1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Register map access API 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/export.h> 12 #include <linux/mutex.h> 13 #include <linux/err.h> 14 #include <linux/property.h> 15 #include <linux/rbtree.h> 16 #include <linux/sched.h> 17 #include <linux/delay.h> 18 #include <linux/log2.h> 19 #include <linux/hwspinlock.h> 20 #include <asm/unaligned.h> 21 22 #define CREATE_TRACE_POINTS 23 #include "trace.h" 24 25 #include "internal.h" 26 27 /* 28 * Sometimes for failures during very early init the trace 29 * infrastructure isn't available early enough to be used. For this 30 * sort of problem defining LOG_DEVICE will add printks for basic 31 * register I/O on a specific device. 32 */ 33 #undef LOG_DEVICE 34 35 #ifdef LOG_DEVICE 36 static inline bool regmap_should_log(struct regmap *map) 37 { 38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0); 39 } 40 #else 41 static inline bool regmap_should_log(struct regmap *map) { return false; } 42 #endif 43 44 45 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 46 unsigned int mask, unsigned int val, 47 bool *change, bool force_write); 48 49 static int _regmap_bus_reg_read(void *context, unsigned int reg, 50 unsigned int *val); 51 static int _regmap_bus_read(void *context, unsigned int reg, 52 unsigned int *val); 53 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 54 unsigned int val); 55 static int _regmap_bus_reg_write(void *context, unsigned int reg, 56 unsigned int val); 57 static int _regmap_bus_raw_write(void *context, unsigned int reg, 58 unsigned int val); 59 60 bool regmap_reg_in_ranges(unsigned int reg, 61 const struct regmap_range *ranges, 62 unsigned int nranges) 63 { 64 const struct regmap_range *r; 65 int i; 66 67 for (i = 0, r = ranges; i < nranges; i++, r++) 68 if (regmap_reg_in_range(reg, r)) 69 return true; 70 return false; 71 } 72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 73 74 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 75 const struct regmap_access_table *table) 76 { 77 /* Check "no ranges" first */ 78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 79 return false; 80 81 /* In case zero "yes ranges" are supplied, any reg is OK */ 82 if (!table->n_yes_ranges) 83 return true; 84 85 return regmap_reg_in_ranges(reg, table->yes_ranges, 86 table->n_yes_ranges); 87 } 88 EXPORT_SYMBOL_GPL(regmap_check_range_table); 89 90 bool regmap_writeable(struct regmap *map, unsigned int reg) 91 { 92 if (map->max_register && reg > map->max_register) 93 return false; 94 95 if (map->writeable_reg) 96 return map->writeable_reg(map->dev, reg); 97 98 if (map->wr_table) 99 return regmap_check_range_table(map, reg, map->wr_table); 100 101 return true; 102 } 103 104 bool regmap_cached(struct regmap *map, unsigned int reg) 105 { 106 int ret; 107 unsigned int val; 108 109 if (map->cache_type == REGCACHE_NONE) 110 return false; 111 112 if (!map->cache_ops) 113 return false; 114 115 if (map->max_register && reg > map->max_register) 116 return false; 117 118 map->lock(map->lock_arg); 119 ret = regcache_read(map, reg, &val); 120 map->unlock(map->lock_arg); 121 if (ret) 122 return false; 123 124 return true; 125 } 126 127 bool regmap_readable(struct regmap *map, unsigned int reg) 128 { 129 if (!map->reg_read) 130 return false; 131 132 if (map->max_register && reg > map->max_register) 133 return false; 134 135 if (map->format.format_write) 136 return false; 137 138 if (map->readable_reg) 139 return map->readable_reg(map->dev, reg); 140 141 if (map->rd_table) 142 return regmap_check_range_table(map, reg, map->rd_table); 143 144 return true; 145 } 146 147 bool regmap_volatile(struct regmap *map, unsigned int reg) 148 { 149 if (!map->format.format_write && !regmap_readable(map, reg)) 150 return false; 151 152 if (map->volatile_reg) 153 return map->volatile_reg(map->dev, reg); 154 155 if (map->volatile_table) 156 return regmap_check_range_table(map, reg, map->volatile_table); 157 158 if (map->cache_ops) 159 return false; 160 else 161 return true; 162 } 163 164 bool regmap_precious(struct regmap *map, unsigned int reg) 165 { 166 if (!regmap_readable(map, reg)) 167 return false; 168 169 if (map->precious_reg) 170 return map->precious_reg(map->dev, reg); 171 172 if (map->precious_table) 173 return regmap_check_range_table(map, reg, map->precious_table); 174 175 return false; 176 } 177 178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg) 179 { 180 if (map->writeable_noinc_reg) 181 return map->writeable_noinc_reg(map->dev, reg); 182 183 if (map->wr_noinc_table) 184 return regmap_check_range_table(map, reg, map->wr_noinc_table); 185 186 return true; 187 } 188 189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg) 190 { 191 if (map->readable_noinc_reg) 192 return map->readable_noinc_reg(map->dev, reg); 193 194 if (map->rd_noinc_table) 195 return regmap_check_range_table(map, reg, map->rd_noinc_table); 196 197 return true; 198 } 199 200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 201 size_t num) 202 { 203 unsigned int i; 204 205 for (i = 0; i < num; i++) 206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i))) 207 return false; 208 209 return true; 210 } 211 212 static void regmap_format_12_20_write(struct regmap *map, 213 unsigned int reg, unsigned int val) 214 { 215 u8 *out = map->work_buf; 216 217 out[0] = reg >> 4; 218 out[1] = (reg << 4) | (val >> 16); 219 out[2] = val >> 8; 220 out[3] = val; 221 } 222 223 224 static void regmap_format_2_6_write(struct regmap *map, 225 unsigned int reg, unsigned int val) 226 { 227 u8 *out = map->work_buf; 228 229 *out = (reg << 6) | val; 230 } 231 232 static void regmap_format_4_12_write(struct regmap *map, 233 unsigned int reg, unsigned int val) 234 { 235 __be16 *out = map->work_buf; 236 *out = cpu_to_be16((reg << 12) | val); 237 } 238 239 static void regmap_format_7_9_write(struct regmap *map, 240 unsigned int reg, unsigned int val) 241 { 242 __be16 *out = map->work_buf; 243 *out = cpu_to_be16((reg << 9) | val); 244 } 245 246 static void regmap_format_7_17_write(struct regmap *map, 247 unsigned int reg, unsigned int val) 248 { 249 u8 *out = map->work_buf; 250 251 out[2] = val; 252 out[1] = val >> 8; 253 out[0] = (val >> 16) | (reg << 1); 254 } 255 256 static void regmap_format_10_14_write(struct regmap *map, 257 unsigned int reg, unsigned int val) 258 { 259 u8 *out = map->work_buf; 260 261 out[2] = val; 262 out[1] = (val >> 8) | (reg << 6); 263 out[0] = reg >> 2; 264 } 265 266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 267 { 268 u8 *b = buf; 269 270 b[0] = val << shift; 271 } 272 273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 274 { 275 put_unaligned_be16(val << shift, buf); 276 } 277 278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) 279 { 280 put_unaligned_le16(val << shift, buf); 281 } 282 283 static void regmap_format_16_native(void *buf, unsigned int val, 284 unsigned int shift) 285 { 286 u16 v = val << shift; 287 288 memcpy(buf, &v, sizeof(v)); 289 } 290 291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift) 292 { 293 put_unaligned_be24(val << shift, buf); 294 } 295 296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 297 { 298 put_unaligned_be32(val << shift, buf); 299 } 300 301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) 302 { 303 put_unaligned_le32(val << shift, buf); 304 } 305 306 static void regmap_format_32_native(void *buf, unsigned int val, 307 unsigned int shift) 308 { 309 u32 v = val << shift; 310 311 memcpy(buf, &v, sizeof(v)); 312 } 313 314 #ifdef CONFIG_64BIT 315 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift) 316 { 317 put_unaligned_be64((u64) val << shift, buf); 318 } 319 320 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift) 321 { 322 put_unaligned_le64((u64) val << shift, buf); 323 } 324 325 static void regmap_format_64_native(void *buf, unsigned int val, 326 unsigned int shift) 327 { 328 u64 v = (u64) val << shift; 329 330 memcpy(buf, &v, sizeof(v)); 331 } 332 #endif 333 334 static void regmap_parse_inplace_noop(void *buf) 335 { 336 } 337 338 static unsigned int regmap_parse_8(const void *buf) 339 { 340 const u8 *b = buf; 341 342 return b[0]; 343 } 344 345 static unsigned int regmap_parse_16_be(const void *buf) 346 { 347 return get_unaligned_be16(buf); 348 } 349 350 static unsigned int regmap_parse_16_le(const void *buf) 351 { 352 return get_unaligned_le16(buf); 353 } 354 355 static void regmap_parse_16_be_inplace(void *buf) 356 { 357 u16 v = get_unaligned_be16(buf); 358 359 memcpy(buf, &v, sizeof(v)); 360 } 361 362 static void regmap_parse_16_le_inplace(void *buf) 363 { 364 u16 v = get_unaligned_le16(buf); 365 366 memcpy(buf, &v, sizeof(v)); 367 } 368 369 static unsigned int regmap_parse_16_native(const void *buf) 370 { 371 u16 v; 372 373 memcpy(&v, buf, sizeof(v)); 374 return v; 375 } 376 377 static unsigned int regmap_parse_24_be(const void *buf) 378 { 379 return get_unaligned_be24(buf); 380 } 381 382 static unsigned int regmap_parse_32_be(const void *buf) 383 { 384 return get_unaligned_be32(buf); 385 } 386 387 static unsigned int regmap_parse_32_le(const void *buf) 388 { 389 return get_unaligned_le32(buf); 390 } 391 392 static void regmap_parse_32_be_inplace(void *buf) 393 { 394 u32 v = get_unaligned_be32(buf); 395 396 memcpy(buf, &v, sizeof(v)); 397 } 398 399 static void regmap_parse_32_le_inplace(void *buf) 400 { 401 u32 v = get_unaligned_le32(buf); 402 403 memcpy(buf, &v, sizeof(v)); 404 } 405 406 static unsigned int regmap_parse_32_native(const void *buf) 407 { 408 u32 v; 409 410 memcpy(&v, buf, sizeof(v)); 411 return v; 412 } 413 414 #ifdef CONFIG_64BIT 415 static unsigned int regmap_parse_64_be(const void *buf) 416 { 417 return get_unaligned_be64(buf); 418 } 419 420 static unsigned int regmap_parse_64_le(const void *buf) 421 { 422 return get_unaligned_le64(buf); 423 } 424 425 static void regmap_parse_64_be_inplace(void *buf) 426 { 427 u64 v = get_unaligned_be64(buf); 428 429 memcpy(buf, &v, sizeof(v)); 430 } 431 432 static void regmap_parse_64_le_inplace(void *buf) 433 { 434 u64 v = get_unaligned_le64(buf); 435 436 memcpy(buf, &v, sizeof(v)); 437 } 438 439 static unsigned int regmap_parse_64_native(const void *buf) 440 { 441 u64 v; 442 443 memcpy(&v, buf, sizeof(v)); 444 return v; 445 } 446 #endif 447 448 static void regmap_lock_hwlock(void *__map) 449 { 450 struct regmap *map = __map; 451 452 hwspin_lock_timeout(map->hwlock, UINT_MAX); 453 } 454 455 static void regmap_lock_hwlock_irq(void *__map) 456 { 457 struct regmap *map = __map; 458 459 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX); 460 } 461 462 static void regmap_lock_hwlock_irqsave(void *__map) 463 { 464 struct regmap *map = __map; 465 466 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX, 467 &map->spinlock_flags); 468 } 469 470 static void regmap_unlock_hwlock(void *__map) 471 { 472 struct regmap *map = __map; 473 474 hwspin_unlock(map->hwlock); 475 } 476 477 static void regmap_unlock_hwlock_irq(void *__map) 478 { 479 struct regmap *map = __map; 480 481 hwspin_unlock_irq(map->hwlock); 482 } 483 484 static void regmap_unlock_hwlock_irqrestore(void *__map) 485 { 486 struct regmap *map = __map; 487 488 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags); 489 } 490 491 static void regmap_lock_unlock_none(void *__map) 492 { 493 494 } 495 496 static void regmap_lock_mutex(void *__map) 497 { 498 struct regmap *map = __map; 499 mutex_lock(&map->mutex); 500 } 501 502 static void regmap_unlock_mutex(void *__map) 503 { 504 struct regmap *map = __map; 505 mutex_unlock(&map->mutex); 506 } 507 508 static void regmap_lock_spinlock(void *__map) 509 __acquires(&map->spinlock) 510 { 511 struct regmap *map = __map; 512 unsigned long flags; 513 514 spin_lock_irqsave(&map->spinlock, flags); 515 map->spinlock_flags = flags; 516 } 517 518 static void regmap_unlock_spinlock(void *__map) 519 __releases(&map->spinlock) 520 { 521 struct regmap *map = __map; 522 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 523 } 524 525 static void regmap_lock_raw_spinlock(void *__map) 526 __acquires(&map->raw_spinlock) 527 { 528 struct regmap *map = __map; 529 unsigned long flags; 530 531 raw_spin_lock_irqsave(&map->raw_spinlock, flags); 532 map->raw_spinlock_flags = flags; 533 } 534 535 static void regmap_unlock_raw_spinlock(void *__map) 536 __releases(&map->raw_spinlock) 537 { 538 struct regmap *map = __map; 539 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags); 540 } 541 542 static void dev_get_regmap_release(struct device *dev, void *res) 543 { 544 /* 545 * We don't actually have anything to do here; the goal here 546 * is not to manage the regmap but to provide a simple way to 547 * get the regmap back given a struct device. 548 */ 549 } 550 551 static bool _regmap_range_add(struct regmap *map, 552 struct regmap_range_node *data) 553 { 554 struct rb_root *root = &map->range_tree; 555 struct rb_node **new = &(root->rb_node), *parent = NULL; 556 557 while (*new) { 558 struct regmap_range_node *this = 559 rb_entry(*new, struct regmap_range_node, node); 560 561 parent = *new; 562 if (data->range_max < this->range_min) 563 new = &((*new)->rb_left); 564 else if (data->range_min > this->range_max) 565 new = &((*new)->rb_right); 566 else 567 return false; 568 } 569 570 rb_link_node(&data->node, parent, new); 571 rb_insert_color(&data->node, root); 572 573 return true; 574 } 575 576 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 577 unsigned int reg) 578 { 579 struct rb_node *node = map->range_tree.rb_node; 580 581 while (node) { 582 struct regmap_range_node *this = 583 rb_entry(node, struct regmap_range_node, node); 584 585 if (reg < this->range_min) 586 node = node->rb_left; 587 else if (reg > this->range_max) 588 node = node->rb_right; 589 else 590 return this; 591 } 592 593 return NULL; 594 } 595 596 static void regmap_range_exit(struct regmap *map) 597 { 598 struct rb_node *next; 599 struct regmap_range_node *range_node; 600 601 next = rb_first(&map->range_tree); 602 while (next) { 603 range_node = rb_entry(next, struct regmap_range_node, node); 604 next = rb_next(&range_node->node); 605 rb_erase(&range_node->node, &map->range_tree); 606 kfree(range_node); 607 } 608 609 kfree(map->selector_work_buf); 610 } 611 612 static int regmap_set_name(struct regmap *map, const struct regmap_config *config) 613 { 614 if (config->name) { 615 const char *name = kstrdup_const(config->name, GFP_KERNEL); 616 617 if (!name) 618 return -ENOMEM; 619 620 kfree_const(map->name); 621 map->name = name; 622 } 623 624 return 0; 625 } 626 627 int regmap_attach_dev(struct device *dev, struct regmap *map, 628 const struct regmap_config *config) 629 { 630 struct regmap **m; 631 int ret; 632 633 map->dev = dev; 634 635 ret = regmap_set_name(map, config); 636 if (ret) 637 return ret; 638 639 regmap_debugfs_exit(map); 640 regmap_debugfs_init(map); 641 642 /* Add a devres resource for dev_get_regmap() */ 643 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 644 if (!m) { 645 regmap_debugfs_exit(map); 646 return -ENOMEM; 647 } 648 *m = map; 649 devres_add(dev, m); 650 651 return 0; 652 } 653 EXPORT_SYMBOL_GPL(regmap_attach_dev); 654 655 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, 656 const struct regmap_config *config) 657 { 658 enum regmap_endian endian; 659 660 /* Retrieve the endianness specification from the regmap config */ 661 endian = config->reg_format_endian; 662 663 /* If the regmap config specified a non-default value, use that */ 664 if (endian != REGMAP_ENDIAN_DEFAULT) 665 return endian; 666 667 /* Retrieve the endianness specification from the bus config */ 668 if (bus && bus->reg_format_endian_default) 669 endian = bus->reg_format_endian_default; 670 671 /* If the bus specified a non-default value, use that */ 672 if (endian != REGMAP_ENDIAN_DEFAULT) 673 return endian; 674 675 /* Use this if no other value was found */ 676 return REGMAP_ENDIAN_BIG; 677 } 678 679 enum regmap_endian regmap_get_val_endian(struct device *dev, 680 const struct regmap_bus *bus, 681 const struct regmap_config *config) 682 { 683 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 684 enum regmap_endian endian; 685 686 /* Retrieve the endianness specification from the regmap config */ 687 endian = config->val_format_endian; 688 689 /* If the regmap config specified a non-default value, use that */ 690 if (endian != REGMAP_ENDIAN_DEFAULT) 691 return endian; 692 693 /* If the firmware node exist try to get endianness from it */ 694 if (fwnode_property_read_bool(fwnode, "big-endian")) 695 endian = REGMAP_ENDIAN_BIG; 696 else if (fwnode_property_read_bool(fwnode, "little-endian")) 697 endian = REGMAP_ENDIAN_LITTLE; 698 else if (fwnode_property_read_bool(fwnode, "native-endian")) 699 endian = REGMAP_ENDIAN_NATIVE; 700 701 /* If the endianness was specified in fwnode, use that */ 702 if (endian != REGMAP_ENDIAN_DEFAULT) 703 return endian; 704 705 /* Retrieve the endianness specification from the bus config */ 706 if (bus && bus->val_format_endian_default) 707 endian = bus->val_format_endian_default; 708 709 /* If the bus specified a non-default value, use that */ 710 if (endian != REGMAP_ENDIAN_DEFAULT) 711 return endian; 712 713 /* Use this if no other value was found */ 714 return REGMAP_ENDIAN_BIG; 715 } 716 EXPORT_SYMBOL_GPL(regmap_get_val_endian); 717 718 struct regmap *__regmap_init(struct device *dev, 719 const struct regmap_bus *bus, 720 void *bus_context, 721 const struct regmap_config *config, 722 struct lock_class_key *lock_key, 723 const char *lock_name) 724 { 725 struct regmap *map; 726 int ret = -EINVAL; 727 enum regmap_endian reg_endian, val_endian; 728 int i, j; 729 730 if (!config) 731 goto err; 732 733 map = kzalloc(sizeof(*map), GFP_KERNEL); 734 if (map == NULL) { 735 ret = -ENOMEM; 736 goto err; 737 } 738 739 ret = regmap_set_name(map, config); 740 if (ret) 741 goto err_map; 742 743 ret = -EINVAL; /* Later error paths rely on this */ 744 745 if (config->disable_locking) { 746 map->lock = map->unlock = regmap_lock_unlock_none; 747 map->can_sleep = config->can_sleep; 748 regmap_debugfs_disable(map); 749 } else if (config->lock && config->unlock) { 750 map->lock = config->lock; 751 map->unlock = config->unlock; 752 map->lock_arg = config->lock_arg; 753 map->can_sleep = config->can_sleep; 754 } else if (config->use_hwlock) { 755 map->hwlock = hwspin_lock_request_specific(config->hwlock_id); 756 if (!map->hwlock) { 757 ret = -ENXIO; 758 goto err_name; 759 } 760 761 switch (config->hwlock_mode) { 762 case HWLOCK_IRQSTATE: 763 map->lock = regmap_lock_hwlock_irqsave; 764 map->unlock = regmap_unlock_hwlock_irqrestore; 765 break; 766 case HWLOCK_IRQ: 767 map->lock = regmap_lock_hwlock_irq; 768 map->unlock = regmap_unlock_hwlock_irq; 769 break; 770 default: 771 map->lock = regmap_lock_hwlock; 772 map->unlock = regmap_unlock_hwlock; 773 break; 774 } 775 776 map->lock_arg = map; 777 } else { 778 if ((bus && bus->fast_io) || 779 config->fast_io) { 780 if (config->use_raw_spinlock) { 781 raw_spin_lock_init(&map->raw_spinlock); 782 map->lock = regmap_lock_raw_spinlock; 783 map->unlock = regmap_unlock_raw_spinlock; 784 lockdep_set_class_and_name(&map->raw_spinlock, 785 lock_key, lock_name); 786 } else { 787 spin_lock_init(&map->spinlock); 788 map->lock = regmap_lock_spinlock; 789 map->unlock = regmap_unlock_spinlock; 790 lockdep_set_class_and_name(&map->spinlock, 791 lock_key, lock_name); 792 } 793 } else { 794 mutex_init(&map->mutex); 795 map->lock = regmap_lock_mutex; 796 map->unlock = regmap_unlock_mutex; 797 map->can_sleep = true; 798 lockdep_set_class_and_name(&map->mutex, 799 lock_key, lock_name); 800 } 801 map->lock_arg = map; 802 } 803 804 /* 805 * When we write in fast-paths with regmap_bulk_write() don't allocate 806 * scratch buffers with sleeping allocations. 807 */ 808 if ((bus && bus->fast_io) || config->fast_io) 809 map->alloc_flags = GFP_ATOMIC; 810 else 811 map->alloc_flags = GFP_KERNEL; 812 813 map->reg_base = config->reg_base; 814 815 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); 816 map->format.pad_bytes = config->pad_bits / 8; 817 map->format.reg_downshift = config->reg_downshift; 818 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); 819 map->format.buf_size = DIV_ROUND_UP(config->reg_bits + 820 config->val_bits + config->pad_bits, 8); 821 map->reg_shift = config->pad_bits % 8; 822 if (config->reg_stride) 823 map->reg_stride = config->reg_stride; 824 else 825 map->reg_stride = 1; 826 if (is_power_of_2(map->reg_stride)) 827 map->reg_stride_order = ilog2(map->reg_stride); 828 else 829 map->reg_stride_order = -1; 830 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read)); 831 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write)); 832 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write)); 833 if (bus) { 834 map->max_raw_read = bus->max_raw_read; 835 map->max_raw_write = bus->max_raw_write; 836 } else if (config->max_raw_read && config->max_raw_write) { 837 map->max_raw_read = config->max_raw_read; 838 map->max_raw_write = config->max_raw_write; 839 } 840 map->dev = dev; 841 map->bus = bus; 842 map->bus_context = bus_context; 843 map->max_register = config->max_register; 844 map->wr_table = config->wr_table; 845 map->rd_table = config->rd_table; 846 map->volatile_table = config->volatile_table; 847 map->precious_table = config->precious_table; 848 map->wr_noinc_table = config->wr_noinc_table; 849 map->rd_noinc_table = config->rd_noinc_table; 850 map->writeable_reg = config->writeable_reg; 851 map->readable_reg = config->readable_reg; 852 map->volatile_reg = config->volatile_reg; 853 map->precious_reg = config->precious_reg; 854 map->writeable_noinc_reg = config->writeable_noinc_reg; 855 map->readable_noinc_reg = config->readable_noinc_reg; 856 map->cache_type = config->cache_type; 857 858 spin_lock_init(&map->async_lock); 859 INIT_LIST_HEAD(&map->async_list); 860 INIT_LIST_HEAD(&map->async_free); 861 init_waitqueue_head(&map->async_waitq); 862 863 if (config->read_flag_mask || 864 config->write_flag_mask || 865 config->zero_flag_mask) { 866 map->read_flag_mask = config->read_flag_mask; 867 map->write_flag_mask = config->write_flag_mask; 868 } else if (bus) { 869 map->read_flag_mask = bus->read_flag_mask; 870 } 871 872 if (config && config->read && config->write) { 873 map->reg_read = _regmap_bus_read; 874 if (config->reg_update_bits) 875 map->reg_update_bits = config->reg_update_bits; 876 877 /* Bulk read/write */ 878 map->read = config->read; 879 map->write = config->write; 880 881 reg_endian = REGMAP_ENDIAN_NATIVE; 882 val_endian = REGMAP_ENDIAN_NATIVE; 883 } else if (!bus) { 884 map->reg_read = config->reg_read; 885 map->reg_write = config->reg_write; 886 map->reg_update_bits = config->reg_update_bits; 887 888 map->defer_caching = false; 889 goto skip_format_initialization; 890 } else if (!bus->read || !bus->write) { 891 map->reg_read = _regmap_bus_reg_read; 892 map->reg_write = _regmap_bus_reg_write; 893 map->reg_update_bits = bus->reg_update_bits; 894 895 map->defer_caching = false; 896 goto skip_format_initialization; 897 } else { 898 map->reg_read = _regmap_bus_read; 899 map->reg_update_bits = bus->reg_update_bits; 900 /* Bulk read/write */ 901 map->read = bus->read; 902 map->write = bus->write; 903 904 reg_endian = regmap_get_reg_endian(bus, config); 905 val_endian = regmap_get_val_endian(dev, bus, config); 906 } 907 908 switch (config->reg_bits + map->reg_shift) { 909 case 2: 910 switch (config->val_bits) { 911 case 6: 912 map->format.format_write = regmap_format_2_6_write; 913 break; 914 default: 915 goto err_hwlock; 916 } 917 break; 918 919 case 4: 920 switch (config->val_bits) { 921 case 12: 922 map->format.format_write = regmap_format_4_12_write; 923 break; 924 default: 925 goto err_hwlock; 926 } 927 break; 928 929 case 7: 930 switch (config->val_bits) { 931 case 9: 932 map->format.format_write = regmap_format_7_9_write; 933 break; 934 case 17: 935 map->format.format_write = regmap_format_7_17_write; 936 break; 937 default: 938 goto err_hwlock; 939 } 940 break; 941 942 case 10: 943 switch (config->val_bits) { 944 case 14: 945 map->format.format_write = regmap_format_10_14_write; 946 break; 947 default: 948 goto err_hwlock; 949 } 950 break; 951 952 case 12: 953 switch (config->val_bits) { 954 case 20: 955 map->format.format_write = regmap_format_12_20_write; 956 break; 957 default: 958 goto err_hwlock; 959 } 960 break; 961 962 case 8: 963 map->format.format_reg = regmap_format_8; 964 break; 965 966 case 16: 967 switch (reg_endian) { 968 case REGMAP_ENDIAN_BIG: 969 map->format.format_reg = regmap_format_16_be; 970 break; 971 case REGMAP_ENDIAN_LITTLE: 972 map->format.format_reg = regmap_format_16_le; 973 break; 974 case REGMAP_ENDIAN_NATIVE: 975 map->format.format_reg = regmap_format_16_native; 976 break; 977 default: 978 goto err_hwlock; 979 } 980 break; 981 982 case 24: 983 switch (reg_endian) { 984 case REGMAP_ENDIAN_BIG: 985 map->format.format_reg = regmap_format_24_be; 986 break; 987 default: 988 goto err_hwlock; 989 } 990 break; 991 992 case 32: 993 switch (reg_endian) { 994 case REGMAP_ENDIAN_BIG: 995 map->format.format_reg = regmap_format_32_be; 996 break; 997 case REGMAP_ENDIAN_LITTLE: 998 map->format.format_reg = regmap_format_32_le; 999 break; 1000 case REGMAP_ENDIAN_NATIVE: 1001 map->format.format_reg = regmap_format_32_native; 1002 break; 1003 default: 1004 goto err_hwlock; 1005 } 1006 break; 1007 1008 #ifdef CONFIG_64BIT 1009 case 64: 1010 switch (reg_endian) { 1011 case REGMAP_ENDIAN_BIG: 1012 map->format.format_reg = regmap_format_64_be; 1013 break; 1014 case REGMAP_ENDIAN_LITTLE: 1015 map->format.format_reg = regmap_format_64_le; 1016 break; 1017 case REGMAP_ENDIAN_NATIVE: 1018 map->format.format_reg = regmap_format_64_native; 1019 break; 1020 default: 1021 goto err_hwlock; 1022 } 1023 break; 1024 #endif 1025 1026 default: 1027 goto err_hwlock; 1028 } 1029 1030 if (val_endian == REGMAP_ENDIAN_NATIVE) 1031 map->format.parse_inplace = regmap_parse_inplace_noop; 1032 1033 switch (config->val_bits) { 1034 case 8: 1035 map->format.format_val = regmap_format_8; 1036 map->format.parse_val = regmap_parse_8; 1037 map->format.parse_inplace = regmap_parse_inplace_noop; 1038 break; 1039 case 16: 1040 switch (val_endian) { 1041 case REGMAP_ENDIAN_BIG: 1042 map->format.format_val = regmap_format_16_be; 1043 map->format.parse_val = regmap_parse_16_be; 1044 map->format.parse_inplace = regmap_parse_16_be_inplace; 1045 break; 1046 case REGMAP_ENDIAN_LITTLE: 1047 map->format.format_val = regmap_format_16_le; 1048 map->format.parse_val = regmap_parse_16_le; 1049 map->format.parse_inplace = regmap_parse_16_le_inplace; 1050 break; 1051 case REGMAP_ENDIAN_NATIVE: 1052 map->format.format_val = regmap_format_16_native; 1053 map->format.parse_val = regmap_parse_16_native; 1054 break; 1055 default: 1056 goto err_hwlock; 1057 } 1058 break; 1059 case 24: 1060 switch (val_endian) { 1061 case REGMAP_ENDIAN_BIG: 1062 map->format.format_val = regmap_format_24_be; 1063 map->format.parse_val = regmap_parse_24_be; 1064 break; 1065 default: 1066 goto err_hwlock; 1067 } 1068 break; 1069 case 32: 1070 switch (val_endian) { 1071 case REGMAP_ENDIAN_BIG: 1072 map->format.format_val = regmap_format_32_be; 1073 map->format.parse_val = regmap_parse_32_be; 1074 map->format.parse_inplace = regmap_parse_32_be_inplace; 1075 break; 1076 case REGMAP_ENDIAN_LITTLE: 1077 map->format.format_val = regmap_format_32_le; 1078 map->format.parse_val = regmap_parse_32_le; 1079 map->format.parse_inplace = regmap_parse_32_le_inplace; 1080 break; 1081 case REGMAP_ENDIAN_NATIVE: 1082 map->format.format_val = regmap_format_32_native; 1083 map->format.parse_val = regmap_parse_32_native; 1084 break; 1085 default: 1086 goto err_hwlock; 1087 } 1088 break; 1089 #ifdef CONFIG_64BIT 1090 case 64: 1091 switch (val_endian) { 1092 case REGMAP_ENDIAN_BIG: 1093 map->format.format_val = regmap_format_64_be; 1094 map->format.parse_val = regmap_parse_64_be; 1095 map->format.parse_inplace = regmap_parse_64_be_inplace; 1096 break; 1097 case REGMAP_ENDIAN_LITTLE: 1098 map->format.format_val = regmap_format_64_le; 1099 map->format.parse_val = regmap_parse_64_le; 1100 map->format.parse_inplace = regmap_parse_64_le_inplace; 1101 break; 1102 case REGMAP_ENDIAN_NATIVE: 1103 map->format.format_val = regmap_format_64_native; 1104 map->format.parse_val = regmap_parse_64_native; 1105 break; 1106 default: 1107 goto err_hwlock; 1108 } 1109 break; 1110 #endif 1111 } 1112 1113 if (map->format.format_write) { 1114 if ((reg_endian != REGMAP_ENDIAN_BIG) || 1115 (val_endian != REGMAP_ENDIAN_BIG)) 1116 goto err_hwlock; 1117 map->use_single_write = true; 1118 } 1119 1120 if (!map->format.format_write && 1121 !(map->format.format_reg && map->format.format_val)) 1122 goto err_hwlock; 1123 1124 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 1125 if (map->work_buf == NULL) { 1126 ret = -ENOMEM; 1127 goto err_hwlock; 1128 } 1129 1130 if (map->format.format_write) { 1131 map->defer_caching = false; 1132 map->reg_write = _regmap_bus_formatted_write; 1133 } else if (map->format.format_val) { 1134 map->defer_caching = true; 1135 map->reg_write = _regmap_bus_raw_write; 1136 } 1137 1138 skip_format_initialization: 1139 1140 map->range_tree = RB_ROOT; 1141 for (i = 0; i < config->num_ranges; i++) { 1142 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 1143 struct regmap_range_node *new; 1144 1145 /* Sanity check */ 1146 if (range_cfg->range_max < range_cfg->range_min) { 1147 dev_err(map->dev, "Invalid range %d: %d < %d\n", i, 1148 range_cfg->range_max, range_cfg->range_min); 1149 goto err_range; 1150 } 1151 1152 if (range_cfg->range_max > map->max_register) { 1153 dev_err(map->dev, "Invalid range %d: %d > %d\n", i, 1154 range_cfg->range_max, map->max_register); 1155 goto err_range; 1156 } 1157 1158 if (range_cfg->selector_reg > map->max_register) { 1159 dev_err(map->dev, 1160 "Invalid range %d: selector out of map\n", i); 1161 goto err_range; 1162 } 1163 1164 if (range_cfg->window_len == 0) { 1165 dev_err(map->dev, "Invalid range %d: window_len 0\n", 1166 i); 1167 goto err_range; 1168 } 1169 1170 /* Make sure, that this register range has no selector 1171 or data window within its boundary */ 1172 for (j = 0; j < config->num_ranges; j++) { 1173 unsigned int sel_reg = config->ranges[j].selector_reg; 1174 unsigned int win_min = config->ranges[j].window_start; 1175 unsigned int win_max = win_min + 1176 config->ranges[j].window_len - 1; 1177 1178 /* Allow data window inside its own virtual range */ 1179 if (j == i) 1180 continue; 1181 1182 if (range_cfg->range_min <= sel_reg && 1183 sel_reg <= range_cfg->range_max) { 1184 dev_err(map->dev, 1185 "Range %d: selector for %d in window\n", 1186 i, j); 1187 goto err_range; 1188 } 1189 1190 if (!(win_max < range_cfg->range_min || 1191 win_min > range_cfg->range_max)) { 1192 dev_err(map->dev, 1193 "Range %d: window for %d in window\n", 1194 i, j); 1195 goto err_range; 1196 } 1197 } 1198 1199 new = kzalloc(sizeof(*new), GFP_KERNEL); 1200 if (new == NULL) { 1201 ret = -ENOMEM; 1202 goto err_range; 1203 } 1204 1205 new->map = map; 1206 new->name = range_cfg->name; 1207 new->range_min = range_cfg->range_min; 1208 new->range_max = range_cfg->range_max; 1209 new->selector_reg = range_cfg->selector_reg; 1210 new->selector_mask = range_cfg->selector_mask; 1211 new->selector_shift = range_cfg->selector_shift; 1212 new->window_start = range_cfg->window_start; 1213 new->window_len = range_cfg->window_len; 1214 1215 if (!_regmap_range_add(map, new)) { 1216 dev_err(map->dev, "Failed to add range %d\n", i); 1217 kfree(new); 1218 goto err_range; 1219 } 1220 1221 if (map->selector_work_buf == NULL) { 1222 map->selector_work_buf = 1223 kzalloc(map->format.buf_size, GFP_KERNEL); 1224 if (map->selector_work_buf == NULL) { 1225 ret = -ENOMEM; 1226 goto err_range; 1227 } 1228 } 1229 } 1230 1231 ret = regcache_init(map, config); 1232 if (ret != 0) 1233 goto err_range; 1234 1235 if (dev) { 1236 ret = regmap_attach_dev(dev, map, config); 1237 if (ret != 0) 1238 goto err_regcache; 1239 } else { 1240 regmap_debugfs_init(map); 1241 } 1242 1243 return map; 1244 1245 err_regcache: 1246 regcache_exit(map); 1247 err_range: 1248 regmap_range_exit(map); 1249 kfree(map->work_buf); 1250 err_hwlock: 1251 if (map->hwlock) 1252 hwspin_lock_free(map->hwlock); 1253 err_name: 1254 kfree_const(map->name); 1255 err_map: 1256 kfree(map); 1257 err: 1258 return ERR_PTR(ret); 1259 } 1260 EXPORT_SYMBOL_GPL(__regmap_init); 1261 1262 static void devm_regmap_release(struct device *dev, void *res) 1263 { 1264 regmap_exit(*(struct regmap **)res); 1265 } 1266 1267 struct regmap *__devm_regmap_init(struct device *dev, 1268 const struct regmap_bus *bus, 1269 void *bus_context, 1270 const struct regmap_config *config, 1271 struct lock_class_key *lock_key, 1272 const char *lock_name) 1273 { 1274 struct regmap **ptr, *regmap; 1275 1276 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 1277 if (!ptr) 1278 return ERR_PTR(-ENOMEM); 1279 1280 regmap = __regmap_init(dev, bus, bus_context, config, 1281 lock_key, lock_name); 1282 if (!IS_ERR(regmap)) { 1283 *ptr = regmap; 1284 devres_add(dev, ptr); 1285 } else { 1286 devres_free(ptr); 1287 } 1288 1289 return regmap; 1290 } 1291 EXPORT_SYMBOL_GPL(__devm_regmap_init); 1292 1293 static void regmap_field_init(struct regmap_field *rm_field, 1294 struct regmap *regmap, struct reg_field reg_field) 1295 { 1296 rm_field->regmap = regmap; 1297 rm_field->reg = reg_field.reg; 1298 rm_field->shift = reg_field.lsb; 1299 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb); 1300 1301 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n"); 1302 1303 rm_field->id_size = reg_field.id_size; 1304 rm_field->id_offset = reg_field.id_offset; 1305 } 1306 1307 /** 1308 * devm_regmap_field_alloc() - Allocate and initialise a register field. 1309 * 1310 * @dev: Device that will be interacted with 1311 * @regmap: regmap bank in which this register field is located. 1312 * @reg_field: Register field with in the bank. 1313 * 1314 * The return value will be an ERR_PTR() on error or a valid pointer 1315 * to a struct regmap_field. The regmap_field will be automatically freed 1316 * by the device management code. 1317 */ 1318 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 1319 struct regmap *regmap, struct reg_field reg_field) 1320 { 1321 struct regmap_field *rm_field = devm_kzalloc(dev, 1322 sizeof(*rm_field), GFP_KERNEL); 1323 if (!rm_field) 1324 return ERR_PTR(-ENOMEM); 1325 1326 regmap_field_init(rm_field, regmap, reg_field); 1327 1328 return rm_field; 1329 1330 } 1331 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 1332 1333 1334 /** 1335 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field. 1336 * 1337 * @regmap: regmap bank in which this register field is located. 1338 * @rm_field: regmap register fields within the bank. 1339 * @reg_field: Register fields within the bank. 1340 * @num_fields: Number of register fields. 1341 * 1342 * The return value will be an -ENOMEM on error or zero for success. 1343 * Newly allocated regmap_fields should be freed by calling 1344 * regmap_field_bulk_free() 1345 */ 1346 int regmap_field_bulk_alloc(struct regmap *regmap, 1347 struct regmap_field **rm_field, 1348 const struct reg_field *reg_field, 1349 int num_fields) 1350 { 1351 struct regmap_field *rf; 1352 int i; 1353 1354 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL); 1355 if (!rf) 1356 return -ENOMEM; 1357 1358 for (i = 0; i < num_fields; i++) { 1359 regmap_field_init(&rf[i], regmap, reg_field[i]); 1360 rm_field[i] = &rf[i]; 1361 } 1362 1363 return 0; 1364 } 1365 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc); 1366 1367 /** 1368 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register 1369 * fields. 1370 * 1371 * @dev: Device that will be interacted with 1372 * @regmap: regmap bank in which this register field is located. 1373 * @rm_field: regmap register fields within the bank. 1374 * @reg_field: Register fields within the bank. 1375 * @num_fields: Number of register fields. 1376 * 1377 * The return value will be an -ENOMEM on error or zero for success. 1378 * Newly allocated regmap_fields will be automatically freed by the 1379 * device management code. 1380 */ 1381 int devm_regmap_field_bulk_alloc(struct device *dev, 1382 struct regmap *regmap, 1383 struct regmap_field **rm_field, 1384 const struct reg_field *reg_field, 1385 int num_fields) 1386 { 1387 struct regmap_field *rf; 1388 int i; 1389 1390 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL); 1391 if (!rf) 1392 return -ENOMEM; 1393 1394 for (i = 0; i < num_fields; i++) { 1395 regmap_field_init(&rf[i], regmap, reg_field[i]); 1396 rm_field[i] = &rf[i]; 1397 } 1398 1399 return 0; 1400 } 1401 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc); 1402 1403 /** 1404 * regmap_field_bulk_free() - Free register field allocated using 1405 * regmap_field_bulk_alloc. 1406 * 1407 * @field: regmap fields which should be freed. 1408 */ 1409 void regmap_field_bulk_free(struct regmap_field *field) 1410 { 1411 kfree(field); 1412 } 1413 EXPORT_SYMBOL_GPL(regmap_field_bulk_free); 1414 1415 /** 1416 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using 1417 * devm_regmap_field_bulk_alloc. 1418 * 1419 * @dev: Device that will be interacted with 1420 * @field: regmap field which should be freed. 1421 * 1422 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually 1423 * drivers need not call this function, as the memory allocated via devm 1424 * will be freed as per device-driver life-cycle. 1425 */ 1426 void devm_regmap_field_bulk_free(struct device *dev, 1427 struct regmap_field *field) 1428 { 1429 devm_kfree(dev, field); 1430 } 1431 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free); 1432 1433 /** 1434 * devm_regmap_field_free() - Free a register field allocated using 1435 * devm_regmap_field_alloc. 1436 * 1437 * @dev: Device that will be interacted with 1438 * @field: regmap field which should be freed. 1439 * 1440 * Free register field allocated using devm_regmap_field_alloc(). Usually 1441 * drivers need not call this function, as the memory allocated via devm 1442 * will be freed as per device-driver life-cyle. 1443 */ 1444 void devm_regmap_field_free(struct device *dev, 1445 struct regmap_field *field) 1446 { 1447 devm_kfree(dev, field); 1448 } 1449 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 1450 1451 /** 1452 * regmap_field_alloc() - Allocate and initialise a register field. 1453 * 1454 * @regmap: regmap bank in which this register field is located. 1455 * @reg_field: Register field with in the bank. 1456 * 1457 * The return value will be an ERR_PTR() on error or a valid pointer 1458 * to a struct regmap_field. The regmap_field should be freed by the 1459 * user once its finished working with it using regmap_field_free(). 1460 */ 1461 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 1462 struct reg_field reg_field) 1463 { 1464 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 1465 1466 if (!rm_field) 1467 return ERR_PTR(-ENOMEM); 1468 1469 regmap_field_init(rm_field, regmap, reg_field); 1470 1471 return rm_field; 1472 } 1473 EXPORT_SYMBOL_GPL(regmap_field_alloc); 1474 1475 /** 1476 * regmap_field_free() - Free register field allocated using 1477 * regmap_field_alloc. 1478 * 1479 * @field: regmap field which should be freed. 1480 */ 1481 void regmap_field_free(struct regmap_field *field) 1482 { 1483 kfree(field); 1484 } 1485 EXPORT_SYMBOL_GPL(regmap_field_free); 1486 1487 /** 1488 * regmap_reinit_cache() - Reinitialise the current register cache 1489 * 1490 * @map: Register map to operate on. 1491 * @config: New configuration. Only the cache data will be used. 1492 * 1493 * Discard any existing register cache for the map and initialize a 1494 * new cache. This can be used to restore the cache to defaults or to 1495 * update the cache configuration to reflect runtime discovery of the 1496 * hardware. 1497 * 1498 * No explicit locking is done here, the user needs to ensure that 1499 * this function will not race with other calls to regmap. 1500 */ 1501 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 1502 { 1503 int ret; 1504 1505 regcache_exit(map); 1506 regmap_debugfs_exit(map); 1507 1508 map->max_register = config->max_register; 1509 map->writeable_reg = config->writeable_reg; 1510 map->readable_reg = config->readable_reg; 1511 map->volatile_reg = config->volatile_reg; 1512 map->precious_reg = config->precious_reg; 1513 map->writeable_noinc_reg = config->writeable_noinc_reg; 1514 map->readable_noinc_reg = config->readable_noinc_reg; 1515 map->cache_type = config->cache_type; 1516 1517 ret = regmap_set_name(map, config); 1518 if (ret) 1519 return ret; 1520 1521 regmap_debugfs_init(map); 1522 1523 map->cache_bypass = false; 1524 map->cache_only = false; 1525 1526 return regcache_init(map, config); 1527 } 1528 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 1529 1530 /** 1531 * regmap_exit() - Free a previously allocated register map 1532 * 1533 * @map: Register map to operate on. 1534 */ 1535 void regmap_exit(struct regmap *map) 1536 { 1537 struct regmap_async *async; 1538 1539 regcache_exit(map); 1540 regmap_debugfs_exit(map); 1541 regmap_range_exit(map); 1542 if (map->bus && map->bus->free_context) 1543 map->bus->free_context(map->bus_context); 1544 kfree(map->work_buf); 1545 while (!list_empty(&map->async_free)) { 1546 async = list_first_entry_or_null(&map->async_free, 1547 struct regmap_async, 1548 list); 1549 list_del(&async->list); 1550 kfree(async->work_buf); 1551 kfree(async); 1552 } 1553 if (map->hwlock) 1554 hwspin_lock_free(map->hwlock); 1555 if (map->lock == regmap_lock_mutex) 1556 mutex_destroy(&map->mutex); 1557 kfree_const(map->name); 1558 kfree(map->patch); 1559 if (map->bus && map->bus->free_on_exit) 1560 kfree(map->bus); 1561 kfree(map); 1562 } 1563 EXPORT_SYMBOL_GPL(regmap_exit); 1564 1565 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 1566 { 1567 struct regmap **r = res; 1568 if (!r || !*r) { 1569 WARN_ON(!r || !*r); 1570 return 0; 1571 } 1572 1573 /* If the user didn't specify a name match any */ 1574 if (data) 1575 return !strcmp((*r)->name, data); 1576 else 1577 return 1; 1578 } 1579 1580 /** 1581 * dev_get_regmap() - Obtain the regmap (if any) for a device 1582 * 1583 * @dev: Device to retrieve the map for 1584 * @name: Optional name for the register map, usually NULL. 1585 * 1586 * Returns the regmap for the device if one is present, or NULL. If 1587 * name is specified then it must match the name specified when 1588 * registering the device, if it is NULL then the first regmap found 1589 * will be used. Devices with multiple register maps are very rare, 1590 * generic code should normally not need to specify a name. 1591 */ 1592 struct regmap *dev_get_regmap(struct device *dev, const char *name) 1593 { 1594 struct regmap **r = devres_find(dev, dev_get_regmap_release, 1595 dev_get_regmap_match, (void *)name); 1596 1597 if (!r) 1598 return NULL; 1599 return *r; 1600 } 1601 EXPORT_SYMBOL_GPL(dev_get_regmap); 1602 1603 /** 1604 * regmap_get_device() - Obtain the device from a regmap 1605 * 1606 * @map: Register map to operate on. 1607 * 1608 * Returns the underlying device that the regmap has been created for. 1609 */ 1610 struct device *regmap_get_device(struct regmap *map) 1611 { 1612 return map->dev; 1613 } 1614 EXPORT_SYMBOL_GPL(regmap_get_device); 1615 1616 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 1617 struct regmap_range_node *range, 1618 unsigned int val_num) 1619 { 1620 void *orig_work_buf; 1621 unsigned int win_offset; 1622 unsigned int win_page; 1623 bool page_chg; 1624 int ret; 1625 1626 win_offset = (*reg - range->range_min) % range->window_len; 1627 win_page = (*reg - range->range_min) / range->window_len; 1628 1629 if (val_num > 1) { 1630 /* Bulk write shouldn't cross range boundary */ 1631 if (*reg + val_num - 1 > range->range_max) 1632 return -EINVAL; 1633 1634 /* ... or single page boundary */ 1635 if (val_num > range->window_len - win_offset) 1636 return -EINVAL; 1637 } 1638 1639 /* It is possible to have selector register inside data window. 1640 In that case, selector register is located on every page and 1641 it needs no page switching, when accessed alone. */ 1642 if (val_num > 1 || 1643 range->window_start + win_offset != range->selector_reg) { 1644 /* Use separate work_buf during page switching */ 1645 orig_work_buf = map->work_buf; 1646 map->work_buf = map->selector_work_buf; 1647 1648 ret = _regmap_update_bits(map, range->selector_reg, 1649 range->selector_mask, 1650 win_page << range->selector_shift, 1651 &page_chg, false); 1652 1653 map->work_buf = orig_work_buf; 1654 1655 if (ret != 0) 1656 return ret; 1657 } 1658 1659 *reg = range->window_start + win_offset; 1660 1661 return 0; 1662 } 1663 1664 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes, 1665 unsigned long mask) 1666 { 1667 u8 *buf; 1668 int i; 1669 1670 if (!mask || !map->work_buf) 1671 return; 1672 1673 buf = map->work_buf; 1674 1675 for (i = 0; i < max_bytes; i++) 1676 buf[i] |= (mask >> (8 * i)) & 0xff; 1677 } 1678 1679 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg, 1680 const void *val, size_t val_len, bool noinc) 1681 { 1682 struct regmap_range_node *range; 1683 unsigned long flags; 1684 void *work_val = map->work_buf + map->format.reg_bytes + 1685 map->format.pad_bytes; 1686 void *buf; 1687 int ret = -ENOTSUPP; 1688 size_t len; 1689 int i; 1690 1691 /* Check for unwritable or noinc registers in range 1692 * before we start 1693 */ 1694 if (!regmap_writeable_noinc(map, reg)) { 1695 for (i = 0; i < val_len / map->format.val_bytes; i++) { 1696 unsigned int element = 1697 reg + regmap_get_offset(map, i); 1698 if (!regmap_writeable(map, element) || 1699 regmap_writeable_noinc(map, element)) 1700 return -EINVAL; 1701 } 1702 } 1703 1704 if (!map->cache_bypass && map->format.parse_val) { 1705 unsigned int ival; 1706 int val_bytes = map->format.val_bytes; 1707 for (i = 0; i < val_len / val_bytes; i++) { 1708 ival = map->format.parse_val(val + (i * val_bytes)); 1709 ret = regcache_write(map, 1710 reg + regmap_get_offset(map, i), 1711 ival); 1712 if (ret) { 1713 dev_err(map->dev, 1714 "Error in caching of register: %x ret: %d\n", 1715 reg + regmap_get_offset(map, i), ret); 1716 return ret; 1717 } 1718 } 1719 if (map->cache_only) { 1720 map->cache_dirty = true; 1721 return 0; 1722 } 1723 } 1724 1725 range = _regmap_range_lookup(map, reg); 1726 if (range) { 1727 int val_num = val_len / map->format.val_bytes; 1728 int win_offset = (reg - range->range_min) % range->window_len; 1729 int win_residue = range->window_len - win_offset; 1730 1731 /* If the write goes beyond the end of the window split it */ 1732 while (val_num > win_residue) { 1733 dev_dbg(map->dev, "Writing window %d/%zu\n", 1734 win_residue, val_len / map->format.val_bytes); 1735 ret = _regmap_raw_write_impl(map, reg, val, 1736 win_residue * 1737 map->format.val_bytes, noinc); 1738 if (ret != 0) 1739 return ret; 1740 1741 reg += win_residue; 1742 val_num -= win_residue; 1743 val += win_residue * map->format.val_bytes; 1744 val_len -= win_residue * map->format.val_bytes; 1745 1746 win_offset = (reg - range->range_min) % 1747 range->window_len; 1748 win_residue = range->window_len - win_offset; 1749 } 1750 1751 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num); 1752 if (ret != 0) 1753 return ret; 1754 } 1755 1756 reg += map->reg_base; 1757 reg >>= map->format.reg_downshift; 1758 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1759 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 1760 map->write_flag_mask); 1761 1762 /* 1763 * Essentially all I/O mechanisms will be faster with a single 1764 * buffer to write. Since register syncs often generate raw 1765 * writes of single registers optimise that case. 1766 */ 1767 if (val != work_val && val_len == map->format.val_bytes) { 1768 memcpy(work_val, val, map->format.val_bytes); 1769 val = work_val; 1770 } 1771 1772 if (map->async && map->bus && map->bus->async_write) { 1773 struct regmap_async *async; 1774 1775 trace_regmap_async_write_start(map, reg, val_len); 1776 1777 spin_lock_irqsave(&map->async_lock, flags); 1778 async = list_first_entry_or_null(&map->async_free, 1779 struct regmap_async, 1780 list); 1781 if (async) 1782 list_del(&async->list); 1783 spin_unlock_irqrestore(&map->async_lock, flags); 1784 1785 if (!async) { 1786 async = map->bus->async_alloc(); 1787 if (!async) 1788 return -ENOMEM; 1789 1790 async->work_buf = kzalloc(map->format.buf_size, 1791 GFP_KERNEL | GFP_DMA); 1792 if (!async->work_buf) { 1793 kfree(async); 1794 return -ENOMEM; 1795 } 1796 } 1797 1798 async->map = map; 1799 1800 /* If the caller supplied the value we can use it safely. */ 1801 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1802 map->format.reg_bytes + map->format.val_bytes); 1803 1804 spin_lock_irqsave(&map->async_lock, flags); 1805 list_add_tail(&async->list, &map->async_list); 1806 spin_unlock_irqrestore(&map->async_lock, flags); 1807 1808 if (val != work_val) 1809 ret = map->bus->async_write(map->bus_context, 1810 async->work_buf, 1811 map->format.reg_bytes + 1812 map->format.pad_bytes, 1813 val, val_len, async); 1814 else 1815 ret = map->bus->async_write(map->bus_context, 1816 async->work_buf, 1817 map->format.reg_bytes + 1818 map->format.pad_bytes + 1819 val_len, NULL, 0, async); 1820 1821 if (ret != 0) { 1822 dev_err(map->dev, "Failed to schedule write: %d\n", 1823 ret); 1824 1825 spin_lock_irqsave(&map->async_lock, flags); 1826 list_move(&async->list, &map->async_free); 1827 spin_unlock_irqrestore(&map->async_lock, flags); 1828 } 1829 1830 return ret; 1831 } 1832 1833 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); 1834 1835 /* If we're doing a single register write we can probably just 1836 * send the work_buf directly, otherwise try to do a gather 1837 * write. 1838 */ 1839 if (val == work_val) 1840 ret = map->write(map->bus_context, map->work_buf, 1841 map->format.reg_bytes + 1842 map->format.pad_bytes + 1843 val_len); 1844 else if (map->bus && map->bus->gather_write) 1845 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1846 map->format.reg_bytes + 1847 map->format.pad_bytes, 1848 val, val_len); 1849 else 1850 ret = -ENOTSUPP; 1851 1852 /* If that didn't work fall back on linearising by hand. */ 1853 if (ret == -ENOTSUPP) { 1854 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1855 buf = kzalloc(len, GFP_KERNEL); 1856 if (!buf) 1857 return -ENOMEM; 1858 1859 memcpy(buf, map->work_buf, map->format.reg_bytes); 1860 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1861 val, val_len); 1862 ret = map->write(map->bus_context, buf, len); 1863 1864 kfree(buf); 1865 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) { 1866 /* regcache_drop_region() takes lock that we already have, 1867 * thus call map->cache_ops->drop() directly 1868 */ 1869 if (map->cache_ops && map->cache_ops->drop) 1870 map->cache_ops->drop(map, reg, reg + 1); 1871 } 1872 1873 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); 1874 1875 return ret; 1876 } 1877 1878 /** 1879 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1880 * 1881 * @map: Map to check. 1882 */ 1883 bool regmap_can_raw_write(struct regmap *map) 1884 { 1885 return map->write && map->format.format_val && map->format.format_reg; 1886 } 1887 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1888 1889 /** 1890 * regmap_get_raw_read_max - Get the maximum size we can read 1891 * 1892 * @map: Map to check. 1893 */ 1894 size_t regmap_get_raw_read_max(struct regmap *map) 1895 { 1896 return map->max_raw_read; 1897 } 1898 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max); 1899 1900 /** 1901 * regmap_get_raw_write_max - Get the maximum size we can read 1902 * 1903 * @map: Map to check. 1904 */ 1905 size_t regmap_get_raw_write_max(struct regmap *map) 1906 { 1907 return map->max_raw_write; 1908 } 1909 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max); 1910 1911 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1912 unsigned int val) 1913 { 1914 int ret; 1915 struct regmap_range_node *range; 1916 struct regmap *map = context; 1917 1918 WARN_ON(!map->format.format_write); 1919 1920 range = _regmap_range_lookup(map, reg); 1921 if (range) { 1922 ret = _regmap_select_page(map, ®, range, 1); 1923 if (ret != 0) 1924 return ret; 1925 } 1926 1927 reg += map->reg_base; 1928 reg >>= map->format.reg_downshift; 1929 map->format.format_write(map, reg, val); 1930 1931 trace_regmap_hw_write_start(map, reg, 1); 1932 1933 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size); 1934 1935 trace_regmap_hw_write_done(map, reg, 1); 1936 1937 return ret; 1938 } 1939 1940 static int _regmap_bus_reg_write(void *context, unsigned int reg, 1941 unsigned int val) 1942 { 1943 struct regmap *map = context; 1944 1945 return map->bus->reg_write(map->bus_context, reg, val); 1946 } 1947 1948 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1949 unsigned int val) 1950 { 1951 struct regmap *map = context; 1952 1953 WARN_ON(!map->format.format_val); 1954 1955 map->format.format_val(map->work_buf + map->format.reg_bytes 1956 + map->format.pad_bytes, val, 0); 1957 return _regmap_raw_write_impl(map, reg, 1958 map->work_buf + 1959 map->format.reg_bytes + 1960 map->format.pad_bytes, 1961 map->format.val_bytes, 1962 false); 1963 } 1964 1965 static inline void *_regmap_map_get_context(struct regmap *map) 1966 { 1967 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context; 1968 } 1969 1970 int _regmap_write(struct regmap *map, unsigned int reg, 1971 unsigned int val) 1972 { 1973 int ret; 1974 void *context = _regmap_map_get_context(map); 1975 1976 if (!regmap_writeable(map, reg)) 1977 return -EIO; 1978 1979 if (!map->cache_bypass && !map->defer_caching) { 1980 ret = regcache_write(map, reg, val); 1981 if (ret != 0) 1982 return ret; 1983 if (map->cache_only) { 1984 map->cache_dirty = true; 1985 return 0; 1986 } 1987 } 1988 1989 ret = map->reg_write(context, reg, val); 1990 if (ret == 0) { 1991 if (regmap_should_log(map)) 1992 dev_info(map->dev, "%x <= %x\n", reg, val); 1993 1994 trace_regmap_reg_write(map, reg, val); 1995 } 1996 1997 return ret; 1998 } 1999 2000 /** 2001 * regmap_write() - Write a value to a single register 2002 * 2003 * @map: Register map to write to 2004 * @reg: Register to write to 2005 * @val: Value to be written 2006 * 2007 * A value of zero will be returned on success, a negative errno will 2008 * be returned in error cases. 2009 */ 2010 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 2011 { 2012 int ret; 2013 2014 if (!IS_ALIGNED(reg, map->reg_stride)) 2015 return -EINVAL; 2016 2017 map->lock(map->lock_arg); 2018 2019 ret = _regmap_write(map, reg, val); 2020 2021 map->unlock(map->lock_arg); 2022 2023 return ret; 2024 } 2025 EXPORT_SYMBOL_GPL(regmap_write); 2026 2027 /** 2028 * regmap_write_async() - Write a value to a single register asynchronously 2029 * 2030 * @map: Register map to write to 2031 * @reg: Register to write to 2032 * @val: Value to be written 2033 * 2034 * A value of zero will be returned on success, a negative errno will 2035 * be returned in error cases. 2036 */ 2037 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 2038 { 2039 int ret; 2040 2041 if (!IS_ALIGNED(reg, map->reg_stride)) 2042 return -EINVAL; 2043 2044 map->lock(map->lock_arg); 2045 2046 map->async = true; 2047 2048 ret = _regmap_write(map, reg, val); 2049 2050 map->async = false; 2051 2052 map->unlock(map->lock_arg); 2053 2054 return ret; 2055 } 2056 EXPORT_SYMBOL_GPL(regmap_write_async); 2057 2058 int _regmap_raw_write(struct regmap *map, unsigned int reg, 2059 const void *val, size_t val_len, bool noinc) 2060 { 2061 size_t val_bytes = map->format.val_bytes; 2062 size_t val_count = val_len / val_bytes; 2063 size_t chunk_count, chunk_bytes; 2064 size_t chunk_regs = val_count; 2065 int ret, i; 2066 2067 if (!val_count) 2068 return -EINVAL; 2069 2070 if (map->use_single_write) 2071 chunk_regs = 1; 2072 else if (map->max_raw_write && val_len > map->max_raw_write) 2073 chunk_regs = map->max_raw_write / val_bytes; 2074 2075 chunk_count = val_count / chunk_regs; 2076 chunk_bytes = chunk_regs * val_bytes; 2077 2078 /* Write as many bytes as possible with chunk_size */ 2079 for (i = 0; i < chunk_count; i++) { 2080 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc); 2081 if (ret) 2082 return ret; 2083 2084 reg += regmap_get_offset(map, chunk_regs); 2085 val += chunk_bytes; 2086 val_len -= chunk_bytes; 2087 } 2088 2089 /* Write remaining bytes */ 2090 if (val_len) 2091 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc); 2092 2093 return ret; 2094 } 2095 2096 /** 2097 * regmap_raw_write() - Write raw values to one or more registers 2098 * 2099 * @map: Register map to write to 2100 * @reg: Initial register to write to 2101 * @val: Block of data to be written, laid out for direct transmission to the 2102 * device 2103 * @val_len: Length of data pointed to by val. 2104 * 2105 * This function is intended to be used for things like firmware 2106 * download where a large block of data needs to be transferred to the 2107 * device. No formatting will be done on the data provided. 2108 * 2109 * A value of zero will be returned on success, a negative errno will 2110 * be returned in error cases. 2111 */ 2112 int regmap_raw_write(struct regmap *map, unsigned int reg, 2113 const void *val, size_t val_len) 2114 { 2115 int ret; 2116 2117 if (!regmap_can_raw_write(map)) 2118 return -EINVAL; 2119 if (val_len % map->format.val_bytes) 2120 return -EINVAL; 2121 2122 map->lock(map->lock_arg); 2123 2124 ret = _regmap_raw_write(map, reg, val, val_len, false); 2125 2126 map->unlock(map->lock_arg); 2127 2128 return ret; 2129 } 2130 EXPORT_SYMBOL_GPL(regmap_raw_write); 2131 2132 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg, 2133 void *val, unsigned int val_len, bool write) 2134 { 2135 size_t val_bytes = map->format.val_bytes; 2136 size_t val_count = val_len / val_bytes; 2137 unsigned int lastval; 2138 u8 *u8p; 2139 u16 *u16p; 2140 u32 *u32p; 2141 #ifdef CONFIG_64BIT 2142 u64 *u64p; 2143 #endif 2144 int ret; 2145 int i; 2146 2147 switch (val_bytes) { 2148 case 1: 2149 u8p = val; 2150 if (write) 2151 lastval = (unsigned int)u8p[val_count - 1]; 2152 break; 2153 case 2: 2154 u16p = val; 2155 if (write) 2156 lastval = (unsigned int)u16p[val_count - 1]; 2157 break; 2158 case 4: 2159 u32p = val; 2160 if (write) 2161 lastval = (unsigned int)u32p[val_count - 1]; 2162 break; 2163 #ifdef CONFIG_64BIT 2164 case 8: 2165 u64p = val; 2166 if (write) 2167 lastval = (unsigned int)u64p[val_count - 1]; 2168 break; 2169 #endif 2170 default: 2171 return -EINVAL; 2172 } 2173 2174 /* 2175 * Update the cache with the last value we write, the rest is just 2176 * gone down in the hardware FIFO. We can't cache FIFOs. This makes 2177 * sure a single read from the cache will work. 2178 */ 2179 if (write) { 2180 if (!map->cache_bypass && !map->defer_caching) { 2181 ret = regcache_write(map, reg, lastval); 2182 if (ret != 0) 2183 return ret; 2184 if (map->cache_only) { 2185 map->cache_dirty = true; 2186 return 0; 2187 } 2188 } 2189 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count); 2190 } else { 2191 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count); 2192 } 2193 2194 if (!ret && regmap_should_log(map)) { 2195 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>"); 2196 for (i = 0; i < val_count; i++) { 2197 switch (val_bytes) { 2198 case 1: 2199 pr_cont("%x", u8p[i]); 2200 break; 2201 case 2: 2202 pr_cont("%x", u16p[i]); 2203 break; 2204 case 4: 2205 pr_cont("%x", u32p[i]); 2206 break; 2207 #ifdef CONFIG_64BIT 2208 case 8: 2209 pr_cont("%llx", u64p[i]); 2210 break; 2211 #endif 2212 default: 2213 break; 2214 } 2215 if (i == (val_count - 1)) 2216 pr_cont("]\n"); 2217 else 2218 pr_cont(","); 2219 } 2220 } 2221 2222 return 0; 2223 } 2224 2225 /** 2226 * regmap_noinc_write(): Write data from a register without incrementing the 2227 * register number 2228 * 2229 * @map: Register map to write to 2230 * @reg: Register to write to 2231 * @val: Pointer to data buffer 2232 * @val_len: Length of output buffer in bytes. 2233 * 2234 * The regmap API usually assumes that bulk bus write operations will write a 2235 * range of registers. Some devices have certain registers for which a write 2236 * operation can write to an internal FIFO. 2237 * 2238 * The target register must be volatile but registers after it can be 2239 * completely unrelated cacheable registers. 2240 * 2241 * This will attempt multiple writes as required to write val_len bytes. 2242 * 2243 * A value of zero will be returned on success, a negative errno will be 2244 * returned in error cases. 2245 */ 2246 int regmap_noinc_write(struct regmap *map, unsigned int reg, 2247 const void *val, size_t val_len) 2248 { 2249 size_t write_len; 2250 int ret; 2251 2252 if (!map->write && !(map->bus && map->bus->reg_noinc_write)) 2253 return -EINVAL; 2254 if (val_len % map->format.val_bytes) 2255 return -EINVAL; 2256 if (!IS_ALIGNED(reg, map->reg_stride)) 2257 return -EINVAL; 2258 if (val_len == 0) 2259 return -EINVAL; 2260 2261 map->lock(map->lock_arg); 2262 2263 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) { 2264 ret = -EINVAL; 2265 goto out_unlock; 2266 } 2267 2268 /* 2269 * Use the accelerated operation if we can. The val drops the const 2270 * typing in order to facilitate code reuse in regmap_noinc_readwrite(). 2271 */ 2272 if (map->bus->reg_noinc_write) { 2273 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true); 2274 goto out_unlock; 2275 } 2276 2277 while (val_len) { 2278 if (map->max_raw_write && map->max_raw_write < val_len) 2279 write_len = map->max_raw_write; 2280 else 2281 write_len = val_len; 2282 ret = _regmap_raw_write(map, reg, val, write_len, true); 2283 if (ret) 2284 goto out_unlock; 2285 val = ((u8 *)val) + write_len; 2286 val_len -= write_len; 2287 } 2288 2289 out_unlock: 2290 map->unlock(map->lock_arg); 2291 return ret; 2292 } 2293 EXPORT_SYMBOL_GPL(regmap_noinc_write); 2294 2295 /** 2296 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a 2297 * register field. 2298 * 2299 * @field: Register field to write to 2300 * @mask: Bitmask to change 2301 * @val: Value to be written 2302 * @change: Boolean indicating if a write was done 2303 * @async: Boolean indicating asynchronously 2304 * @force: Boolean indicating use force update 2305 * 2306 * Perform a read/modify/write cycle on the register field with change, 2307 * async, force option. 2308 * 2309 * A value of zero will be returned on success, a negative errno will 2310 * be returned in error cases. 2311 */ 2312 int regmap_field_update_bits_base(struct regmap_field *field, 2313 unsigned int mask, unsigned int val, 2314 bool *change, bool async, bool force) 2315 { 2316 mask = (mask << field->shift) & field->mask; 2317 2318 return regmap_update_bits_base(field->regmap, field->reg, 2319 mask, val << field->shift, 2320 change, async, force); 2321 } 2322 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base); 2323 2324 /** 2325 * regmap_field_test_bits() - Check if all specified bits are set in a 2326 * register field. 2327 * 2328 * @field: Register field to operate on 2329 * @bits: Bits to test 2330 * 2331 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the 2332 * tested bits is not set and 1 if all tested bits are set. 2333 */ 2334 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits) 2335 { 2336 unsigned int val, ret; 2337 2338 ret = regmap_field_read(field, &val); 2339 if (ret) 2340 return ret; 2341 2342 return (val & bits) == bits; 2343 } 2344 EXPORT_SYMBOL_GPL(regmap_field_test_bits); 2345 2346 /** 2347 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a 2348 * register field with port ID 2349 * 2350 * @field: Register field to write to 2351 * @id: port ID 2352 * @mask: Bitmask to change 2353 * @val: Value to be written 2354 * @change: Boolean indicating if a write was done 2355 * @async: Boolean indicating asynchronously 2356 * @force: Boolean indicating use force update 2357 * 2358 * A value of zero will be returned on success, a negative errno will 2359 * be returned in error cases. 2360 */ 2361 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id, 2362 unsigned int mask, unsigned int val, 2363 bool *change, bool async, bool force) 2364 { 2365 if (id >= field->id_size) 2366 return -EINVAL; 2367 2368 mask = (mask << field->shift) & field->mask; 2369 2370 return regmap_update_bits_base(field->regmap, 2371 field->reg + (field->id_offset * id), 2372 mask, val << field->shift, 2373 change, async, force); 2374 } 2375 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base); 2376 2377 /** 2378 * regmap_bulk_write() - Write multiple registers to the device 2379 * 2380 * @map: Register map to write to 2381 * @reg: First register to be write from 2382 * @val: Block of data to be written, in native register size for device 2383 * @val_count: Number of registers to write 2384 * 2385 * This function is intended to be used for writing a large block of 2386 * data to the device either in single transfer or multiple transfer. 2387 * 2388 * A value of zero will be returned on success, a negative errno will 2389 * be returned in error cases. 2390 */ 2391 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 2392 size_t val_count) 2393 { 2394 int ret = 0, i; 2395 size_t val_bytes = map->format.val_bytes; 2396 2397 if (!IS_ALIGNED(reg, map->reg_stride)) 2398 return -EINVAL; 2399 2400 /* 2401 * Some devices don't support bulk write, for them we have a series of 2402 * single write operations. 2403 */ 2404 if (!map->write || !map->format.parse_inplace) { 2405 map->lock(map->lock_arg); 2406 for (i = 0; i < val_count; i++) { 2407 unsigned int ival; 2408 2409 switch (val_bytes) { 2410 case 1: 2411 ival = *(u8 *)(val + (i * val_bytes)); 2412 break; 2413 case 2: 2414 ival = *(u16 *)(val + (i * val_bytes)); 2415 break; 2416 case 4: 2417 ival = *(u32 *)(val + (i * val_bytes)); 2418 break; 2419 #ifdef CONFIG_64BIT 2420 case 8: 2421 ival = *(u64 *)(val + (i * val_bytes)); 2422 break; 2423 #endif 2424 default: 2425 ret = -EINVAL; 2426 goto out; 2427 } 2428 2429 ret = _regmap_write(map, 2430 reg + regmap_get_offset(map, i), 2431 ival); 2432 if (ret != 0) 2433 goto out; 2434 } 2435 out: 2436 map->unlock(map->lock_arg); 2437 } else { 2438 void *wval; 2439 2440 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags); 2441 if (!wval) 2442 return -ENOMEM; 2443 2444 for (i = 0; i < val_count * val_bytes; i += val_bytes) 2445 map->format.parse_inplace(wval + i); 2446 2447 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count); 2448 2449 kfree(wval); 2450 } 2451 2452 if (!ret) 2453 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count); 2454 2455 return ret; 2456 } 2457 EXPORT_SYMBOL_GPL(regmap_bulk_write); 2458 2459 /* 2460 * _regmap_raw_multi_reg_write() 2461 * 2462 * the (register,newvalue) pairs in regs have not been formatted, but 2463 * they are all in the same page and have been changed to being page 2464 * relative. The page register has been written if that was necessary. 2465 */ 2466 static int _regmap_raw_multi_reg_write(struct regmap *map, 2467 const struct reg_sequence *regs, 2468 size_t num_regs) 2469 { 2470 int ret; 2471 void *buf; 2472 int i; 2473 u8 *u8; 2474 size_t val_bytes = map->format.val_bytes; 2475 size_t reg_bytes = map->format.reg_bytes; 2476 size_t pad_bytes = map->format.pad_bytes; 2477 size_t pair_size = reg_bytes + pad_bytes + val_bytes; 2478 size_t len = pair_size * num_regs; 2479 2480 if (!len) 2481 return -EINVAL; 2482 2483 buf = kzalloc(len, GFP_KERNEL); 2484 if (!buf) 2485 return -ENOMEM; 2486 2487 /* We have to linearise by hand. */ 2488 2489 u8 = buf; 2490 2491 for (i = 0; i < num_regs; i++) { 2492 unsigned int reg = regs[i].reg; 2493 unsigned int val = regs[i].def; 2494 trace_regmap_hw_write_start(map, reg, 1); 2495 reg += map->reg_base; 2496 reg >>= map->format.reg_downshift; 2497 map->format.format_reg(u8, reg, map->reg_shift); 2498 u8 += reg_bytes + pad_bytes; 2499 map->format.format_val(u8, val, 0); 2500 u8 += val_bytes; 2501 } 2502 u8 = buf; 2503 *u8 |= map->write_flag_mask; 2504 2505 ret = map->write(map->bus_context, buf, len); 2506 2507 kfree(buf); 2508 2509 for (i = 0; i < num_regs; i++) { 2510 int reg = regs[i].reg; 2511 trace_regmap_hw_write_done(map, reg, 1); 2512 } 2513 return ret; 2514 } 2515 2516 static unsigned int _regmap_register_page(struct regmap *map, 2517 unsigned int reg, 2518 struct regmap_range_node *range) 2519 { 2520 unsigned int win_page = (reg - range->range_min) / range->window_len; 2521 2522 return win_page; 2523 } 2524 2525 static int _regmap_range_multi_paged_reg_write(struct regmap *map, 2526 struct reg_sequence *regs, 2527 size_t num_regs) 2528 { 2529 int ret; 2530 int i, n; 2531 struct reg_sequence *base; 2532 unsigned int this_page = 0; 2533 unsigned int page_change = 0; 2534 /* 2535 * the set of registers are not neccessarily in order, but 2536 * since the order of write must be preserved this algorithm 2537 * chops the set each time the page changes. This also applies 2538 * if there is a delay required at any point in the sequence. 2539 */ 2540 base = regs; 2541 for (i = 0, n = 0; i < num_regs; i++, n++) { 2542 unsigned int reg = regs[i].reg; 2543 struct regmap_range_node *range; 2544 2545 range = _regmap_range_lookup(map, reg); 2546 if (range) { 2547 unsigned int win_page = _regmap_register_page(map, reg, 2548 range); 2549 2550 if (i == 0) 2551 this_page = win_page; 2552 if (win_page != this_page) { 2553 this_page = win_page; 2554 page_change = 1; 2555 } 2556 } 2557 2558 /* If we have both a page change and a delay make sure to 2559 * write the regs and apply the delay before we change the 2560 * page. 2561 */ 2562 2563 if (page_change || regs[i].delay_us) { 2564 2565 /* For situations where the first write requires 2566 * a delay we need to make sure we don't call 2567 * raw_multi_reg_write with n=0 2568 * This can't occur with page breaks as we 2569 * never write on the first iteration 2570 */ 2571 if (regs[i].delay_us && i == 0) 2572 n = 1; 2573 2574 ret = _regmap_raw_multi_reg_write(map, base, n); 2575 if (ret != 0) 2576 return ret; 2577 2578 if (regs[i].delay_us) { 2579 if (map->can_sleep) 2580 fsleep(regs[i].delay_us); 2581 else 2582 udelay(regs[i].delay_us); 2583 } 2584 2585 base += n; 2586 n = 0; 2587 2588 if (page_change) { 2589 ret = _regmap_select_page(map, 2590 &base[n].reg, 2591 range, 1); 2592 if (ret != 0) 2593 return ret; 2594 2595 page_change = 0; 2596 } 2597 2598 } 2599 2600 } 2601 if (n > 0) 2602 return _regmap_raw_multi_reg_write(map, base, n); 2603 return 0; 2604 } 2605 2606 static int _regmap_multi_reg_write(struct regmap *map, 2607 const struct reg_sequence *regs, 2608 size_t num_regs) 2609 { 2610 int i; 2611 int ret; 2612 2613 if (!map->can_multi_write) { 2614 for (i = 0; i < num_regs; i++) { 2615 ret = _regmap_write(map, regs[i].reg, regs[i].def); 2616 if (ret != 0) 2617 return ret; 2618 2619 if (regs[i].delay_us) { 2620 if (map->can_sleep) 2621 fsleep(regs[i].delay_us); 2622 else 2623 udelay(regs[i].delay_us); 2624 } 2625 } 2626 return 0; 2627 } 2628 2629 if (!map->format.parse_inplace) 2630 return -EINVAL; 2631 2632 if (map->writeable_reg) 2633 for (i = 0; i < num_regs; i++) { 2634 int reg = regs[i].reg; 2635 if (!map->writeable_reg(map->dev, reg)) 2636 return -EINVAL; 2637 if (!IS_ALIGNED(reg, map->reg_stride)) 2638 return -EINVAL; 2639 } 2640 2641 if (!map->cache_bypass) { 2642 for (i = 0; i < num_regs; i++) { 2643 unsigned int val = regs[i].def; 2644 unsigned int reg = regs[i].reg; 2645 ret = regcache_write(map, reg, val); 2646 if (ret) { 2647 dev_err(map->dev, 2648 "Error in caching of register: %x ret: %d\n", 2649 reg, ret); 2650 return ret; 2651 } 2652 } 2653 if (map->cache_only) { 2654 map->cache_dirty = true; 2655 return 0; 2656 } 2657 } 2658 2659 WARN_ON(!map->bus); 2660 2661 for (i = 0; i < num_regs; i++) { 2662 unsigned int reg = regs[i].reg; 2663 struct regmap_range_node *range; 2664 2665 /* Coalesce all the writes between a page break or a delay 2666 * in a sequence 2667 */ 2668 range = _regmap_range_lookup(map, reg); 2669 if (range || regs[i].delay_us) { 2670 size_t len = sizeof(struct reg_sequence)*num_regs; 2671 struct reg_sequence *base = kmemdup(regs, len, 2672 GFP_KERNEL); 2673 if (!base) 2674 return -ENOMEM; 2675 ret = _regmap_range_multi_paged_reg_write(map, base, 2676 num_regs); 2677 kfree(base); 2678 2679 return ret; 2680 } 2681 } 2682 return _regmap_raw_multi_reg_write(map, regs, num_regs); 2683 } 2684 2685 /** 2686 * regmap_multi_reg_write() - Write multiple registers to the device 2687 * 2688 * @map: Register map to write to 2689 * @regs: Array of structures containing register,value to be written 2690 * @num_regs: Number of registers to write 2691 * 2692 * Write multiple registers to the device where the set of register, value 2693 * pairs are supplied in any order, possibly not all in a single range. 2694 * 2695 * The 'normal' block write mode will send ultimately send data on the 2696 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are 2697 * addressed. However, this alternative block multi write mode will send 2698 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device 2699 * must of course support the mode. 2700 * 2701 * A value of zero will be returned on success, a negative errno will be 2702 * returned in error cases. 2703 */ 2704 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, 2705 int num_regs) 2706 { 2707 int ret; 2708 2709 map->lock(map->lock_arg); 2710 2711 ret = _regmap_multi_reg_write(map, regs, num_regs); 2712 2713 map->unlock(map->lock_arg); 2714 2715 return ret; 2716 } 2717 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 2718 2719 /** 2720 * regmap_multi_reg_write_bypassed() - Write multiple registers to the 2721 * device but not the cache 2722 * 2723 * @map: Register map to write to 2724 * @regs: Array of structures containing register,value to be written 2725 * @num_regs: Number of registers to write 2726 * 2727 * Write multiple registers to the device but not the cache where the set 2728 * of register are supplied in any order. 2729 * 2730 * This function is intended to be used for writing a large block of data 2731 * atomically to the device in single transfer for those I2C client devices 2732 * that implement this alternative block write mode. 2733 * 2734 * A value of zero will be returned on success, a negative errno will 2735 * be returned in error cases. 2736 */ 2737 int regmap_multi_reg_write_bypassed(struct regmap *map, 2738 const struct reg_sequence *regs, 2739 int num_regs) 2740 { 2741 int ret; 2742 bool bypass; 2743 2744 map->lock(map->lock_arg); 2745 2746 bypass = map->cache_bypass; 2747 map->cache_bypass = true; 2748 2749 ret = _regmap_multi_reg_write(map, regs, num_regs); 2750 2751 map->cache_bypass = bypass; 2752 2753 map->unlock(map->lock_arg); 2754 2755 return ret; 2756 } 2757 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); 2758 2759 /** 2760 * regmap_raw_write_async() - Write raw values to one or more registers 2761 * asynchronously 2762 * 2763 * @map: Register map to write to 2764 * @reg: Initial register to write to 2765 * @val: Block of data to be written, laid out for direct transmission to the 2766 * device. Must be valid until regmap_async_complete() is called. 2767 * @val_len: Length of data pointed to by val. 2768 * 2769 * This function is intended to be used for things like firmware 2770 * download where a large block of data needs to be transferred to the 2771 * device. No formatting will be done on the data provided. 2772 * 2773 * If supported by the underlying bus the write will be scheduled 2774 * asynchronously, helping maximise I/O speed on higher speed buses 2775 * like SPI. regmap_async_complete() can be called to ensure that all 2776 * asynchrnous writes have been completed. 2777 * 2778 * A value of zero will be returned on success, a negative errno will 2779 * be returned in error cases. 2780 */ 2781 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 2782 const void *val, size_t val_len) 2783 { 2784 int ret; 2785 2786 if (val_len % map->format.val_bytes) 2787 return -EINVAL; 2788 if (!IS_ALIGNED(reg, map->reg_stride)) 2789 return -EINVAL; 2790 2791 map->lock(map->lock_arg); 2792 2793 map->async = true; 2794 2795 ret = _regmap_raw_write(map, reg, val, val_len, false); 2796 2797 map->async = false; 2798 2799 map->unlock(map->lock_arg); 2800 2801 return ret; 2802 } 2803 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 2804 2805 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2806 unsigned int val_len, bool noinc) 2807 { 2808 struct regmap_range_node *range; 2809 int ret; 2810 2811 if (!map->read) 2812 return -EINVAL; 2813 2814 range = _regmap_range_lookup(map, reg); 2815 if (range) { 2816 ret = _regmap_select_page(map, ®, range, 2817 noinc ? 1 : val_len / map->format.val_bytes); 2818 if (ret != 0) 2819 return ret; 2820 } 2821 2822 reg += map->reg_base; 2823 reg >>= map->format.reg_downshift; 2824 map->format.format_reg(map->work_buf, reg, map->reg_shift); 2825 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 2826 map->read_flag_mask); 2827 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); 2828 2829 ret = map->read(map->bus_context, map->work_buf, 2830 map->format.reg_bytes + map->format.pad_bytes, 2831 val, val_len); 2832 2833 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); 2834 2835 return ret; 2836 } 2837 2838 static int _regmap_bus_reg_read(void *context, unsigned int reg, 2839 unsigned int *val) 2840 { 2841 struct regmap *map = context; 2842 2843 return map->bus->reg_read(map->bus_context, reg, val); 2844 } 2845 2846 static int _regmap_bus_read(void *context, unsigned int reg, 2847 unsigned int *val) 2848 { 2849 int ret; 2850 struct regmap *map = context; 2851 void *work_val = map->work_buf + map->format.reg_bytes + 2852 map->format.pad_bytes; 2853 2854 if (!map->format.parse_val) 2855 return -EINVAL; 2856 2857 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false); 2858 if (ret == 0) 2859 *val = map->format.parse_val(work_val); 2860 2861 return ret; 2862 } 2863 2864 static int _regmap_read(struct regmap *map, unsigned int reg, 2865 unsigned int *val) 2866 { 2867 int ret; 2868 void *context = _regmap_map_get_context(map); 2869 2870 if (!map->cache_bypass) { 2871 ret = regcache_read(map, reg, val); 2872 if (ret == 0) 2873 return 0; 2874 } 2875 2876 if (map->cache_only) 2877 return -EBUSY; 2878 2879 if (!regmap_readable(map, reg)) 2880 return -EIO; 2881 2882 ret = map->reg_read(context, reg, val); 2883 if (ret == 0) { 2884 if (regmap_should_log(map)) 2885 dev_info(map->dev, "%x => %x\n", reg, *val); 2886 2887 trace_regmap_reg_read(map, reg, *val); 2888 2889 if (!map->cache_bypass) 2890 regcache_write(map, reg, *val); 2891 } 2892 2893 return ret; 2894 } 2895 2896 /** 2897 * regmap_read() - Read a value from a single register 2898 * 2899 * @map: Register map to read from 2900 * @reg: Register to be read from 2901 * @val: Pointer to store read value 2902 * 2903 * A value of zero will be returned on success, a negative errno will 2904 * be returned in error cases. 2905 */ 2906 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 2907 { 2908 int ret; 2909 2910 if (!IS_ALIGNED(reg, map->reg_stride)) 2911 return -EINVAL; 2912 2913 map->lock(map->lock_arg); 2914 2915 ret = _regmap_read(map, reg, val); 2916 2917 map->unlock(map->lock_arg); 2918 2919 return ret; 2920 } 2921 EXPORT_SYMBOL_GPL(regmap_read); 2922 2923 /** 2924 * regmap_raw_read() - Read raw data from the device 2925 * 2926 * @map: Register map to read from 2927 * @reg: First register to be read from 2928 * @val: Pointer to store read value 2929 * @val_len: Size of data to read 2930 * 2931 * A value of zero will be returned on success, a negative errno will 2932 * be returned in error cases. 2933 */ 2934 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2935 size_t val_len) 2936 { 2937 size_t val_bytes = map->format.val_bytes; 2938 size_t val_count = val_len / val_bytes; 2939 unsigned int v; 2940 int ret, i; 2941 2942 if (val_len % map->format.val_bytes) 2943 return -EINVAL; 2944 if (!IS_ALIGNED(reg, map->reg_stride)) 2945 return -EINVAL; 2946 if (val_count == 0) 2947 return -EINVAL; 2948 2949 map->lock(map->lock_arg); 2950 2951 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 2952 map->cache_type == REGCACHE_NONE) { 2953 size_t chunk_count, chunk_bytes; 2954 size_t chunk_regs = val_count; 2955 2956 if (!map->read) { 2957 ret = -ENOTSUPP; 2958 goto out; 2959 } 2960 2961 if (map->use_single_read) 2962 chunk_regs = 1; 2963 else if (map->max_raw_read && val_len > map->max_raw_read) 2964 chunk_regs = map->max_raw_read / val_bytes; 2965 2966 chunk_count = val_count / chunk_regs; 2967 chunk_bytes = chunk_regs * val_bytes; 2968 2969 /* Read bytes that fit into whole chunks */ 2970 for (i = 0; i < chunk_count; i++) { 2971 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false); 2972 if (ret != 0) 2973 goto out; 2974 2975 reg += regmap_get_offset(map, chunk_regs); 2976 val += chunk_bytes; 2977 val_len -= chunk_bytes; 2978 } 2979 2980 /* Read remaining bytes */ 2981 if (val_len) { 2982 ret = _regmap_raw_read(map, reg, val, val_len, false); 2983 if (ret != 0) 2984 goto out; 2985 } 2986 } else { 2987 /* Otherwise go word by word for the cache; should be low 2988 * cost as we expect to hit the cache. 2989 */ 2990 for (i = 0; i < val_count; i++) { 2991 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 2992 &v); 2993 if (ret != 0) 2994 goto out; 2995 2996 map->format.format_val(val + (i * val_bytes), v, 0); 2997 } 2998 } 2999 3000 out: 3001 map->unlock(map->lock_arg); 3002 3003 return ret; 3004 } 3005 EXPORT_SYMBOL_GPL(regmap_raw_read); 3006 3007 /** 3008 * regmap_noinc_read(): Read data from a register without incrementing the 3009 * register number 3010 * 3011 * @map: Register map to read from 3012 * @reg: Register to read from 3013 * @val: Pointer to data buffer 3014 * @val_len: Length of output buffer in bytes. 3015 * 3016 * The regmap API usually assumes that bulk read operations will read a 3017 * range of registers. Some devices have certain registers for which a read 3018 * operation read will read from an internal FIFO. 3019 * 3020 * The target register must be volatile but registers after it can be 3021 * completely unrelated cacheable registers. 3022 * 3023 * This will attempt multiple reads as required to read val_len bytes. 3024 * 3025 * A value of zero will be returned on success, a negative errno will be 3026 * returned in error cases. 3027 */ 3028 int regmap_noinc_read(struct regmap *map, unsigned int reg, 3029 void *val, size_t val_len) 3030 { 3031 size_t read_len; 3032 int ret; 3033 3034 if (!map->read) 3035 return -ENOTSUPP; 3036 3037 if (val_len % map->format.val_bytes) 3038 return -EINVAL; 3039 if (!IS_ALIGNED(reg, map->reg_stride)) 3040 return -EINVAL; 3041 if (val_len == 0) 3042 return -EINVAL; 3043 3044 map->lock(map->lock_arg); 3045 3046 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) { 3047 ret = -EINVAL; 3048 goto out_unlock; 3049 } 3050 3051 /* Use the accelerated operation if we can */ 3052 if (map->bus->reg_noinc_read) { 3053 /* 3054 * We have not defined the FIFO semantics for cache, as the 3055 * cache is just one value deep. Should we return the last 3056 * written value? Just avoid this by always reading the FIFO 3057 * even when using cache. Cache only will not work. 3058 */ 3059 if (map->cache_only) { 3060 ret = -EBUSY; 3061 goto out_unlock; 3062 } 3063 ret = regmap_noinc_readwrite(map, reg, val, val_len, false); 3064 goto out_unlock; 3065 } 3066 3067 while (val_len) { 3068 if (map->max_raw_read && map->max_raw_read < val_len) 3069 read_len = map->max_raw_read; 3070 else 3071 read_len = val_len; 3072 ret = _regmap_raw_read(map, reg, val, read_len, true); 3073 if (ret) 3074 goto out_unlock; 3075 val = ((u8 *)val) + read_len; 3076 val_len -= read_len; 3077 } 3078 3079 out_unlock: 3080 map->unlock(map->lock_arg); 3081 return ret; 3082 } 3083 EXPORT_SYMBOL_GPL(regmap_noinc_read); 3084 3085 /** 3086 * regmap_field_read(): Read a value to a single register field 3087 * 3088 * @field: Register field to read from 3089 * @val: Pointer to store read value 3090 * 3091 * A value of zero will be returned on success, a negative errno will 3092 * be returned in error cases. 3093 */ 3094 int regmap_field_read(struct regmap_field *field, unsigned int *val) 3095 { 3096 int ret; 3097 unsigned int reg_val; 3098 ret = regmap_read(field->regmap, field->reg, ®_val); 3099 if (ret != 0) 3100 return ret; 3101 3102 reg_val &= field->mask; 3103 reg_val >>= field->shift; 3104 *val = reg_val; 3105 3106 return ret; 3107 } 3108 EXPORT_SYMBOL_GPL(regmap_field_read); 3109 3110 /** 3111 * regmap_fields_read() - Read a value to a single register field with port ID 3112 * 3113 * @field: Register field to read from 3114 * @id: port ID 3115 * @val: Pointer to store read value 3116 * 3117 * A value of zero will be returned on success, a negative errno will 3118 * be returned in error cases. 3119 */ 3120 int regmap_fields_read(struct regmap_field *field, unsigned int id, 3121 unsigned int *val) 3122 { 3123 int ret; 3124 unsigned int reg_val; 3125 3126 if (id >= field->id_size) 3127 return -EINVAL; 3128 3129 ret = regmap_read(field->regmap, 3130 field->reg + (field->id_offset * id), 3131 ®_val); 3132 if (ret != 0) 3133 return ret; 3134 3135 reg_val &= field->mask; 3136 reg_val >>= field->shift; 3137 *val = reg_val; 3138 3139 return ret; 3140 } 3141 EXPORT_SYMBOL_GPL(regmap_fields_read); 3142 3143 /** 3144 * regmap_bulk_read() - Read multiple registers from the device 3145 * 3146 * @map: Register map to read from 3147 * @reg: First register to be read from 3148 * @val: Pointer to store read value, in native register size for device 3149 * @val_count: Number of registers to read 3150 * 3151 * A value of zero will be returned on success, a negative errno will 3152 * be returned in error cases. 3153 */ 3154 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 3155 size_t val_count) 3156 { 3157 int ret, i; 3158 size_t val_bytes = map->format.val_bytes; 3159 bool vol = regmap_volatile_range(map, reg, val_count); 3160 3161 if (!IS_ALIGNED(reg, map->reg_stride)) 3162 return -EINVAL; 3163 if (val_count == 0) 3164 return -EINVAL; 3165 3166 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { 3167 ret = regmap_raw_read(map, reg, val, val_bytes * val_count); 3168 if (ret != 0) 3169 return ret; 3170 3171 for (i = 0; i < val_count * val_bytes; i += val_bytes) 3172 map->format.parse_inplace(val + i); 3173 } else { 3174 #ifdef CONFIG_64BIT 3175 u64 *u64 = val; 3176 #endif 3177 u32 *u32 = val; 3178 u16 *u16 = val; 3179 u8 *u8 = val; 3180 3181 map->lock(map->lock_arg); 3182 3183 for (i = 0; i < val_count; i++) { 3184 unsigned int ival; 3185 3186 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 3187 &ival); 3188 if (ret != 0) 3189 goto out; 3190 3191 switch (map->format.val_bytes) { 3192 #ifdef CONFIG_64BIT 3193 case 8: 3194 u64[i] = ival; 3195 break; 3196 #endif 3197 case 4: 3198 u32[i] = ival; 3199 break; 3200 case 2: 3201 u16[i] = ival; 3202 break; 3203 case 1: 3204 u8[i] = ival; 3205 break; 3206 default: 3207 ret = -EINVAL; 3208 goto out; 3209 } 3210 } 3211 3212 out: 3213 map->unlock(map->lock_arg); 3214 } 3215 3216 if (!ret) 3217 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count); 3218 3219 return ret; 3220 } 3221 EXPORT_SYMBOL_GPL(regmap_bulk_read); 3222 3223 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 3224 unsigned int mask, unsigned int val, 3225 bool *change, bool force_write) 3226 { 3227 int ret; 3228 unsigned int tmp, orig; 3229 3230 if (change) 3231 *change = false; 3232 3233 if (regmap_volatile(map, reg) && map->reg_update_bits) { 3234 ret = map->reg_update_bits(map->bus_context, reg, mask, val); 3235 if (ret == 0 && change) 3236 *change = true; 3237 } else { 3238 ret = _regmap_read(map, reg, &orig); 3239 if (ret != 0) 3240 return ret; 3241 3242 tmp = orig & ~mask; 3243 tmp |= val & mask; 3244 3245 if (force_write || (tmp != orig)) { 3246 ret = _regmap_write(map, reg, tmp); 3247 if (ret == 0 && change) 3248 *change = true; 3249 } 3250 } 3251 3252 return ret; 3253 } 3254 3255 /** 3256 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register 3257 * 3258 * @map: Register map to update 3259 * @reg: Register to update 3260 * @mask: Bitmask to change 3261 * @val: New value for bitmask 3262 * @change: Boolean indicating if a write was done 3263 * @async: Boolean indicating asynchronously 3264 * @force: Boolean indicating use force update 3265 * 3266 * Perform a read/modify/write cycle on a register map with change, async, force 3267 * options. 3268 * 3269 * If async is true: 3270 * 3271 * With most buses the read must be done synchronously so this is most useful 3272 * for devices with a cache which do not need to interact with the hardware to 3273 * determine the current register value. 3274 * 3275 * Returns zero for success, a negative number on error. 3276 */ 3277 int regmap_update_bits_base(struct regmap *map, unsigned int reg, 3278 unsigned int mask, unsigned int val, 3279 bool *change, bool async, bool force) 3280 { 3281 int ret; 3282 3283 map->lock(map->lock_arg); 3284 3285 map->async = async; 3286 3287 ret = _regmap_update_bits(map, reg, mask, val, change, force); 3288 3289 map->async = false; 3290 3291 map->unlock(map->lock_arg); 3292 3293 return ret; 3294 } 3295 EXPORT_SYMBOL_GPL(regmap_update_bits_base); 3296 3297 /** 3298 * regmap_test_bits() - Check if all specified bits are set in a register. 3299 * 3300 * @map: Register map to operate on 3301 * @reg: Register to read from 3302 * @bits: Bits to test 3303 * 3304 * Returns 0 if at least one of the tested bits is not set, 1 if all tested 3305 * bits are set and a negative error number if the underlying regmap_read() 3306 * fails. 3307 */ 3308 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits) 3309 { 3310 unsigned int val, ret; 3311 3312 ret = regmap_read(map, reg, &val); 3313 if (ret) 3314 return ret; 3315 3316 return (val & bits) == bits; 3317 } 3318 EXPORT_SYMBOL_GPL(regmap_test_bits); 3319 3320 void regmap_async_complete_cb(struct regmap_async *async, int ret) 3321 { 3322 struct regmap *map = async->map; 3323 bool wake; 3324 3325 trace_regmap_async_io_complete(map); 3326 3327 spin_lock(&map->async_lock); 3328 list_move(&async->list, &map->async_free); 3329 wake = list_empty(&map->async_list); 3330 3331 if (ret != 0) 3332 map->async_ret = ret; 3333 3334 spin_unlock(&map->async_lock); 3335 3336 if (wake) 3337 wake_up(&map->async_waitq); 3338 } 3339 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 3340 3341 static int regmap_async_is_done(struct regmap *map) 3342 { 3343 unsigned long flags; 3344 int ret; 3345 3346 spin_lock_irqsave(&map->async_lock, flags); 3347 ret = list_empty(&map->async_list); 3348 spin_unlock_irqrestore(&map->async_lock, flags); 3349 3350 return ret; 3351 } 3352 3353 /** 3354 * regmap_async_complete - Ensure all asynchronous I/O has completed. 3355 * 3356 * @map: Map to operate on. 3357 * 3358 * Blocks until any pending asynchronous I/O has completed. Returns 3359 * an error code for any failed I/O operations. 3360 */ 3361 int regmap_async_complete(struct regmap *map) 3362 { 3363 unsigned long flags; 3364 int ret; 3365 3366 /* Nothing to do with no async support */ 3367 if (!map->bus || !map->bus->async_write) 3368 return 0; 3369 3370 trace_regmap_async_complete_start(map); 3371 3372 wait_event(map->async_waitq, regmap_async_is_done(map)); 3373 3374 spin_lock_irqsave(&map->async_lock, flags); 3375 ret = map->async_ret; 3376 map->async_ret = 0; 3377 spin_unlock_irqrestore(&map->async_lock, flags); 3378 3379 trace_regmap_async_complete_done(map); 3380 3381 return ret; 3382 } 3383 EXPORT_SYMBOL_GPL(regmap_async_complete); 3384 3385 /** 3386 * regmap_register_patch - Register and apply register updates to be applied 3387 * on device initialistion 3388 * 3389 * @map: Register map to apply updates to. 3390 * @regs: Values to update. 3391 * @num_regs: Number of entries in regs. 3392 * 3393 * Register a set of register updates to be applied to the device 3394 * whenever the device registers are synchronised with the cache and 3395 * apply them immediately. Typically this is used to apply 3396 * corrections to be applied to the device defaults on startup, such 3397 * as the updates some vendors provide to undocumented registers. 3398 * 3399 * The caller must ensure that this function cannot be called 3400 * concurrently with either itself or regcache_sync(). 3401 */ 3402 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, 3403 int num_regs) 3404 { 3405 struct reg_sequence *p; 3406 int ret; 3407 bool bypass; 3408 3409 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", 3410 num_regs)) 3411 return 0; 3412 3413 p = krealloc(map->patch, 3414 sizeof(struct reg_sequence) * (map->patch_regs + num_regs), 3415 GFP_KERNEL); 3416 if (p) { 3417 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 3418 map->patch = p; 3419 map->patch_regs += num_regs; 3420 } else { 3421 return -ENOMEM; 3422 } 3423 3424 map->lock(map->lock_arg); 3425 3426 bypass = map->cache_bypass; 3427 3428 map->cache_bypass = true; 3429 map->async = true; 3430 3431 ret = _regmap_multi_reg_write(map, regs, num_regs); 3432 3433 map->async = false; 3434 map->cache_bypass = bypass; 3435 3436 map->unlock(map->lock_arg); 3437 3438 regmap_async_complete(map); 3439 3440 return ret; 3441 } 3442 EXPORT_SYMBOL_GPL(regmap_register_patch); 3443 3444 /** 3445 * regmap_get_val_bytes() - Report the size of a register value 3446 * 3447 * @map: Register map to operate on. 3448 * 3449 * Report the size of a register value, mainly intended to for use by 3450 * generic infrastructure built on top of regmap. 3451 */ 3452 int regmap_get_val_bytes(struct regmap *map) 3453 { 3454 if (map->format.format_write) 3455 return -EINVAL; 3456 3457 return map->format.val_bytes; 3458 } 3459 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 3460 3461 /** 3462 * regmap_get_max_register() - Report the max register value 3463 * 3464 * @map: Register map to operate on. 3465 * 3466 * Report the max register value, mainly intended to for use by 3467 * generic infrastructure built on top of regmap. 3468 */ 3469 int regmap_get_max_register(struct regmap *map) 3470 { 3471 return map->max_register ? map->max_register : -EINVAL; 3472 } 3473 EXPORT_SYMBOL_GPL(regmap_get_max_register); 3474 3475 /** 3476 * regmap_get_reg_stride() - Report the register address stride 3477 * 3478 * @map: Register map to operate on. 3479 * 3480 * Report the register address stride, mainly intended to for use by 3481 * generic infrastructure built on top of regmap. 3482 */ 3483 int regmap_get_reg_stride(struct regmap *map) 3484 { 3485 return map->reg_stride; 3486 } 3487 EXPORT_SYMBOL_GPL(regmap_get_reg_stride); 3488 3489 /** 3490 * regmap_might_sleep() - Returns whether a regmap access might sleep. 3491 * 3492 * @map: Register map to operate on. 3493 * 3494 * Returns true if an access to the register might sleep, else false. 3495 */ 3496 bool regmap_might_sleep(struct regmap *map) 3497 { 3498 return map->can_sleep; 3499 } 3500 EXPORT_SYMBOL_GPL(regmap_might_sleep); 3501 3502 int regmap_parse_val(struct regmap *map, const void *buf, 3503 unsigned int *val) 3504 { 3505 if (!map->format.parse_val) 3506 return -EINVAL; 3507 3508 *val = map->format.parse_val(buf); 3509 3510 return 0; 3511 } 3512 EXPORT_SYMBOL_GPL(regmap_parse_val); 3513 3514 static int __init regmap_initcall(void) 3515 { 3516 regmap_debugfs_initcall(); 3517 3518 return 0; 3519 } 3520 postcore_initcall(regmap_initcall); 3521