1 /* 2 * Register map access API 3 * 4 * Copyright 2011 Wolfson Microelectronics plc 5 * 6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/mutex.h> 17 #include <linux/err.h> 18 #include <linux/of.h> 19 #include <linux/rbtree.h> 20 #include <linux/sched.h> 21 #include <linux/delay.h> 22 #include <linux/log2.h> 23 #include <linux/hwspinlock.h> 24 25 #define CREATE_TRACE_POINTS 26 #include "trace.h" 27 28 #include "internal.h" 29 30 /* 31 * Sometimes for failures during very early init the trace 32 * infrastructure isn't available early enough to be used. For this 33 * sort of problem defining LOG_DEVICE will add printks for basic 34 * register I/O on a specific device. 35 */ 36 #undef LOG_DEVICE 37 38 #ifdef LOG_DEVICE 39 static inline bool regmap_should_log(struct regmap *map) 40 { 41 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0); 42 } 43 #else 44 static inline bool regmap_should_log(struct regmap *map) { return false; } 45 #endif 46 47 48 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 49 unsigned int mask, unsigned int val, 50 bool *change, bool force_write); 51 52 static int _regmap_bus_reg_read(void *context, unsigned int reg, 53 unsigned int *val); 54 static int _regmap_bus_read(void *context, unsigned int reg, 55 unsigned int *val); 56 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 57 unsigned int val); 58 static int _regmap_bus_reg_write(void *context, unsigned int reg, 59 unsigned int val); 60 static int _regmap_bus_raw_write(void *context, unsigned int reg, 61 unsigned int val); 62 63 bool regmap_reg_in_ranges(unsigned int reg, 64 const struct regmap_range *ranges, 65 unsigned int nranges) 66 { 67 const struct regmap_range *r; 68 int i; 69 70 for (i = 0, r = ranges; i < nranges; i++, r++) 71 if (regmap_reg_in_range(reg, r)) 72 return true; 73 return false; 74 } 75 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 76 77 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 78 const struct regmap_access_table *table) 79 { 80 /* Check "no ranges" first */ 81 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 82 return false; 83 84 /* In case zero "yes ranges" are supplied, any reg is OK */ 85 if (!table->n_yes_ranges) 86 return true; 87 88 return regmap_reg_in_ranges(reg, table->yes_ranges, 89 table->n_yes_ranges); 90 } 91 EXPORT_SYMBOL_GPL(regmap_check_range_table); 92 93 bool regmap_writeable(struct regmap *map, unsigned int reg) 94 { 95 if (map->max_register && reg > map->max_register) 96 return false; 97 98 if (map->writeable_reg) 99 return map->writeable_reg(map->dev, reg); 100 101 if (map->wr_table) 102 return regmap_check_range_table(map, reg, map->wr_table); 103 104 return true; 105 } 106 107 bool regmap_cached(struct regmap *map, unsigned int reg) 108 { 109 int ret; 110 unsigned int val; 111 112 if (map->cache_type == REGCACHE_NONE) 113 return false; 114 115 if (!map->cache_ops) 116 return false; 117 118 if (map->max_register && reg > map->max_register) 119 return false; 120 121 map->lock(map->lock_arg); 122 ret = regcache_read(map, reg, &val); 123 map->unlock(map->lock_arg); 124 if (ret) 125 return false; 126 127 return true; 128 } 129 130 bool regmap_readable(struct regmap *map, unsigned int reg) 131 { 132 if (!map->reg_read) 133 return false; 134 135 if (map->max_register && reg > map->max_register) 136 return false; 137 138 if (map->format.format_write) 139 return false; 140 141 if (map->readable_reg) 142 return map->readable_reg(map->dev, reg); 143 144 if (map->rd_table) 145 return regmap_check_range_table(map, reg, map->rd_table); 146 147 return true; 148 } 149 150 bool regmap_volatile(struct regmap *map, unsigned int reg) 151 { 152 if (!map->format.format_write && !regmap_readable(map, reg)) 153 return false; 154 155 if (map->volatile_reg) 156 return map->volatile_reg(map->dev, reg); 157 158 if (map->volatile_table) 159 return regmap_check_range_table(map, reg, map->volatile_table); 160 161 if (map->cache_ops) 162 return false; 163 else 164 return true; 165 } 166 167 bool regmap_precious(struct regmap *map, unsigned int reg) 168 { 169 if (!regmap_readable(map, reg)) 170 return false; 171 172 if (map->precious_reg) 173 return map->precious_reg(map->dev, reg); 174 175 if (map->precious_table) 176 return regmap_check_range_table(map, reg, map->precious_table); 177 178 return false; 179 } 180 181 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg) 182 { 183 if (map->writeable_noinc_reg) 184 return map->writeable_noinc_reg(map->dev, reg); 185 186 if (map->wr_noinc_table) 187 return regmap_check_range_table(map, reg, map->wr_noinc_table); 188 189 return true; 190 } 191 192 bool regmap_readable_noinc(struct regmap *map, unsigned int reg) 193 { 194 if (map->readable_noinc_reg) 195 return map->readable_noinc_reg(map->dev, reg); 196 197 if (map->rd_noinc_table) 198 return regmap_check_range_table(map, reg, map->rd_noinc_table); 199 200 return true; 201 } 202 203 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 204 size_t num) 205 { 206 unsigned int i; 207 208 for (i = 0; i < num; i++) 209 if (!regmap_volatile(map, reg + regmap_get_offset(map, i))) 210 return false; 211 212 return true; 213 } 214 215 static void regmap_format_2_6_write(struct regmap *map, 216 unsigned int reg, unsigned int val) 217 { 218 u8 *out = map->work_buf; 219 220 *out = (reg << 6) | val; 221 } 222 223 static void regmap_format_4_12_write(struct regmap *map, 224 unsigned int reg, unsigned int val) 225 { 226 __be16 *out = map->work_buf; 227 *out = cpu_to_be16((reg << 12) | val); 228 } 229 230 static void regmap_format_7_9_write(struct regmap *map, 231 unsigned int reg, unsigned int val) 232 { 233 __be16 *out = map->work_buf; 234 *out = cpu_to_be16((reg << 9) | val); 235 } 236 237 static void regmap_format_10_14_write(struct regmap *map, 238 unsigned int reg, unsigned int val) 239 { 240 u8 *out = map->work_buf; 241 242 out[2] = val; 243 out[1] = (val >> 8) | (reg << 6); 244 out[0] = reg >> 2; 245 } 246 247 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 248 { 249 u8 *b = buf; 250 251 b[0] = val << shift; 252 } 253 254 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 255 { 256 __be16 *b = buf; 257 258 b[0] = cpu_to_be16(val << shift); 259 } 260 261 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) 262 { 263 __le16 *b = buf; 264 265 b[0] = cpu_to_le16(val << shift); 266 } 267 268 static void regmap_format_16_native(void *buf, unsigned int val, 269 unsigned int shift) 270 { 271 *(u16 *)buf = val << shift; 272 } 273 274 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift) 275 { 276 u8 *b = buf; 277 278 val <<= shift; 279 280 b[0] = val >> 16; 281 b[1] = val >> 8; 282 b[2] = val; 283 } 284 285 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 286 { 287 __be32 *b = buf; 288 289 b[0] = cpu_to_be32(val << shift); 290 } 291 292 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) 293 { 294 __le32 *b = buf; 295 296 b[0] = cpu_to_le32(val << shift); 297 } 298 299 static void regmap_format_32_native(void *buf, unsigned int val, 300 unsigned int shift) 301 { 302 *(u32 *)buf = val << shift; 303 } 304 305 #ifdef CONFIG_64BIT 306 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift) 307 { 308 __be64 *b = buf; 309 310 b[0] = cpu_to_be64((u64)val << shift); 311 } 312 313 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift) 314 { 315 __le64 *b = buf; 316 317 b[0] = cpu_to_le64((u64)val << shift); 318 } 319 320 static void regmap_format_64_native(void *buf, unsigned int val, 321 unsigned int shift) 322 { 323 *(u64 *)buf = (u64)val << shift; 324 } 325 #endif 326 327 static void regmap_parse_inplace_noop(void *buf) 328 { 329 } 330 331 static unsigned int regmap_parse_8(const void *buf) 332 { 333 const u8 *b = buf; 334 335 return b[0]; 336 } 337 338 static unsigned int regmap_parse_16_be(const void *buf) 339 { 340 const __be16 *b = buf; 341 342 return be16_to_cpu(b[0]); 343 } 344 345 static unsigned int regmap_parse_16_le(const void *buf) 346 { 347 const __le16 *b = buf; 348 349 return le16_to_cpu(b[0]); 350 } 351 352 static void regmap_parse_16_be_inplace(void *buf) 353 { 354 __be16 *b = buf; 355 356 b[0] = be16_to_cpu(b[0]); 357 } 358 359 static void regmap_parse_16_le_inplace(void *buf) 360 { 361 __le16 *b = buf; 362 363 b[0] = le16_to_cpu(b[0]); 364 } 365 366 static unsigned int regmap_parse_16_native(const void *buf) 367 { 368 return *(u16 *)buf; 369 } 370 371 static unsigned int regmap_parse_24(const void *buf) 372 { 373 const u8 *b = buf; 374 unsigned int ret = b[2]; 375 ret |= ((unsigned int)b[1]) << 8; 376 ret |= ((unsigned int)b[0]) << 16; 377 378 return ret; 379 } 380 381 static unsigned int regmap_parse_32_be(const void *buf) 382 { 383 const __be32 *b = buf; 384 385 return be32_to_cpu(b[0]); 386 } 387 388 static unsigned int regmap_parse_32_le(const void *buf) 389 { 390 const __le32 *b = buf; 391 392 return le32_to_cpu(b[0]); 393 } 394 395 static void regmap_parse_32_be_inplace(void *buf) 396 { 397 __be32 *b = buf; 398 399 b[0] = be32_to_cpu(b[0]); 400 } 401 402 static void regmap_parse_32_le_inplace(void *buf) 403 { 404 __le32 *b = buf; 405 406 b[0] = le32_to_cpu(b[0]); 407 } 408 409 static unsigned int regmap_parse_32_native(const void *buf) 410 { 411 return *(u32 *)buf; 412 } 413 414 #ifdef CONFIG_64BIT 415 static unsigned int regmap_parse_64_be(const void *buf) 416 { 417 const __be64 *b = buf; 418 419 return be64_to_cpu(b[0]); 420 } 421 422 static unsigned int regmap_parse_64_le(const void *buf) 423 { 424 const __le64 *b = buf; 425 426 return le64_to_cpu(b[0]); 427 } 428 429 static void regmap_parse_64_be_inplace(void *buf) 430 { 431 __be64 *b = buf; 432 433 b[0] = be64_to_cpu(b[0]); 434 } 435 436 static void regmap_parse_64_le_inplace(void *buf) 437 { 438 __le64 *b = buf; 439 440 b[0] = le64_to_cpu(b[0]); 441 } 442 443 static unsigned int regmap_parse_64_native(const void *buf) 444 { 445 return *(u64 *)buf; 446 } 447 #endif 448 449 static void regmap_lock_hwlock(void *__map) 450 { 451 struct regmap *map = __map; 452 453 hwspin_lock_timeout(map->hwlock, UINT_MAX); 454 } 455 456 static void regmap_lock_hwlock_irq(void *__map) 457 { 458 struct regmap *map = __map; 459 460 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX); 461 } 462 463 static void regmap_lock_hwlock_irqsave(void *__map) 464 { 465 struct regmap *map = __map; 466 467 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX, 468 &map->spinlock_flags); 469 } 470 471 static void regmap_unlock_hwlock(void *__map) 472 { 473 struct regmap *map = __map; 474 475 hwspin_unlock(map->hwlock); 476 } 477 478 static void regmap_unlock_hwlock_irq(void *__map) 479 { 480 struct regmap *map = __map; 481 482 hwspin_unlock_irq(map->hwlock); 483 } 484 485 static void regmap_unlock_hwlock_irqrestore(void *__map) 486 { 487 struct regmap *map = __map; 488 489 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags); 490 } 491 492 static void regmap_lock_unlock_none(void *__map) 493 { 494 495 } 496 497 static void regmap_lock_mutex(void *__map) 498 { 499 struct regmap *map = __map; 500 mutex_lock(&map->mutex); 501 } 502 503 static void regmap_unlock_mutex(void *__map) 504 { 505 struct regmap *map = __map; 506 mutex_unlock(&map->mutex); 507 } 508 509 static void regmap_lock_spinlock(void *__map) 510 __acquires(&map->spinlock) 511 { 512 struct regmap *map = __map; 513 unsigned long flags; 514 515 spin_lock_irqsave(&map->spinlock, flags); 516 map->spinlock_flags = flags; 517 } 518 519 static void regmap_unlock_spinlock(void *__map) 520 __releases(&map->spinlock) 521 { 522 struct regmap *map = __map; 523 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 524 } 525 526 static void dev_get_regmap_release(struct device *dev, void *res) 527 { 528 /* 529 * We don't actually have anything to do here; the goal here 530 * is not to manage the regmap but to provide a simple way to 531 * get the regmap back given a struct device. 532 */ 533 } 534 535 static bool _regmap_range_add(struct regmap *map, 536 struct regmap_range_node *data) 537 { 538 struct rb_root *root = &map->range_tree; 539 struct rb_node **new = &(root->rb_node), *parent = NULL; 540 541 while (*new) { 542 struct regmap_range_node *this = 543 rb_entry(*new, struct regmap_range_node, node); 544 545 parent = *new; 546 if (data->range_max < this->range_min) 547 new = &((*new)->rb_left); 548 else if (data->range_min > this->range_max) 549 new = &((*new)->rb_right); 550 else 551 return false; 552 } 553 554 rb_link_node(&data->node, parent, new); 555 rb_insert_color(&data->node, root); 556 557 return true; 558 } 559 560 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 561 unsigned int reg) 562 { 563 struct rb_node *node = map->range_tree.rb_node; 564 565 while (node) { 566 struct regmap_range_node *this = 567 rb_entry(node, struct regmap_range_node, node); 568 569 if (reg < this->range_min) 570 node = node->rb_left; 571 else if (reg > this->range_max) 572 node = node->rb_right; 573 else 574 return this; 575 } 576 577 return NULL; 578 } 579 580 static void regmap_range_exit(struct regmap *map) 581 { 582 struct rb_node *next; 583 struct regmap_range_node *range_node; 584 585 next = rb_first(&map->range_tree); 586 while (next) { 587 range_node = rb_entry(next, struct regmap_range_node, node); 588 next = rb_next(&range_node->node); 589 rb_erase(&range_node->node, &map->range_tree); 590 kfree(range_node); 591 } 592 593 kfree(map->selector_work_buf); 594 } 595 596 int regmap_attach_dev(struct device *dev, struct regmap *map, 597 const struct regmap_config *config) 598 { 599 struct regmap **m; 600 601 map->dev = dev; 602 603 regmap_debugfs_init(map, config->name); 604 605 /* Add a devres resource for dev_get_regmap() */ 606 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 607 if (!m) { 608 regmap_debugfs_exit(map); 609 return -ENOMEM; 610 } 611 *m = map; 612 devres_add(dev, m); 613 614 return 0; 615 } 616 EXPORT_SYMBOL_GPL(regmap_attach_dev); 617 618 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, 619 const struct regmap_config *config) 620 { 621 enum regmap_endian endian; 622 623 /* Retrieve the endianness specification from the regmap config */ 624 endian = config->reg_format_endian; 625 626 /* If the regmap config specified a non-default value, use that */ 627 if (endian != REGMAP_ENDIAN_DEFAULT) 628 return endian; 629 630 /* Retrieve the endianness specification from the bus config */ 631 if (bus && bus->reg_format_endian_default) 632 endian = bus->reg_format_endian_default; 633 634 /* If the bus specified a non-default value, use that */ 635 if (endian != REGMAP_ENDIAN_DEFAULT) 636 return endian; 637 638 /* Use this if no other value was found */ 639 return REGMAP_ENDIAN_BIG; 640 } 641 642 enum regmap_endian regmap_get_val_endian(struct device *dev, 643 const struct regmap_bus *bus, 644 const struct regmap_config *config) 645 { 646 struct device_node *np; 647 enum regmap_endian endian; 648 649 /* Retrieve the endianness specification from the regmap config */ 650 endian = config->val_format_endian; 651 652 /* If the regmap config specified a non-default value, use that */ 653 if (endian != REGMAP_ENDIAN_DEFAULT) 654 return endian; 655 656 /* If the dev and dev->of_node exist try to get endianness from DT */ 657 if (dev && dev->of_node) { 658 np = dev->of_node; 659 660 /* Parse the device's DT node for an endianness specification */ 661 if (of_property_read_bool(np, "big-endian")) 662 endian = REGMAP_ENDIAN_BIG; 663 else if (of_property_read_bool(np, "little-endian")) 664 endian = REGMAP_ENDIAN_LITTLE; 665 else if (of_property_read_bool(np, "native-endian")) 666 endian = REGMAP_ENDIAN_NATIVE; 667 668 /* If the endianness was specified in DT, use that */ 669 if (endian != REGMAP_ENDIAN_DEFAULT) 670 return endian; 671 } 672 673 /* Retrieve the endianness specification from the bus config */ 674 if (bus && bus->val_format_endian_default) 675 endian = bus->val_format_endian_default; 676 677 /* If the bus specified a non-default value, use that */ 678 if (endian != REGMAP_ENDIAN_DEFAULT) 679 return endian; 680 681 /* Use this if no other value was found */ 682 return REGMAP_ENDIAN_BIG; 683 } 684 EXPORT_SYMBOL_GPL(regmap_get_val_endian); 685 686 struct regmap *__regmap_init(struct device *dev, 687 const struct regmap_bus *bus, 688 void *bus_context, 689 const struct regmap_config *config, 690 struct lock_class_key *lock_key, 691 const char *lock_name) 692 { 693 struct regmap *map; 694 int ret = -EINVAL; 695 enum regmap_endian reg_endian, val_endian; 696 int i, j; 697 698 if (!config) 699 goto err; 700 701 map = kzalloc(sizeof(*map), GFP_KERNEL); 702 if (map == NULL) { 703 ret = -ENOMEM; 704 goto err; 705 } 706 707 if (config->name) { 708 map->name = kstrdup_const(config->name, GFP_KERNEL); 709 if (!map->name) { 710 ret = -ENOMEM; 711 goto err_map; 712 } 713 } 714 715 if (config->disable_locking) { 716 map->lock = map->unlock = regmap_lock_unlock_none; 717 regmap_debugfs_disable(map); 718 } else if (config->lock && config->unlock) { 719 map->lock = config->lock; 720 map->unlock = config->unlock; 721 map->lock_arg = config->lock_arg; 722 } else if (config->use_hwlock) { 723 map->hwlock = hwspin_lock_request_specific(config->hwlock_id); 724 if (!map->hwlock) { 725 ret = -ENXIO; 726 goto err_name; 727 } 728 729 switch (config->hwlock_mode) { 730 case HWLOCK_IRQSTATE: 731 map->lock = regmap_lock_hwlock_irqsave; 732 map->unlock = regmap_unlock_hwlock_irqrestore; 733 break; 734 case HWLOCK_IRQ: 735 map->lock = regmap_lock_hwlock_irq; 736 map->unlock = regmap_unlock_hwlock_irq; 737 break; 738 default: 739 map->lock = regmap_lock_hwlock; 740 map->unlock = regmap_unlock_hwlock; 741 break; 742 } 743 744 map->lock_arg = map; 745 } else { 746 if ((bus && bus->fast_io) || 747 config->fast_io) { 748 spin_lock_init(&map->spinlock); 749 map->lock = regmap_lock_spinlock; 750 map->unlock = regmap_unlock_spinlock; 751 lockdep_set_class_and_name(&map->spinlock, 752 lock_key, lock_name); 753 } else { 754 mutex_init(&map->mutex); 755 map->lock = regmap_lock_mutex; 756 map->unlock = regmap_unlock_mutex; 757 lockdep_set_class_and_name(&map->mutex, 758 lock_key, lock_name); 759 } 760 map->lock_arg = map; 761 } 762 763 /* 764 * When we write in fast-paths with regmap_bulk_write() don't allocate 765 * scratch buffers with sleeping allocations. 766 */ 767 if ((bus && bus->fast_io) || config->fast_io) 768 map->alloc_flags = GFP_ATOMIC; 769 else 770 map->alloc_flags = GFP_KERNEL; 771 772 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); 773 map->format.pad_bytes = config->pad_bits / 8; 774 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); 775 map->format.buf_size = DIV_ROUND_UP(config->reg_bits + 776 config->val_bits + config->pad_bits, 8); 777 map->reg_shift = config->pad_bits % 8; 778 if (config->reg_stride) 779 map->reg_stride = config->reg_stride; 780 else 781 map->reg_stride = 1; 782 if (is_power_of_2(map->reg_stride)) 783 map->reg_stride_order = ilog2(map->reg_stride); 784 else 785 map->reg_stride_order = -1; 786 map->use_single_read = config->use_single_read || !bus || !bus->read; 787 map->use_single_write = config->use_single_write || !bus || !bus->write; 788 map->can_multi_write = config->can_multi_write && bus && bus->write; 789 if (bus) { 790 map->max_raw_read = bus->max_raw_read; 791 map->max_raw_write = bus->max_raw_write; 792 } 793 map->dev = dev; 794 map->bus = bus; 795 map->bus_context = bus_context; 796 map->max_register = config->max_register; 797 map->wr_table = config->wr_table; 798 map->rd_table = config->rd_table; 799 map->volatile_table = config->volatile_table; 800 map->precious_table = config->precious_table; 801 map->wr_noinc_table = config->wr_noinc_table; 802 map->rd_noinc_table = config->rd_noinc_table; 803 map->writeable_reg = config->writeable_reg; 804 map->readable_reg = config->readable_reg; 805 map->volatile_reg = config->volatile_reg; 806 map->precious_reg = config->precious_reg; 807 map->writeable_noinc_reg = config->writeable_noinc_reg; 808 map->readable_noinc_reg = config->readable_noinc_reg; 809 map->cache_type = config->cache_type; 810 811 spin_lock_init(&map->async_lock); 812 INIT_LIST_HEAD(&map->async_list); 813 INIT_LIST_HEAD(&map->async_free); 814 init_waitqueue_head(&map->async_waitq); 815 816 if (config->read_flag_mask || 817 config->write_flag_mask || 818 config->zero_flag_mask) { 819 map->read_flag_mask = config->read_flag_mask; 820 map->write_flag_mask = config->write_flag_mask; 821 } else if (bus) { 822 map->read_flag_mask = bus->read_flag_mask; 823 } 824 825 if (!bus) { 826 map->reg_read = config->reg_read; 827 map->reg_write = config->reg_write; 828 829 map->defer_caching = false; 830 goto skip_format_initialization; 831 } else if (!bus->read || !bus->write) { 832 map->reg_read = _regmap_bus_reg_read; 833 map->reg_write = _regmap_bus_reg_write; 834 835 map->defer_caching = false; 836 goto skip_format_initialization; 837 } else { 838 map->reg_read = _regmap_bus_read; 839 map->reg_update_bits = bus->reg_update_bits; 840 } 841 842 reg_endian = regmap_get_reg_endian(bus, config); 843 val_endian = regmap_get_val_endian(dev, bus, config); 844 845 switch (config->reg_bits + map->reg_shift) { 846 case 2: 847 switch (config->val_bits) { 848 case 6: 849 map->format.format_write = regmap_format_2_6_write; 850 break; 851 default: 852 goto err_hwlock; 853 } 854 break; 855 856 case 4: 857 switch (config->val_bits) { 858 case 12: 859 map->format.format_write = regmap_format_4_12_write; 860 break; 861 default: 862 goto err_hwlock; 863 } 864 break; 865 866 case 7: 867 switch (config->val_bits) { 868 case 9: 869 map->format.format_write = regmap_format_7_9_write; 870 break; 871 default: 872 goto err_hwlock; 873 } 874 break; 875 876 case 10: 877 switch (config->val_bits) { 878 case 14: 879 map->format.format_write = regmap_format_10_14_write; 880 break; 881 default: 882 goto err_hwlock; 883 } 884 break; 885 886 case 8: 887 map->format.format_reg = regmap_format_8; 888 break; 889 890 case 16: 891 switch (reg_endian) { 892 case REGMAP_ENDIAN_BIG: 893 map->format.format_reg = regmap_format_16_be; 894 break; 895 case REGMAP_ENDIAN_LITTLE: 896 map->format.format_reg = regmap_format_16_le; 897 break; 898 case REGMAP_ENDIAN_NATIVE: 899 map->format.format_reg = regmap_format_16_native; 900 break; 901 default: 902 goto err_hwlock; 903 } 904 break; 905 906 case 24: 907 if (reg_endian != REGMAP_ENDIAN_BIG) 908 goto err_hwlock; 909 map->format.format_reg = regmap_format_24; 910 break; 911 912 case 32: 913 switch (reg_endian) { 914 case REGMAP_ENDIAN_BIG: 915 map->format.format_reg = regmap_format_32_be; 916 break; 917 case REGMAP_ENDIAN_LITTLE: 918 map->format.format_reg = regmap_format_32_le; 919 break; 920 case REGMAP_ENDIAN_NATIVE: 921 map->format.format_reg = regmap_format_32_native; 922 break; 923 default: 924 goto err_hwlock; 925 } 926 break; 927 928 #ifdef CONFIG_64BIT 929 case 64: 930 switch (reg_endian) { 931 case REGMAP_ENDIAN_BIG: 932 map->format.format_reg = regmap_format_64_be; 933 break; 934 case REGMAP_ENDIAN_LITTLE: 935 map->format.format_reg = regmap_format_64_le; 936 break; 937 case REGMAP_ENDIAN_NATIVE: 938 map->format.format_reg = regmap_format_64_native; 939 break; 940 default: 941 goto err_hwlock; 942 } 943 break; 944 #endif 945 946 default: 947 goto err_hwlock; 948 } 949 950 if (val_endian == REGMAP_ENDIAN_NATIVE) 951 map->format.parse_inplace = regmap_parse_inplace_noop; 952 953 switch (config->val_bits) { 954 case 8: 955 map->format.format_val = regmap_format_8; 956 map->format.parse_val = regmap_parse_8; 957 map->format.parse_inplace = regmap_parse_inplace_noop; 958 break; 959 case 16: 960 switch (val_endian) { 961 case REGMAP_ENDIAN_BIG: 962 map->format.format_val = regmap_format_16_be; 963 map->format.parse_val = regmap_parse_16_be; 964 map->format.parse_inplace = regmap_parse_16_be_inplace; 965 break; 966 case REGMAP_ENDIAN_LITTLE: 967 map->format.format_val = regmap_format_16_le; 968 map->format.parse_val = regmap_parse_16_le; 969 map->format.parse_inplace = regmap_parse_16_le_inplace; 970 break; 971 case REGMAP_ENDIAN_NATIVE: 972 map->format.format_val = regmap_format_16_native; 973 map->format.parse_val = regmap_parse_16_native; 974 break; 975 default: 976 goto err_hwlock; 977 } 978 break; 979 case 24: 980 if (val_endian != REGMAP_ENDIAN_BIG) 981 goto err_hwlock; 982 map->format.format_val = regmap_format_24; 983 map->format.parse_val = regmap_parse_24; 984 break; 985 case 32: 986 switch (val_endian) { 987 case REGMAP_ENDIAN_BIG: 988 map->format.format_val = regmap_format_32_be; 989 map->format.parse_val = regmap_parse_32_be; 990 map->format.parse_inplace = regmap_parse_32_be_inplace; 991 break; 992 case REGMAP_ENDIAN_LITTLE: 993 map->format.format_val = regmap_format_32_le; 994 map->format.parse_val = regmap_parse_32_le; 995 map->format.parse_inplace = regmap_parse_32_le_inplace; 996 break; 997 case REGMAP_ENDIAN_NATIVE: 998 map->format.format_val = regmap_format_32_native; 999 map->format.parse_val = regmap_parse_32_native; 1000 break; 1001 default: 1002 goto err_hwlock; 1003 } 1004 break; 1005 #ifdef CONFIG_64BIT 1006 case 64: 1007 switch (val_endian) { 1008 case REGMAP_ENDIAN_BIG: 1009 map->format.format_val = regmap_format_64_be; 1010 map->format.parse_val = regmap_parse_64_be; 1011 map->format.parse_inplace = regmap_parse_64_be_inplace; 1012 break; 1013 case REGMAP_ENDIAN_LITTLE: 1014 map->format.format_val = regmap_format_64_le; 1015 map->format.parse_val = regmap_parse_64_le; 1016 map->format.parse_inplace = regmap_parse_64_le_inplace; 1017 break; 1018 case REGMAP_ENDIAN_NATIVE: 1019 map->format.format_val = regmap_format_64_native; 1020 map->format.parse_val = regmap_parse_64_native; 1021 break; 1022 default: 1023 goto err_hwlock; 1024 } 1025 break; 1026 #endif 1027 } 1028 1029 if (map->format.format_write) { 1030 if ((reg_endian != REGMAP_ENDIAN_BIG) || 1031 (val_endian != REGMAP_ENDIAN_BIG)) 1032 goto err_hwlock; 1033 map->use_single_write = true; 1034 } 1035 1036 if (!map->format.format_write && 1037 !(map->format.format_reg && map->format.format_val)) 1038 goto err_hwlock; 1039 1040 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 1041 if (map->work_buf == NULL) { 1042 ret = -ENOMEM; 1043 goto err_hwlock; 1044 } 1045 1046 if (map->format.format_write) { 1047 map->defer_caching = false; 1048 map->reg_write = _regmap_bus_formatted_write; 1049 } else if (map->format.format_val) { 1050 map->defer_caching = true; 1051 map->reg_write = _regmap_bus_raw_write; 1052 } 1053 1054 skip_format_initialization: 1055 1056 map->range_tree = RB_ROOT; 1057 for (i = 0; i < config->num_ranges; i++) { 1058 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 1059 struct regmap_range_node *new; 1060 1061 /* Sanity check */ 1062 if (range_cfg->range_max < range_cfg->range_min) { 1063 dev_err(map->dev, "Invalid range %d: %d < %d\n", i, 1064 range_cfg->range_max, range_cfg->range_min); 1065 goto err_range; 1066 } 1067 1068 if (range_cfg->range_max > map->max_register) { 1069 dev_err(map->dev, "Invalid range %d: %d > %d\n", i, 1070 range_cfg->range_max, map->max_register); 1071 goto err_range; 1072 } 1073 1074 if (range_cfg->selector_reg > map->max_register) { 1075 dev_err(map->dev, 1076 "Invalid range %d: selector out of map\n", i); 1077 goto err_range; 1078 } 1079 1080 if (range_cfg->window_len == 0) { 1081 dev_err(map->dev, "Invalid range %d: window_len 0\n", 1082 i); 1083 goto err_range; 1084 } 1085 1086 /* Make sure, that this register range has no selector 1087 or data window within its boundary */ 1088 for (j = 0; j < config->num_ranges; j++) { 1089 unsigned sel_reg = config->ranges[j].selector_reg; 1090 unsigned win_min = config->ranges[j].window_start; 1091 unsigned win_max = win_min + 1092 config->ranges[j].window_len - 1; 1093 1094 /* Allow data window inside its own virtual range */ 1095 if (j == i) 1096 continue; 1097 1098 if (range_cfg->range_min <= sel_reg && 1099 sel_reg <= range_cfg->range_max) { 1100 dev_err(map->dev, 1101 "Range %d: selector for %d in window\n", 1102 i, j); 1103 goto err_range; 1104 } 1105 1106 if (!(win_max < range_cfg->range_min || 1107 win_min > range_cfg->range_max)) { 1108 dev_err(map->dev, 1109 "Range %d: window for %d in window\n", 1110 i, j); 1111 goto err_range; 1112 } 1113 } 1114 1115 new = kzalloc(sizeof(*new), GFP_KERNEL); 1116 if (new == NULL) { 1117 ret = -ENOMEM; 1118 goto err_range; 1119 } 1120 1121 new->map = map; 1122 new->name = range_cfg->name; 1123 new->range_min = range_cfg->range_min; 1124 new->range_max = range_cfg->range_max; 1125 new->selector_reg = range_cfg->selector_reg; 1126 new->selector_mask = range_cfg->selector_mask; 1127 new->selector_shift = range_cfg->selector_shift; 1128 new->window_start = range_cfg->window_start; 1129 new->window_len = range_cfg->window_len; 1130 1131 if (!_regmap_range_add(map, new)) { 1132 dev_err(map->dev, "Failed to add range %d\n", i); 1133 kfree(new); 1134 goto err_range; 1135 } 1136 1137 if (map->selector_work_buf == NULL) { 1138 map->selector_work_buf = 1139 kzalloc(map->format.buf_size, GFP_KERNEL); 1140 if (map->selector_work_buf == NULL) { 1141 ret = -ENOMEM; 1142 goto err_range; 1143 } 1144 } 1145 } 1146 1147 ret = regcache_init(map, config); 1148 if (ret != 0) 1149 goto err_range; 1150 1151 if (dev) { 1152 ret = regmap_attach_dev(dev, map, config); 1153 if (ret != 0) 1154 goto err_regcache; 1155 } else { 1156 regmap_debugfs_init(map, config->name); 1157 } 1158 1159 return map; 1160 1161 err_regcache: 1162 regcache_exit(map); 1163 err_range: 1164 regmap_range_exit(map); 1165 kfree(map->work_buf); 1166 err_hwlock: 1167 if (map->hwlock) 1168 hwspin_lock_free(map->hwlock); 1169 err_name: 1170 kfree_const(map->name); 1171 err_map: 1172 kfree(map); 1173 err: 1174 return ERR_PTR(ret); 1175 } 1176 EXPORT_SYMBOL_GPL(__regmap_init); 1177 1178 static void devm_regmap_release(struct device *dev, void *res) 1179 { 1180 regmap_exit(*(struct regmap **)res); 1181 } 1182 1183 struct regmap *__devm_regmap_init(struct device *dev, 1184 const struct regmap_bus *bus, 1185 void *bus_context, 1186 const struct regmap_config *config, 1187 struct lock_class_key *lock_key, 1188 const char *lock_name) 1189 { 1190 struct regmap **ptr, *regmap; 1191 1192 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 1193 if (!ptr) 1194 return ERR_PTR(-ENOMEM); 1195 1196 regmap = __regmap_init(dev, bus, bus_context, config, 1197 lock_key, lock_name); 1198 if (!IS_ERR(regmap)) { 1199 *ptr = regmap; 1200 devres_add(dev, ptr); 1201 } else { 1202 devres_free(ptr); 1203 } 1204 1205 return regmap; 1206 } 1207 EXPORT_SYMBOL_GPL(__devm_regmap_init); 1208 1209 static void regmap_field_init(struct regmap_field *rm_field, 1210 struct regmap *regmap, struct reg_field reg_field) 1211 { 1212 rm_field->regmap = regmap; 1213 rm_field->reg = reg_field.reg; 1214 rm_field->shift = reg_field.lsb; 1215 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb); 1216 rm_field->id_size = reg_field.id_size; 1217 rm_field->id_offset = reg_field.id_offset; 1218 } 1219 1220 /** 1221 * devm_regmap_field_alloc() - Allocate and initialise a register field. 1222 * 1223 * @dev: Device that will be interacted with 1224 * @regmap: regmap bank in which this register field is located. 1225 * @reg_field: Register field with in the bank. 1226 * 1227 * The return value will be an ERR_PTR() on error or a valid pointer 1228 * to a struct regmap_field. The regmap_field will be automatically freed 1229 * by the device management code. 1230 */ 1231 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 1232 struct regmap *regmap, struct reg_field reg_field) 1233 { 1234 struct regmap_field *rm_field = devm_kzalloc(dev, 1235 sizeof(*rm_field), GFP_KERNEL); 1236 if (!rm_field) 1237 return ERR_PTR(-ENOMEM); 1238 1239 regmap_field_init(rm_field, regmap, reg_field); 1240 1241 return rm_field; 1242 1243 } 1244 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 1245 1246 /** 1247 * devm_regmap_field_free() - Free a register field allocated using 1248 * devm_regmap_field_alloc. 1249 * 1250 * @dev: Device that will be interacted with 1251 * @field: regmap field which should be freed. 1252 * 1253 * Free register field allocated using devm_regmap_field_alloc(). Usually 1254 * drivers need not call this function, as the memory allocated via devm 1255 * will be freed as per device-driver life-cyle. 1256 */ 1257 void devm_regmap_field_free(struct device *dev, 1258 struct regmap_field *field) 1259 { 1260 devm_kfree(dev, field); 1261 } 1262 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 1263 1264 /** 1265 * regmap_field_alloc() - Allocate and initialise a register field. 1266 * 1267 * @regmap: regmap bank in which this register field is located. 1268 * @reg_field: Register field with in the bank. 1269 * 1270 * The return value will be an ERR_PTR() on error or a valid pointer 1271 * to a struct regmap_field. The regmap_field should be freed by the 1272 * user once its finished working with it using regmap_field_free(). 1273 */ 1274 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 1275 struct reg_field reg_field) 1276 { 1277 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 1278 1279 if (!rm_field) 1280 return ERR_PTR(-ENOMEM); 1281 1282 regmap_field_init(rm_field, regmap, reg_field); 1283 1284 return rm_field; 1285 } 1286 EXPORT_SYMBOL_GPL(regmap_field_alloc); 1287 1288 /** 1289 * regmap_field_free() - Free register field allocated using 1290 * regmap_field_alloc. 1291 * 1292 * @field: regmap field which should be freed. 1293 */ 1294 void regmap_field_free(struct regmap_field *field) 1295 { 1296 kfree(field); 1297 } 1298 EXPORT_SYMBOL_GPL(regmap_field_free); 1299 1300 /** 1301 * regmap_reinit_cache() - Reinitialise the current register cache 1302 * 1303 * @map: Register map to operate on. 1304 * @config: New configuration. Only the cache data will be used. 1305 * 1306 * Discard any existing register cache for the map and initialize a 1307 * new cache. This can be used to restore the cache to defaults or to 1308 * update the cache configuration to reflect runtime discovery of the 1309 * hardware. 1310 * 1311 * No explicit locking is done here, the user needs to ensure that 1312 * this function will not race with other calls to regmap. 1313 */ 1314 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 1315 { 1316 regcache_exit(map); 1317 regmap_debugfs_exit(map); 1318 1319 map->max_register = config->max_register; 1320 map->writeable_reg = config->writeable_reg; 1321 map->readable_reg = config->readable_reg; 1322 map->volatile_reg = config->volatile_reg; 1323 map->precious_reg = config->precious_reg; 1324 map->writeable_noinc_reg = config->writeable_noinc_reg; 1325 map->readable_noinc_reg = config->readable_noinc_reg; 1326 map->cache_type = config->cache_type; 1327 1328 regmap_debugfs_init(map, config->name); 1329 1330 map->cache_bypass = false; 1331 map->cache_only = false; 1332 1333 return regcache_init(map, config); 1334 } 1335 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 1336 1337 /** 1338 * regmap_exit() - Free a previously allocated register map 1339 * 1340 * @map: Register map to operate on. 1341 */ 1342 void regmap_exit(struct regmap *map) 1343 { 1344 struct regmap_async *async; 1345 1346 regcache_exit(map); 1347 regmap_debugfs_exit(map); 1348 regmap_range_exit(map); 1349 if (map->bus && map->bus->free_context) 1350 map->bus->free_context(map->bus_context); 1351 kfree(map->work_buf); 1352 while (!list_empty(&map->async_free)) { 1353 async = list_first_entry_or_null(&map->async_free, 1354 struct regmap_async, 1355 list); 1356 list_del(&async->list); 1357 kfree(async->work_buf); 1358 kfree(async); 1359 } 1360 if (map->hwlock) 1361 hwspin_lock_free(map->hwlock); 1362 kfree_const(map->name); 1363 kfree(map); 1364 } 1365 EXPORT_SYMBOL_GPL(regmap_exit); 1366 1367 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 1368 { 1369 struct regmap **r = res; 1370 if (!r || !*r) { 1371 WARN_ON(!r || !*r); 1372 return 0; 1373 } 1374 1375 /* If the user didn't specify a name match any */ 1376 if (data) 1377 return (*r)->name == data; 1378 else 1379 return 1; 1380 } 1381 1382 /** 1383 * dev_get_regmap() - Obtain the regmap (if any) for a device 1384 * 1385 * @dev: Device to retrieve the map for 1386 * @name: Optional name for the register map, usually NULL. 1387 * 1388 * Returns the regmap for the device if one is present, or NULL. If 1389 * name is specified then it must match the name specified when 1390 * registering the device, if it is NULL then the first regmap found 1391 * will be used. Devices with multiple register maps are very rare, 1392 * generic code should normally not need to specify a name. 1393 */ 1394 struct regmap *dev_get_regmap(struct device *dev, const char *name) 1395 { 1396 struct regmap **r = devres_find(dev, dev_get_regmap_release, 1397 dev_get_regmap_match, (void *)name); 1398 1399 if (!r) 1400 return NULL; 1401 return *r; 1402 } 1403 EXPORT_SYMBOL_GPL(dev_get_regmap); 1404 1405 /** 1406 * regmap_get_device() - Obtain the device from a regmap 1407 * 1408 * @map: Register map to operate on. 1409 * 1410 * Returns the underlying device that the regmap has been created for. 1411 */ 1412 struct device *regmap_get_device(struct regmap *map) 1413 { 1414 return map->dev; 1415 } 1416 EXPORT_SYMBOL_GPL(regmap_get_device); 1417 1418 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 1419 struct regmap_range_node *range, 1420 unsigned int val_num) 1421 { 1422 void *orig_work_buf; 1423 unsigned int win_offset; 1424 unsigned int win_page; 1425 bool page_chg; 1426 int ret; 1427 1428 win_offset = (*reg - range->range_min) % range->window_len; 1429 win_page = (*reg - range->range_min) / range->window_len; 1430 1431 if (val_num > 1) { 1432 /* Bulk write shouldn't cross range boundary */ 1433 if (*reg + val_num - 1 > range->range_max) 1434 return -EINVAL; 1435 1436 /* ... or single page boundary */ 1437 if (val_num > range->window_len - win_offset) 1438 return -EINVAL; 1439 } 1440 1441 /* It is possible to have selector register inside data window. 1442 In that case, selector register is located on every page and 1443 it needs no page switching, when accessed alone. */ 1444 if (val_num > 1 || 1445 range->window_start + win_offset != range->selector_reg) { 1446 /* Use separate work_buf during page switching */ 1447 orig_work_buf = map->work_buf; 1448 map->work_buf = map->selector_work_buf; 1449 1450 ret = _regmap_update_bits(map, range->selector_reg, 1451 range->selector_mask, 1452 win_page << range->selector_shift, 1453 &page_chg, false); 1454 1455 map->work_buf = orig_work_buf; 1456 1457 if (ret != 0) 1458 return ret; 1459 } 1460 1461 *reg = range->window_start + win_offset; 1462 1463 return 0; 1464 } 1465 1466 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes, 1467 unsigned long mask) 1468 { 1469 u8 *buf; 1470 int i; 1471 1472 if (!mask || !map->work_buf) 1473 return; 1474 1475 buf = map->work_buf; 1476 1477 for (i = 0; i < max_bytes; i++) 1478 buf[i] |= (mask >> (8 * i)) & 0xff; 1479 } 1480 1481 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg, 1482 const void *val, size_t val_len) 1483 { 1484 struct regmap_range_node *range; 1485 unsigned long flags; 1486 void *work_val = map->work_buf + map->format.reg_bytes + 1487 map->format.pad_bytes; 1488 void *buf; 1489 int ret = -ENOTSUPP; 1490 size_t len; 1491 int i; 1492 1493 WARN_ON(!map->bus); 1494 1495 /* Check for unwritable registers before we start */ 1496 if (map->writeable_reg) 1497 for (i = 0; i < val_len / map->format.val_bytes; i++) 1498 if (!map->writeable_reg(map->dev, 1499 reg + regmap_get_offset(map, i))) 1500 return -EINVAL; 1501 1502 if (!map->cache_bypass && map->format.parse_val) { 1503 unsigned int ival; 1504 int val_bytes = map->format.val_bytes; 1505 for (i = 0; i < val_len / val_bytes; i++) { 1506 ival = map->format.parse_val(val + (i * val_bytes)); 1507 ret = regcache_write(map, 1508 reg + regmap_get_offset(map, i), 1509 ival); 1510 if (ret) { 1511 dev_err(map->dev, 1512 "Error in caching of register: %x ret: %d\n", 1513 reg + i, ret); 1514 return ret; 1515 } 1516 } 1517 if (map->cache_only) { 1518 map->cache_dirty = true; 1519 return 0; 1520 } 1521 } 1522 1523 range = _regmap_range_lookup(map, reg); 1524 if (range) { 1525 int val_num = val_len / map->format.val_bytes; 1526 int win_offset = (reg - range->range_min) % range->window_len; 1527 int win_residue = range->window_len - win_offset; 1528 1529 /* If the write goes beyond the end of the window split it */ 1530 while (val_num > win_residue) { 1531 dev_dbg(map->dev, "Writing window %d/%zu\n", 1532 win_residue, val_len / map->format.val_bytes); 1533 ret = _regmap_raw_write_impl(map, reg, val, 1534 win_residue * 1535 map->format.val_bytes); 1536 if (ret != 0) 1537 return ret; 1538 1539 reg += win_residue; 1540 val_num -= win_residue; 1541 val += win_residue * map->format.val_bytes; 1542 val_len -= win_residue * map->format.val_bytes; 1543 1544 win_offset = (reg - range->range_min) % 1545 range->window_len; 1546 win_residue = range->window_len - win_offset; 1547 } 1548 1549 ret = _regmap_select_page(map, ®, range, val_num); 1550 if (ret != 0) 1551 return ret; 1552 } 1553 1554 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1555 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 1556 map->write_flag_mask); 1557 1558 /* 1559 * Essentially all I/O mechanisms will be faster with a single 1560 * buffer to write. Since register syncs often generate raw 1561 * writes of single registers optimise that case. 1562 */ 1563 if (val != work_val && val_len == map->format.val_bytes) { 1564 memcpy(work_val, val, map->format.val_bytes); 1565 val = work_val; 1566 } 1567 1568 if (map->async && map->bus->async_write) { 1569 struct regmap_async *async; 1570 1571 trace_regmap_async_write_start(map, reg, val_len); 1572 1573 spin_lock_irqsave(&map->async_lock, flags); 1574 async = list_first_entry_or_null(&map->async_free, 1575 struct regmap_async, 1576 list); 1577 if (async) 1578 list_del(&async->list); 1579 spin_unlock_irqrestore(&map->async_lock, flags); 1580 1581 if (!async) { 1582 async = map->bus->async_alloc(); 1583 if (!async) 1584 return -ENOMEM; 1585 1586 async->work_buf = kzalloc(map->format.buf_size, 1587 GFP_KERNEL | GFP_DMA); 1588 if (!async->work_buf) { 1589 kfree(async); 1590 return -ENOMEM; 1591 } 1592 } 1593 1594 async->map = map; 1595 1596 /* If the caller supplied the value we can use it safely. */ 1597 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1598 map->format.reg_bytes + map->format.val_bytes); 1599 1600 spin_lock_irqsave(&map->async_lock, flags); 1601 list_add_tail(&async->list, &map->async_list); 1602 spin_unlock_irqrestore(&map->async_lock, flags); 1603 1604 if (val != work_val) 1605 ret = map->bus->async_write(map->bus_context, 1606 async->work_buf, 1607 map->format.reg_bytes + 1608 map->format.pad_bytes, 1609 val, val_len, async); 1610 else 1611 ret = map->bus->async_write(map->bus_context, 1612 async->work_buf, 1613 map->format.reg_bytes + 1614 map->format.pad_bytes + 1615 val_len, NULL, 0, async); 1616 1617 if (ret != 0) { 1618 dev_err(map->dev, "Failed to schedule write: %d\n", 1619 ret); 1620 1621 spin_lock_irqsave(&map->async_lock, flags); 1622 list_move(&async->list, &map->async_free); 1623 spin_unlock_irqrestore(&map->async_lock, flags); 1624 } 1625 1626 return ret; 1627 } 1628 1629 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); 1630 1631 /* If we're doing a single register write we can probably just 1632 * send the work_buf directly, otherwise try to do a gather 1633 * write. 1634 */ 1635 if (val == work_val) 1636 ret = map->bus->write(map->bus_context, map->work_buf, 1637 map->format.reg_bytes + 1638 map->format.pad_bytes + 1639 val_len); 1640 else if (map->bus->gather_write) 1641 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1642 map->format.reg_bytes + 1643 map->format.pad_bytes, 1644 val, val_len); 1645 1646 /* If that didn't work fall back on linearising by hand. */ 1647 if (ret == -ENOTSUPP) { 1648 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1649 buf = kzalloc(len, GFP_KERNEL); 1650 if (!buf) 1651 return -ENOMEM; 1652 1653 memcpy(buf, map->work_buf, map->format.reg_bytes); 1654 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1655 val, val_len); 1656 ret = map->bus->write(map->bus_context, buf, len); 1657 1658 kfree(buf); 1659 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) { 1660 /* regcache_drop_region() takes lock that we already have, 1661 * thus call map->cache_ops->drop() directly 1662 */ 1663 if (map->cache_ops && map->cache_ops->drop) 1664 map->cache_ops->drop(map, reg, reg + 1); 1665 } 1666 1667 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); 1668 1669 return ret; 1670 } 1671 1672 /** 1673 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1674 * 1675 * @map: Map to check. 1676 */ 1677 bool regmap_can_raw_write(struct regmap *map) 1678 { 1679 return map->bus && map->bus->write && map->format.format_val && 1680 map->format.format_reg; 1681 } 1682 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1683 1684 /** 1685 * regmap_get_raw_read_max - Get the maximum size we can read 1686 * 1687 * @map: Map to check. 1688 */ 1689 size_t regmap_get_raw_read_max(struct regmap *map) 1690 { 1691 return map->max_raw_read; 1692 } 1693 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max); 1694 1695 /** 1696 * regmap_get_raw_write_max - Get the maximum size we can read 1697 * 1698 * @map: Map to check. 1699 */ 1700 size_t regmap_get_raw_write_max(struct regmap *map) 1701 { 1702 return map->max_raw_write; 1703 } 1704 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max); 1705 1706 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1707 unsigned int val) 1708 { 1709 int ret; 1710 struct regmap_range_node *range; 1711 struct regmap *map = context; 1712 1713 WARN_ON(!map->bus || !map->format.format_write); 1714 1715 range = _regmap_range_lookup(map, reg); 1716 if (range) { 1717 ret = _regmap_select_page(map, ®, range, 1); 1718 if (ret != 0) 1719 return ret; 1720 } 1721 1722 map->format.format_write(map, reg, val); 1723 1724 trace_regmap_hw_write_start(map, reg, 1); 1725 1726 ret = map->bus->write(map->bus_context, map->work_buf, 1727 map->format.buf_size); 1728 1729 trace_regmap_hw_write_done(map, reg, 1); 1730 1731 return ret; 1732 } 1733 1734 static int _regmap_bus_reg_write(void *context, unsigned int reg, 1735 unsigned int val) 1736 { 1737 struct regmap *map = context; 1738 1739 return map->bus->reg_write(map->bus_context, reg, val); 1740 } 1741 1742 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1743 unsigned int val) 1744 { 1745 struct regmap *map = context; 1746 1747 WARN_ON(!map->bus || !map->format.format_val); 1748 1749 map->format.format_val(map->work_buf + map->format.reg_bytes 1750 + map->format.pad_bytes, val, 0); 1751 return _regmap_raw_write_impl(map, reg, 1752 map->work_buf + 1753 map->format.reg_bytes + 1754 map->format.pad_bytes, 1755 map->format.val_bytes); 1756 } 1757 1758 static inline void *_regmap_map_get_context(struct regmap *map) 1759 { 1760 return (map->bus) ? map : map->bus_context; 1761 } 1762 1763 int _regmap_write(struct regmap *map, unsigned int reg, 1764 unsigned int val) 1765 { 1766 int ret; 1767 void *context = _regmap_map_get_context(map); 1768 1769 if (!regmap_writeable(map, reg)) 1770 return -EIO; 1771 1772 if (!map->cache_bypass && !map->defer_caching) { 1773 ret = regcache_write(map, reg, val); 1774 if (ret != 0) 1775 return ret; 1776 if (map->cache_only) { 1777 map->cache_dirty = true; 1778 return 0; 1779 } 1780 } 1781 1782 if (regmap_should_log(map)) 1783 dev_info(map->dev, "%x <= %x\n", reg, val); 1784 1785 trace_regmap_reg_write(map, reg, val); 1786 1787 return map->reg_write(context, reg, val); 1788 } 1789 1790 /** 1791 * regmap_write() - Write a value to a single register 1792 * 1793 * @map: Register map to write to 1794 * @reg: Register to write to 1795 * @val: Value to be written 1796 * 1797 * A value of zero will be returned on success, a negative errno will 1798 * be returned in error cases. 1799 */ 1800 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 1801 { 1802 int ret; 1803 1804 if (!IS_ALIGNED(reg, map->reg_stride)) 1805 return -EINVAL; 1806 1807 map->lock(map->lock_arg); 1808 1809 ret = _regmap_write(map, reg, val); 1810 1811 map->unlock(map->lock_arg); 1812 1813 return ret; 1814 } 1815 EXPORT_SYMBOL_GPL(regmap_write); 1816 1817 /** 1818 * regmap_write_async() - Write a value to a single register asynchronously 1819 * 1820 * @map: Register map to write to 1821 * @reg: Register to write to 1822 * @val: Value to be written 1823 * 1824 * A value of zero will be returned on success, a negative errno will 1825 * be returned in error cases. 1826 */ 1827 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 1828 { 1829 int ret; 1830 1831 if (!IS_ALIGNED(reg, map->reg_stride)) 1832 return -EINVAL; 1833 1834 map->lock(map->lock_arg); 1835 1836 map->async = true; 1837 1838 ret = _regmap_write(map, reg, val); 1839 1840 map->async = false; 1841 1842 map->unlock(map->lock_arg); 1843 1844 return ret; 1845 } 1846 EXPORT_SYMBOL_GPL(regmap_write_async); 1847 1848 int _regmap_raw_write(struct regmap *map, unsigned int reg, 1849 const void *val, size_t val_len) 1850 { 1851 size_t val_bytes = map->format.val_bytes; 1852 size_t val_count = val_len / val_bytes; 1853 size_t chunk_count, chunk_bytes; 1854 size_t chunk_regs = val_count; 1855 int ret, i; 1856 1857 if (!val_count) 1858 return -EINVAL; 1859 1860 if (map->use_single_write) 1861 chunk_regs = 1; 1862 else if (map->max_raw_write && val_len > map->max_raw_write) 1863 chunk_regs = map->max_raw_write / val_bytes; 1864 1865 chunk_count = val_count / chunk_regs; 1866 chunk_bytes = chunk_regs * val_bytes; 1867 1868 /* Write as many bytes as possible with chunk_size */ 1869 for (i = 0; i < chunk_count; i++) { 1870 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes); 1871 if (ret) 1872 return ret; 1873 1874 reg += regmap_get_offset(map, chunk_regs); 1875 val += chunk_bytes; 1876 val_len -= chunk_bytes; 1877 } 1878 1879 /* Write remaining bytes */ 1880 if (val_len) 1881 ret = _regmap_raw_write_impl(map, reg, val, val_len); 1882 1883 return ret; 1884 } 1885 1886 /** 1887 * regmap_raw_write() - Write raw values to one or more registers 1888 * 1889 * @map: Register map to write to 1890 * @reg: Initial register to write to 1891 * @val: Block of data to be written, laid out for direct transmission to the 1892 * device 1893 * @val_len: Length of data pointed to by val. 1894 * 1895 * This function is intended to be used for things like firmware 1896 * download where a large block of data needs to be transferred to the 1897 * device. No formatting will be done on the data provided. 1898 * 1899 * A value of zero will be returned on success, a negative errno will 1900 * be returned in error cases. 1901 */ 1902 int regmap_raw_write(struct regmap *map, unsigned int reg, 1903 const void *val, size_t val_len) 1904 { 1905 int ret; 1906 1907 if (!regmap_can_raw_write(map)) 1908 return -EINVAL; 1909 if (val_len % map->format.val_bytes) 1910 return -EINVAL; 1911 1912 map->lock(map->lock_arg); 1913 1914 ret = _regmap_raw_write(map, reg, val, val_len); 1915 1916 map->unlock(map->lock_arg); 1917 1918 return ret; 1919 } 1920 EXPORT_SYMBOL_GPL(regmap_raw_write); 1921 1922 /** 1923 * regmap_noinc_write(): Write data from a register without incrementing the 1924 * register number 1925 * 1926 * @map: Register map to write to 1927 * @reg: Register to write to 1928 * @val: Pointer to data buffer 1929 * @val_len: Length of output buffer in bytes. 1930 * 1931 * The regmap API usually assumes that bulk bus write operations will write a 1932 * range of registers. Some devices have certain registers for which a write 1933 * operation can write to an internal FIFO. 1934 * 1935 * The target register must be volatile but registers after it can be 1936 * completely unrelated cacheable registers. 1937 * 1938 * This will attempt multiple writes as required to write val_len bytes. 1939 * 1940 * A value of zero will be returned on success, a negative errno will be 1941 * returned in error cases. 1942 */ 1943 int regmap_noinc_write(struct regmap *map, unsigned int reg, 1944 const void *val, size_t val_len) 1945 { 1946 size_t write_len; 1947 int ret; 1948 1949 if (!map->bus) 1950 return -EINVAL; 1951 if (!map->bus->write) 1952 return -ENOTSUPP; 1953 if (val_len % map->format.val_bytes) 1954 return -EINVAL; 1955 if (!IS_ALIGNED(reg, map->reg_stride)) 1956 return -EINVAL; 1957 if (val_len == 0) 1958 return -EINVAL; 1959 1960 map->lock(map->lock_arg); 1961 1962 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) { 1963 ret = -EINVAL; 1964 goto out_unlock; 1965 } 1966 1967 while (val_len) { 1968 if (map->max_raw_write && map->max_raw_write < val_len) 1969 write_len = map->max_raw_write; 1970 else 1971 write_len = val_len; 1972 ret = _regmap_raw_write(map, reg, val, write_len); 1973 if (ret) 1974 goto out_unlock; 1975 val = ((u8 *)val) + write_len; 1976 val_len -= write_len; 1977 } 1978 1979 out_unlock: 1980 map->unlock(map->lock_arg); 1981 return ret; 1982 } 1983 EXPORT_SYMBOL_GPL(regmap_noinc_write); 1984 1985 /** 1986 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a 1987 * register field. 1988 * 1989 * @field: Register field to write to 1990 * @mask: Bitmask to change 1991 * @val: Value to be written 1992 * @change: Boolean indicating if a write was done 1993 * @async: Boolean indicating asynchronously 1994 * @force: Boolean indicating use force update 1995 * 1996 * Perform a read/modify/write cycle on the register field with change, 1997 * async, force option. 1998 * 1999 * A value of zero will be returned on success, a negative errno will 2000 * be returned in error cases. 2001 */ 2002 int regmap_field_update_bits_base(struct regmap_field *field, 2003 unsigned int mask, unsigned int val, 2004 bool *change, bool async, bool force) 2005 { 2006 mask = (mask << field->shift) & field->mask; 2007 2008 return regmap_update_bits_base(field->regmap, field->reg, 2009 mask, val << field->shift, 2010 change, async, force); 2011 } 2012 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base); 2013 2014 /** 2015 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a 2016 * register field with port ID 2017 * 2018 * @field: Register field to write to 2019 * @id: port ID 2020 * @mask: Bitmask to change 2021 * @val: Value to be written 2022 * @change: Boolean indicating if a write was done 2023 * @async: Boolean indicating asynchronously 2024 * @force: Boolean indicating use force update 2025 * 2026 * A value of zero will be returned on success, a negative errno will 2027 * be returned in error cases. 2028 */ 2029 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id, 2030 unsigned int mask, unsigned int val, 2031 bool *change, bool async, bool force) 2032 { 2033 if (id >= field->id_size) 2034 return -EINVAL; 2035 2036 mask = (mask << field->shift) & field->mask; 2037 2038 return regmap_update_bits_base(field->regmap, 2039 field->reg + (field->id_offset * id), 2040 mask, val << field->shift, 2041 change, async, force); 2042 } 2043 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base); 2044 2045 /** 2046 * regmap_bulk_write() - Write multiple registers to the device 2047 * 2048 * @map: Register map to write to 2049 * @reg: First register to be write from 2050 * @val: Block of data to be written, in native register size for device 2051 * @val_count: Number of registers to write 2052 * 2053 * This function is intended to be used for writing a large block of 2054 * data to the device either in single transfer or multiple transfer. 2055 * 2056 * A value of zero will be returned on success, a negative errno will 2057 * be returned in error cases. 2058 */ 2059 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 2060 size_t val_count) 2061 { 2062 int ret = 0, i; 2063 size_t val_bytes = map->format.val_bytes; 2064 2065 if (!IS_ALIGNED(reg, map->reg_stride)) 2066 return -EINVAL; 2067 2068 /* 2069 * Some devices don't support bulk write, for them we have a series of 2070 * single write operations. 2071 */ 2072 if (!map->bus || !map->format.parse_inplace) { 2073 map->lock(map->lock_arg); 2074 for (i = 0; i < val_count; i++) { 2075 unsigned int ival; 2076 2077 switch (val_bytes) { 2078 case 1: 2079 ival = *(u8 *)(val + (i * val_bytes)); 2080 break; 2081 case 2: 2082 ival = *(u16 *)(val + (i * val_bytes)); 2083 break; 2084 case 4: 2085 ival = *(u32 *)(val + (i * val_bytes)); 2086 break; 2087 #ifdef CONFIG_64BIT 2088 case 8: 2089 ival = *(u64 *)(val + (i * val_bytes)); 2090 break; 2091 #endif 2092 default: 2093 ret = -EINVAL; 2094 goto out; 2095 } 2096 2097 ret = _regmap_write(map, 2098 reg + regmap_get_offset(map, i), 2099 ival); 2100 if (ret != 0) 2101 goto out; 2102 } 2103 out: 2104 map->unlock(map->lock_arg); 2105 } else { 2106 void *wval; 2107 2108 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags); 2109 if (!wval) 2110 return -ENOMEM; 2111 2112 for (i = 0; i < val_count * val_bytes; i += val_bytes) 2113 map->format.parse_inplace(wval + i); 2114 2115 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count); 2116 2117 kfree(wval); 2118 } 2119 return ret; 2120 } 2121 EXPORT_SYMBOL_GPL(regmap_bulk_write); 2122 2123 /* 2124 * _regmap_raw_multi_reg_write() 2125 * 2126 * the (register,newvalue) pairs in regs have not been formatted, but 2127 * they are all in the same page and have been changed to being page 2128 * relative. The page register has been written if that was necessary. 2129 */ 2130 static int _regmap_raw_multi_reg_write(struct regmap *map, 2131 const struct reg_sequence *regs, 2132 size_t num_regs) 2133 { 2134 int ret; 2135 void *buf; 2136 int i; 2137 u8 *u8; 2138 size_t val_bytes = map->format.val_bytes; 2139 size_t reg_bytes = map->format.reg_bytes; 2140 size_t pad_bytes = map->format.pad_bytes; 2141 size_t pair_size = reg_bytes + pad_bytes + val_bytes; 2142 size_t len = pair_size * num_regs; 2143 2144 if (!len) 2145 return -EINVAL; 2146 2147 buf = kzalloc(len, GFP_KERNEL); 2148 if (!buf) 2149 return -ENOMEM; 2150 2151 /* We have to linearise by hand. */ 2152 2153 u8 = buf; 2154 2155 for (i = 0; i < num_regs; i++) { 2156 unsigned int reg = regs[i].reg; 2157 unsigned int val = regs[i].def; 2158 trace_regmap_hw_write_start(map, reg, 1); 2159 map->format.format_reg(u8, reg, map->reg_shift); 2160 u8 += reg_bytes + pad_bytes; 2161 map->format.format_val(u8, val, 0); 2162 u8 += val_bytes; 2163 } 2164 u8 = buf; 2165 *u8 |= map->write_flag_mask; 2166 2167 ret = map->bus->write(map->bus_context, buf, len); 2168 2169 kfree(buf); 2170 2171 for (i = 0; i < num_regs; i++) { 2172 int reg = regs[i].reg; 2173 trace_regmap_hw_write_done(map, reg, 1); 2174 } 2175 return ret; 2176 } 2177 2178 static unsigned int _regmap_register_page(struct regmap *map, 2179 unsigned int reg, 2180 struct regmap_range_node *range) 2181 { 2182 unsigned int win_page = (reg - range->range_min) / range->window_len; 2183 2184 return win_page; 2185 } 2186 2187 static int _regmap_range_multi_paged_reg_write(struct regmap *map, 2188 struct reg_sequence *regs, 2189 size_t num_regs) 2190 { 2191 int ret; 2192 int i, n; 2193 struct reg_sequence *base; 2194 unsigned int this_page = 0; 2195 unsigned int page_change = 0; 2196 /* 2197 * the set of registers are not neccessarily in order, but 2198 * since the order of write must be preserved this algorithm 2199 * chops the set each time the page changes. This also applies 2200 * if there is a delay required at any point in the sequence. 2201 */ 2202 base = regs; 2203 for (i = 0, n = 0; i < num_regs; i++, n++) { 2204 unsigned int reg = regs[i].reg; 2205 struct regmap_range_node *range; 2206 2207 range = _regmap_range_lookup(map, reg); 2208 if (range) { 2209 unsigned int win_page = _regmap_register_page(map, reg, 2210 range); 2211 2212 if (i == 0) 2213 this_page = win_page; 2214 if (win_page != this_page) { 2215 this_page = win_page; 2216 page_change = 1; 2217 } 2218 } 2219 2220 /* If we have both a page change and a delay make sure to 2221 * write the regs and apply the delay before we change the 2222 * page. 2223 */ 2224 2225 if (page_change || regs[i].delay_us) { 2226 2227 /* For situations where the first write requires 2228 * a delay we need to make sure we don't call 2229 * raw_multi_reg_write with n=0 2230 * This can't occur with page breaks as we 2231 * never write on the first iteration 2232 */ 2233 if (regs[i].delay_us && i == 0) 2234 n = 1; 2235 2236 ret = _regmap_raw_multi_reg_write(map, base, n); 2237 if (ret != 0) 2238 return ret; 2239 2240 if (regs[i].delay_us) 2241 udelay(regs[i].delay_us); 2242 2243 base += n; 2244 n = 0; 2245 2246 if (page_change) { 2247 ret = _regmap_select_page(map, 2248 &base[n].reg, 2249 range, 1); 2250 if (ret != 0) 2251 return ret; 2252 2253 page_change = 0; 2254 } 2255 2256 } 2257 2258 } 2259 if (n > 0) 2260 return _regmap_raw_multi_reg_write(map, base, n); 2261 return 0; 2262 } 2263 2264 static int _regmap_multi_reg_write(struct regmap *map, 2265 const struct reg_sequence *regs, 2266 size_t num_regs) 2267 { 2268 int i; 2269 int ret; 2270 2271 if (!map->can_multi_write) { 2272 for (i = 0; i < num_regs; i++) { 2273 ret = _regmap_write(map, regs[i].reg, regs[i].def); 2274 if (ret != 0) 2275 return ret; 2276 2277 if (regs[i].delay_us) 2278 udelay(regs[i].delay_us); 2279 } 2280 return 0; 2281 } 2282 2283 if (!map->format.parse_inplace) 2284 return -EINVAL; 2285 2286 if (map->writeable_reg) 2287 for (i = 0; i < num_regs; i++) { 2288 int reg = regs[i].reg; 2289 if (!map->writeable_reg(map->dev, reg)) 2290 return -EINVAL; 2291 if (!IS_ALIGNED(reg, map->reg_stride)) 2292 return -EINVAL; 2293 } 2294 2295 if (!map->cache_bypass) { 2296 for (i = 0; i < num_regs; i++) { 2297 unsigned int val = regs[i].def; 2298 unsigned int reg = regs[i].reg; 2299 ret = regcache_write(map, reg, val); 2300 if (ret) { 2301 dev_err(map->dev, 2302 "Error in caching of register: %x ret: %d\n", 2303 reg, ret); 2304 return ret; 2305 } 2306 } 2307 if (map->cache_only) { 2308 map->cache_dirty = true; 2309 return 0; 2310 } 2311 } 2312 2313 WARN_ON(!map->bus); 2314 2315 for (i = 0; i < num_regs; i++) { 2316 unsigned int reg = regs[i].reg; 2317 struct regmap_range_node *range; 2318 2319 /* Coalesce all the writes between a page break or a delay 2320 * in a sequence 2321 */ 2322 range = _regmap_range_lookup(map, reg); 2323 if (range || regs[i].delay_us) { 2324 size_t len = sizeof(struct reg_sequence)*num_regs; 2325 struct reg_sequence *base = kmemdup(regs, len, 2326 GFP_KERNEL); 2327 if (!base) 2328 return -ENOMEM; 2329 ret = _regmap_range_multi_paged_reg_write(map, base, 2330 num_regs); 2331 kfree(base); 2332 2333 return ret; 2334 } 2335 } 2336 return _regmap_raw_multi_reg_write(map, regs, num_regs); 2337 } 2338 2339 /** 2340 * regmap_multi_reg_write() - Write multiple registers to the device 2341 * 2342 * @map: Register map to write to 2343 * @regs: Array of structures containing register,value to be written 2344 * @num_regs: Number of registers to write 2345 * 2346 * Write multiple registers to the device where the set of register, value 2347 * pairs are supplied in any order, possibly not all in a single range. 2348 * 2349 * The 'normal' block write mode will send ultimately send data on the 2350 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are 2351 * addressed. However, this alternative block multi write mode will send 2352 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device 2353 * must of course support the mode. 2354 * 2355 * A value of zero will be returned on success, a negative errno will be 2356 * returned in error cases. 2357 */ 2358 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, 2359 int num_regs) 2360 { 2361 int ret; 2362 2363 map->lock(map->lock_arg); 2364 2365 ret = _regmap_multi_reg_write(map, regs, num_regs); 2366 2367 map->unlock(map->lock_arg); 2368 2369 return ret; 2370 } 2371 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 2372 2373 /** 2374 * regmap_multi_reg_write_bypassed() - Write multiple registers to the 2375 * device but not the cache 2376 * 2377 * @map: Register map to write to 2378 * @regs: Array of structures containing register,value to be written 2379 * @num_regs: Number of registers to write 2380 * 2381 * Write multiple registers to the device but not the cache where the set 2382 * of register are supplied in any order. 2383 * 2384 * This function is intended to be used for writing a large block of data 2385 * atomically to the device in single transfer for those I2C client devices 2386 * that implement this alternative block write mode. 2387 * 2388 * A value of zero will be returned on success, a negative errno will 2389 * be returned in error cases. 2390 */ 2391 int regmap_multi_reg_write_bypassed(struct regmap *map, 2392 const struct reg_sequence *regs, 2393 int num_regs) 2394 { 2395 int ret; 2396 bool bypass; 2397 2398 map->lock(map->lock_arg); 2399 2400 bypass = map->cache_bypass; 2401 map->cache_bypass = true; 2402 2403 ret = _regmap_multi_reg_write(map, regs, num_regs); 2404 2405 map->cache_bypass = bypass; 2406 2407 map->unlock(map->lock_arg); 2408 2409 return ret; 2410 } 2411 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); 2412 2413 /** 2414 * regmap_raw_write_async() - Write raw values to one or more registers 2415 * asynchronously 2416 * 2417 * @map: Register map to write to 2418 * @reg: Initial register to write to 2419 * @val: Block of data to be written, laid out for direct transmission to the 2420 * device. Must be valid until regmap_async_complete() is called. 2421 * @val_len: Length of data pointed to by val. 2422 * 2423 * This function is intended to be used for things like firmware 2424 * download where a large block of data needs to be transferred to the 2425 * device. No formatting will be done on the data provided. 2426 * 2427 * If supported by the underlying bus the write will be scheduled 2428 * asynchronously, helping maximise I/O speed on higher speed buses 2429 * like SPI. regmap_async_complete() can be called to ensure that all 2430 * asynchrnous writes have been completed. 2431 * 2432 * A value of zero will be returned on success, a negative errno will 2433 * be returned in error cases. 2434 */ 2435 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 2436 const void *val, size_t val_len) 2437 { 2438 int ret; 2439 2440 if (val_len % map->format.val_bytes) 2441 return -EINVAL; 2442 if (!IS_ALIGNED(reg, map->reg_stride)) 2443 return -EINVAL; 2444 2445 map->lock(map->lock_arg); 2446 2447 map->async = true; 2448 2449 ret = _regmap_raw_write(map, reg, val, val_len); 2450 2451 map->async = false; 2452 2453 map->unlock(map->lock_arg); 2454 2455 return ret; 2456 } 2457 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 2458 2459 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2460 unsigned int val_len) 2461 { 2462 struct regmap_range_node *range; 2463 int ret; 2464 2465 WARN_ON(!map->bus); 2466 2467 if (!map->bus || !map->bus->read) 2468 return -EINVAL; 2469 2470 range = _regmap_range_lookup(map, reg); 2471 if (range) { 2472 ret = _regmap_select_page(map, ®, range, 2473 val_len / map->format.val_bytes); 2474 if (ret != 0) 2475 return ret; 2476 } 2477 2478 map->format.format_reg(map->work_buf, reg, map->reg_shift); 2479 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 2480 map->read_flag_mask); 2481 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); 2482 2483 ret = map->bus->read(map->bus_context, map->work_buf, 2484 map->format.reg_bytes + map->format.pad_bytes, 2485 val, val_len); 2486 2487 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); 2488 2489 return ret; 2490 } 2491 2492 static int _regmap_bus_reg_read(void *context, unsigned int reg, 2493 unsigned int *val) 2494 { 2495 struct regmap *map = context; 2496 2497 return map->bus->reg_read(map->bus_context, reg, val); 2498 } 2499 2500 static int _regmap_bus_read(void *context, unsigned int reg, 2501 unsigned int *val) 2502 { 2503 int ret; 2504 struct regmap *map = context; 2505 void *work_val = map->work_buf + map->format.reg_bytes + 2506 map->format.pad_bytes; 2507 2508 if (!map->format.parse_val) 2509 return -EINVAL; 2510 2511 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes); 2512 if (ret == 0) 2513 *val = map->format.parse_val(work_val); 2514 2515 return ret; 2516 } 2517 2518 static int _regmap_read(struct regmap *map, unsigned int reg, 2519 unsigned int *val) 2520 { 2521 int ret; 2522 void *context = _regmap_map_get_context(map); 2523 2524 if (!map->cache_bypass) { 2525 ret = regcache_read(map, reg, val); 2526 if (ret == 0) 2527 return 0; 2528 } 2529 2530 if (map->cache_only) 2531 return -EBUSY; 2532 2533 if (!regmap_readable(map, reg)) 2534 return -EIO; 2535 2536 ret = map->reg_read(context, reg, val); 2537 if (ret == 0) { 2538 if (regmap_should_log(map)) 2539 dev_info(map->dev, "%x => %x\n", reg, *val); 2540 2541 trace_regmap_reg_read(map, reg, *val); 2542 2543 if (!map->cache_bypass) 2544 regcache_write(map, reg, *val); 2545 } 2546 2547 return ret; 2548 } 2549 2550 /** 2551 * regmap_read() - Read a value from a single register 2552 * 2553 * @map: Register map to read from 2554 * @reg: Register to be read from 2555 * @val: Pointer to store read value 2556 * 2557 * A value of zero will be returned on success, a negative errno will 2558 * be returned in error cases. 2559 */ 2560 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 2561 { 2562 int ret; 2563 2564 if (!IS_ALIGNED(reg, map->reg_stride)) 2565 return -EINVAL; 2566 2567 map->lock(map->lock_arg); 2568 2569 ret = _regmap_read(map, reg, val); 2570 2571 map->unlock(map->lock_arg); 2572 2573 return ret; 2574 } 2575 EXPORT_SYMBOL_GPL(regmap_read); 2576 2577 /** 2578 * regmap_raw_read() - Read raw data from the device 2579 * 2580 * @map: Register map to read from 2581 * @reg: First register to be read from 2582 * @val: Pointer to store read value 2583 * @val_len: Size of data to read 2584 * 2585 * A value of zero will be returned on success, a negative errno will 2586 * be returned in error cases. 2587 */ 2588 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2589 size_t val_len) 2590 { 2591 size_t val_bytes = map->format.val_bytes; 2592 size_t val_count = val_len / val_bytes; 2593 unsigned int v; 2594 int ret, i; 2595 2596 if (!map->bus) 2597 return -EINVAL; 2598 if (val_len % map->format.val_bytes) 2599 return -EINVAL; 2600 if (!IS_ALIGNED(reg, map->reg_stride)) 2601 return -EINVAL; 2602 if (val_count == 0) 2603 return -EINVAL; 2604 2605 map->lock(map->lock_arg); 2606 2607 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 2608 map->cache_type == REGCACHE_NONE) { 2609 size_t chunk_count, chunk_bytes; 2610 size_t chunk_regs = val_count; 2611 2612 if (!map->bus->read) { 2613 ret = -ENOTSUPP; 2614 goto out; 2615 } 2616 2617 if (map->use_single_read) 2618 chunk_regs = 1; 2619 else if (map->max_raw_read && val_len > map->max_raw_read) 2620 chunk_regs = map->max_raw_read / val_bytes; 2621 2622 chunk_count = val_count / chunk_regs; 2623 chunk_bytes = chunk_regs * val_bytes; 2624 2625 /* Read bytes that fit into whole chunks */ 2626 for (i = 0; i < chunk_count; i++) { 2627 ret = _regmap_raw_read(map, reg, val, chunk_bytes); 2628 if (ret != 0) 2629 goto out; 2630 2631 reg += regmap_get_offset(map, chunk_regs); 2632 val += chunk_bytes; 2633 val_len -= chunk_bytes; 2634 } 2635 2636 /* Read remaining bytes */ 2637 if (val_len) { 2638 ret = _regmap_raw_read(map, reg, val, val_len); 2639 if (ret != 0) 2640 goto out; 2641 } 2642 } else { 2643 /* Otherwise go word by word for the cache; should be low 2644 * cost as we expect to hit the cache. 2645 */ 2646 for (i = 0; i < val_count; i++) { 2647 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 2648 &v); 2649 if (ret != 0) 2650 goto out; 2651 2652 map->format.format_val(val + (i * val_bytes), v, 0); 2653 } 2654 } 2655 2656 out: 2657 map->unlock(map->lock_arg); 2658 2659 return ret; 2660 } 2661 EXPORT_SYMBOL_GPL(regmap_raw_read); 2662 2663 /** 2664 * regmap_noinc_read(): Read data from a register without incrementing the 2665 * register number 2666 * 2667 * @map: Register map to read from 2668 * @reg: Register to read from 2669 * @val: Pointer to data buffer 2670 * @val_len: Length of output buffer in bytes. 2671 * 2672 * The regmap API usually assumes that bulk bus read operations will read a 2673 * range of registers. Some devices have certain registers for which a read 2674 * operation read will read from an internal FIFO. 2675 * 2676 * The target register must be volatile but registers after it can be 2677 * completely unrelated cacheable registers. 2678 * 2679 * This will attempt multiple reads as required to read val_len bytes. 2680 * 2681 * A value of zero will be returned on success, a negative errno will be 2682 * returned in error cases. 2683 */ 2684 int regmap_noinc_read(struct regmap *map, unsigned int reg, 2685 void *val, size_t val_len) 2686 { 2687 size_t read_len; 2688 int ret; 2689 2690 if (!map->bus) 2691 return -EINVAL; 2692 if (!map->bus->read) 2693 return -ENOTSUPP; 2694 if (val_len % map->format.val_bytes) 2695 return -EINVAL; 2696 if (!IS_ALIGNED(reg, map->reg_stride)) 2697 return -EINVAL; 2698 if (val_len == 0) 2699 return -EINVAL; 2700 2701 map->lock(map->lock_arg); 2702 2703 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) { 2704 ret = -EINVAL; 2705 goto out_unlock; 2706 } 2707 2708 while (val_len) { 2709 if (map->max_raw_read && map->max_raw_read < val_len) 2710 read_len = map->max_raw_read; 2711 else 2712 read_len = val_len; 2713 ret = _regmap_raw_read(map, reg, val, read_len); 2714 if (ret) 2715 goto out_unlock; 2716 val = ((u8 *)val) + read_len; 2717 val_len -= read_len; 2718 } 2719 2720 out_unlock: 2721 map->unlock(map->lock_arg); 2722 return ret; 2723 } 2724 EXPORT_SYMBOL_GPL(regmap_noinc_read); 2725 2726 /** 2727 * regmap_field_read(): Read a value to a single register field 2728 * 2729 * @field: Register field to read from 2730 * @val: Pointer to store read value 2731 * 2732 * A value of zero will be returned on success, a negative errno will 2733 * be returned in error cases. 2734 */ 2735 int regmap_field_read(struct regmap_field *field, unsigned int *val) 2736 { 2737 int ret; 2738 unsigned int reg_val; 2739 ret = regmap_read(field->regmap, field->reg, ®_val); 2740 if (ret != 0) 2741 return ret; 2742 2743 reg_val &= field->mask; 2744 reg_val >>= field->shift; 2745 *val = reg_val; 2746 2747 return ret; 2748 } 2749 EXPORT_SYMBOL_GPL(regmap_field_read); 2750 2751 /** 2752 * regmap_fields_read() - Read a value to a single register field with port ID 2753 * 2754 * @field: Register field to read from 2755 * @id: port ID 2756 * @val: Pointer to store read value 2757 * 2758 * A value of zero will be returned on success, a negative errno will 2759 * be returned in error cases. 2760 */ 2761 int regmap_fields_read(struct regmap_field *field, unsigned int id, 2762 unsigned int *val) 2763 { 2764 int ret; 2765 unsigned int reg_val; 2766 2767 if (id >= field->id_size) 2768 return -EINVAL; 2769 2770 ret = regmap_read(field->regmap, 2771 field->reg + (field->id_offset * id), 2772 ®_val); 2773 if (ret != 0) 2774 return ret; 2775 2776 reg_val &= field->mask; 2777 reg_val >>= field->shift; 2778 *val = reg_val; 2779 2780 return ret; 2781 } 2782 EXPORT_SYMBOL_GPL(regmap_fields_read); 2783 2784 /** 2785 * regmap_bulk_read() - Read multiple registers from the device 2786 * 2787 * @map: Register map to read from 2788 * @reg: First register to be read from 2789 * @val: Pointer to store read value, in native register size for device 2790 * @val_count: Number of registers to read 2791 * 2792 * A value of zero will be returned on success, a negative errno will 2793 * be returned in error cases. 2794 */ 2795 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 2796 size_t val_count) 2797 { 2798 int ret, i; 2799 size_t val_bytes = map->format.val_bytes; 2800 bool vol = regmap_volatile_range(map, reg, val_count); 2801 2802 if (!IS_ALIGNED(reg, map->reg_stride)) 2803 return -EINVAL; 2804 if (val_count == 0) 2805 return -EINVAL; 2806 2807 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { 2808 ret = regmap_raw_read(map, reg, val, val_bytes * val_count); 2809 if (ret != 0) 2810 return ret; 2811 2812 for (i = 0; i < val_count * val_bytes; i += val_bytes) 2813 map->format.parse_inplace(val + i); 2814 } else { 2815 #ifdef CONFIG_64BIT 2816 u64 *u64 = val; 2817 #endif 2818 u32 *u32 = val; 2819 u16 *u16 = val; 2820 u8 *u8 = val; 2821 2822 map->lock(map->lock_arg); 2823 2824 for (i = 0; i < val_count; i++) { 2825 unsigned int ival; 2826 2827 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 2828 &ival); 2829 if (ret != 0) 2830 goto out; 2831 2832 switch (map->format.val_bytes) { 2833 #ifdef CONFIG_64BIT 2834 case 8: 2835 u64[i] = ival; 2836 break; 2837 #endif 2838 case 4: 2839 u32[i] = ival; 2840 break; 2841 case 2: 2842 u16[i] = ival; 2843 break; 2844 case 1: 2845 u8[i] = ival; 2846 break; 2847 default: 2848 ret = -EINVAL; 2849 goto out; 2850 } 2851 } 2852 2853 out: 2854 map->unlock(map->lock_arg); 2855 } 2856 2857 return ret; 2858 } 2859 EXPORT_SYMBOL_GPL(regmap_bulk_read); 2860 2861 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 2862 unsigned int mask, unsigned int val, 2863 bool *change, bool force_write) 2864 { 2865 int ret; 2866 unsigned int tmp, orig; 2867 2868 if (change) 2869 *change = false; 2870 2871 if (regmap_volatile(map, reg) && map->reg_update_bits) { 2872 ret = map->reg_update_bits(map->bus_context, reg, mask, val); 2873 if (ret == 0 && change) 2874 *change = true; 2875 } else { 2876 ret = _regmap_read(map, reg, &orig); 2877 if (ret != 0) 2878 return ret; 2879 2880 tmp = orig & ~mask; 2881 tmp |= val & mask; 2882 2883 if (force_write || (tmp != orig)) { 2884 ret = _regmap_write(map, reg, tmp); 2885 if (ret == 0 && change) 2886 *change = true; 2887 } 2888 } 2889 2890 return ret; 2891 } 2892 2893 /** 2894 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register 2895 * 2896 * @map: Register map to update 2897 * @reg: Register to update 2898 * @mask: Bitmask to change 2899 * @val: New value for bitmask 2900 * @change: Boolean indicating if a write was done 2901 * @async: Boolean indicating asynchronously 2902 * @force: Boolean indicating use force update 2903 * 2904 * Perform a read/modify/write cycle on a register map with change, async, force 2905 * options. 2906 * 2907 * If async is true: 2908 * 2909 * With most buses the read must be done synchronously so this is most useful 2910 * for devices with a cache which do not need to interact with the hardware to 2911 * determine the current register value. 2912 * 2913 * Returns zero for success, a negative number on error. 2914 */ 2915 int regmap_update_bits_base(struct regmap *map, unsigned int reg, 2916 unsigned int mask, unsigned int val, 2917 bool *change, bool async, bool force) 2918 { 2919 int ret; 2920 2921 map->lock(map->lock_arg); 2922 2923 map->async = async; 2924 2925 ret = _regmap_update_bits(map, reg, mask, val, change, force); 2926 2927 map->async = false; 2928 2929 map->unlock(map->lock_arg); 2930 2931 return ret; 2932 } 2933 EXPORT_SYMBOL_GPL(regmap_update_bits_base); 2934 2935 void regmap_async_complete_cb(struct regmap_async *async, int ret) 2936 { 2937 struct regmap *map = async->map; 2938 bool wake; 2939 2940 trace_regmap_async_io_complete(map); 2941 2942 spin_lock(&map->async_lock); 2943 list_move(&async->list, &map->async_free); 2944 wake = list_empty(&map->async_list); 2945 2946 if (ret != 0) 2947 map->async_ret = ret; 2948 2949 spin_unlock(&map->async_lock); 2950 2951 if (wake) 2952 wake_up(&map->async_waitq); 2953 } 2954 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 2955 2956 static int regmap_async_is_done(struct regmap *map) 2957 { 2958 unsigned long flags; 2959 int ret; 2960 2961 spin_lock_irqsave(&map->async_lock, flags); 2962 ret = list_empty(&map->async_list); 2963 spin_unlock_irqrestore(&map->async_lock, flags); 2964 2965 return ret; 2966 } 2967 2968 /** 2969 * regmap_async_complete - Ensure all asynchronous I/O has completed. 2970 * 2971 * @map: Map to operate on. 2972 * 2973 * Blocks until any pending asynchronous I/O has completed. Returns 2974 * an error code for any failed I/O operations. 2975 */ 2976 int regmap_async_complete(struct regmap *map) 2977 { 2978 unsigned long flags; 2979 int ret; 2980 2981 /* Nothing to do with no async support */ 2982 if (!map->bus || !map->bus->async_write) 2983 return 0; 2984 2985 trace_regmap_async_complete_start(map); 2986 2987 wait_event(map->async_waitq, regmap_async_is_done(map)); 2988 2989 spin_lock_irqsave(&map->async_lock, flags); 2990 ret = map->async_ret; 2991 map->async_ret = 0; 2992 spin_unlock_irqrestore(&map->async_lock, flags); 2993 2994 trace_regmap_async_complete_done(map); 2995 2996 return ret; 2997 } 2998 EXPORT_SYMBOL_GPL(regmap_async_complete); 2999 3000 /** 3001 * regmap_register_patch - Register and apply register updates to be applied 3002 * on device initialistion 3003 * 3004 * @map: Register map to apply updates to. 3005 * @regs: Values to update. 3006 * @num_regs: Number of entries in regs. 3007 * 3008 * Register a set of register updates to be applied to the device 3009 * whenever the device registers are synchronised with the cache and 3010 * apply them immediately. Typically this is used to apply 3011 * corrections to be applied to the device defaults on startup, such 3012 * as the updates some vendors provide to undocumented registers. 3013 * 3014 * The caller must ensure that this function cannot be called 3015 * concurrently with either itself or regcache_sync(). 3016 */ 3017 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, 3018 int num_regs) 3019 { 3020 struct reg_sequence *p; 3021 int ret; 3022 bool bypass; 3023 3024 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", 3025 num_regs)) 3026 return 0; 3027 3028 p = krealloc(map->patch, 3029 sizeof(struct reg_sequence) * (map->patch_regs + num_regs), 3030 GFP_KERNEL); 3031 if (p) { 3032 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 3033 map->patch = p; 3034 map->patch_regs += num_regs; 3035 } else { 3036 return -ENOMEM; 3037 } 3038 3039 map->lock(map->lock_arg); 3040 3041 bypass = map->cache_bypass; 3042 3043 map->cache_bypass = true; 3044 map->async = true; 3045 3046 ret = _regmap_multi_reg_write(map, regs, num_regs); 3047 3048 map->async = false; 3049 map->cache_bypass = bypass; 3050 3051 map->unlock(map->lock_arg); 3052 3053 regmap_async_complete(map); 3054 3055 return ret; 3056 } 3057 EXPORT_SYMBOL_GPL(regmap_register_patch); 3058 3059 /** 3060 * regmap_get_val_bytes() - Report the size of a register value 3061 * 3062 * @map: Register map to operate on. 3063 * 3064 * Report the size of a register value, mainly intended to for use by 3065 * generic infrastructure built on top of regmap. 3066 */ 3067 int regmap_get_val_bytes(struct regmap *map) 3068 { 3069 if (map->format.format_write) 3070 return -EINVAL; 3071 3072 return map->format.val_bytes; 3073 } 3074 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 3075 3076 /** 3077 * regmap_get_max_register() - Report the max register value 3078 * 3079 * @map: Register map to operate on. 3080 * 3081 * Report the max register value, mainly intended to for use by 3082 * generic infrastructure built on top of regmap. 3083 */ 3084 int regmap_get_max_register(struct regmap *map) 3085 { 3086 return map->max_register ? map->max_register : -EINVAL; 3087 } 3088 EXPORT_SYMBOL_GPL(regmap_get_max_register); 3089 3090 /** 3091 * regmap_get_reg_stride() - Report the register address stride 3092 * 3093 * @map: Register map to operate on. 3094 * 3095 * Report the register address stride, mainly intended to for use by 3096 * generic infrastructure built on top of regmap. 3097 */ 3098 int regmap_get_reg_stride(struct regmap *map) 3099 { 3100 return map->reg_stride; 3101 } 3102 EXPORT_SYMBOL_GPL(regmap_get_reg_stride); 3103 3104 int regmap_parse_val(struct regmap *map, const void *buf, 3105 unsigned int *val) 3106 { 3107 if (!map->format.parse_val) 3108 return -EINVAL; 3109 3110 *val = map->format.parse_val(buf); 3111 3112 return 0; 3113 } 3114 EXPORT_SYMBOL_GPL(regmap_parse_val); 3115 3116 static int __init regmap_initcall(void) 3117 { 3118 regmap_debugfs_initcall(); 3119 3120 return 0; 3121 } 3122 postcore_initcall(regmap_initcall); 3123