xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 293d5b43)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 #include "internal.h"
28 
29 /*
30  * Sometimes for failures during very early init the trace
31  * infrastructure isn't available early enough to be used.  For this
32  * sort of problem defining LOG_DEVICE will add printks for basic
33  * register I/O on a specific device.
34  */
35 #undef LOG_DEVICE
36 
37 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38 			       unsigned int mask, unsigned int val,
39 			       bool *change, bool force_write);
40 
41 static int _regmap_bus_reg_read(void *context, unsigned int reg,
42 				unsigned int *val);
43 static int _regmap_bus_read(void *context, unsigned int reg,
44 			    unsigned int *val);
45 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46 				       unsigned int val);
47 static int _regmap_bus_reg_write(void *context, unsigned int reg,
48 				 unsigned int val);
49 static int _regmap_bus_raw_write(void *context, unsigned int reg,
50 				 unsigned int val);
51 
52 bool regmap_reg_in_ranges(unsigned int reg,
53 			  const struct regmap_range *ranges,
54 			  unsigned int nranges)
55 {
56 	const struct regmap_range *r;
57 	int i;
58 
59 	for (i = 0, r = ranges; i < nranges; i++, r++)
60 		if (regmap_reg_in_range(reg, r))
61 			return true;
62 	return false;
63 }
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65 
66 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67 			      const struct regmap_access_table *table)
68 {
69 	/* Check "no ranges" first */
70 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71 		return false;
72 
73 	/* In case zero "yes ranges" are supplied, any reg is OK */
74 	if (!table->n_yes_ranges)
75 		return true;
76 
77 	return regmap_reg_in_ranges(reg, table->yes_ranges,
78 				    table->n_yes_ranges);
79 }
80 EXPORT_SYMBOL_GPL(regmap_check_range_table);
81 
82 bool regmap_writeable(struct regmap *map, unsigned int reg)
83 {
84 	if (map->max_register && reg > map->max_register)
85 		return false;
86 
87 	if (map->writeable_reg)
88 		return map->writeable_reg(map->dev, reg);
89 
90 	if (map->wr_table)
91 		return regmap_check_range_table(map, reg, map->wr_table);
92 
93 	return true;
94 }
95 
96 bool regmap_readable(struct regmap *map, unsigned int reg)
97 {
98 	if (!map->reg_read)
99 		return false;
100 
101 	if (map->max_register && reg > map->max_register)
102 		return false;
103 
104 	if (map->format.format_write)
105 		return false;
106 
107 	if (map->readable_reg)
108 		return map->readable_reg(map->dev, reg);
109 
110 	if (map->rd_table)
111 		return regmap_check_range_table(map, reg, map->rd_table);
112 
113 	return true;
114 }
115 
116 bool regmap_volatile(struct regmap *map, unsigned int reg)
117 {
118 	if (!map->format.format_write && !regmap_readable(map, reg))
119 		return false;
120 
121 	if (map->volatile_reg)
122 		return map->volatile_reg(map->dev, reg);
123 
124 	if (map->volatile_table)
125 		return regmap_check_range_table(map, reg, map->volatile_table);
126 
127 	if (map->cache_ops)
128 		return false;
129 	else
130 		return true;
131 }
132 
133 bool regmap_precious(struct regmap *map, unsigned int reg)
134 {
135 	if (!regmap_readable(map, reg))
136 		return false;
137 
138 	if (map->precious_reg)
139 		return map->precious_reg(map->dev, reg);
140 
141 	if (map->precious_table)
142 		return regmap_check_range_table(map, reg, map->precious_table);
143 
144 	return false;
145 }
146 
147 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
148 	size_t num)
149 {
150 	unsigned int i;
151 
152 	for (i = 0; i < num; i++)
153 		if (!regmap_volatile(map, reg + i))
154 			return false;
155 
156 	return true;
157 }
158 
159 static void regmap_format_2_6_write(struct regmap *map,
160 				     unsigned int reg, unsigned int val)
161 {
162 	u8 *out = map->work_buf;
163 
164 	*out = (reg << 6) | val;
165 }
166 
167 static void regmap_format_4_12_write(struct regmap *map,
168 				     unsigned int reg, unsigned int val)
169 {
170 	__be16 *out = map->work_buf;
171 	*out = cpu_to_be16((reg << 12) | val);
172 }
173 
174 static void regmap_format_7_9_write(struct regmap *map,
175 				    unsigned int reg, unsigned int val)
176 {
177 	__be16 *out = map->work_buf;
178 	*out = cpu_to_be16((reg << 9) | val);
179 }
180 
181 static void regmap_format_10_14_write(struct regmap *map,
182 				    unsigned int reg, unsigned int val)
183 {
184 	u8 *out = map->work_buf;
185 
186 	out[2] = val;
187 	out[1] = (val >> 8) | (reg << 6);
188 	out[0] = reg >> 2;
189 }
190 
191 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
192 {
193 	u8 *b = buf;
194 
195 	b[0] = val << shift;
196 }
197 
198 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
199 {
200 	__be16 *b = buf;
201 
202 	b[0] = cpu_to_be16(val << shift);
203 }
204 
205 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
206 {
207 	__le16 *b = buf;
208 
209 	b[0] = cpu_to_le16(val << shift);
210 }
211 
212 static void regmap_format_16_native(void *buf, unsigned int val,
213 				    unsigned int shift)
214 {
215 	*(u16 *)buf = val << shift;
216 }
217 
218 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
219 {
220 	u8 *b = buf;
221 
222 	val <<= shift;
223 
224 	b[0] = val >> 16;
225 	b[1] = val >> 8;
226 	b[2] = val;
227 }
228 
229 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
230 {
231 	__be32 *b = buf;
232 
233 	b[0] = cpu_to_be32(val << shift);
234 }
235 
236 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
237 {
238 	__le32 *b = buf;
239 
240 	b[0] = cpu_to_le32(val << shift);
241 }
242 
243 static void regmap_format_32_native(void *buf, unsigned int val,
244 				    unsigned int shift)
245 {
246 	*(u32 *)buf = val << shift;
247 }
248 
249 #ifdef CONFIG_64BIT
250 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
251 {
252 	__be64 *b = buf;
253 
254 	b[0] = cpu_to_be64((u64)val << shift);
255 }
256 
257 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
258 {
259 	__le64 *b = buf;
260 
261 	b[0] = cpu_to_le64((u64)val << shift);
262 }
263 
264 static void regmap_format_64_native(void *buf, unsigned int val,
265 				    unsigned int shift)
266 {
267 	*(u64 *)buf = (u64)val << shift;
268 }
269 #endif
270 
271 static void regmap_parse_inplace_noop(void *buf)
272 {
273 }
274 
275 static unsigned int regmap_parse_8(const void *buf)
276 {
277 	const u8 *b = buf;
278 
279 	return b[0];
280 }
281 
282 static unsigned int regmap_parse_16_be(const void *buf)
283 {
284 	const __be16 *b = buf;
285 
286 	return be16_to_cpu(b[0]);
287 }
288 
289 static unsigned int regmap_parse_16_le(const void *buf)
290 {
291 	const __le16 *b = buf;
292 
293 	return le16_to_cpu(b[0]);
294 }
295 
296 static void regmap_parse_16_be_inplace(void *buf)
297 {
298 	__be16 *b = buf;
299 
300 	b[0] = be16_to_cpu(b[0]);
301 }
302 
303 static void regmap_parse_16_le_inplace(void *buf)
304 {
305 	__le16 *b = buf;
306 
307 	b[0] = le16_to_cpu(b[0]);
308 }
309 
310 static unsigned int regmap_parse_16_native(const void *buf)
311 {
312 	return *(u16 *)buf;
313 }
314 
315 static unsigned int regmap_parse_24(const void *buf)
316 {
317 	const u8 *b = buf;
318 	unsigned int ret = b[2];
319 	ret |= ((unsigned int)b[1]) << 8;
320 	ret |= ((unsigned int)b[0]) << 16;
321 
322 	return ret;
323 }
324 
325 static unsigned int regmap_parse_32_be(const void *buf)
326 {
327 	const __be32 *b = buf;
328 
329 	return be32_to_cpu(b[0]);
330 }
331 
332 static unsigned int regmap_parse_32_le(const void *buf)
333 {
334 	const __le32 *b = buf;
335 
336 	return le32_to_cpu(b[0]);
337 }
338 
339 static void regmap_parse_32_be_inplace(void *buf)
340 {
341 	__be32 *b = buf;
342 
343 	b[0] = be32_to_cpu(b[0]);
344 }
345 
346 static void regmap_parse_32_le_inplace(void *buf)
347 {
348 	__le32 *b = buf;
349 
350 	b[0] = le32_to_cpu(b[0]);
351 }
352 
353 static unsigned int regmap_parse_32_native(const void *buf)
354 {
355 	return *(u32 *)buf;
356 }
357 
358 #ifdef CONFIG_64BIT
359 static unsigned int regmap_parse_64_be(const void *buf)
360 {
361 	const __be64 *b = buf;
362 
363 	return be64_to_cpu(b[0]);
364 }
365 
366 static unsigned int regmap_parse_64_le(const void *buf)
367 {
368 	const __le64 *b = buf;
369 
370 	return le64_to_cpu(b[0]);
371 }
372 
373 static void regmap_parse_64_be_inplace(void *buf)
374 {
375 	__be64 *b = buf;
376 
377 	b[0] = be64_to_cpu(b[0]);
378 }
379 
380 static void regmap_parse_64_le_inplace(void *buf)
381 {
382 	__le64 *b = buf;
383 
384 	b[0] = le64_to_cpu(b[0]);
385 }
386 
387 static unsigned int regmap_parse_64_native(const void *buf)
388 {
389 	return *(u64 *)buf;
390 }
391 #endif
392 
393 static void regmap_lock_mutex(void *__map)
394 {
395 	struct regmap *map = __map;
396 	mutex_lock(&map->mutex);
397 }
398 
399 static void regmap_unlock_mutex(void *__map)
400 {
401 	struct regmap *map = __map;
402 	mutex_unlock(&map->mutex);
403 }
404 
405 static void regmap_lock_spinlock(void *__map)
406 __acquires(&map->spinlock)
407 {
408 	struct regmap *map = __map;
409 	unsigned long flags;
410 
411 	spin_lock_irqsave(&map->spinlock, flags);
412 	map->spinlock_flags = flags;
413 }
414 
415 static void regmap_unlock_spinlock(void *__map)
416 __releases(&map->spinlock)
417 {
418 	struct regmap *map = __map;
419 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
420 }
421 
422 static void dev_get_regmap_release(struct device *dev, void *res)
423 {
424 	/*
425 	 * We don't actually have anything to do here; the goal here
426 	 * is not to manage the regmap but to provide a simple way to
427 	 * get the regmap back given a struct device.
428 	 */
429 }
430 
431 static bool _regmap_range_add(struct regmap *map,
432 			      struct regmap_range_node *data)
433 {
434 	struct rb_root *root = &map->range_tree;
435 	struct rb_node **new = &(root->rb_node), *parent = NULL;
436 
437 	while (*new) {
438 		struct regmap_range_node *this =
439 			container_of(*new, struct regmap_range_node, node);
440 
441 		parent = *new;
442 		if (data->range_max < this->range_min)
443 			new = &((*new)->rb_left);
444 		else if (data->range_min > this->range_max)
445 			new = &((*new)->rb_right);
446 		else
447 			return false;
448 	}
449 
450 	rb_link_node(&data->node, parent, new);
451 	rb_insert_color(&data->node, root);
452 
453 	return true;
454 }
455 
456 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
457 						      unsigned int reg)
458 {
459 	struct rb_node *node = map->range_tree.rb_node;
460 
461 	while (node) {
462 		struct regmap_range_node *this =
463 			container_of(node, struct regmap_range_node, node);
464 
465 		if (reg < this->range_min)
466 			node = node->rb_left;
467 		else if (reg > this->range_max)
468 			node = node->rb_right;
469 		else
470 			return this;
471 	}
472 
473 	return NULL;
474 }
475 
476 static void regmap_range_exit(struct regmap *map)
477 {
478 	struct rb_node *next;
479 	struct regmap_range_node *range_node;
480 
481 	next = rb_first(&map->range_tree);
482 	while (next) {
483 		range_node = rb_entry(next, struct regmap_range_node, node);
484 		next = rb_next(&range_node->node);
485 		rb_erase(&range_node->node, &map->range_tree);
486 		kfree(range_node);
487 	}
488 
489 	kfree(map->selector_work_buf);
490 }
491 
492 int regmap_attach_dev(struct device *dev, struct regmap *map,
493 		      const struct regmap_config *config)
494 {
495 	struct regmap **m;
496 
497 	map->dev = dev;
498 
499 	regmap_debugfs_init(map, config->name);
500 
501 	/* Add a devres resource for dev_get_regmap() */
502 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
503 	if (!m) {
504 		regmap_debugfs_exit(map);
505 		return -ENOMEM;
506 	}
507 	*m = map;
508 	devres_add(dev, m);
509 
510 	return 0;
511 }
512 EXPORT_SYMBOL_GPL(regmap_attach_dev);
513 
514 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
515 					const struct regmap_config *config)
516 {
517 	enum regmap_endian endian;
518 
519 	/* Retrieve the endianness specification from the regmap config */
520 	endian = config->reg_format_endian;
521 
522 	/* If the regmap config specified a non-default value, use that */
523 	if (endian != REGMAP_ENDIAN_DEFAULT)
524 		return endian;
525 
526 	/* Retrieve the endianness specification from the bus config */
527 	if (bus && bus->reg_format_endian_default)
528 		endian = bus->reg_format_endian_default;
529 
530 	/* If the bus specified a non-default value, use that */
531 	if (endian != REGMAP_ENDIAN_DEFAULT)
532 		return endian;
533 
534 	/* Use this if no other value was found */
535 	return REGMAP_ENDIAN_BIG;
536 }
537 
538 enum regmap_endian regmap_get_val_endian(struct device *dev,
539 					 const struct regmap_bus *bus,
540 					 const struct regmap_config *config)
541 {
542 	struct device_node *np;
543 	enum regmap_endian endian;
544 
545 	/* Retrieve the endianness specification from the regmap config */
546 	endian = config->val_format_endian;
547 
548 	/* If the regmap config specified a non-default value, use that */
549 	if (endian != REGMAP_ENDIAN_DEFAULT)
550 		return endian;
551 
552 	/* If the dev and dev->of_node exist try to get endianness from DT */
553 	if (dev && dev->of_node) {
554 		np = dev->of_node;
555 
556 		/* Parse the device's DT node for an endianness specification */
557 		if (of_property_read_bool(np, "big-endian"))
558 			endian = REGMAP_ENDIAN_BIG;
559 		else if (of_property_read_bool(np, "little-endian"))
560 			endian = REGMAP_ENDIAN_LITTLE;
561 		else if (of_property_read_bool(np, "native-endian"))
562 			endian = REGMAP_ENDIAN_NATIVE;
563 
564 		/* If the endianness was specified in DT, use that */
565 		if (endian != REGMAP_ENDIAN_DEFAULT)
566 			return endian;
567 	}
568 
569 	/* Retrieve the endianness specification from the bus config */
570 	if (bus && bus->val_format_endian_default)
571 		endian = bus->val_format_endian_default;
572 
573 	/* If the bus specified a non-default value, use that */
574 	if (endian != REGMAP_ENDIAN_DEFAULT)
575 		return endian;
576 
577 	/* Use this if no other value was found */
578 	return REGMAP_ENDIAN_BIG;
579 }
580 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
581 
582 struct regmap *__regmap_init(struct device *dev,
583 			     const struct regmap_bus *bus,
584 			     void *bus_context,
585 			     const struct regmap_config *config,
586 			     struct lock_class_key *lock_key,
587 			     const char *lock_name)
588 {
589 	struct regmap *map;
590 	int ret = -EINVAL;
591 	enum regmap_endian reg_endian, val_endian;
592 	int i, j;
593 
594 	if (!config)
595 		goto err;
596 
597 	map = kzalloc(sizeof(*map), GFP_KERNEL);
598 	if (map == NULL) {
599 		ret = -ENOMEM;
600 		goto err;
601 	}
602 
603 	if (config->lock && config->unlock) {
604 		map->lock = config->lock;
605 		map->unlock = config->unlock;
606 		map->lock_arg = config->lock_arg;
607 	} else {
608 		if ((bus && bus->fast_io) ||
609 		    config->fast_io) {
610 			spin_lock_init(&map->spinlock);
611 			map->lock = regmap_lock_spinlock;
612 			map->unlock = regmap_unlock_spinlock;
613 			lockdep_set_class_and_name(&map->spinlock,
614 						   lock_key, lock_name);
615 		} else {
616 			mutex_init(&map->mutex);
617 			map->lock = regmap_lock_mutex;
618 			map->unlock = regmap_unlock_mutex;
619 			lockdep_set_class_and_name(&map->mutex,
620 						   lock_key, lock_name);
621 		}
622 		map->lock_arg = map;
623 	}
624 
625 	/*
626 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
627 	 * scratch buffers with sleeping allocations.
628 	 */
629 	if ((bus && bus->fast_io) || config->fast_io)
630 		map->alloc_flags = GFP_ATOMIC;
631 	else
632 		map->alloc_flags = GFP_KERNEL;
633 
634 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
635 	map->format.pad_bytes = config->pad_bits / 8;
636 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
637 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
638 			config->val_bits + config->pad_bits, 8);
639 	map->reg_shift = config->pad_bits % 8;
640 	if (config->reg_stride)
641 		map->reg_stride = config->reg_stride;
642 	else
643 		map->reg_stride = 1;
644 	if (is_power_of_2(map->reg_stride))
645 		map->reg_stride_order = ilog2(map->reg_stride);
646 	else
647 		map->reg_stride_order = -1;
648 	map->use_single_read = config->use_single_rw || !bus || !bus->read;
649 	map->use_single_write = config->use_single_rw || !bus || !bus->write;
650 	map->can_multi_write = config->can_multi_write && bus && bus->write;
651 	if (bus) {
652 		map->max_raw_read = bus->max_raw_read;
653 		map->max_raw_write = bus->max_raw_write;
654 	}
655 	map->dev = dev;
656 	map->bus = bus;
657 	map->bus_context = bus_context;
658 	map->max_register = config->max_register;
659 	map->wr_table = config->wr_table;
660 	map->rd_table = config->rd_table;
661 	map->volatile_table = config->volatile_table;
662 	map->precious_table = config->precious_table;
663 	map->writeable_reg = config->writeable_reg;
664 	map->readable_reg = config->readable_reg;
665 	map->volatile_reg = config->volatile_reg;
666 	map->precious_reg = config->precious_reg;
667 	map->cache_type = config->cache_type;
668 	map->name = config->name;
669 
670 	spin_lock_init(&map->async_lock);
671 	INIT_LIST_HEAD(&map->async_list);
672 	INIT_LIST_HEAD(&map->async_free);
673 	init_waitqueue_head(&map->async_waitq);
674 
675 	if (config->read_flag_mask || config->write_flag_mask) {
676 		map->read_flag_mask = config->read_flag_mask;
677 		map->write_flag_mask = config->write_flag_mask;
678 	} else if (bus) {
679 		map->read_flag_mask = bus->read_flag_mask;
680 	}
681 
682 	if (!bus) {
683 		map->reg_read  = config->reg_read;
684 		map->reg_write = config->reg_write;
685 
686 		map->defer_caching = false;
687 		goto skip_format_initialization;
688 	} else if (!bus->read || !bus->write) {
689 		map->reg_read = _regmap_bus_reg_read;
690 		map->reg_write = _regmap_bus_reg_write;
691 
692 		map->defer_caching = false;
693 		goto skip_format_initialization;
694 	} else {
695 		map->reg_read  = _regmap_bus_read;
696 		map->reg_update_bits = bus->reg_update_bits;
697 	}
698 
699 	reg_endian = regmap_get_reg_endian(bus, config);
700 	val_endian = regmap_get_val_endian(dev, bus, config);
701 
702 	switch (config->reg_bits + map->reg_shift) {
703 	case 2:
704 		switch (config->val_bits) {
705 		case 6:
706 			map->format.format_write = regmap_format_2_6_write;
707 			break;
708 		default:
709 			goto err_map;
710 		}
711 		break;
712 
713 	case 4:
714 		switch (config->val_bits) {
715 		case 12:
716 			map->format.format_write = regmap_format_4_12_write;
717 			break;
718 		default:
719 			goto err_map;
720 		}
721 		break;
722 
723 	case 7:
724 		switch (config->val_bits) {
725 		case 9:
726 			map->format.format_write = regmap_format_7_9_write;
727 			break;
728 		default:
729 			goto err_map;
730 		}
731 		break;
732 
733 	case 10:
734 		switch (config->val_bits) {
735 		case 14:
736 			map->format.format_write = regmap_format_10_14_write;
737 			break;
738 		default:
739 			goto err_map;
740 		}
741 		break;
742 
743 	case 8:
744 		map->format.format_reg = regmap_format_8;
745 		break;
746 
747 	case 16:
748 		switch (reg_endian) {
749 		case REGMAP_ENDIAN_BIG:
750 			map->format.format_reg = regmap_format_16_be;
751 			break;
752 		case REGMAP_ENDIAN_NATIVE:
753 			map->format.format_reg = regmap_format_16_native;
754 			break;
755 		default:
756 			goto err_map;
757 		}
758 		break;
759 
760 	case 24:
761 		if (reg_endian != REGMAP_ENDIAN_BIG)
762 			goto err_map;
763 		map->format.format_reg = regmap_format_24;
764 		break;
765 
766 	case 32:
767 		switch (reg_endian) {
768 		case REGMAP_ENDIAN_BIG:
769 			map->format.format_reg = regmap_format_32_be;
770 			break;
771 		case REGMAP_ENDIAN_NATIVE:
772 			map->format.format_reg = regmap_format_32_native;
773 			break;
774 		default:
775 			goto err_map;
776 		}
777 		break;
778 
779 #ifdef CONFIG_64BIT
780 	case 64:
781 		switch (reg_endian) {
782 		case REGMAP_ENDIAN_BIG:
783 			map->format.format_reg = regmap_format_64_be;
784 			break;
785 		case REGMAP_ENDIAN_NATIVE:
786 			map->format.format_reg = regmap_format_64_native;
787 			break;
788 		default:
789 			goto err_map;
790 		}
791 		break;
792 #endif
793 
794 	default:
795 		goto err_map;
796 	}
797 
798 	if (val_endian == REGMAP_ENDIAN_NATIVE)
799 		map->format.parse_inplace = regmap_parse_inplace_noop;
800 
801 	switch (config->val_bits) {
802 	case 8:
803 		map->format.format_val = regmap_format_8;
804 		map->format.parse_val = regmap_parse_8;
805 		map->format.parse_inplace = regmap_parse_inplace_noop;
806 		break;
807 	case 16:
808 		switch (val_endian) {
809 		case REGMAP_ENDIAN_BIG:
810 			map->format.format_val = regmap_format_16_be;
811 			map->format.parse_val = regmap_parse_16_be;
812 			map->format.parse_inplace = regmap_parse_16_be_inplace;
813 			break;
814 		case REGMAP_ENDIAN_LITTLE:
815 			map->format.format_val = regmap_format_16_le;
816 			map->format.parse_val = regmap_parse_16_le;
817 			map->format.parse_inplace = regmap_parse_16_le_inplace;
818 			break;
819 		case REGMAP_ENDIAN_NATIVE:
820 			map->format.format_val = regmap_format_16_native;
821 			map->format.parse_val = regmap_parse_16_native;
822 			break;
823 		default:
824 			goto err_map;
825 		}
826 		break;
827 	case 24:
828 		if (val_endian != REGMAP_ENDIAN_BIG)
829 			goto err_map;
830 		map->format.format_val = regmap_format_24;
831 		map->format.parse_val = regmap_parse_24;
832 		break;
833 	case 32:
834 		switch (val_endian) {
835 		case REGMAP_ENDIAN_BIG:
836 			map->format.format_val = regmap_format_32_be;
837 			map->format.parse_val = regmap_parse_32_be;
838 			map->format.parse_inplace = regmap_parse_32_be_inplace;
839 			break;
840 		case REGMAP_ENDIAN_LITTLE:
841 			map->format.format_val = regmap_format_32_le;
842 			map->format.parse_val = regmap_parse_32_le;
843 			map->format.parse_inplace = regmap_parse_32_le_inplace;
844 			break;
845 		case REGMAP_ENDIAN_NATIVE:
846 			map->format.format_val = regmap_format_32_native;
847 			map->format.parse_val = regmap_parse_32_native;
848 			break;
849 		default:
850 			goto err_map;
851 		}
852 		break;
853 #ifdef CONFIG_64BIT
854 	case 64:
855 		switch (val_endian) {
856 		case REGMAP_ENDIAN_BIG:
857 			map->format.format_val = regmap_format_64_be;
858 			map->format.parse_val = regmap_parse_64_be;
859 			map->format.parse_inplace = regmap_parse_64_be_inplace;
860 			break;
861 		case REGMAP_ENDIAN_LITTLE:
862 			map->format.format_val = regmap_format_64_le;
863 			map->format.parse_val = regmap_parse_64_le;
864 			map->format.parse_inplace = regmap_parse_64_le_inplace;
865 			break;
866 		case REGMAP_ENDIAN_NATIVE:
867 			map->format.format_val = regmap_format_64_native;
868 			map->format.parse_val = regmap_parse_64_native;
869 			break;
870 		default:
871 			goto err_map;
872 		}
873 		break;
874 #endif
875 	}
876 
877 	if (map->format.format_write) {
878 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
879 		    (val_endian != REGMAP_ENDIAN_BIG))
880 			goto err_map;
881 		map->use_single_write = true;
882 	}
883 
884 	if (!map->format.format_write &&
885 	    !(map->format.format_reg && map->format.format_val))
886 		goto err_map;
887 
888 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
889 	if (map->work_buf == NULL) {
890 		ret = -ENOMEM;
891 		goto err_map;
892 	}
893 
894 	if (map->format.format_write) {
895 		map->defer_caching = false;
896 		map->reg_write = _regmap_bus_formatted_write;
897 	} else if (map->format.format_val) {
898 		map->defer_caching = true;
899 		map->reg_write = _regmap_bus_raw_write;
900 	}
901 
902 skip_format_initialization:
903 
904 	map->range_tree = RB_ROOT;
905 	for (i = 0; i < config->num_ranges; i++) {
906 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
907 		struct regmap_range_node *new;
908 
909 		/* Sanity check */
910 		if (range_cfg->range_max < range_cfg->range_min) {
911 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
912 				range_cfg->range_max, range_cfg->range_min);
913 			goto err_range;
914 		}
915 
916 		if (range_cfg->range_max > map->max_register) {
917 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
918 				range_cfg->range_max, map->max_register);
919 			goto err_range;
920 		}
921 
922 		if (range_cfg->selector_reg > map->max_register) {
923 			dev_err(map->dev,
924 				"Invalid range %d: selector out of map\n", i);
925 			goto err_range;
926 		}
927 
928 		if (range_cfg->window_len == 0) {
929 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
930 				i);
931 			goto err_range;
932 		}
933 
934 		/* Make sure, that this register range has no selector
935 		   or data window within its boundary */
936 		for (j = 0; j < config->num_ranges; j++) {
937 			unsigned sel_reg = config->ranges[j].selector_reg;
938 			unsigned win_min = config->ranges[j].window_start;
939 			unsigned win_max = win_min +
940 					   config->ranges[j].window_len - 1;
941 
942 			/* Allow data window inside its own virtual range */
943 			if (j == i)
944 				continue;
945 
946 			if (range_cfg->range_min <= sel_reg &&
947 			    sel_reg <= range_cfg->range_max) {
948 				dev_err(map->dev,
949 					"Range %d: selector for %d in window\n",
950 					i, j);
951 				goto err_range;
952 			}
953 
954 			if (!(win_max < range_cfg->range_min ||
955 			      win_min > range_cfg->range_max)) {
956 				dev_err(map->dev,
957 					"Range %d: window for %d in window\n",
958 					i, j);
959 				goto err_range;
960 			}
961 		}
962 
963 		new = kzalloc(sizeof(*new), GFP_KERNEL);
964 		if (new == NULL) {
965 			ret = -ENOMEM;
966 			goto err_range;
967 		}
968 
969 		new->map = map;
970 		new->name = range_cfg->name;
971 		new->range_min = range_cfg->range_min;
972 		new->range_max = range_cfg->range_max;
973 		new->selector_reg = range_cfg->selector_reg;
974 		new->selector_mask = range_cfg->selector_mask;
975 		new->selector_shift = range_cfg->selector_shift;
976 		new->window_start = range_cfg->window_start;
977 		new->window_len = range_cfg->window_len;
978 
979 		if (!_regmap_range_add(map, new)) {
980 			dev_err(map->dev, "Failed to add range %d\n", i);
981 			kfree(new);
982 			goto err_range;
983 		}
984 
985 		if (map->selector_work_buf == NULL) {
986 			map->selector_work_buf =
987 				kzalloc(map->format.buf_size, GFP_KERNEL);
988 			if (map->selector_work_buf == NULL) {
989 				ret = -ENOMEM;
990 				goto err_range;
991 			}
992 		}
993 	}
994 
995 	ret = regcache_init(map, config);
996 	if (ret != 0)
997 		goto err_range;
998 
999 	if (dev) {
1000 		ret = regmap_attach_dev(dev, map, config);
1001 		if (ret != 0)
1002 			goto err_regcache;
1003 	}
1004 
1005 	return map;
1006 
1007 err_regcache:
1008 	regcache_exit(map);
1009 err_range:
1010 	regmap_range_exit(map);
1011 	kfree(map->work_buf);
1012 err_map:
1013 	kfree(map);
1014 err:
1015 	return ERR_PTR(ret);
1016 }
1017 EXPORT_SYMBOL_GPL(__regmap_init);
1018 
1019 static void devm_regmap_release(struct device *dev, void *res)
1020 {
1021 	regmap_exit(*(struct regmap **)res);
1022 }
1023 
1024 struct regmap *__devm_regmap_init(struct device *dev,
1025 				  const struct regmap_bus *bus,
1026 				  void *bus_context,
1027 				  const struct regmap_config *config,
1028 				  struct lock_class_key *lock_key,
1029 				  const char *lock_name)
1030 {
1031 	struct regmap **ptr, *regmap;
1032 
1033 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034 	if (!ptr)
1035 		return ERR_PTR(-ENOMEM);
1036 
1037 	regmap = __regmap_init(dev, bus, bus_context, config,
1038 			       lock_key, lock_name);
1039 	if (!IS_ERR(regmap)) {
1040 		*ptr = regmap;
1041 		devres_add(dev, ptr);
1042 	} else {
1043 		devres_free(ptr);
1044 	}
1045 
1046 	return regmap;
1047 }
1048 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049 
1050 static void regmap_field_init(struct regmap_field *rm_field,
1051 	struct regmap *regmap, struct reg_field reg_field)
1052 {
1053 	rm_field->regmap = regmap;
1054 	rm_field->reg = reg_field.reg;
1055 	rm_field->shift = reg_field.lsb;
1056 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057 	rm_field->id_size = reg_field.id_size;
1058 	rm_field->id_offset = reg_field.id_offset;
1059 }
1060 
1061 /**
1062  * devm_regmap_field_alloc(): Allocate and initialise a register field
1063  * in a register map.
1064  *
1065  * @dev: Device that will be interacted with
1066  * @regmap: regmap bank in which this register field is located.
1067  * @reg_field: Register field with in the bank.
1068  *
1069  * The return value will be an ERR_PTR() on error or a valid pointer
1070  * to a struct regmap_field. The regmap_field will be automatically freed
1071  * by the device management code.
1072  */
1073 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074 		struct regmap *regmap, struct reg_field reg_field)
1075 {
1076 	struct regmap_field *rm_field = devm_kzalloc(dev,
1077 					sizeof(*rm_field), GFP_KERNEL);
1078 	if (!rm_field)
1079 		return ERR_PTR(-ENOMEM);
1080 
1081 	regmap_field_init(rm_field, regmap, reg_field);
1082 
1083 	return rm_field;
1084 
1085 }
1086 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087 
1088 /**
1089  * devm_regmap_field_free(): Free register field allocated using
1090  * devm_regmap_field_alloc. Usally drivers need not call this function,
1091  * as the memory allocated via devm will be freed as per device-driver
1092  * life-cyle.
1093  *
1094  * @dev: Device that will be interacted with
1095  * @field: regmap field which should be freed.
1096  */
1097 void devm_regmap_field_free(struct device *dev,
1098 	struct regmap_field *field)
1099 {
1100 	devm_kfree(dev, field);
1101 }
1102 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103 
1104 /**
1105  * regmap_field_alloc(): Allocate and initialise a register field
1106  * in a register map.
1107  *
1108  * @regmap: regmap bank in which this register field is located.
1109  * @reg_field: Register field with in the bank.
1110  *
1111  * The return value will be an ERR_PTR() on error or a valid pointer
1112  * to a struct regmap_field. The regmap_field should be freed by the
1113  * user once its finished working with it using regmap_field_free().
1114  */
1115 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116 		struct reg_field reg_field)
1117 {
1118 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119 
1120 	if (!rm_field)
1121 		return ERR_PTR(-ENOMEM);
1122 
1123 	regmap_field_init(rm_field, regmap, reg_field);
1124 
1125 	return rm_field;
1126 }
1127 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128 
1129 /**
1130  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1131  *
1132  * @field: regmap field which should be freed.
1133  */
1134 void regmap_field_free(struct regmap_field *field)
1135 {
1136 	kfree(field);
1137 }
1138 EXPORT_SYMBOL_GPL(regmap_field_free);
1139 
1140 /**
1141  * regmap_reinit_cache(): Reinitialise the current register cache
1142  *
1143  * @map: Register map to operate on.
1144  * @config: New configuration.  Only the cache data will be used.
1145  *
1146  * Discard any existing register cache for the map and initialize a
1147  * new cache.  This can be used to restore the cache to defaults or to
1148  * update the cache configuration to reflect runtime discovery of the
1149  * hardware.
1150  *
1151  * No explicit locking is done here, the user needs to ensure that
1152  * this function will not race with other calls to regmap.
1153  */
1154 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155 {
1156 	regcache_exit(map);
1157 	regmap_debugfs_exit(map);
1158 
1159 	map->max_register = config->max_register;
1160 	map->writeable_reg = config->writeable_reg;
1161 	map->readable_reg = config->readable_reg;
1162 	map->volatile_reg = config->volatile_reg;
1163 	map->precious_reg = config->precious_reg;
1164 	map->cache_type = config->cache_type;
1165 
1166 	regmap_debugfs_init(map, config->name);
1167 
1168 	map->cache_bypass = false;
1169 	map->cache_only = false;
1170 
1171 	return regcache_init(map, config);
1172 }
1173 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174 
1175 /**
1176  * regmap_exit(): Free a previously allocated register map
1177  */
1178 void regmap_exit(struct regmap *map)
1179 {
1180 	struct regmap_async *async;
1181 
1182 	regcache_exit(map);
1183 	regmap_debugfs_exit(map);
1184 	regmap_range_exit(map);
1185 	if (map->bus && map->bus->free_context)
1186 		map->bus->free_context(map->bus_context);
1187 	kfree(map->work_buf);
1188 	while (!list_empty(&map->async_free)) {
1189 		async = list_first_entry_or_null(&map->async_free,
1190 						 struct regmap_async,
1191 						 list);
1192 		list_del(&async->list);
1193 		kfree(async->work_buf);
1194 		kfree(async);
1195 	}
1196 	kfree(map);
1197 }
1198 EXPORT_SYMBOL_GPL(regmap_exit);
1199 
1200 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201 {
1202 	struct regmap **r = res;
1203 	if (!r || !*r) {
1204 		WARN_ON(!r || !*r);
1205 		return 0;
1206 	}
1207 
1208 	/* If the user didn't specify a name match any */
1209 	if (data)
1210 		return (*r)->name == data;
1211 	else
1212 		return 1;
1213 }
1214 
1215 /**
1216  * dev_get_regmap(): Obtain the regmap (if any) for a device
1217  *
1218  * @dev: Device to retrieve the map for
1219  * @name: Optional name for the register map, usually NULL.
1220  *
1221  * Returns the regmap for the device if one is present, or NULL.  If
1222  * name is specified then it must match the name specified when
1223  * registering the device, if it is NULL then the first regmap found
1224  * will be used.  Devices with multiple register maps are very rare,
1225  * generic code should normally not need to specify a name.
1226  */
1227 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228 {
1229 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230 					dev_get_regmap_match, (void *)name);
1231 
1232 	if (!r)
1233 		return NULL;
1234 	return *r;
1235 }
1236 EXPORT_SYMBOL_GPL(dev_get_regmap);
1237 
1238 /**
1239  * regmap_get_device(): Obtain the device from a regmap
1240  *
1241  * @map: Register map to operate on.
1242  *
1243  * Returns the underlying device that the regmap has been created for.
1244  */
1245 struct device *regmap_get_device(struct regmap *map)
1246 {
1247 	return map->dev;
1248 }
1249 EXPORT_SYMBOL_GPL(regmap_get_device);
1250 
1251 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252 			       struct regmap_range_node *range,
1253 			       unsigned int val_num)
1254 {
1255 	void *orig_work_buf;
1256 	unsigned int win_offset;
1257 	unsigned int win_page;
1258 	bool page_chg;
1259 	int ret;
1260 
1261 	win_offset = (*reg - range->range_min) % range->window_len;
1262 	win_page = (*reg - range->range_min) / range->window_len;
1263 
1264 	if (val_num > 1) {
1265 		/* Bulk write shouldn't cross range boundary */
1266 		if (*reg + val_num - 1 > range->range_max)
1267 			return -EINVAL;
1268 
1269 		/* ... or single page boundary */
1270 		if (val_num > range->window_len - win_offset)
1271 			return -EINVAL;
1272 	}
1273 
1274 	/* It is possible to have selector register inside data window.
1275 	   In that case, selector register is located on every page and
1276 	   it needs no page switching, when accessed alone. */
1277 	if (val_num > 1 ||
1278 	    range->window_start + win_offset != range->selector_reg) {
1279 		/* Use separate work_buf during page switching */
1280 		orig_work_buf = map->work_buf;
1281 		map->work_buf = map->selector_work_buf;
1282 
1283 		ret = _regmap_update_bits(map, range->selector_reg,
1284 					  range->selector_mask,
1285 					  win_page << range->selector_shift,
1286 					  &page_chg, false);
1287 
1288 		map->work_buf = orig_work_buf;
1289 
1290 		if (ret != 0)
1291 			return ret;
1292 	}
1293 
1294 	*reg = range->window_start + win_offset;
1295 
1296 	return 0;
1297 }
1298 
1299 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300 		      const void *val, size_t val_len)
1301 {
1302 	struct regmap_range_node *range;
1303 	unsigned long flags;
1304 	u8 *u8 = map->work_buf;
1305 	void *work_val = map->work_buf + map->format.reg_bytes +
1306 		map->format.pad_bytes;
1307 	void *buf;
1308 	int ret = -ENOTSUPP;
1309 	size_t len;
1310 	int i;
1311 
1312 	WARN_ON(!map->bus);
1313 
1314 	/* Check for unwritable registers before we start */
1315 	if (map->writeable_reg)
1316 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1317 			if (!map->writeable_reg(map->dev,
1318 					       reg + regmap_get_offset(map, i)))
1319 				return -EINVAL;
1320 
1321 	if (!map->cache_bypass && map->format.parse_val) {
1322 		unsigned int ival;
1323 		int val_bytes = map->format.val_bytes;
1324 		for (i = 0; i < val_len / val_bytes; i++) {
1325 			ival = map->format.parse_val(val + (i * val_bytes));
1326 			ret = regcache_write(map,
1327 					     reg + regmap_get_offset(map, i),
1328 					     ival);
1329 			if (ret) {
1330 				dev_err(map->dev,
1331 					"Error in caching of register: %x ret: %d\n",
1332 					reg + i, ret);
1333 				return ret;
1334 			}
1335 		}
1336 		if (map->cache_only) {
1337 			map->cache_dirty = true;
1338 			return 0;
1339 		}
1340 	}
1341 
1342 	range = _regmap_range_lookup(map, reg);
1343 	if (range) {
1344 		int val_num = val_len / map->format.val_bytes;
1345 		int win_offset = (reg - range->range_min) % range->window_len;
1346 		int win_residue = range->window_len - win_offset;
1347 
1348 		/* If the write goes beyond the end of the window split it */
1349 		while (val_num > win_residue) {
1350 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1351 				win_residue, val_len / map->format.val_bytes);
1352 			ret = _regmap_raw_write(map, reg, val, win_residue *
1353 						map->format.val_bytes);
1354 			if (ret != 0)
1355 				return ret;
1356 
1357 			reg += win_residue;
1358 			val_num -= win_residue;
1359 			val += win_residue * map->format.val_bytes;
1360 			val_len -= win_residue * map->format.val_bytes;
1361 
1362 			win_offset = (reg - range->range_min) %
1363 				range->window_len;
1364 			win_residue = range->window_len - win_offset;
1365 		}
1366 
1367 		ret = _regmap_select_page(map, &reg, range, val_num);
1368 		if (ret != 0)
1369 			return ret;
1370 	}
1371 
1372 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373 
1374 	u8[0] |= map->write_flag_mask;
1375 
1376 	/*
1377 	 * Essentially all I/O mechanisms will be faster with a single
1378 	 * buffer to write.  Since register syncs often generate raw
1379 	 * writes of single registers optimise that case.
1380 	 */
1381 	if (val != work_val && val_len == map->format.val_bytes) {
1382 		memcpy(work_val, val, map->format.val_bytes);
1383 		val = work_val;
1384 	}
1385 
1386 	if (map->async && map->bus->async_write) {
1387 		struct regmap_async *async;
1388 
1389 		trace_regmap_async_write_start(map, reg, val_len);
1390 
1391 		spin_lock_irqsave(&map->async_lock, flags);
1392 		async = list_first_entry_or_null(&map->async_free,
1393 						 struct regmap_async,
1394 						 list);
1395 		if (async)
1396 			list_del(&async->list);
1397 		spin_unlock_irqrestore(&map->async_lock, flags);
1398 
1399 		if (!async) {
1400 			async = map->bus->async_alloc();
1401 			if (!async)
1402 				return -ENOMEM;
1403 
1404 			async->work_buf = kzalloc(map->format.buf_size,
1405 						  GFP_KERNEL | GFP_DMA);
1406 			if (!async->work_buf) {
1407 				kfree(async);
1408 				return -ENOMEM;
1409 			}
1410 		}
1411 
1412 		async->map = map;
1413 
1414 		/* If the caller supplied the value we can use it safely. */
1415 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416 		       map->format.reg_bytes + map->format.val_bytes);
1417 
1418 		spin_lock_irqsave(&map->async_lock, flags);
1419 		list_add_tail(&async->list, &map->async_list);
1420 		spin_unlock_irqrestore(&map->async_lock, flags);
1421 
1422 		if (val != work_val)
1423 			ret = map->bus->async_write(map->bus_context,
1424 						    async->work_buf,
1425 						    map->format.reg_bytes +
1426 						    map->format.pad_bytes,
1427 						    val, val_len, async);
1428 		else
1429 			ret = map->bus->async_write(map->bus_context,
1430 						    async->work_buf,
1431 						    map->format.reg_bytes +
1432 						    map->format.pad_bytes +
1433 						    val_len, NULL, 0, async);
1434 
1435 		if (ret != 0) {
1436 			dev_err(map->dev, "Failed to schedule write: %d\n",
1437 				ret);
1438 
1439 			spin_lock_irqsave(&map->async_lock, flags);
1440 			list_move(&async->list, &map->async_free);
1441 			spin_unlock_irqrestore(&map->async_lock, flags);
1442 		}
1443 
1444 		return ret;
1445 	}
1446 
1447 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1448 
1449 	/* If we're doing a single register write we can probably just
1450 	 * send the work_buf directly, otherwise try to do a gather
1451 	 * write.
1452 	 */
1453 	if (val == work_val)
1454 		ret = map->bus->write(map->bus_context, map->work_buf,
1455 				      map->format.reg_bytes +
1456 				      map->format.pad_bytes +
1457 				      val_len);
1458 	else if (map->bus->gather_write)
1459 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460 					     map->format.reg_bytes +
1461 					     map->format.pad_bytes,
1462 					     val, val_len);
1463 
1464 	/* If that didn't work fall back on linearising by hand. */
1465 	if (ret == -ENOTSUPP) {
1466 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467 		buf = kzalloc(len, GFP_KERNEL);
1468 		if (!buf)
1469 			return -ENOMEM;
1470 
1471 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1472 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473 		       val, val_len);
1474 		ret = map->bus->write(map->bus_context, buf, len);
1475 
1476 		kfree(buf);
1477 	}
1478 
1479 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1480 
1481 	return ret;
1482 }
1483 
1484 /**
1485  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1486  *
1487  * @map: Map to check.
1488  */
1489 bool regmap_can_raw_write(struct regmap *map)
1490 {
1491 	return map->bus && map->bus->write && map->format.format_val &&
1492 		map->format.format_reg;
1493 }
1494 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1495 
1496 /**
1497  * regmap_get_raw_read_max - Get the maximum size we can read
1498  *
1499  * @map: Map to check.
1500  */
1501 size_t regmap_get_raw_read_max(struct regmap *map)
1502 {
1503 	return map->max_raw_read;
1504 }
1505 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1506 
1507 /**
1508  * regmap_get_raw_write_max - Get the maximum size we can read
1509  *
1510  * @map: Map to check.
1511  */
1512 size_t regmap_get_raw_write_max(struct regmap *map)
1513 {
1514 	return map->max_raw_write;
1515 }
1516 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1517 
1518 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1519 				       unsigned int val)
1520 {
1521 	int ret;
1522 	struct regmap_range_node *range;
1523 	struct regmap *map = context;
1524 
1525 	WARN_ON(!map->bus || !map->format.format_write);
1526 
1527 	range = _regmap_range_lookup(map, reg);
1528 	if (range) {
1529 		ret = _regmap_select_page(map, &reg, range, 1);
1530 		if (ret != 0)
1531 			return ret;
1532 	}
1533 
1534 	map->format.format_write(map, reg, val);
1535 
1536 	trace_regmap_hw_write_start(map, reg, 1);
1537 
1538 	ret = map->bus->write(map->bus_context, map->work_buf,
1539 			      map->format.buf_size);
1540 
1541 	trace_regmap_hw_write_done(map, reg, 1);
1542 
1543 	return ret;
1544 }
1545 
1546 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1547 				 unsigned int val)
1548 {
1549 	struct regmap *map = context;
1550 
1551 	return map->bus->reg_write(map->bus_context, reg, val);
1552 }
1553 
1554 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1555 				 unsigned int val)
1556 {
1557 	struct regmap *map = context;
1558 
1559 	WARN_ON(!map->bus || !map->format.format_val);
1560 
1561 	map->format.format_val(map->work_buf + map->format.reg_bytes
1562 			       + map->format.pad_bytes, val, 0);
1563 	return _regmap_raw_write(map, reg,
1564 				 map->work_buf +
1565 				 map->format.reg_bytes +
1566 				 map->format.pad_bytes,
1567 				 map->format.val_bytes);
1568 }
1569 
1570 static inline void *_regmap_map_get_context(struct regmap *map)
1571 {
1572 	return (map->bus) ? map : map->bus_context;
1573 }
1574 
1575 int _regmap_write(struct regmap *map, unsigned int reg,
1576 		  unsigned int val)
1577 {
1578 	int ret;
1579 	void *context = _regmap_map_get_context(map);
1580 
1581 	if (!regmap_writeable(map, reg))
1582 		return -EIO;
1583 
1584 	if (!map->cache_bypass && !map->defer_caching) {
1585 		ret = regcache_write(map, reg, val);
1586 		if (ret != 0)
1587 			return ret;
1588 		if (map->cache_only) {
1589 			map->cache_dirty = true;
1590 			return 0;
1591 		}
1592 	}
1593 
1594 #ifdef LOG_DEVICE
1595 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1596 		dev_info(map->dev, "%x <= %x\n", reg, val);
1597 #endif
1598 
1599 	trace_regmap_reg_write(map, reg, val);
1600 
1601 	return map->reg_write(context, reg, val);
1602 }
1603 
1604 /**
1605  * regmap_write(): Write a value to a single register
1606  *
1607  * @map: Register map to write to
1608  * @reg: Register to write to
1609  * @val: Value to be written
1610  *
1611  * A value of zero will be returned on success, a negative errno will
1612  * be returned in error cases.
1613  */
1614 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1615 {
1616 	int ret;
1617 
1618 	if (!IS_ALIGNED(reg, map->reg_stride))
1619 		return -EINVAL;
1620 
1621 	map->lock(map->lock_arg);
1622 
1623 	ret = _regmap_write(map, reg, val);
1624 
1625 	map->unlock(map->lock_arg);
1626 
1627 	return ret;
1628 }
1629 EXPORT_SYMBOL_GPL(regmap_write);
1630 
1631 /**
1632  * regmap_write_async(): Write a value to a single register asynchronously
1633  *
1634  * @map: Register map to write to
1635  * @reg: Register to write to
1636  * @val: Value to be written
1637  *
1638  * A value of zero will be returned on success, a negative errno will
1639  * be returned in error cases.
1640  */
1641 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1642 {
1643 	int ret;
1644 
1645 	if (!IS_ALIGNED(reg, map->reg_stride))
1646 		return -EINVAL;
1647 
1648 	map->lock(map->lock_arg);
1649 
1650 	map->async = true;
1651 
1652 	ret = _regmap_write(map, reg, val);
1653 
1654 	map->async = false;
1655 
1656 	map->unlock(map->lock_arg);
1657 
1658 	return ret;
1659 }
1660 EXPORT_SYMBOL_GPL(regmap_write_async);
1661 
1662 /**
1663  * regmap_raw_write(): Write raw values to one or more registers
1664  *
1665  * @map: Register map to write to
1666  * @reg: Initial register to write to
1667  * @val: Block of data to be written, laid out for direct transmission to the
1668  *       device
1669  * @val_len: Length of data pointed to by val.
1670  *
1671  * This function is intended to be used for things like firmware
1672  * download where a large block of data needs to be transferred to the
1673  * device.  No formatting will be done on the data provided.
1674  *
1675  * A value of zero will be returned on success, a negative errno will
1676  * be returned in error cases.
1677  */
1678 int regmap_raw_write(struct regmap *map, unsigned int reg,
1679 		     const void *val, size_t val_len)
1680 {
1681 	int ret;
1682 
1683 	if (!regmap_can_raw_write(map))
1684 		return -EINVAL;
1685 	if (val_len % map->format.val_bytes)
1686 		return -EINVAL;
1687 	if (map->max_raw_write && map->max_raw_write > val_len)
1688 		return -E2BIG;
1689 
1690 	map->lock(map->lock_arg);
1691 
1692 	ret = _regmap_raw_write(map, reg, val, val_len);
1693 
1694 	map->unlock(map->lock_arg);
1695 
1696 	return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regmap_raw_write);
1699 
1700 /**
1701  * regmap_field_update_bits_base():
1702  *	Perform a read/modify/write cycle on the register field
1703  *	with change, async, force option
1704  *
1705  * @field: Register field to write to
1706  * @mask: Bitmask to change
1707  * @val: Value to be written
1708  * @change: Boolean indicating if a write was done
1709  * @async: Boolean indicating asynchronously
1710  * @force: Boolean indicating use force update
1711  *
1712  * A value of zero will be returned on success, a negative errno will
1713  * be returned in error cases.
1714  */
1715 int regmap_field_update_bits_base(struct regmap_field *field,
1716 				  unsigned int mask, unsigned int val,
1717 				  bool *change, bool async, bool force)
1718 {
1719 	mask = (mask << field->shift) & field->mask;
1720 
1721 	return regmap_update_bits_base(field->regmap, field->reg,
1722 				       mask, val << field->shift,
1723 				       change, async, force);
1724 }
1725 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1726 
1727 /**
1728  * regmap_fields_update_bits_base():
1729  *	Perform a read/modify/write cycle on the register field
1730  *	with change, async, force option
1731  *
1732  * @field: Register field to write to
1733  * @id: port ID
1734  * @mask: Bitmask to change
1735  * @val: Value to be written
1736  * @change: Boolean indicating if a write was done
1737  * @async: Boolean indicating asynchronously
1738  * @force: Boolean indicating use force update
1739  *
1740  * A value of zero will be returned on success, a negative errno will
1741  * be returned in error cases.
1742  */
1743 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1744 				   unsigned int mask, unsigned int val,
1745 				   bool *change, bool async, bool force)
1746 {
1747 	if (id >= field->id_size)
1748 		return -EINVAL;
1749 
1750 	mask = (mask << field->shift) & field->mask;
1751 
1752 	return regmap_update_bits_base(field->regmap,
1753 				       field->reg + (field->id_offset * id),
1754 				       mask, val << field->shift,
1755 				       change, async, force);
1756 }
1757 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1758 
1759 /*
1760  * regmap_bulk_write(): Write multiple registers to the device
1761  *
1762  * @map: Register map to write to
1763  * @reg: First register to be write from
1764  * @val: Block of data to be written, in native register size for device
1765  * @val_count: Number of registers to write
1766  *
1767  * This function is intended to be used for writing a large block of
1768  * data to the device either in single transfer or multiple transfer.
1769  *
1770  * A value of zero will be returned on success, a negative errno will
1771  * be returned in error cases.
1772  */
1773 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1774 		     size_t val_count)
1775 {
1776 	int ret = 0, i;
1777 	size_t val_bytes = map->format.val_bytes;
1778 	size_t total_size = val_bytes * val_count;
1779 
1780 	if (!IS_ALIGNED(reg, map->reg_stride))
1781 		return -EINVAL;
1782 
1783 	/*
1784 	 * Some devices don't support bulk write, for
1785 	 * them we have a series of single write operations in the first two if
1786 	 * blocks.
1787 	 *
1788 	 * The first if block is used for memory mapped io. It does not allow
1789 	 * val_bytes of 3 for example.
1790 	 * The second one is for busses that do not provide raw I/O.
1791 	 * The third one is used for busses which do not have these limitations
1792 	 * and can write arbitrary value lengths.
1793 	 */
1794 	if (!map->bus) {
1795 		map->lock(map->lock_arg);
1796 		for (i = 0; i < val_count; i++) {
1797 			unsigned int ival;
1798 
1799 			switch (val_bytes) {
1800 			case 1:
1801 				ival = *(u8 *)(val + (i * val_bytes));
1802 				break;
1803 			case 2:
1804 				ival = *(u16 *)(val + (i * val_bytes));
1805 				break;
1806 			case 4:
1807 				ival = *(u32 *)(val + (i * val_bytes));
1808 				break;
1809 #ifdef CONFIG_64BIT
1810 			case 8:
1811 				ival = *(u64 *)(val + (i * val_bytes));
1812 				break;
1813 #endif
1814 			default:
1815 				ret = -EINVAL;
1816 				goto out;
1817 			}
1818 
1819 			ret = _regmap_write(map,
1820 					    reg + regmap_get_offset(map, i),
1821 					    ival);
1822 			if (ret != 0)
1823 				goto out;
1824 		}
1825 out:
1826 		map->unlock(map->lock_arg);
1827 	} else if (map->bus && !map->format.parse_inplace) {
1828 		const u8 *u8 = val;
1829 		const u16 *u16 = val;
1830 		const u32 *u32 = val;
1831 		unsigned int ival;
1832 
1833 		for (i = 0; i < val_count; i++) {
1834 			switch (map->format.val_bytes) {
1835 			case 4:
1836 				ival = u32[i];
1837 				break;
1838 			case 2:
1839 				ival = u16[i];
1840 				break;
1841 			case 1:
1842 				ival = u8[i];
1843 				break;
1844 			default:
1845 				return -EINVAL;
1846 			}
1847 
1848 			ret = regmap_write(map, reg + (i * map->reg_stride),
1849 					   ival);
1850 			if (ret)
1851 				return ret;
1852 		}
1853 	} else if (map->use_single_write ||
1854 		   (map->max_raw_write && map->max_raw_write < total_size)) {
1855 		int chunk_stride = map->reg_stride;
1856 		size_t chunk_size = val_bytes;
1857 		size_t chunk_count = val_count;
1858 
1859 		if (!map->use_single_write) {
1860 			chunk_size = map->max_raw_write;
1861 			if (chunk_size % val_bytes)
1862 				chunk_size -= chunk_size % val_bytes;
1863 			chunk_count = total_size / chunk_size;
1864 			chunk_stride *= chunk_size / val_bytes;
1865 		}
1866 
1867 		map->lock(map->lock_arg);
1868 		/* Write as many bytes as possible with chunk_size */
1869 		for (i = 0; i < chunk_count; i++) {
1870 			ret = _regmap_raw_write(map,
1871 						reg + (i * chunk_stride),
1872 						val + (i * chunk_size),
1873 						chunk_size);
1874 			if (ret)
1875 				break;
1876 		}
1877 
1878 		/* Write remaining bytes */
1879 		if (!ret && chunk_size * i < total_size) {
1880 			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1881 						val + (i * chunk_size),
1882 						total_size - i * chunk_size);
1883 		}
1884 		map->unlock(map->lock_arg);
1885 	} else {
1886 		void *wval;
1887 
1888 		if (!val_count)
1889 			return -EINVAL;
1890 
1891 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1892 		if (!wval) {
1893 			dev_err(map->dev, "Error in memory allocation\n");
1894 			return -ENOMEM;
1895 		}
1896 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1897 			map->format.parse_inplace(wval + i);
1898 
1899 		map->lock(map->lock_arg);
1900 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1901 		map->unlock(map->lock_arg);
1902 
1903 		kfree(wval);
1904 	}
1905 	return ret;
1906 }
1907 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1908 
1909 /*
1910  * _regmap_raw_multi_reg_write()
1911  *
1912  * the (register,newvalue) pairs in regs have not been formatted, but
1913  * they are all in the same page and have been changed to being page
1914  * relative. The page register has been written if that was necessary.
1915  */
1916 static int _regmap_raw_multi_reg_write(struct regmap *map,
1917 				       const struct reg_sequence *regs,
1918 				       size_t num_regs)
1919 {
1920 	int ret;
1921 	void *buf;
1922 	int i;
1923 	u8 *u8;
1924 	size_t val_bytes = map->format.val_bytes;
1925 	size_t reg_bytes = map->format.reg_bytes;
1926 	size_t pad_bytes = map->format.pad_bytes;
1927 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1928 	size_t len = pair_size * num_regs;
1929 
1930 	if (!len)
1931 		return -EINVAL;
1932 
1933 	buf = kzalloc(len, GFP_KERNEL);
1934 	if (!buf)
1935 		return -ENOMEM;
1936 
1937 	/* We have to linearise by hand. */
1938 
1939 	u8 = buf;
1940 
1941 	for (i = 0; i < num_regs; i++) {
1942 		unsigned int reg = regs[i].reg;
1943 		unsigned int val = regs[i].def;
1944 		trace_regmap_hw_write_start(map, reg, 1);
1945 		map->format.format_reg(u8, reg, map->reg_shift);
1946 		u8 += reg_bytes + pad_bytes;
1947 		map->format.format_val(u8, val, 0);
1948 		u8 += val_bytes;
1949 	}
1950 	u8 = buf;
1951 	*u8 |= map->write_flag_mask;
1952 
1953 	ret = map->bus->write(map->bus_context, buf, len);
1954 
1955 	kfree(buf);
1956 
1957 	for (i = 0; i < num_regs; i++) {
1958 		int reg = regs[i].reg;
1959 		trace_regmap_hw_write_done(map, reg, 1);
1960 	}
1961 	return ret;
1962 }
1963 
1964 static unsigned int _regmap_register_page(struct regmap *map,
1965 					  unsigned int reg,
1966 					  struct regmap_range_node *range)
1967 {
1968 	unsigned int win_page = (reg - range->range_min) / range->window_len;
1969 
1970 	return win_page;
1971 }
1972 
1973 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1974 					       struct reg_sequence *regs,
1975 					       size_t num_regs)
1976 {
1977 	int ret;
1978 	int i, n;
1979 	struct reg_sequence *base;
1980 	unsigned int this_page = 0;
1981 	unsigned int page_change = 0;
1982 	/*
1983 	 * the set of registers are not neccessarily in order, but
1984 	 * since the order of write must be preserved this algorithm
1985 	 * chops the set each time the page changes. This also applies
1986 	 * if there is a delay required at any point in the sequence.
1987 	 */
1988 	base = regs;
1989 	for (i = 0, n = 0; i < num_regs; i++, n++) {
1990 		unsigned int reg = regs[i].reg;
1991 		struct regmap_range_node *range;
1992 
1993 		range = _regmap_range_lookup(map, reg);
1994 		if (range) {
1995 			unsigned int win_page = _regmap_register_page(map, reg,
1996 								      range);
1997 
1998 			if (i == 0)
1999 				this_page = win_page;
2000 			if (win_page != this_page) {
2001 				this_page = win_page;
2002 				page_change = 1;
2003 			}
2004 		}
2005 
2006 		/* If we have both a page change and a delay make sure to
2007 		 * write the regs and apply the delay before we change the
2008 		 * page.
2009 		 */
2010 
2011 		if (page_change || regs[i].delay_us) {
2012 
2013 				/* For situations where the first write requires
2014 				 * a delay we need to make sure we don't call
2015 				 * raw_multi_reg_write with n=0
2016 				 * This can't occur with page breaks as we
2017 				 * never write on the first iteration
2018 				 */
2019 				if (regs[i].delay_us && i == 0)
2020 					n = 1;
2021 
2022 				ret = _regmap_raw_multi_reg_write(map, base, n);
2023 				if (ret != 0)
2024 					return ret;
2025 
2026 				if (regs[i].delay_us)
2027 					udelay(regs[i].delay_us);
2028 
2029 				base += n;
2030 				n = 0;
2031 
2032 				if (page_change) {
2033 					ret = _regmap_select_page(map,
2034 								  &base[n].reg,
2035 								  range, 1);
2036 					if (ret != 0)
2037 						return ret;
2038 
2039 					page_change = 0;
2040 				}
2041 
2042 		}
2043 
2044 	}
2045 	if (n > 0)
2046 		return _regmap_raw_multi_reg_write(map, base, n);
2047 	return 0;
2048 }
2049 
2050 static int _regmap_multi_reg_write(struct regmap *map,
2051 				   const struct reg_sequence *regs,
2052 				   size_t num_regs)
2053 {
2054 	int i;
2055 	int ret;
2056 
2057 	if (!map->can_multi_write) {
2058 		for (i = 0; i < num_regs; i++) {
2059 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2060 			if (ret != 0)
2061 				return ret;
2062 
2063 			if (regs[i].delay_us)
2064 				udelay(regs[i].delay_us);
2065 		}
2066 		return 0;
2067 	}
2068 
2069 	if (!map->format.parse_inplace)
2070 		return -EINVAL;
2071 
2072 	if (map->writeable_reg)
2073 		for (i = 0; i < num_regs; i++) {
2074 			int reg = regs[i].reg;
2075 			if (!map->writeable_reg(map->dev, reg))
2076 				return -EINVAL;
2077 			if (!IS_ALIGNED(reg, map->reg_stride))
2078 				return -EINVAL;
2079 		}
2080 
2081 	if (!map->cache_bypass) {
2082 		for (i = 0; i < num_regs; i++) {
2083 			unsigned int val = regs[i].def;
2084 			unsigned int reg = regs[i].reg;
2085 			ret = regcache_write(map, reg, val);
2086 			if (ret) {
2087 				dev_err(map->dev,
2088 				"Error in caching of register: %x ret: %d\n",
2089 								reg, ret);
2090 				return ret;
2091 			}
2092 		}
2093 		if (map->cache_only) {
2094 			map->cache_dirty = true;
2095 			return 0;
2096 		}
2097 	}
2098 
2099 	WARN_ON(!map->bus);
2100 
2101 	for (i = 0; i < num_regs; i++) {
2102 		unsigned int reg = regs[i].reg;
2103 		struct regmap_range_node *range;
2104 
2105 		/* Coalesce all the writes between a page break or a delay
2106 		 * in a sequence
2107 		 */
2108 		range = _regmap_range_lookup(map, reg);
2109 		if (range || regs[i].delay_us) {
2110 			size_t len = sizeof(struct reg_sequence)*num_regs;
2111 			struct reg_sequence *base = kmemdup(regs, len,
2112 							   GFP_KERNEL);
2113 			if (!base)
2114 				return -ENOMEM;
2115 			ret = _regmap_range_multi_paged_reg_write(map, base,
2116 								  num_regs);
2117 			kfree(base);
2118 
2119 			return ret;
2120 		}
2121 	}
2122 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2123 }
2124 
2125 /*
2126  * regmap_multi_reg_write(): Write multiple registers to the device
2127  *
2128  * where the set of register,value pairs are supplied in any order,
2129  * possibly not all in a single range.
2130  *
2131  * @map: Register map to write to
2132  * @regs: Array of structures containing register,value to be written
2133  * @num_regs: Number of registers to write
2134  *
2135  * The 'normal' block write mode will send ultimately send data on the
2136  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2137  * addressed. However, this alternative block multi write mode will send
2138  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2139  * must of course support the mode.
2140  *
2141  * A value of zero will be returned on success, a negative errno will be
2142  * returned in error cases.
2143  */
2144 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2145 			   int num_regs)
2146 {
2147 	int ret;
2148 
2149 	map->lock(map->lock_arg);
2150 
2151 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2152 
2153 	map->unlock(map->lock_arg);
2154 
2155 	return ret;
2156 }
2157 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2158 
2159 /*
2160  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2161  *                                    device but not the cache
2162  *
2163  * where the set of register are supplied in any order
2164  *
2165  * @map: Register map to write to
2166  * @regs: Array of structures containing register,value to be written
2167  * @num_regs: Number of registers to write
2168  *
2169  * This function is intended to be used for writing a large block of data
2170  * atomically to the device in single transfer for those I2C client devices
2171  * that implement this alternative block write mode.
2172  *
2173  * A value of zero will be returned on success, a negative errno will
2174  * be returned in error cases.
2175  */
2176 int regmap_multi_reg_write_bypassed(struct regmap *map,
2177 				    const struct reg_sequence *regs,
2178 				    int num_regs)
2179 {
2180 	int ret;
2181 	bool bypass;
2182 
2183 	map->lock(map->lock_arg);
2184 
2185 	bypass = map->cache_bypass;
2186 	map->cache_bypass = true;
2187 
2188 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2189 
2190 	map->cache_bypass = bypass;
2191 
2192 	map->unlock(map->lock_arg);
2193 
2194 	return ret;
2195 }
2196 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2197 
2198 /**
2199  * regmap_raw_write_async(): Write raw values to one or more registers
2200  *                           asynchronously
2201  *
2202  * @map: Register map to write to
2203  * @reg: Initial register to write to
2204  * @val: Block of data to be written, laid out for direct transmission to the
2205  *       device.  Must be valid until regmap_async_complete() is called.
2206  * @val_len: Length of data pointed to by val.
2207  *
2208  * This function is intended to be used for things like firmware
2209  * download where a large block of data needs to be transferred to the
2210  * device.  No formatting will be done on the data provided.
2211  *
2212  * If supported by the underlying bus the write will be scheduled
2213  * asynchronously, helping maximise I/O speed on higher speed buses
2214  * like SPI.  regmap_async_complete() can be called to ensure that all
2215  * asynchrnous writes have been completed.
2216  *
2217  * A value of zero will be returned on success, a negative errno will
2218  * be returned in error cases.
2219  */
2220 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2221 			   const void *val, size_t val_len)
2222 {
2223 	int ret;
2224 
2225 	if (val_len % map->format.val_bytes)
2226 		return -EINVAL;
2227 	if (!IS_ALIGNED(reg, map->reg_stride))
2228 		return -EINVAL;
2229 
2230 	map->lock(map->lock_arg);
2231 
2232 	map->async = true;
2233 
2234 	ret = _regmap_raw_write(map, reg, val, val_len);
2235 
2236 	map->async = false;
2237 
2238 	map->unlock(map->lock_arg);
2239 
2240 	return ret;
2241 }
2242 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2243 
2244 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2245 			    unsigned int val_len)
2246 {
2247 	struct regmap_range_node *range;
2248 	u8 *u8 = map->work_buf;
2249 	int ret;
2250 
2251 	WARN_ON(!map->bus);
2252 
2253 	if (!map->bus || !map->bus->read)
2254 		return -EINVAL;
2255 
2256 	range = _regmap_range_lookup(map, reg);
2257 	if (range) {
2258 		ret = _regmap_select_page(map, &reg, range,
2259 					  val_len / map->format.val_bytes);
2260 		if (ret != 0)
2261 			return ret;
2262 	}
2263 
2264 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2265 
2266 	/*
2267 	 * Some buses or devices flag reads by setting the high bits in the
2268 	 * register address; since it's always the high bits for all
2269 	 * current formats we can do this here rather than in
2270 	 * formatting.  This may break if we get interesting formats.
2271 	 */
2272 	u8[0] |= map->read_flag_mask;
2273 
2274 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2275 
2276 	ret = map->bus->read(map->bus_context, map->work_buf,
2277 			     map->format.reg_bytes + map->format.pad_bytes,
2278 			     val, val_len);
2279 
2280 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2281 
2282 	return ret;
2283 }
2284 
2285 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2286 				unsigned int *val)
2287 {
2288 	struct regmap *map = context;
2289 
2290 	return map->bus->reg_read(map->bus_context, reg, val);
2291 }
2292 
2293 static int _regmap_bus_read(void *context, unsigned int reg,
2294 			    unsigned int *val)
2295 {
2296 	int ret;
2297 	struct regmap *map = context;
2298 
2299 	if (!map->format.parse_val)
2300 		return -EINVAL;
2301 
2302 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2303 	if (ret == 0)
2304 		*val = map->format.parse_val(map->work_buf);
2305 
2306 	return ret;
2307 }
2308 
2309 static int _regmap_read(struct regmap *map, unsigned int reg,
2310 			unsigned int *val)
2311 {
2312 	int ret;
2313 	void *context = _regmap_map_get_context(map);
2314 
2315 	if (!map->cache_bypass) {
2316 		ret = regcache_read(map, reg, val);
2317 		if (ret == 0)
2318 			return 0;
2319 	}
2320 
2321 	if (map->cache_only)
2322 		return -EBUSY;
2323 
2324 	if (!regmap_readable(map, reg))
2325 		return -EIO;
2326 
2327 	ret = map->reg_read(context, reg, val);
2328 	if (ret == 0) {
2329 #ifdef LOG_DEVICE
2330 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2331 			dev_info(map->dev, "%x => %x\n", reg, *val);
2332 #endif
2333 
2334 		trace_regmap_reg_read(map, reg, *val);
2335 
2336 		if (!map->cache_bypass)
2337 			regcache_write(map, reg, *val);
2338 	}
2339 
2340 	return ret;
2341 }
2342 
2343 /**
2344  * regmap_read(): Read a value from a single register
2345  *
2346  * @map: Register map to read from
2347  * @reg: Register to be read from
2348  * @val: Pointer to store read value
2349  *
2350  * A value of zero will be returned on success, a negative errno will
2351  * be returned in error cases.
2352  */
2353 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2354 {
2355 	int ret;
2356 
2357 	if (!IS_ALIGNED(reg, map->reg_stride))
2358 		return -EINVAL;
2359 
2360 	map->lock(map->lock_arg);
2361 
2362 	ret = _regmap_read(map, reg, val);
2363 
2364 	map->unlock(map->lock_arg);
2365 
2366 	return ret;
2367 }
2368 EXPORT_SYMBOL_GPL(regmap_read);
2369 
2370 /**
2371  * regmap_raw_read(): Read raw data from the device
2372  *
2373  * @map: Register map to read from
2374  * @reg: First register to be read from
2375  * @val: Pointer to store read value
2376  * @val_len: Size of data to read
2377  *
2378  * A value of zero will be returned on success, a negative errno will
2379  * be returned in error cases.
2380  */
2381 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2382 		    size_t val_len)
2383 {
2384 	size_t val_bytes = map->format.val_bytes;
2385 	size_t val_count = val_len / val_bytes;
2386 	unsigned int v;
2387 	int ret, i;
2388 
2389 	if (!map->bus)
2390 		return -EINVAL;
2391 	if (val_len % map->format.val_bytes)
2392 		return -EINVAL;
2393 	if (!IS_ALIGNED(reg, map->reg_stride))
2394 		return -EINVAL;
2395 	if (val_count == 0)
2396 		return -EINVAL;
2397 
2398 	map->lock(map->lock_arg);
2399 
2400 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2401 	    map->cache_type == REGCACHE_NONE) {
2402 		if (!map->bus->read) {
2403 			ret = -ENOTSUPP;
2404 			goto out;
2405 		}
2406 		if (map->max_raw_read && map->max_raw_read < val_len) {
2407 			ret = -E2BIG;
2408 			goto out;
2409 		}
2410 
2411 		/* Physical block read if there's no cache involved */
2412 		ret = _regmap_raw_read(map, reg, val, val_len);
2413 
2414 	} else {
2415 		/* Otherwise go word by word for the cache; should be low
2416 		 * cost as we expect to hit the cache.
2417 		 */
2418 		for (i = 0; i < val_count; i++) {
2419 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2420 					   &v);
2421 			if (ret != 0)
2422 				goto out;
2423 
2424 			map->format.format_val(val + (i * val_bytes), v, 0);
2425 		}
2426 	}
2427 
2428  out:
2429 	map->unlock(map->lock_arg);
2430 
2431 	return ret;
2432 }
2433 EXPORT_SYMBOL_GPL(regmap_raw_read);
2434 
2435 /**
2436  * regmap_field_read(): Read a value to a single register field
2437  *
2438  * @field: Register field to read from
2439  * @val: Pointer to store read value
2440  *
2441  * A value of zero will be returned on success, a negative errno will
2442  * be returned in error cases.
2443  */
2444 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2445 {
2446 	int ret;
2447 	unsigned int reg_val;
2448 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2449 	if (ret != 0)
2450 		return ret;
2451 
2452 	reg_val &= field->mask;
2453 	reg_val >>= field->shift;
2454 	*val = reg_val;
2455 
2456 	return ret;
2457 }
2458 EXPORT_SYMBOL_GPL(regmap_field_read);
2459 
2460 /**
2461  * regmap_fields_read(): Read a value to a single register field with port ID
2462  *
2463  * @field: Register field to read from
2464  * @id: port ID
2465  * @val: Pointer to store read value
2466  *
2467  * A value of zero will be returned on success, a negative errno will
2468  * be returned in error cases.
2469  */
2470 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2471 		       unsigned int *val)
2472 {
2473 	int ret;
2474 	unsigned int reg_val;
2475 
2476 	if (id >= field->id_size)
2477 		return -EINVAL;
2478 
2479 	ret = regmap_read(field->regmap,
2480 			  field->reg + (field->id_offset * id),
2481 			  &reg_val);
2482 	if (ret != 0)
2483 		return ret;
2484 
2485 	reg_val &= field->mask;
2486 	reg_val >>= field->shift;
2487 	*val = reg_val;
2488 
2489 	return ret;
2490 }
2491 EXPORT_SYMBOL_GPL(regmap_fields_read);
2492 
2493 /**
2494  * regmap_bulk_read(): Read multiple registers from the device
2495  *
2496  * @map: Register map to read from
2497  * @reg: First register to be read from
2498  * @val: Pointer to store read value, in native register size for device
2499  * @val_count: Number of registers to read
2500  *
2501  * A value of zero will be returned on success, a negative errno will
2502  * be returned in error cases.
2503  */
2504 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2505 		     size_t val_count)
2506 {
2507 	int ret, i;
2508 	size_t val_bytes = map->format.val_bytes;
2509 	bool vol = regmap_volatile_range(map, reg, val_count);
2510 
2511 	if (!IS_ALIGNED(reg, map->reg_stride))
2512 		return -EINVAL;
2513 
2514 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2515 		/*
2516 		 * Some devices does not support bulk read, for
2517 		 * them we have a series of single read operations.
2518 		 */
2519 		size_t total_size = val_bytes * val_count;
2520 
2521 		if (!map->use_single_read &&
2522 		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2523 			ret = regmap_raw_read(map, reg, val,
2524 					      val_bytes * val_count);
2525 			if (ret != 0)
2526 				return ret;
2527 		} else {
2528 			/*
2529 			 * Some devices do not support bulk read or do not
2530 			 * support large bulk reads, for them we have a series
2531 			 * of read operations.
2532 			 */
2533 			int chunk_stride = map->reg_stride;
2534 			size_t chunk_size = val_bytes;
2535 			size_t chunk_count = val_count;
2536 
2537 			if (!map->use_single_read) {
2538 				chunk_size = map->max_raw_read;
2539 				if (chunk_size % val_bytes)
2540 					chunk_size -= chunk_size % val_bytes;
2541 				chunk_count = total_size / chunk_size;
2542 				chunk_stride *= chunk_size / val_bytes;
2543 			}
2544 
2545 			/* Read bytes that fit into a multiple of chunk_size */
2546 			for (i = 0; i < chunk_count; i++) {
2547 				ret = regmap_raw_read(map,
2548 						      reg + (i * chunk_stride),
2549 						      val + (i * chunk_size),
2550 						      chunk_size);
2551 				if (ret != 0)
2552 					return ret;
2553 			}
2554 
2555 			/* Read remaining bytes */
2556 			if (chunk_size * i < total_size) {
2557 				ret = regmap_raw_read(map,
2558 						      reg + (i * chunk_stride),
2559 						      val + (i * chunk_size),
2560 						      total_size - i * chunk_size);
2561 				if (ret != 0)
2562 					return ret;
2563 			}
2564 		}
2565 
2566 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2567 			map->format.parse_inplace(val + i);
2568 	} else {
2569 		for (i = 0; i < val_count; i++) {
2570 			unsigned int ival;
2571 			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2572 					  &ival);
2573 			if (ret != 0)
2574 				return ret;
2575 
2576 			if (map->format.format_val) {
2577 				map->format.format_val(val + (i * val_bytes), ival, 0);
2578 			} else {
2579 				/* Devices providing read and write
2580 				 * operations can use the bulk I/O
2581 				 * functions if they define a val_bytes,
2582 				 * we assume that the values are native
2583 				 * endian.
2584 				 */
2585 #ifdef CONFIG_64BIT
2586 				u64 *u64 = val;
2587 #endif
2588 				u32 *u32 = val;
2589 				u16 *u16 = val;
2590 				u8 *u8 = val;
2591 
2592 				switch (map->format.val_bytes) {
2593 #ifdef CONFIG_64BIT
2594 				case 8:
2595 					u64[i] = ival;
2596 					break;
2597 #endif
2598 				case 4:
2599 					u32[i] = ival;
2600 					break;
2601 				case 2:
2602 					u16[i] = ival;
2603 					break;
2604 				case 1:
2605 					u8[i] = ival;
2606 					break;
2607 				default:
2608 					return -EINVAL;
2609 				}
2610 			}
2611 		}
2612 	}
2613 
2614 	return 0;
2615 }
2616 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2617 
2618 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2619 			       unsigned int mask, unsigned int val,
2620 			       bool *change, bool force_write)
2621 {
2622 	int ret;
2623 	unsigned int tmp, orig;
2624 
2625 	if (change)
2626 		*change = false;
2627 
2628 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2629 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2630 		if (ret == 0 && change)
2631 			*change = true;
2632 	} else {
2633 		ret = _regmap_read(map, reg, &orig);
2634 		if (ret != 0)
2635 			return ret;
2636 
2637 		tmp = orig & ~mask;
2638 		tmp |= val & mask;
2639 
2640 		if (force_write || (tmp != orig)) {
2641 			ret = _regmap_write(map, reg, tmp);
2642 			if (ret == 0 && change)
2643 				*change = true;
2644 		}
2645 	}
2646 
2647 	return ret;
2648 }
2649 
2650 /**
2651  * regmap_update_bits_base:
2652  *	Perform a read/modify/write cycle on the
2653  *	register map with change, async, force option
2654  *
2655  * @map: Register map to update
2656  * @reg: Register to update
2657  * @mask: Bitmask to change
2658  * @val: New value for bitmask
2659  * @change: Boolean indicating if a write was done
2660  * @async: Boolean indicating asynchronously
2661  * @force: Boolean indicating use force update
2662  *
2663  * if async was true,
2664  * With most buses the read must be done synchronously so this is most
2665  * useful for devices with a cache which do not need to interact with
2666  * the hardware to determine the current register value.
2667  *
2668  * Returns zero for success, a negative number on error.
2669  */
2670 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2671 			    unsigned int mask, unsigned int val,
2672 			    bool *change, bool async, bool force)
2673 {
2674 	int ret;
2675 
2676 	map->lock(map->lock_arg);
2677 
2678 	map->async = async;
2679 
2680 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2681 
2682 	map->async = false;
2683 
2684 	map->unlock(map->lock_arg);
2685 
2686 	return ret;
2687 }
2688 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2689 
2690 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2691 {
2692 	struct regmap *map = async->map;
2693 	bool wake;
2694 
2695 	trace_regmap_async_io_complete(map);
2696 
2697 	spin_lock(&map->async_lock);
2698 	list_move(&async->list, &map->async_free);
2699 	wake = list_empty(&map->async_list);
2700 
2701 	if (ret != 0)
2702 		map->async_ret = ret;
2703 
2704 	spin_unlock(&map->async_lock);
2705 
2706 	if (wake)
2707 		wake_up(&map->async_waitq);
2708 }
2709 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2710 
2711 static int regmap_async_is_done(struct regmap *map)
2712 {
2713 	unsigned long flags;
2714 	int ret;
2715 
2716 	spin_lock_irqsave(&map->async_lock, flags);
2717 	ret = list_empty(&map->async_list);
2718 	spin_unlock_irqrestore(&map->async_lock, flags);
2719 
2720 	return ret;
2721 }
2722 
2723 /**
2724  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2725  *
2726  * @map: Map to operate on.
2727  *
2728  * Blocks until any pending asynchronous I/O has completed.  Returns
2729  * an error code for any failed I/O operations.
2730  */
2731 int regmap_async_complete(struct regmap *map)
2732 {
2733 	unsigned long flags;
2734 	int ret;
2735 
2736 	/* Nothing to do with no async support */
2737 	if (!map->bus || !map->bus->async_write)
2738 		return 0;
2739 
2740 	trace_regmap_async_complete_start(map);
2741 
2742 	wait_event(map->async_waitq, regmap_async_is_done(map));
2743 
2744 	spin_lock_irqsave(&map->async_lock, flags);
2745 	ret = map->async_ret;
2746 	map->async_ret = 0;
2747 	spin_unlock_irqrestore(&map->async_lock, flags);
2748 
2749 	trace_regmap_async_complete_done(map);
2750 
2751 	return ret;
2752 }
2753 EXPORT_SYMBOL_GPL(regmap_async_complete);
2754 
2755 /**
2756  * regmap_register_patch: Register and apply register updates to be applied
2757  *                        on device initialistion
2758  *
2759  * @map: Register map to apply updates to.
2760  * @regs: Values to update.
2761  * @num_regs: Number of entries in regs.
2762  *
2763  * Register a set of register updates to be applied to the device
2764  * whenever the device registers are synchronised with the cache and
2765  * apply them immediately.  Typically this is used to apply
2766  * corrections to be applied to the device defaults on startup, such
2767  * as the updates some vendors provide to undocumented registers.
2768  *
2769  * The caller must ensure that this function cannot be called
2770  * concurrently with either itself or regcache_sync().
2771  */
2772 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2773 			  int num_regs)
2774 {
2775 	struct reg_sequence *p;
2776 	int ret;
2777 	bool bypass;
2778 
2779 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2780 	    num_regs))
2781 		return 0;
2782 
2783 	p = krealloc(map->patch,
2784 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2785 		     GFP_KERNEL);
2786 	if (p) {
2787 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2788 		map->patch = p;
2789 		map->patch_regs += num_regs;
2790 	} else {
2791 		return -ENOMEM;
2792 	}
2793 
2794 	map->lock(map->lock_arg);
2795 
2796 	bypass = map->cache_bypass;
2797 
2798 	map->cache_bypass = true;
2799 	map->async = true;
2800 
2801 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2802 
2803 	map->async = false;
2804 	map->cache_bypass = bypass;
2805 
2806 	map->unlock(map->lock_arg);
2807 
2808 	regmap_async_complete(map);
2809 
2810 	return ret;
2811 }
2812 EXPORT_SYMBOL_GPL(regmap_register_patch);
2813 
2814 /*
2815  * regmap_get_val_bytes(): Report the size of a register value
2816  *
2817  * Report the size of a register value, mainly intended to for use by
2818  * generic infrastructure built on top of regmap.
2819  */
2820 int regmap_get_val_bytes(struct regmap *map)
2821 {
2822 	if (map->format.format_write)
2823 		return -EINVAL;
2824 
2825 	return map->format.val_bytes;
2826 }
2827 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2828 
2829 /**
2830  * regmap_get_max_register(): Report the max register value
2831  *
2832  * Report the max register value, mainly intended to for use by
2833  * generic infrastructure built on top of regmap.
2834  */
2835 int regmap_get_max_register(struct regmap *map)
2836 {
2837 	return map->max_register ? map->max_register : -EINVAL;
2838 }
2839 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2840 
2841 /**
2842  * regmap_get_reg_stride(): Report the register address stride
2843  *
2844  * Report the register address stride, mainly intended to for use by
2845  * generic infrastructure built on top of regmap.
2846  */
2847 int regmap_get_reg_stride(struct regmap *map)
2848 {
2849 	return map->reg_stride;
2850 }
2851 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2852 
2853 int regmap_parse_val(struct regmap *map, const void *buf,
2854 			unsigned int *val)
2855 {
2856 	if (!map->format.parse_val)
2857 		return -EINVAL;
2858 
2859 	*val = map->format.parse_val(buf);
2860 
2861 	return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(regmap_parse_val);
2864 
2865 static int __init regmap_initcall(void)
2866 {
2867 	regmap_debugfs_initcall();
2868 
2869 	return 0;
2870 }
2871 postcore_initcall(regmap_initcall);
2872