret;
2738 	unsigned int reg_val;
2739 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2740 	if (ret != 0)
2741 		return ret;
2742 
2743 	reg_val &= field->mask;
2744 	reg_val >>= field->shift;
2745 	*val = reg_val;
2746 
2747 	return ret;
2748 }
2749 EXPORT_SYMBOL_GPL(regmap_field_read);
2750 
2751 /**
2752  * regmap_fields_read() - Read a value to a single register field with port ID
2753  *
2754  * @field: Register field to read from
2755  * @id: port ID
2756  * @val: Pointer to store read value
2757  *
2758  * A value of zero will be returned on success, a negative errno will
2759  * be returned in error cases.
2760  */
2761 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2762 		       unsigned int *val)
2763 {
2764 	int ret;
2765 	unsigned int reg_val;
2766 
2767 	if (id >= field->id_size)
2768 		return -EINVAL;
2769 
2770 	ret = regmap_read(field->regmap,
2771 			  field->reg + (field->id_offset * id),
2772 			  &reg_val);
2773 	if (ret != 0)
2774 		return ret;
2775 
2776 	reg_val &= field->mask;
2777 	reg_val >>= field->shift;
2778 	*val = reg_val;
2779 
2780 	return ret;
2781 }
2782 EXPORT_SYMBOL_GPL(regmap_fields_read);
2783 
2784 /**
2785  * regmap_bulk_read() - Read multiple registers from the device
2786  *
2787  * @map: Register map to read from
2788  * @reg: First register to be read from
2789  * @val: Pointer to store read value, in native register size for device
2790  * @val_count: Number of registers to read
2791  *
2792  * A value of zero will be returned on success, a negative errno will
2793  * be returned in error cases.
2794  */
2795 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2796 		     size_t val_count)
2797 {
2798 	int ret, i;
2799 	size_t val_bytes = map->format.val_bytes;
2800 	bool vol = regmap_volatile_range(map, reg, val_count);
2801 
2802 	if (!IS_ALIGNED(reg, map->reg_stride))
2803 		return -EINVAL;
2804 	if (val_count == 0)
2805 		return -EINVAL;
2806 
2807 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2808 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2809 		if (ret != 0)
2810 			return ret;
2811 
2812 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2813 			map->format.parse_inplace(val + i);
2814 	} else {
2815 #ifdef CONFIG_64BIT
2816 		u64 *u64 = val;
2817 #endif
2818 		u32 *u32 = val;
2819 		u16 *u16 = val;
2820 		u8 *u8 = val;
2821 
2822 		map->lock(map->lock_arg);
2823 
2824 		for (i = 0; i < val_count; i++) {
2825 			unsigned int ival;
2826 
2827 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2828 					   &ival);
2829 			if (ret != 0)
2830 				goto out;
2831 
2832 			switch (map->format.val_bytes) {
2833 #ifdef CONFIG_64BIT
2834 			case 8:
2835 				u64[i] = ival;
2836 				break;
2837 #endif
2838 			case 4:
2839 				u32[i] = ival;
2840 				break;
2841 			case 2:
2842 				u16[i] = ival;
2843 				break;
2844 			case 1:
2845 				u8[i] = ival;
2846 				break;
2847 			default:
2848 				ret = -EINVAL;
2849 				goto out;
2850 			}
2851 		}
2852 
2853 out:
2854 		map->unlock(map->lock_arg);
2855 	}
2856 
2857 	return ret;
2858 }
2859 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2860 
2861 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2862 			       unsigned int mask, unsigned int val,
2863 			       bool *change, bool force_write)
2864 {
2865 	int ret;
2866 	unsigned int tmp, orig;
2867 
2868 	if (change)
2869 		*change = false;
2870 
2871 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2872 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2873 		if (ret == 0 && change)
2874 			*change = true;
2875 	} else {
2876 		ret = _regmap_read(map, reg, &orig);
2877 		if (ret != 0)
2878 			return ret;
2879 
2880 		tmp = orig & ~mask;
2881 		tmp |= val & mask;
2882 
2883 		if (force_write || (tmp != orig)) {
2884 			ret = _regmap_write(map, reg, tmp);
2885 			if (ret == 0 && change)
2886 				*change = true;
2887 		}
2888 	}
2889 
2890 	return ret;
2891 }
2892 
2893 /**
2894  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2895  *
2896  * @map: Register map to update
2897  * @reg: Register to update
2898  * @mask: Bitmask to change
2899  * @val: New value for bitmask
2900  * @change: Boolean indicating if a write was done
2901  * @async: Boolean indicating asynchronously
2902  * @force: Boolean indicating use force update
2903  *
2904  * Perform a read/modify/write cycle on a register map with change, async, force
2905  * options.
2906  *
2907  * If async is true:
2908  *
2909  * With most buses the read must be done synchronously so this is most useful
2910  * for devices with a cache which do not need to interact with the hardware to
2911  * determine the current register value.
2912  *
2913  * Returns zero for success, a negative number on error.
2914  */
2915 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2916 			    unsigned int mask, unsigned int val,
2917 			    bool *change, bool async, bool force)
2918 {
2919 	int ret;
2920 
2921 	map->lock(map->lock_arg);
2922 
2923 	map->async = async;
2924 
2925 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2926 
2927 	map->async = false;
2928 
2929 	map->unlock(map->lock_arg);
2930 
2931 	return ret;
2932 }
2933 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2934 
2935 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2936 {
2937 	struct regmap *map = async->map;
2938 	bool wake;
2939 
2940 	trace_regmap_async_io_complete(map);
2941 
2942 	spin_lock(&map->async_lock);
2943 	list_move(&async->list, &map->async_free);
2944 	wake = list_empty(&map->async_list);
2945 
2946 	if (ret != 0)
2947 		map->async_ret = ret;
2948 
2949 	spin_unlock(&map->async_lock);
2950 
2951 	if (wake)
2952 		wake_up(&map->async_waitq);
2953 }
2954 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2955 
2956 static int regmap_async_is_done(struct regmap *map)
2957 {
2958 	unsigned long flags;
2959 	int ret;
2960 
2961 	spin_lock_irqsave(&map->async_lock, flags);
2962 	ret = list_empty(&map->async_list);
2963 	spin_unlock_irqrestore(&map->async_lock, flags);
2964 
2965 	return ret;
2966 }
2967 
2968 /**
2969  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2970  *
2971  * @map: Map to operate on.
2972  *
2973  * Blocks until any pending asynchronous I/O has completed.  Returns
2974  * an error code for any failed I/O operations.
2975  */
2976 int regmap_async_complete(struct regmap *map)
2977 {
2978 	unsigned long flags;
2979 	int ret;
2980 
2981 	/* Nothing to do with no async support */
2982 	if (!map->bus || !map->bus->async_write)
2983 		return 0;
2984 
2985 	trace_regmap_async_complete_start(map);
2986 
2987 	wait_event(map->async_waitq, regmap_async_is_done(map));
2988 
2989 	spin_lock_irqsave(&map->async_lock, flags);
2990 	ret = map->async_ret;
2991 	map->async_ret = 0;
2992 	spin_unlock_irqrestore(&map->async_lock, flags);
2993 
2994 	trace_regmap_async_complete_done(map);
2995 
2996 	return ret;
2997 }
2998 EXPORT_SYMBOL_GPL(regmap_async_complete);
2999 
3000 /**
3001  * regmap_register_patch - Register and apply register updates to be applied
3002  *                         on device initialistion
3003  *
3004  * @map: Register map to apply updates to.
3005  * @regs: Values to update.
3006  * @num_regs: Number of entries in regs.
3007  *
3008  * Register a set of register updates to be applied to the device
3009  * whenever the device registers are synchronised with the cache and
3010  * apply them immediately.  Typically this is used to apply
3011  * corrections to be applied to the device defaults on startup, such
3012  * as the updates some vendors provide to undocumented registers.
3013  *
3014  * The caller must ensure that this function cannot be called
3015  * concurrently with either itself or regcache_sync().
3016  */
3017 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3018 			  int num_regs)
3019 {
3020 	struct reg_sequence *p;
3021 	int ret;
3022 	bool bypass;
3023 
3024 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3025 	    num_regs))
3026 		return 0;
3027 
3028 	p = krealloc(map->patch,
3029 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3030 		     GFP_KERNEL);
3031 	if (p) {
3032 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3033 		map->patch = p;
3034 		map->patch_regs += num_regs;
3035 	} else {
3036 		return -ENOMEM;
3037 	}
3038 
3039 	map->lock(map->lock_arg);
3040 
3041 	bypass = map->cache_bypass;
3042 
3043 	map->cache_bypass = true;
3044 	map->async = true;
3045 
3046 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3047 
3048 	map->async = false;
3049 	map->cache_bypass = bypass;
3050 
3051 	map->unlock(map->lock_arg);
3052 
3053 	regmap_async_complete(map);
3054 
3055 	return ret;
3056 }
3057 EXPORT_SYMBOL_GPL(regmap_register_patch);
3058 
3059 /**
3060  * regmap_get_val_bytes() - Report the size of a register value
3061  *
3062  * @map: Register map to operate on.
3063  *
3064  * Report the size of a register value, mainly intended to for use by
3065  * generic infrastructure built on top of regmap.
3066  */
3067 int regmap_get_val_bytes(struct regmap *map)
3068 {
3069 	if (map->format.format_write)
3070 		return -EINVAL;
3071 
3072 	return map->format.val_bytes;
3073 }
3074 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3075 
3076 /**
3077  * regmap_get_max_register() - Report the max register value
3078  *
3079  * @map: Register map to operate on.
3080  *
3081  * Report the max register value, mainly intended to for use by
3082  * generic infrastructure built on top of regmap.
3083  */
3084 int regmap_get_max_register(struct regmap *map)
3085 {
3086 	return map->max_register ? map->max_register : -EINVAL;
3087 }
3088 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3089 
3090 /**
3091  * regmap_get_reg_stride() - Report the register address stride
3092  *
3093  * @map: Register map to operate on.
3094  *
3095  * Report the register address stride, mainly intended to for use by
3096  * generic infrastructure built on top of regmap.
3097  */
3098 int regmap_get_reg_stride(struct regmap *map)
3099 {
3100 	return map->reg_stride;
3101 }
3102 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3103 
3104 int regmap_parse_val(struct regmap *map, const void *buf,
3105 			unsigned int *val)
3106 {
3107 	if (!map->format.parse_val)
3108 		return -EINVAL;
3109 
3110 	*val = map->format.parse_val(buf);
3111 
3112 	return 0;
3113 }
3114 EXPORT_SYMBOL_GPL(regmap_parse_val);
3115 
3116 static int __init regmap_initcall(void)
3117 {
3118 	regmap_debugfs_initcall();
3119 
3120 	return 0;
3121 }
3122 postcore_initcall(regmap_initcall);
3123