1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Register map access API 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/export.h> 12 #include <linux/mutex.h> 13 #include <linux/err.h> 14 #include <linux/property.h> 15 #include <linux/rbtree.h> 16 #include <linux/sched.h> 17 #include <linux/delay.h> 18 #include <linux/log2.h> 19 #include <linux/hwspinlock.h> 20 #include <asm/unaligned.h> 21 22 #define CREATE_TRACE_POINTS 23 #include "trace.h" 24 25 #include "internal.h" 26 27 /* 28 * Sometimes for failures during very early init the trace 29 * infrastructure isn't available early enough to be used. For this 30 * sort of problem defining LOG_DEVICE will add printks for basic 31 * register I/O on a specific device. 32 */ 33 #undef LOG_DEVICE 34 35 #ifdef LOG_DEVICE 36 static inline bool regmap_should_log(struct regmap *map) 37 { 38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0); 39 } 40 #else 41 static inline bool regmap_should_log(struct regmap *map) { return false; } 42 #endif 43 44 45 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 46 unsigned int mask, unsigned int val, 47 bool *change, bool force_write); 48 49 static int _regmap_bus_reg_read(void *context, unsigned int reg, 50 unsigned int *val); 51 static int _regmap_bus_read(void *context, unsigned int reg, 52 unsigned int *val); 53 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 54 unsigned int val); 55 static int _regmap_bus_reg_write(void *context, unsigned int reg, 56 unsigned int val); 57 static int _regmap_bus_raw_write(void *context, unsigned int reg, 58 unsigned int val); 59 60 bool regmap_reg_in_ranges(unsigned int reg, 61 const struct regmap_range *ranges, 62 unsigned int nranges) 63 { 64 const struct regmap_range *r; 65 int i; 66 67 for (i = 0, r = ranges; i < nranges; i++, r++) 68 if (regmap_reg_in_range(reg, r)) 69 return true; 70 return false; 71 } 72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); 73 74 bool regmap_check_range_table(struct regmap *map, unsigned int reg, 75 const struct regmap_access_table *table) 76 { 77 /* Check "no ranges" first */ 78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) 79 return false; 80 81 /* In case zero "yes ranges" are supplied, any reg is OK */ 82 if (!table->n_yes_ranges) 83 return true; 84 85 return regmap_reg_in_ranges(reg, table->yes_ranges, 86 table->n_yes_ranges); 87 } 88 EXPORT_SYMBOL_GPL(regmap_check_range_table); 89 90 bool regmap_writeable(struct regmap *map, unsigned int reg) 91 { 92 if (map->max_register && reg > map->max_register) 93 return false; 94 95 if (map->writeable_reg) 96 return map->writeable_reg(map->dev, reg); 97 98 if (map->wr_table) 99 return regmap_check_range_table(map, reg, map->wr_table); 100 101 return true; 102 } 103 104 bool regmap_cached(struct regmap *map, unsigned int reg) 105 { 106 int ret; 107 unsigned int val; 108 109 if (map->cache_type == REGCACHE_NONE) 110 return false; 111 112 if (!map->cache_ops) 113 return false; 114 115 if (map->max_register && reg > map->max_register) 116 return false; 117 118 map->lock(map->lock_arg); 119 ret = regcache_read(map, reg, &val); 120 map->unlock(map->lock_arg); 121 if (ret) 122 return false; 123 124 return true; 125 } 126 127 bool regmap_readable(struct regmap *map, unsigned int reg) 128 { 129 if (!map->reg_read) 130 return false; 131 132 if (map->max_register && reg > map->max_register) 133 return false; 134 135 if (map->format.format_write) 136 return false; 137 138 if (map->readable_reg) 139 return map->readable_reg(map->dev, reg); 140 141 if (map->rd_table) 142 return regmap_check_range_table(map, reg, map->rd_table); 143 144 return true; 145 } 146 147 bool regmap_volatile(struct regmap *map, unsigned int reg) 148 { 149 if (!map->format.format_write && !regmap_readable(map, reg)) 150 return false; 151 152 if (map->volatile_reg) 153 return map->volatile_reg(map->dev, reg); 154 155 if (map->volatile_table) 156 return regmap_check_range_table(map, reg, map->volatile_table); 157 158 if (map->cache_ops) 159 return false; 160 else 161 return true; 162 } 163 164 bool regmap_precious(struct regmap *map, unsigned int reg) 165 { 166 if (!regmap_readable(map, reg)) 167 return false; 168 169 if (map->precious_reg) 170 return map->precious_reg(map->dev, reg); 171 172 if (map->precious_table) 173 return regmap_check_range_table(map, reg, map->precious_table); 174 175 return false; 176 } 177 178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg) 179 { 180 if (map->writeable_noinc_reg) 181 return map->writeable_noinc_reg(map->dev, reg); 182 183 if (map->wr_noinc_table) 184 return regmap_check_range_table(map, reg, map->wr_noinc_table); 185 186 return true; 187 } 188 189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg) 190 { 191 if (map->readable_noinc_reg) 192 return map->readable_noinc_reg(map->dev, reg); 193 194 if (map->rd_noinc_table) 195 return regmap_check_range_table(map, reg, map->rd_noinc_table); 196 197 return true; 198 } 199 200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg, 201 size_t num) 202 { 203 unsigned int i; 204 205 for (i = 0; i < num; i++) 206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i))) 207 return false; 208 209 return true; 210 } 211 212 static void regmap_format_12_20_write(struct regmap *map, 213 unsigned int reg, unsigned int val) 214 { 215 u8 *out = map->work_buf; 216 217 out[0] = reg >> 4; 218 out[1] = (reg << 4) | (val >> 16); 219 out[2] = val >> 8; 220 out[3] = val; 221 } 222 223 224 static void regmap_format_2_6_write(struct regmap *map, 225 unsigned int reg, unsigned int val) 226 { 227 u8 *out = map->work_buf; 228 229 *out = (reg << 6) | val; 230 } 231 232 static void regmap_format_4_12_write(struct regmap *map, 233 unsigned int reg, unsigned int val) 234 { 235 __be16 *out = map->work_buf; 236 *out = cpu_to_be16((reg << 12) | val); 237 } 238 239 static void regmap_format_7_9_write(struct regmap *map, 240 unsigned int reg, unsigned int val) 241 { 242 __be16 *out = map->work_buf; 243 *out = cpu_to_be16((reg << 9) | val); 244 } 245 246 static void regmap_format_7_17_write(struct regmap *map, 247 unsigned int reg, unsigned int val) 248 { 249 u8 *out = map->work_buf; 250 251 out[2] = val; 252 out[1] = val >> 8; 253 out[0] = (val >> 16) | (reg << 1); 254 } 255 256 static void regmap_format_10_14_write(struct regmap *map, 257 unsigned int reg, unsigned int val) 258 { 259 u8 *out = map->work_buf; 260 261 out[2] = val; 262 out[1] = (val >> 8) | (reg << 6); 263 out[0] = reg >> 2; 264 } 265 266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) 267 { 268 u8 *b = buf; 269 270 b[0] = val << shift; 271 } 272 273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) 274 { 275 put_unaligned_be16(val << shift, buf); 276 } 277 278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) 279 { 280 put_unaligned_le16(val << shift, buf); 281 } 282 283 static void regmap_format_16_native(void *buf, unsigned int val, 284 unsigned int shift) 285 { 286 u16 v = val << shift; 287 288 memcpy(buf, &v, sizeof(v)); 289 } 290 291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift) 292 { 293 put_unaligned_be24(val << shift, buf); 294 } 295 296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) 297 { 298 put_unaligned_be32(val << shift, buf); 299 } 300 301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) 302 { 303 put_unaligned_le32(val << shift, buf); 304 } 305 306 static void regmap_format_32_native(void *buf, unsigned int val, 307 unsigned int shift) 308 { 309 u32 v = val << shift; 310 311 memcpy(buf, &v, sizeof(v)); 312 } 313 314 #ifdef CONFIG_64BIT 315 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift) 316 { 317 put_unaligned_be64((u64) val << shift, buf); 318 } 319 320 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift) 321 { 322 put_unaligned_le64((u64) val << shift, buf); 323 } 324 325 static void regmap_format_64_native(void *buf, unsigned int val, 326 unsigned int shift) 327 { 328 u64 v = (u64) val << shift; 329 330 memcpy(buf, &v, sizeof(v)); 331 } 332 #endif 333 334 static void regmap_parse_inplace_noop(void *buf) 335 { 336 } 337 338 static unsigned int regmap_parse_8(const void *buf) 339 { 340 const u8 *b = buf; 341 342 return b[0]; 343 } 344 345 static unsigned int regmap_parse_16_be(const void *buf) 346 { 347 return get_unaligned_be16(buf); 348 } 349 350 static unsigned int regmap_parse_16_le(const void *buf) 351 { 352 return get_unaligned_le16(buf); 353 } 354 355 static void regmap_parse_16_be_inplace(void *buf) 356 { 357 u16 v = get_unaligned_be16(buf); 358 359 memcpy(buf, &v, sizeof(v)); 360 } 361 362 static void regmap_parse_16_le_inplace(void *buf) 363 { 364 u16 v = get_unaligned_le16(buf); 365 366 memcpy(buf, &v, sizeof(v)); 367 } 368 369 static unsigned int regmap_parse_16_native(const void *buf) 370 { 371 u16 v; 372 373 memcpy(&v, buf, sizeof(v)); 374 return v; 375 } 376 377 static unsigned int regmap_parse_24_be(const void *buf) 378 { 379 return get_unaligned_be24(buf); 380 } 381 382 static unsigned int regmap_parse_32_be(const void *buf) 383 { 384 return get_unaligned_be32(buf); 385 } 386 387 static unsigned int regmap_parse_32_le(const void *buf) 388 { 389 return get_unaligned_le32(buf); 390 } 391 392 static void regmap_parse_32_be_inplace(void *buf) 393 { 394 u32 v = get_unaligned_be32(buf); 395 396 memcpy(buf, &v, sizeof(v)); 397 } 398 399 static void regmap_parse_32_le_inplace(void *buf) 400 { 401 u32 v = get_unaligned_le32(buf); 402 403 memcpy(buf, &v, sizeof(v)); 404 } 405 406 static unsigned int regmap_parse_32_native(const void *buf) 407 { 408 u32 v; 409 410 memcpy(&v, buf, sizeof(v)); 411 return v; 412 } 413 414 #ifdef CONFIG_64BIT 415 static unsigned int regmap_parse_64_be(const void *buf) 416 { 417 return get_unaligned_be64(buf); 418 } 419 420 static unsigned int regmap_parse_64_le(const void *buf) 421 { 422 return get_unaligned_le64(buf); 423 } 424 425 static void regmap_parse_64_be_inplace(void *buf) 426 { 427 u64 v = get_unaligned_be64(buf); 428 429 memcpy(buf, &v, sizeof(v)); 430 } 431 432 static void regmap_parse_64_le_inplace(void *buf) 433 { 434 u64 v = get_unaligned_le64(buf); 435 436 memcpy(buf, &v, sizeof(v)); 437 } 438 439 static unsigned int regmap_parse_64_native(const void *buf) 440 { 441 u64 v; 442 443 memcpy(&v, buf, sizeof(v)); 444 return v; 445 } 446 #endif 447 448 static void regmap_lock_hwlock(void *__map) 449 { 450 struct regmap *map = __map; 451 452 hwspin_lock_timeout(map->hwlock, UINT_MAX); 453 } 454 455 static void regmap_lock_hwlock_irq(void *__map) 456 { 457 struct regmap *map = __map; 458 459 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX); 460 } 461 462 static void regmap_lock_hwlock_irqsave(void *__map) 463 { 464 struct regmap *map = __map; 465 466 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX, 467 &map->spinlock_flags); 468 } 469 470 static void regmap_unlock_hwlock(void *__map) 471 { 472 struct regmap *map = __map; 473 474 hwspin_unlock(map->hwlock); 475 } 476 477 static void regmap_unlock_hwlock_irq(void *__map) 478 { 479 struct regmap *map = __map; 480 481 hwspin_unlock_irq(map->hwlock); 482 } 483 484 static void regmap_unlock_hwlock_irqrestore(void *__map) 485 { 486 struct regmap *map = __map; 487 488 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags); 489 } 490 491 static void regmap_lock_unlock_none(void *__map) 492 { 493 494 } 495 496 static void regmap_lock_mutex(void *__map) 497 { 498 struct regmap *map = __map; 499 mutex_lock(&map->mutex); 500 } 501 502 static void regmap_unlock_mutex(void *__map) 503 { 504 struct regmap *map = __map; 505 mutex_unlock(&map->mutex); 506 } 507 508 static void regmap_lock_spinlock(void *__map) 509 __acquires(&map->spinlock) 510 { 511 struct regmap *map = __map; 512 unsigned long flags; 513 514 spin_lock_irqsave(&map->spinlock, flags); 515 map->spinlock_flags = flags; 516 } 517 518 static void regmap_unlock_spinlock(void *__map) 519 __releases(&map->spinlock) 520 { 521 struct regmap *map = __map; 522 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); 523 } 524 525 static void regmap_lock_raw_spinlock(void *__map) 526 __acquires(&map->raw_spinlock) 527 { 528 struct regmap *map = __map; 529 unsigned long flags; 530 531 raw_spin_lock_irqsave(&map->raw_spinlock, flags); 532 map->raw_spinlock_flags = flags; 533 } 534 535 static void regmap_unlock_raw_spinlock(void *__map) 536 __releases(&map->raw_spinlock) 537 { 538 struct regmap *map = __map; 539 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags); 540 } 541 542 static void dev_get_regmap_release(struct device *dev, void *res) 543 { 544 /* 545 * We don't actually have anything to do here; the goal here 546 * is not to manage the regmap but to provide a simple way to 547 * get the regmap back given a struct device. 548 */ 549 } 550 551 static bool _regmap_range_add(struct regmap *map, 552 struct regmap_range_node *data) 553 { 554 struct rb_root *root = &map->range_tree; 555 struct rb_node **new = &(root->rb_node), *parent = NULL; 556 557 while (*new) { 558 struct regmap_range_node *this = 559 rb_entry(*new, struct regmap_range_node, node); 560 561 parent = *new; 562 if (data->range_max < this->range_min) 563 new = &((*new)->rb_left); 564 else if (data->range_min > this->range_max) 565 new = &((*new)->rb_right); 566 else 567 return false; 568 } 569 570 rb_link_node(&data->node, parent, new); 571 rb_insert_color(&data->node, root); 572 573 return true; 574 } 575 576 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, 577 unsigned int reg) 578 { 579 struct rb_node *node = map->range_tree.rb_node; 580 581 while (node) { 582 struct regmap_range_node *this = 583 rb_entry(node, struct regmap_range_node, node); 584 585 if (reg < this->range_min) 586 node = node->rb_left; 587 else if (reg > this->range_max) 588 node = node->rb_right; 589 else 590 return this; 591 } 592 593 return NULL; 594 } 595 596 static void regmap_range_exit(struct regmap *map) 597 { 598 struct rb_node *next; 599 struct regmap_range_node *range_node; 600 601 next = rb_first(&map->range_tree); 602 while (next) { 603 range_node = rb_entry(next, struct regmap_range_node, node); 604 next = rb_next(&range_node->node); 605 rb_erase(&range_node->node, &map->range_tree); 606 kfree(range_node); 607 } 608 609 kfree(map->selector_work_buf); 610 } 611 612 static int regmap_set_name(struct regmap *map, const struct regmap_config *config) 613 { 614 if (config->name) { 615 const char *name = kstrdup_const(config->name, GFP_KERNEL); 616 617 if (!name) 618 return -ENOMEM; 619 620 kfree_const(map->name); 621 map->name = name; 622 } 623 624 return 0; 625 } 626 627 int regmap_attach_dev(struct device *dev, struct regmap *map, 628 const struct regmap_config *config) 629 { 630 struct regmap **m; 631 int ret; 632 633 map->dev = dev; 634 635 ret = regmap_set_name(map, config); 636 if (ret) 637 return ret; 638 639 regmap_debugfs_exit(map); 640 regmap_debugfs_init(map); 641 642 /* Add a devres resource for dev_get_regmap() */ 643 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); 644 if (!m) { 645 regmap_debugfs_exit(map); 646 return -ENOMEM; 647 } 648 *m = map; 649 devres_add(dev, m); 650 651 return 0; 652 } 653 EXPORT_SYMBOL_GPL(regmap_attach_dev); 654 655 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, 656 const struct regmap_config *config) 657 { 658 enum regmap_endian endian; 659 660 /* Retrieve the endianness specification from the regmap config */ 661 endian = config->reg_format_endian; 662 663 /* If the regmap config specified a non-default value, use that */ 664 if (endian != REGMAP_ENDIAN_DEFAULT) 665 return endian; 666 667 /* Retrieve the endianness specification from the bus config */ 668 if (bus && bus->reg_format_endian_default) 669 endian = bus->reg_format_endian_default; 670 671 /* If the bus specified a non-default value, use that */ 672 if (endian != REGMAP_ENDIAN_DEFAULT) 673 return endian; 674 675 /* Use this if no other value was found */ 676 return REGMAP_ENDIAN_BIG; 677 } 678 679 enum regmap_endian regmap_get_val_endian(struct device *dev, 680 const struct regmap_bus *bus, 681 const struct regmap_config *config) 682 { 683 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 684 enum regmap_endian endian; 685 686 /* Retrieve the endianness specification from the regmap config */ 687 endian = config->val_format_endian; 688 689 /* If the regmap config specified a non-default value, use that */ 690 if (endian != REGMAP_ENDIAN_DEFAULT) 691 return endian; 692 693 /* If the firmware node exist try to get endianness from it */ 694 if (fwnode_property_read_bool(fwnode, "big-endian")) 695 endian = REGMAP_ENDIAN_BIG; 696 else if (fwnode_property_read_bool(fwnode, "little-endian")) 697 endian = REGMAP_ENDIAN_LITTLE; 698 else if (fwnode_property_read_bool(fwnode, "native-endian")) 699 endian = REGMAP_ENDIAN_NATIVE; 700 701 /* If the endianness was specified in fwnode, use that */ 702 if (endian != REGMAP_ENDIAN_DEFAULT) 703 return endian; 704 705 /* Retrieve the endianness specification from the bus config */ 706 if (bus && bus->val_format_endian_default) 707 endian = bus->val_format_endian_default; 708 709 /* If the bus specified a non-default value, use that */ 710 if (endian != REGMAP_ENDIAN_DEFAULT) 711 return endian; 712 713 /* Use this if no other value was found */ 714 return REGMAP_ENDIAN_BIG; 715 } 716 EXPORT_SYMBOL_GPL(regmap_get_val_endian); 717 718 struct regmap *__regmap_init(struct device *dev, 719 const struct regmap_bus *bus, 720 void *bus_context, 721 const struct regmap_config *config, 722 struct lock_class_key *lock_key, 723 const char *lock_name) 724 { 725 struct regmap *map; 726 int ret = -EINVAL; 727 enum regmap_endian reg_endian, val_endian; 728 int i, j; 729 730 if (!config) 731 goto err; 732 733 map = kzalloc(sizeof(*map), GFP_KERNEL); 734 if (map == NULL) { 735 ret = -ENOMEM; 736 goto err; 737 } 738 739 ret = regmap_set_name(map, config); 740 if (ret) 741 goto err_map; 742 743 ret = -EINVAL; /* Later error paths rely on this */ 744 745 if (config->disable_locking) { 746 map->lock = map->unlock = regmap_lock_unlock_none; 747 map->can_sleep = config->can_sleep; 748 regmap_debugfs_disable(map); 749 } else if (config->lock && config->unlock) { 750 map->lock = config->lock; 751 map->unlock = config->unlock; 752 map->lock_arg = config->lock_arg; 753 map->can_sleep = config->can_sleep; 754 } else if (config->use_hwlock) { 755 map->hwlock = hwspin_lock_request_specific(config->hwlock_id); 756 if (!map->hwlock) { 757 ret = -ENXIO; 758 goto err_name; 759 } 760 761 switch (config->hwlock_mode) { 762 case HWLOCK_IRQSTATE: 763 map->lock = regmap_lock_hwlock_irqsave; 764 map->unlock = regmap_unlock_hwlock_irqrestore; 765 break; 766 case HWLOCK_IRQ: 767 map->lock = regmap_lock_hwlock_irq; 768 map->unlock = regmap_unlock_hwlock_irq; 769 break; 770 default: 771 map->lock = regmap_lock_hwlock; 772 map->unlock = regmap_unlock_hwlock; 773 break; 774 } 775 776 map->lock_arg = map; 777 } else { 778 if ((bus && bus->fast_io) || 779 config->fast_io) { 780 if (config->use_raw_spinlock) { 781 raw_spin_lock_init(&map->raw_spinlock); 782 map->lock = regmap_lock_raw_spinlock; 783 map->unlock = regmap_unlock_raw_spinlock; 784 lockdep_set_class_and_name(&map->raw_spinlock, 785 lock_key, lock_name); 786 } else { 787 spin_lock_init(&map->spinlock); 788 map->lock = regmap_lock_spinlock; 789 map->unlock = regmap_unlock_spinlock; 790 lockdep_set_class_and_name(&map->spinlock, 791 lock_key, lock_name); 792 } 793 } else { 794 mutex_init(&map->mutex); 795 map->lock = regmap_lock_mutex; 796 map->unlock = regmap_unlock_mutex; 797 map->can_sleep = true; 798 lockdep_set_class_and_name(&map->mutex, 799 lock_key, lock_name); 800 } 801 map->lock_arg = map; 802 } 803 804 /* 805 * When we write in fast-paths with regmap_bulk_write() don't allocate 806 * scratch buffers with sleeping allocations. 807 */ 808 if ((bus && bus->fast_io) || config->fast_io) 809 map->alloc_flags = GFP_ATOMIC; 810 else 811 map->alloc_flags = GFP_KERNEL; 812 813 map->reg_base = config->reg_base; 814 815 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); 816 map->format.pad_bytes = config->pad_bits / 8; 817 map->format.reg_shift = config->reg_shift; 818 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); 819 map->format.buf_size = DIV_ROUND_UP(config->reg_bits + 820 config->val_bits + config->pad_bits, 8); 821 map->reg_shift = config->pad_bits % 8; 822 if (config->reg_stride) 823 map->reg_stride = config->reg_stride; 824 else 825 map->reg_stride = 1; 826 if (is_power_of_2(map->reg_stride)) 827 map->reg_stride_order = ilog2(map->reg_stride); 828 else 829 map->reg_stride_order = -1; 830 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read)); 831 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write)); 832 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write)); 833 if (bus) { 834 map->max_raw_read = bus->max_raw_read; 835 map->max_raw_write = bus->max_raw_write; 836 } else if (config->max_raw_read && config->max_raw_write) { 837 map->max_raw_read = config->max_raw_read; 838 map->max_raw_write = config->max_raw_write; 839 } 840 map->dev = dev; 841 map->bus = bus; 842 map->bus_context = bus_context; 843 map->max_register = config->max_register; 844 map->wr_table = config->wr_table; 845 map->rd_table = config->rd_table; 846 map->volatile_table = config->volatile_table; 847 map->precious_table = config->precious_table; 848 map->wr_noinc_table = config->wr_noinc_table; 849 map->rd_noinc_table = config->rd_noinc_table; 850 map->writeable_reg = config->writeable_reg; 851 map->readable_reg = config->readable_reg; 852 map->volatile_reg = config->volatile_reg; 853 map->precious_reg = config->precious_reg; 854 map->writeable_noinc_reg = config->writeable_noinc_reg; 855 map->readable_noinc_reg = config->readable_noinc_reg; 856 map->cache_type = config->cache_type; 857 858 spin_lock_init(&map->async_lock); 859 INIT_LIST_HEAD(&map->async_list); 860 INIT_LIST_HEAD(&map->async_free); 861 init_waitqueue_head(&map->async_waitq); 862 863 if (config->read_flag_mask || 864 config->write_flag_mask || 865 config->zero_flag_mask) { 866 map->read_flag_mask = config->read_flag_mask; 867 map->write_flag_mask = config->write_flag_mask; 868 } else if (bus) { 869 map->read_flag_mask = bus->read_flag_mask; 870 } 871 872 if (config && config->read && config->write) { 873 map->reg_read = _regmap_bus_read; 874 if (config->reg_update_bits) 875 map->reg_update_bits = config->reg_update_bits; 876 877 /* Bulk read/write */ 878 map->read = config->read; 879 map->write = config->write; 880 881 reg_endian = REGMAP_ENDIAN_NATIVE; 882 val_endian = REGMAP_ENDIAN_NATIVE; 883 } else if (!bus) { 884 map->reg_read = config->reg_read; 885 map->reg_write = config->reg_write; 886 map->reg_update_bits = config->reg_update_bits; 887 888 map->defer_caching = false; 889 goto skip_format_initialization; 890 } else if (!bus->read || !bus->write) { 891 map->reg_read = _regmap_bus_reg_read; 892 map->reg_write = _regmap_bus_reg_write; 893 map->reg_update_bits = bus->reg_update_bits; 894 895 map->defer_caching = false; 896 goto skip_format_initialization; 897 } else { 898 map->reg_read = _regmap_bus_read; 899 map->reg_update_bits = bus->reg_update_bits; 900 /* Bulk read/write */ 901 map->read = bus->read; 902 map->write = bus->write; 903 904 reg_endian = regmap_get_reg_endian(bus, config); 905 val_endian = regmap_get_val_endian(dev, bus, config); 906 } 907 908 switch (config->reg_bits + map->reg_shift) { 909 case 2: 910 switch (config->val_bits) { 911 case 6: 912 map->format.format_write = regmap_format_2_6_write; 913 break; 914 default: 915 goto err_hwlock; 916 } 917 break; 918 919 case 4: 920 switch (config->val_bits) { 921 case 12: 922 map->format.format_write = regmap_format_4_12_write; 923 break; 924 default: 925 goto err_hwlock; 926 } 927 break; 928 929 case 7: 930 switch (config->val_bits) { 931 case 9: 932 map->format.format_write = regmap_format_7_9_write; 933 break; 934 case 17: 935 map->format.format_write = regmap_format_7_17_write; 936 break; 937 default: 938 goto err_hwlock; 939 } 940 break; 941 942 case 10: 943 switch (config->val_bits) { 944 case 14: 945 map->format.format_write = regmap_format_10_14_write; 946 break; 947 default: 948 goto err_hwlock; 949 } 950 break; 951 952 case 12: 953 switch (config->val_bits) { 954 case 20: 955 map->format.format_write = regmap_format_12_20_write; 956 break; 957 default: 958 goto err_hwlock; 959 } 960 break; 961 962 case 8: 963 map->format.format_reg = regmap_format_8; 964 break; 965 966 case 16: 967 switch (reg_endian) { 968 case REGMAP_ENDIAN_BIG: 969 map->format.format_reg = regmap_format_16_be; 970 break; 971 case REGMAP_ENDIAN_LITTLE: 972 map->format.format_reg = regmap_format_16_le; 973 break; 974 case REGMAP_ENDIAN_NATIVE: 975 map->format.format_reg = regmap_format_16_native; 976 break; 977 default: 978 goto err_hwlock; 979 } 980 break; 981 982 case 24: 983 switch (reg_endian) { 984 case REGMAP_ENDIAN_BIG: 985 map->format.format_reg = regmap_format_24_be; 986 break; 987 default: 988 goto err_hwlock; 989 } 990 break; 991 992 case 32: 993 switch (reg_endian) { 994 case REGMAP_ENDIAN_BIG: 995 map->format.format_reg = regmap_format_32_be; 996 break; 997 case REGMAP_ENDIAN_LITTLE: 998 map->format.format_reg = regmap_format_32_le; 999 break; 1000 case REGMAP_ENDIAN_NATIVE: 1001 map->format.format_reg = regmap_format_32_native; 1002 break; 1003 default: 1004 goto err_hwlock; 1005 } 1006 break; 1007 1008 #ifdef CONFIG_64BIT 1009 case 64: 1010 switch (reg_endian) { 1011 case REGMAP_ENDIAN_BIG: 1012 map->format.format_reg = regmap_format_64_be; 1013 break; 1014 case REGMAP_ENDIAN_LITTLE: 1015 map->format.format_reg = regmap_format_64_le; 1016 break; 1017 case REGMAP_ENDIAN_NATIVE: 1018 map->format.format_reg = regmap_format_64_native; 1019 break; 1020 default: 1021 goto err_hwlock; 1022 } 1023 break; 1024 #endif 1025 1026 default: 1027 goto err_hwlock; 1028 } 1029 1030 if (val_endian == REGMAP_ENDIAN_NATIVE) 1031 map->format.parse_inplace = regmap_parse_inplace_noop; 1032 1033 switch (config->val_bits) { 1034 case 8: 1035 map->format.format_val = regmap_format_8; 1036 map->format.parse_val = regmap_parse_8; 1037 map->format.parse_inplace = regmap_parse_inplace_noop; 1038 break; 1039 case 16: 1040 switch (val_endian) { 1041 case REGMAP_ENDIAN_BIG: 1042 map->format.format_val = regmap_format_16_be; 1043 map->format.parse_val = regmap_parse_16_be; 1044 map->format.parse_inplace = regmap_parse_16_be_inplace; 1045 break; 1046 case REGMAP_ENDIAN_LITTLE: 1047 map->format.format_val = regmap_format_16_le; 1048 map->format.parse_val = regmap_parse_16_le; 1049 map->format.parse_inplace = regmap_parse_16_le_inplace; 1050 break; 1051 case REGMAP_ENDIAN_NATIVE: 1052 map->format.format_val = regmap_format_16_native; 1053 map->format.parse_val = regmap_parse_16_native; 1054 break; 1055 default: 1056 goto err_hwlock; 1057 } 1058 break; 1059 case 24: 1060 switch (val_endian) { 1061 case REGMAP_ENDIAN_BIG: 1062 map->format.format_val = regmap_format_24_be; 1063 map->format.parse_val = regmap_parse_24_be; 1064 break; 1065 default: 1066 goto err_hwlock; 1067 } 1068 break; 1069 case 32: 1070 switch (val_endian) { 1071 case REGMAP_ENDIAN_BIG: 1072 map->format.format_val = regmap_format_32_be; 1073 map->format.parse_val = regmap_parse_32_be; 1074 map->format.parse_inplace = regmap_parse_32_be_inplace; 1075 break; 1076 case REGMAP_ENDIAN_LITTLE: 1077 map->format.format_val = regmap_format_32_le; 1078 map->format.parse_val = regmap_parse_32_le; 1079 map->format.parse_inplace = regmap_parse_32_le_inplace; 1080 break; 1081 case REGMAP_ENDIAN_NATIVE: 1082 map->format.format_val = regmap_format_32_native; 1083 map->format.parse_val = regmap_parse_32_native; 1084 break; 1085 default: 1086 goto err_hwlock; 1087 } 1088 break; 1089 #ifdef CONFIG_64BIT 1090 case 64: 1091 switch (val_endian) { 1092 case REGMAP_ENDIAN_BIG: 1093 map->format.format_val = regmap_format_64_be; 1094 map->format.parse_val = regmap_parse_64_be; 1095 map->format.parse_inplace = regmap_parse_64_be_inplace; 1096 break; 1097 case REGMAP_ENDIAN_LITTLE: 1098 map->format.format_val = regmap_format_64_le; 1099 map->format.parse_val = regmap_parse_64_le; 1100 map->format.parse_inplace = regmap_parse_64_le_inplace; 1101 break; 1102 case REGMAP_ENDIAN_NATIVE: 1103 map->format.format_val = regmap_format_64_native; 1104 map->format.parse_val = regmap_parse_64_native; 1105 break; 1106 default: 1107 goto err_hwlock; 1108 } 1109 break; 1110 #endif 1111 } 1112 1113 if (map->format.format_write) { 1114 if ((reg_endian != REGMAP_ENDIAN_BIG) || 1115 (val_endian != REGMAP_ENDIAN_BIG)) 1116 goto err_hwlock; 1117 map->use_single_write = true; 1118 } 1119 1120 if (!map->format.format_write && 1121 !(map->format.format_reg && map->format.format_val)) 1122 goto err_hwlock; 1123 1124 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); 1125 if (map->work_buf == NULL) { 1126 ret = -ENOMEM; 1127 goto err_hwlock; 1128 } 1129 1130 if (map->format.format_write) { 1131 map->defer_caching = false; 1132 map->reg_write = _regmap_bus_formatted_write; 1133 } else if (map->format.format_val) { 1134 map->defer_caching = true; 1135 map->reg_write = _regmap_bus_raw_write; 1136 } 1137 1138 skip_format_initialization: 1139 1140 map->range_tree = RB_ROOT; 1141 for (i = 0; i < config->num_ranges; i++) { 1142 const struct regmap_range_cfg *range_cfg = &config->ranges[i]; 1143 struct regmap_range_node *new; 1144 1145 /* Sanity check */ 1146 if (range_cfg->range_max < range_cfg->range_min) { 1147 dev_err(map->dev, "Invalid range %d: %d < %d\n", i, 1148 range_cfg->range_max, range_cfg->range_min); 1149 goto err_range; 1150 } 1151 1152 if (range_cfg->range_max > map->max_register) { 1153 dev_err(map->dev, "Invalid range %d: %d > %d\n", i, 1154 range_cfg->range_max, map->max_register); 1155 goto err_range; 1156 } 1157 1158 if (range_cfg->selector_reg > map->max_register) { 1159 dev_err(map->dev, 1160 "Invalid range %d: selector out of map\n", i); 1161 goto err_range; 1162 } 1163 1164 if (range_cfg->window_len == 0) { 1165 dev_err(map->dev, "Invalid range %d: window_len 0\n", 1166 i); 1167 goto err_range; 1168 } 1169 1170 /* Make sure, that this register range has no selector 1171 or data window within its boundary */ 1172 for (j = 0; j < config->num_ranges; j++) { 1173 unsigned int sel_reg = config->ranges[j].selector_reg; 1174 unsigned int win_min = config->ranges[j].window_start; 1175 unsigned int win_max = win_min + 1176 config->ranges[j].window_len - 1; 1177 1178 /* Allow data window inside its own virtual range */ 1179 if (j == i) 1180 continue; 1181 1182 if (range_cfg->range_min <= sel_reg && 1183 sel_reg <= range_cfg->range_max) { 1184 dev_err(map->dev, 1185 "Range %d: selector for %d in window\n", 1186 i, j); 1187 goto err_range; 1188 } 1189 1190 if (!(win_max < range_cfg->range_min || 1191 win_min > range_cfg->range_max)) { 1192 dev_err(map->dev, 1193 "Range %d: window for %d in window\n", 1194 i, j); 1195 goto err_range; 1196 } 1197 } 1198 1199 new = kzalloc(sizeof(*new), GFP_KERNEL); 1200 if (new == NULL) { 1201 ret = -ENOMEM; 1202 goto err_range; 1203 } 1204 1205 new->map = map; 1206 new->name = range_cfg->name; 1207 new->range_min = range_cfg->range_min; 1208 new->range_max = range_cfg->range_max; 1209 new->selector_reg = range_cfg->selector_reg; 1210 new->selector_mask = range_cfg->selector_mask; 1211 new->selector_shift = range_cfg->selector_shift; 1212 new->window_start = range_cfg->window_start; 1213 new->window_len = range_cfg->window_len; 1214 1215 if (!_regmap_range_add(map, new)) { 1216 dev_err(map->dev, "Failed to add range %d\n", i); 1217 kfree(new); 1218 goto err_range; 1219 } 1220 1221 if (map->selector_work_buf == NULL) { 1222 map->selector_work_buf = 1223 kzalloc(map->format.buf_size, GFP_KERNEL); 1224 if (map->selector_work_buf == NULL) { 1225 ret = -ENOMEM; 1226 goto err_range; 1227 } 1228 } 1229 } 1230 1231 ret = regcache_init(map, config); 1232 if (ret != 0) 1233 goto err_range; 1234 1235 if (dev) { 1236 ret = regmap_attach_dev(dev, map, config); 1237 if (ret != 0) 1238 goto err_regcache; 1239 } else { 1240 regmap_debugfs_init(map); 1241 } 1242 1243 return map; 1244 1245 err_regcache: 1246 regcache_exit(map); 1247 err_range: 1248 regmap_range_exit(map); 1249 kfree(map->work_buf); 1250 err_hwlock: 1251 if (map->hwlock) 1252 hwspin_lock_free(map->hwlock); 1253 err_name: 1254 kfree_const(map->name); 1255 err_map: 1256 kfree(map); 1257 err: 1258 return ERR_PTR(ret); 1259 } 1260 EXPORT_SYMBOL_GPL(__regmap_init); 1261 1262 static void devm_regmap_release(struct device *dev, void *res) 1263 { 1264 regmap_exit(*(struct regmap **)res); 1265 } 1266 1267 struct regmap *__devm_regmap_init(struct device *dev, 1268 const struct regmap_bus *bus, 1269 void *bus_context, 1270 const struct regmap_config *config, 1271 struct lock_class_key *lock_key, 1272 const char *lock_name) 1273 { 1274 struct regmap **ptr, *regmap; 1275 1276 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); 1277 if (!ptr) 1278 return ERR_PTR(-ENOMEM); 1279 1280 regmap = __regmap_init(dev, bus, bus_context, config, 1281 lock_key, lock_name); 1282 if (!IS_ERR(regmap)) { 1283 *ptr = regmap; 1284 devres_add(dev, ptr); 1285 } else { 1286 devres_free(ptr); 1287 } 1288 1289 return regmap; 1290 } 1291 EXPORT_SYMBOL_GPL(__devm_regmap_init); 1292 1293 static void regmap_field_init(struct regmap_field *rm_field, 1294 struct regmap *regmap, struct reg_field reg_field) 1295 { 1296 rm_field->regmap = regmap; 1297 rm_field->reg = reg_field.reg; 1298 rm_field->shift = reg_field.lsb; 1299 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb); 1300 1301 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n"); 1302 1303 rm_field->id_size = reg_field.id_size; 1304 rm_field->id_offset = reg_field.id_offset; 1305 } 1306 1307 /** 1308 * devm_regmap_field_alloc() - Allocate and initialise a register field. 1309 * 1310 * @dev: Device that will be interacted with 1311 * @regmap: regmap bank in which this register field is located. 1312 * @reg_field: Register field with in the bank. 1313 * 1314 * The return value will be an ERR_PTR() on error or a valid pointer 1315 * to a struct regmap_field. The regmap_field will be automatically freed 1316 * by the device management code. 1317 */ 1318 struct regmap_field *devm_regmap_field_alloc(struct device *dev, 1319 struct regmap *regmap, struct reg_field reg_field) 1320 { 1321 struct regmap_field *rm_field = devm_kzalloc(dev, 1322 sizeof(*rm_field), GFP_KERNEL); 1323 if (!rm_field) 1324 return ERR_PTR(-ENOMEM); 1325 1326 regmap_field_init(rm_field, regmap, reg_field); 1327 1328 return rm_field; 1329 1330 } 1331 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); 1332 1333 1334 /** 1335 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field. 1336 * 1337 * @regmap: regmap bank in which this register field is located. 1338 * @rm_field: regmap register fields within the bank. 1339 * @reg_field: Register fields within the bank. 1340 * @num_fields: Number of register fields. 1341 * 1342 * The return value will be an -ENOMEM on error or zero for success. 1343 * Newly allocated regmap_fields should be freed by calling 1344 * regmap_field_bulk_free() 1345 */ 1346 int regmap_field_bulk_alloc(struct regmap *regmap, 1347 struct regmap_field **rm_field, 1348 const struct reg_field *reg_field, 1349 int num_fields) 1350 { 1351 struct regmap_field *rf; 1352 int i; 1353 1354 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL); 1355 if (!rf) 1356 return -ENOMEM; 1357 1358 for (i = 0; i < num_fields; i++) { 1359 regmap_field_init(&rf[i], regmap, reg_field[i]); 1360 rm_field[i] = &rf[i]; 1361 } 1362 1363 return 0; 1364 } 1365 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc); 1366 1367 /** 1368 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register 1369 * fields. 1370 * 1371 * @dev: Device that will be interacted with 1372 * @regmap: regmap bank in which this register field is located. 1373 * @rm_field: regmap register fields within the bank. 1374 * @reg_field: Register fields within the bank. 1375 * @num_fields: Number of register fields. 1376 * 1377 * The return value will be an -ENOMEM on error or zero for success. 1378 * Newly allocated regmap_fields will be automatically freed by the 1379 * device management code. 1380 */ 1381 int devm_regmap_field_bulk_alloc(struct device *dev, 1382 struct regmap *regmap, 1383 struct regmap_field **rm_field, 1384 const struct reg_field *reg_field, 1385 int num_fields) 1386 { 1387 struct regmap_field *rf; 1388 int i; 1389 1390 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL); 1391 if (!rf) 1392 return -ENOMEM; 1393 1394 for (i = 0; i < num_fields; i++) { 1395 regmap_field_init(&rf[i], regmap, reg_field[i]); 1396 rm_field[i] = &rf[i]; 1397 } 1398 1399 return 0; 1400 } 1401 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc); 1402 1403 /** 1404 * regmap_field_bulk_free() - Free register field allocated using 1405 * regmap_field_bulk_alloc. 1406 * 1407 * @field: regmap fields which should be freed. 1408 */ 1409 void regmap_field_bulk_free(struct regmap_field *field) 1410 { 1411 kfree(field); 1412 } 1413 EXPORT_SYMBOL_GPL(regmap_field_bulk_free); 1414 1415 /** 1416 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using 1417 * devm_regmap_field_bulk_alloc. 1418 * 1419 * @dev: Device that will be interacted with 1420 * @field: regmap field which should be freed. 1421 * 1422 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually 1423 * drivers need not call this function, as the memory allocated via devm 1424 * will be freed as per device-driver life-cycle. 1425 */ 1426 void devm_regmap_field_bulk_free(struct device *dev, 1427 struct regmap_field *field) 1428 { 1429 devm_kfree(dev, field); 1430 } 1431 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free); 1432 1433 /** 1434 * devm_regmap_field_free() - Free a register field allocated using 1435 * devm_regmap_field_alloc. 1436 * 1437 * @dev: Device that will be interacted with 1438 * @field: regmap field which should be freed. 1439 * 1440 * Free register field allocated using devm_regmap_field_alloc(). Usually 1441 * drivers need not call this function, as the memory allocated via devm 1442 * will be freed as per device-driver life-cyle. 1443 */ 1444 void devm_regmap_field_free(struct device *dev, 1445 struct regmap_field *field) 1446 { 1447 devm_kfree(dev, field); 1448 } 1449 EXPORT_SYMBOL_GPL(devm_regmap_field_free); 1450 1451 /** 1452 * regmap_field_alloc() - Allocate and initialise a register field. 1453 * 1454 * @regmap: regmap bank in which this register field is located. 1455 * @reg_field: Register field with in the bank. 1456 * 1457 * The return value will be an ERR_PTR() on error or a valid pointer 1458 * to a struct regmap_field. The regmap_field should be freed by the 1459 * user once its finished working with it using regmap_field_free(). 1460 */ 1461 struct regmap_field *regmap_field_alloc(struct regmap *regmap, 1462 struct reg_field reg_field) 1463 { 1464 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); 1465 1466 if (!rm_field) 1467 return ERR_PTR(-ENOMEM); 1468 1469 regmap_field_init(rm_field, regmap, reg_field); 1470 1471 return rm_field; 1472 } 1473 EXPORT_SYMBOL_GPL(regmap_field_alloc); 1474 1475 /** 1476 * regmap_field_free() - Free register field allocated using 1477 * regmap_field_alloc. 1478 * 1479 * @field: regmap field which should be freed. 1480 */ 1481 void regmap_field_free(struct regmap_field *field) 1482 { 1483 kfree(field); 1484 } 1485 EXPORT_SYMBOL_GPL(regmap_field_free); 1486 1487 /** 1488 * regmap_reinit_cache() - Reinitialise the current register cache 1489 * 1490 * @map: Register map to operate on. 1491 * @config: New configuration. Only the cache data will be used. 1492 * 1493 * Discard any existing register cache for the map and initialize a 1494 * new cache. This can be used to restore the cache to defaults or to 1495 * update the cache configuration to reflect runtime discovery of the 1496 * hardware. 1497 * 1498 * No explicit locking is done here, the user needs to ensure that 1499 * this function will not race with other calls to regmap. 1500 */ 1501 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) 1502 { 1503 int ret; 1504 1505 regcache_exit(map); 1506 regmap_debugfs_exit(map); 1507 1508 map->max_register = config->max_register; 1509 map->writeable_reg = config->writeable_reg; 1510 map->readable_reg = config->readable_reg; 1511 map->volatile_reg = config->volatile_reg; 1512 map->precious_reg = config->precious_reg; 1513 map->writeable_noinc_reg = config->writeable_noinc_reg; 1514 map->readable_noinc_reg = config->readable_noinc_reg; 1515 map->cache_type = config->cache_type; 1516 1517 ret = regmap_set_name(map, config); 1518 if (ret) 1519 return ret; 1520 1521 regmap_debugfs_init(map); 1522 1523 map->cache_bypass = false; 1524 map->cache_only = false; 1525 1526 return regcache_init(map, config); 1527 } 1528 EXPORT_SYMBOL_GPL(regmap_reinit_cache); 1529 1530 /** 1531 * regmap_exit() - Free a previously allocated register map 1532 * 1533 * @map: Register map to operate on. 1534 */ 1535 void regmap_exit(struct regmap *map) 1536 { 1537 struct regmap_async *async; 1538 1539 regcache_exit(map); 1540 regmap_debugfs_exit(map); 1541 regmap_range_exit(map); 1542 if (map->bus && map->bus->free_context) 1543 map->bus->free_context(map->bus_context); 1544 kfree(map->work_buf); 1545 while (!list_empty(&map->async_free)) { 1546 async = list_first_entry_or_null(&map->async_free, 1547 struct regmap_async, 1548 list); 1549 list_del(&async->list); 1550 kfree(async->work_buf); 1551 kfree(async); 1552 } 1553 if (map->hwlock) 1554 hwspin_lock_free(map->hwlock); 1555 if (map->lock == regmap_lock_mutex) 1556 mutex_destroy(&map->mutex); 1557 kfree_const(map->name); 1558 kfree(map->patch); 1559 if (map->bus && map->bus->free_on_exit) 1560 kfree(map->bus); 1561 kfree(map); 1562 } 1563 EXPORT_SYMBOL_GPL(regmap_exit); 1564 1565 static int dev_get_regmap_match(struct device *dev, void *res, void *data) 1566 { 1567 struct regmap **r = res; 1568 if (!r || !*r) { 1569 WARN_ON(!r || !*r); 1570 return 0; 1571 } 1572 1573 /* If the user didn't specify a name match any */ 1574 if (data) 1575 return !strcmp((*r)->name, data); 1576 else 1577 return 1; 1578 } 1579 1580 /** 1581 * dev_get_regmap() - Obtain the regmap (if any) for a device 1582 * 1583 * @dev: Device to retrieve the map for 1584 * @name: Optional name for the register map, usually NULL. 1585 * 1586 * Returns the regmap for the device if one is present, or NULL. If 1587 * name is specified then it must match the name specified when 1588 * registering the device, if it is NULL then the first regmap found 1589 * will be used. Devices with multiple register maps are very rare, 1590 * generic code should normally not need to specify a name. 1591 */ 1592 struct regmap *dev_get_regmap(struct device *dev, const char *name) 1593 { 1594 struct regmap **r = devres_find(dev, dev_get_regmap_release, 1595 dev_get_regmap_match, (void *)name); 1596 1597 if (!r) 1598 return NULL; 1599 return *r; 1600 } 1601 EXPORT_SYMBOL_GPL(dev_get_regmap); 1602 1603 /** 1604 * regmap_get_device() - Obtain the device from a regmap 1605 * 1606 * @map: Register map to operate on. 1607 * 1608 * Returns the underlying device that the regmap has been created for. 1609 */ 1610 struct device *regmap_get_device(struct regmap *map) 1611 { 1612 return map->dev; 1613 } 1614 EXPORT_SYMBOL_GPL(regmap_get_device); 1615 1616 static int _regmap_select_page(struct regmap *map, unsigned int *reg, 1617 struct regmap_range_node *range, 1618 unsigned int val_num) 1619 { 1620 void *orig_work_buf; 1621 unsigned int win_offset; 1622 unsigned int win_page; 1623 bool page_chg; 1624 int ret; 1625 1626 win_offset = (*reg - range->range_min) % range->window_len; 1627 win_page = (*reg - range->range_min) / range->window_len; 1628 1629 if (val_num > 1) { 1630 /* Bulk write shouldn't cross range boundary */ 1631 if (*reg + val_num - 1 > range->range_max) 1632 return -EINVAL; 1633 1634 /* ... or single page boundary */ 1635 if (val_num > range->window_len - win_offset) 1636 return -EINVAL; 1637 } 1638 1639 /* It is possible to have selector register inside data window. 1640 In that case, selector register is located on every page and 1641 it needs no page switching, when accessed alone. */ 1642 if (val_num > 1 || 1643 range->window_start + win_offset != range->selector_reg) { 1644 /* Use separate work_buf during page switching */ 1645 orig_work_buf = map->work_buf; 1646 map->work_buf = map->selector_work_buf; 1647 1648 ret = _regmap_update_bits(map, range->selector_reg, 1649 range->selector_mask, 1650 win_page << range->selector_shift, 1651 &page_chg, false); 1652 1653 map->work_buf = orig_work_buf; 1654 1655 if (ret != 0) 1656 return ret; 1657 } 1658 1659 *reg = range->window_start + win_offset; 1660 1661 return 0; 1662 } 1663 1664 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes, 1665 unsigned long mask) 1666 { 1667 u8 *buf; 1668 int i; 1669 1670 if (!mask || !map->work_buf) 1671 return; 1672 1673 buf = map->work_buf; 1674 1675 for (i = 0; i < max_bytes; i++) 1676 buf[i] |= (mask >> (8 * i)) & 0xff; 1677 } 1678 1679 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg) 1680 { 1681 reg += map->reg_base; 1682 1683 if (map->format.reg_shift > 0) 1684 reg >>= map->format.reg_shift; 1685 else if (map->format.reg_shift < 0) 1686 reg <<= -(map->format.reg_shift); 1687 1688 return reg; 1689 } 1690 1691 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg, 1692 const void *val, size_t val_len, bool noinc) 1693 { 1694 struct regmap_range_node *range; 1695 unsigned long flags; 1696 void *work_val = map->work_buf + map->format.reg_bytes + 1697 map->format.pad_bytes; 1698 void *buf; 1699 int ret = -ENOTSUPP; 1700 size_t len; 1701 int i; 1702 1703 /* Check for unwritable or noinc registers in range 1704 * before we start 1705 */ 1706 if (!regmap_writeable_noinc(map, reg)) { 1707 for (i = 0; i < val_len / map->format.val_bytes; i++) { 1708 unsigned int element = 1709 reg + regmap_get_offset(map, i); 1710 if (!regmap_writeable(map, element) || 1711 regmap_writeable_noinc(map, element)) 1712 return -EINVAL; 1713 } 1714 } 1715 1716 if (!map->cache_bypass && map->format.parse_val) { 1717 unsigned int ival; 1718 int val_bytes = map->format.val_bytes; 1719 for (i = 0; i < val_len / val_bytes; i++) { 1720 ival = map->format.parse_val(val + (i * val_bytes)); 1721 ret = regcache_write(map, 1722 reg + regmap_get_offset(map, i), 1723 ival); 1724 if (ret) { 1725 dev_err(map->dev, 1726 "Error in caching of register: %x ret: %d\n", 1727 reg + regmap_get_offset(map, i), ret); 1728 return ret; 1729 } 1730 } 1731 if (map->cache_only) { 1732 map->cache_dirty = true; 1733 return 0; 1734 } 1735 } 1736 1737 range = _regmap_range_lookup(map, reg); 1738 if (range) { 1739 int val_num = val_len / map->format.val_bytes; 1740 int win_offset = (reg - range->range_min) % range->window_len; 1741 int win_residue = range->window_len - win_offset; 1742 1743 /* If the write goes beyond the end of the window split it */ 1744 while (val_num > win_residue) { 1745 dev_dbg(map->dev, "Writing window %d/%zu\n", 1746 win_residue, val_len / map->format.val_bytes); 1747 ret = _regmap_raw_write_impl(map, reg, val, 1748 win_residue * 1749 map->format.val_bytes, noinc); 1750 if (ret != 0) 1751 return ret; 1752 1753 reg += win_residue; 1754 val_num -= win_residue; 1755 val += win_residue * map->format.val_bytes; 1756 val_len -= win_residue * map->format.val_bytes; 1757 1758 win_offset = (reg - range->range_min) % 1759 range->window_len; 1760 win_residue = range->window_len - win_offset; 1761 } 1762 1763 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num); 1764 if (ret != 0) 1765 return ret; 1766 } 1767 1768 reg = regmap_reg_addr(map, reg); 1769 map->format.format_reg(map->work_buf, reg, map->reg_shift); 1770 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 1771 map->write_flag_mask); 1772 1773 /* 1774 * Essentially all I/O mechanisms will be faster with a single 1775 * buffer to write. Since register syncs often generate raw 1776 * writes of single registers optimise that case. 1777 */ 1778 if (val != work_val && val_len == map->format.val_bytes) { 1779 memcpy(work_val, val, map->format.val_bytes); 1780 val = work_val; 1781 } 1782 1783 if (map->async && map->bus && map->bus->async_write) { 1784 struct regmap_async *async; 1785 1786 trace_regmap_async_write_start(map, reg, val_len); 1787 1788 spin_lock_irqsave(&map->async_lock, flags); 1789 async = list_first_entry_or_null(&map->async_free, 1790 struct regmap_async, 1791 list); 1792 if (async) 1793 list_del(&async->list); 1794 spin_unlock_irqrestore(&map->async_lock, flags); 1795 1796 if (!async) { 1797 async = map->bus->async_alloc(); 1798 if (!async) 1799 return -ENOMEM; 1800 1801 async->work_buf = kzalloc(map->format.buf_size, 1802 GFP_KERNEL | GFP_DMA); 1803 if (!async->work_buf) { 1804 kfree(async); 1805 return -ENOMEM; 1806 } 1807 } 1808 1809 async->map = map; 1810 1811 /* If the caller supplied the value we can use it safely. */ 1812 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + 1813 map->format.reg_bytes + map->format.val_bytes); 1814 1815 spin_lock_irqsave(&map->async_lock, flags); 1816 list_add_tail(&async->list, &map->async_list); 1817 spin_unlock_irqrestore(&map->async_lock, flags); 1818 1819 if (val != work_val) 1820 ret = map->bus->async_write(map->bus_context, 1821 async->work_buf, 1822 map->format.reg_bytes + 1823 map->format.pad_bytes, 1824 val, val_len, async); 1825 else 1826 ret = map->bus->async_write(map->bus_context, 1827 async->work_buf, 1828 map->format.reg_bytes + 1829 map->format.pad_bytes + 1830 val_len, NULL, 0, async); 1831 1832 if (ret != 0) { 1833 dev_err(map->dev, "Failed to schedule write: %d\n", 1834 ret); 1835 1836 spin_lock_irqsave(&map->async_lock, flags); 1837 list_move(&async->list, &map->async_free); 1838 spin_unlock_irqrestore(&map->async_lock, flags); 1839 } 1840 1841 return ret; 1842 } 1843 1844 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); 1845 1846 /* If we're doing a single register write we can probably just 1847 * send the work_buf directly, otherwise try to do a gather 1848 * write. 1849 */ 1850 if (val == work_val) 1851 ret = map->write(map->bus_context, map->work_buf, 1852 map->format.reg_bytes + 1853 map->format.pad_bytes + 1854 val_len); 1855 else if (map->bus && map->bus->gather_write) 1856 ret = map->bus->gather_write(map->bus_context, map->work_buf, 1857 map->format.reg_bytes + 1858 map->format.pad_bytes, 1859 val, val_len); 1860 else 1861 ret = -ENOTSUPP; 1862 1863 /* If that didn't work fall back on linearising by hand. */ 1864 if (ret == -ENOTSUPP) { 1865 len = map->format.reg_bytes + map->format.pad_bytes + val_len; 1866 buf = kzalloc(len, GFP_KERNEL); 1867 if (!buf) 1868 return -ENOMEM; 1869 1870 memcpy(buf, map->work_buf, map->format.reg_bytes); 1871 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, 1872 val, val_len); 1873 ret = map->write(map->bus_context, buf, len); 1874 1875 kfree(buf); 1876 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) { 1877 /* regcache_drop_region() takes lock that we already have, 1878 * thus call map->cache_ops->drop() directly 1879 */ 1880 if (map->cache_ops && map->cache_ops->drop) 1881 map->cache_ops->drop(map, reg, reg + 1); 1882 } 1883 1884 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); 1885 1886 return ret; 1887 } 1888 1889 /** 1890 * regmap_can_raw_write - Test if regmap_raw_write() is supported 1891 * 1892 * @map: Map to check. 1893 */ 1894 bool regmap_can_raw_write(struct regmap *map) 1895 { 1896 return map->write && map->format.format_val && map->format.format_reg; 1897 } 1898 EXPORT_SYMBOL_GPL(regmap_can_raw_write); 1899 1900 /** 1901 * regmap_get_raw_read_max - Get the maximum size we can read 1902 * 1903 * @map: Map to check. 1904 */ 1905 size_t regmap_get_raw_read_max(struct regmap *map) 1906 { 1907 return map->max_raw_read; 1908 } 1909 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max); 1910 1911 /** 1912 * regmap_get_raw_write_max - Get the maximum size we can read 1913 * 1914 * @map: Map to check. 1915 */ 1916 size_t regmap_get_raw_write_max(struct regmap *map) 1917 { 1918 return map->max_raw_write; 1919 } 1920 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max); 1921 1922 static int _regmap_bus_formatted_write(void *context, unsigned int reg, 1923 unsigned int val) 1924 { 1925 int ret; 1926 struct regmap_range_node *range; 1927 struct regmap *map = context; 1928 1929 WARN_ON(!map->format.format_write); 1930 1931 range = _regmap_range_lookup(map, reg); 1932 if (range) { 1933 ret = _regmap_select_page(map, ®, range, 1); 1934 if (ret != 0) 1935 return ret; 1936 } 1937 1938 reg = regmap_reg_addr(map, reg); 1939 map->format.format_write(map, reg, val); 1940 1941 trace_regmap_hw_write_start(map, reg, 1); 1942 1943 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size); 1944 1945 trace_regmap_hw_write_done(map, reg, 1); 1946 1947 return ret; 1948 } 1949 1950 static int _regmap_bus_reg_write(void *context, unsigned int reg, 1951 unsigned int val) 1952 { 1953 struct regmap *map = context; 1954 struct regmap_range_node *range; 1955 int ret; 1956 1957 range = _regmap_range_lookup(map, reg); 1958 if (range) { 1959 ret = _regmap_select_page(map, ®, range, 1); 1960 if (ret != 0) 1961 return ret; 1962 } 1963 1964 reg = regmap_reg_addr(map, reg); 1965 return map->bus->reg_write(map->bus_context, reg, val); 1966 } 1967 1968 static int _regmap_bus_raw_write(void *context, unsigned int reg, 1969 unsigned int val) 1970 { 1971 struct regmap *map = context; 1972 1973 WARN_ON(!map->format.format_val); 1974 1975 map->format.format_val(map->work_buf + map->format.reg_bytes 1976 + map->format.pad_bytes, val, 0); 1977 return _regmap_raw_write_impl(map, reg, 1978 map->work_buf + 1979 map->format.reg_bytes + 1980 map->format.pad_bytes, 1981 map->format.val_bytes, 1982 false); 1983 } 1984 1985 static inline void *_regmap_map_get_context(struct regmap *map) 1986 { 1987 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context; 1988 } 1989 1990 int _regmap_write(struct regmap *map, unsigned int reg, 1991 unsigned int val) 1992 { 1993 int ret; 1994 void *context = _regmap_map_get_context(map); 1995 1996 if (!regmap_writeable(map, reg)) 1997 return -EIO; 1998 1999 if (!map->cache_bypass && !map->defer_caching) { 2000 ret = regcache_write(map, reg, val); 2001 if (ret != 0) 2002 return ret; 2003 if (map->cache_only) { 2004 map->cache_dirty = true; 2005 return 0; 2006 } 2007 } 2008 2009 ret = map->reg_write(context, reg, val); 2010 if (ret == 0) { 2011 if (regmap_should_log(map)) 2012 dev_info(map->dev, "%x <= %x\n", reg, val); 2013 2014 trace_regmap_reg_write(map, reg, val); 2015 } 2016 2017 return ret; 2018 } 2019 2020 /** 2021 * regmap_write() - Write a value to a single register 2022 * 2023 * @map: Register map to write to 2024 * @reg: Register to write to 2025 * @val: Value to be written 2026 * 2027 * A value of zero will be returned on success, a negative errno will 2028 * be returned in error cases. 2029 */ 2030 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) 2031 { 2032 int ret; 2033 2034 if (!IS_ALIGNED(reg, map->reg_stride)) 2035 return -EINVAL; 2036 2037 map->lock(map->lock_arg); 2038 2039 ret = _regmap_write(map, reg, val); 2040 2041 map->unlock(map->lock_arg); 2042 2043 return ret; 2044 } 2045 EXPORT_SYMBOL_GPL(regmap_write); 2046 2047 /** 2048 * regmap_write_async() - Write a value to a single register asynchronously 2049 * 2050 * @map: Register map to write to 2051 * @reg: Register to write to 2052 * @val: Value to be written 2053 * 2054 * A value of zero will be returned on success, a negative errno will 2055 * be returned in error cases. 2056 */ 2057 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) 2058 { 2059 int ret; 2060 2061 if (!IS_ALIGNED(reg, map->reg_stride)) 2062 return -EINVAL; 2063 2064 map->lock(map->lock_arg); 2065 2066 map->async = true; 2067 2068 ret = _regmap_write(map, reg, val); 2069 2070 map->async = false; 2071 2072 map->unlock(map->lock_arg); 2073 2074 return ret; 2075 } 2076 EXPORT_SYMBOL_GPL(regmap_write_async); 2077 2078 int _regmap_raw_write(struct regmap *map, unsigned int reg, 2079 const void *val, size_t val_len, bool noinc) 2080 { 2081 size_t val_bytes = map->format.val_bytes; 2082 size_t val_count = val_len / val_bytes; 2083 size_t chunk_count, chunk_bytes; 2084 size_t chunk_regs = val_count; 2085 int ret, i; 2086 2087 if (!val_count) 2088 return -EINVAL; 2089 2090 if (map->use_single_write) 2091 chunk_regs = 1; 2092 else if (map->max_raw_write && val_len > map->max_raw_write) 2093 chunk_regs = map->max_raw_write / val_bytes; 2094 2095 chunk_count = val_count / chunk_regs; 2096 chunk_bytes = chunk_regs * val_bytes; 2097 2098 /* Write as many bytes as possible with chunk_size */ 2099 for (i = 0; i < chunk_count; i++) { 2100 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc); 2101 if (ret) 2102 return ret; 2103 2104 reg += regmap_get_offset(map, chunk_regs); 2105 val += chunk_bytes; 2106 val_len -= chunk_bytes; 2107 } 2108 2109 /* Write remaining bytes */ 2110 if (val_len) 2111 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc); 2112 2113 return ret; 2114 } 2115 2116 /** 2117 * regmap_raw_write() - Write raw values to one or more registers 2118 * 2119 * @map: Register map to write to 2120 * @reg: Initial register to write to 2121 * @val: Block of data to be written, laid out for direct transmission to the 2122 * device 2123 * @val_len: Length of data pointed to by val. 2124 * 2125 * This function is intended to be used for things like firmware 2126 * download where a large block of data needs to be transferred to the 2127 * device. No formatting will be done on the data provided. 2128 * 2129 * A value of zero will be returned on success, a negative errno will 2130 * be returned in error cases. 2131 */ 2132 int regmap_raw_write(struct regmap *map, unsigned int reg, 2133 const void *val, size_t val_len) 2134 { 2135 int ret; 2136 2137 if (!regmap_can_raw_write(map)) 2138 return -EINVAL; 2139 if (val_len % map->format.val_bytes) 2140 return -EINVAL; 2141 2142 map->lock(map->lock_arg); 2143 2144 ret = _regmap_raw_write(map, reg, val, val_len, false); 2145 2146 map->unlock(map->lock_arg); 2147 2148 return ret; 2149 } 2150 EXPORT_SYMBOL_GPL(regmap_raw_write); 2151 2152 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg, 2153 void *val, unsigned int val_len, bool write) 2154 { 2155 size_t val_bytes = map->format.val_bytes; 2156 size_t val_count = val_len / val_bytes; 2157 unsigned int lastval; 2158 u8 *u8p; 2159 u16 *u16p; 2160 u32 *u32p; 2161 #ifdef CONFIG_64BIT 2162 u64 *u64p; 2163 #endif 2164 int ret; 2165 int i; 2166 2167 switch (val_bytes) { 2168 case 1: 2169 u8p = val; 2170 if (write) 2171 lastval = (unsigned int)u8p[val_count - 1]; 2172 break; 2173 case 2: 2174 u16p = val; 2175 if (write) 2176 lastval = (unsigned int)u16p[val_count - 1]; 2177 break; 2178 case 4: 2179 u32p = val; 2180 if (write) 2181 lastval = (unsigned int)u32p[val_count - 1]; 2182 break; 2183 #ifdef CONFIG_64BIT 2184 case 8: 2185 u64p = val; 2186 if (write) 2187 lastval = (unsigned int)u64p[val_count - 1]; 2188 break; 2189 #endif 2190 default: 2191 return -EINVAL; 2192 } 2193 2194 /* 2195 * Update the cache with the last value we write, the rest is just 2196 * gone down in the hardware FIFO. We can't cache FIFOs. This makes 2197 * sure a single read from the cache will work. 2198 */ 2199 if (write) { 2200 if (!map->cache_bypass && !map->defer_caching) { 2201 ret = regcache_write(map, reg, lastval); 2202 if (ret != 0) 2203 return ret; 2204 if (map->cache_only) { 2205 map->cache_dirty = true; 2206 return 0; 2207 } 2208 } 2209 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count); 2210 } else { 2211 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count); 2212 } 2213 2214 if (!ret && regmap_should_log(map)) { 2215 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>"); 2216 for (i = 0; i < val_count; i++) { 2217 switch (val_bytes) { 2218 case 1: 2219 pr_cont("%x", u8p[i]); 2220 break; 2221 case 2: 2222 pr_cont("%x", u16p[i]); 2223 break; 2224 case 4: 2225 pr_cont("%x", u32p[i]); 2226 break; 2227 #ifdef CONFIG_64BIT 2228 case 8: 2229 pr_cont("%llx", u64p[i]); 2230 break; 2231 #endif 2232 default: 2233 break; 2234 } 2235 if (i == (val_count - 1)) 2236 pr_cont("]\n"); 2237 else 2238 pr_cont(","); 2239 } 2240 } 2241 2242 return 0; 2243 } 2244 2245 /** 2246 * regmap_noinc_write(): Write data from a register without incrementing the 2247 * register number 2248 * 2249 * @map: Register map to write to 2250 * @reg: Register to write to 2251 * @val: Pointer to data buffer 2252 * @val_len: Length of output buffer in bytes. 2253 * 2254 * The regmap API usually assumes that bulk bus write operations will write a 2255 * range of registers. Some devices have certain registers for which a write 2256 * operation can write to an internal FIFO. 2257 * 2258 * The target register must be volatile but registers after it can be 2259 * completely unrelated cacheable registers. 2260 * 2261 * This will attempt multiple writes as required to write val_len bytes. 2262 * 2263 * A value of zero will be returned on success, a negative errno will be 2264 * returned in error cases. 2265 */ 2266 int regmap_noinc_write(struct regmap *map, unsigned int reg, 2267 const void *val, size_t val_len) 2268 { 2269 size_t write_len; 2270 int ret; 2271 2272 if (!map->write && !(map->bus && map->bus->reg_noinc_write)) 2273 return -EINVAL; 2274 if (val_len % map->format.val_bytes) 2275 return -EINVAL; 2276 if (!IS_ALIGNED(reg, map->reg_stride)) 2277 return -EINVAL; 2278 if (val_len == 0) 2279 return -EINVAL; 2280 2281 map->lock(map->lock_arg); 2282 2283 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) { 2284 ret = -EINVAL; 2285 goto out_unlock; 2286 } 2287 2288 /* 2289 * Use the accelerated operation if we can. The val drops the const 2290 * typing in order to facilitate code reuse in regmap_noinc_readwrite(). 2291 */ 2292 if (map->bus->reg_noinc_write) { 2293 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true); 2294 goto out_unlock; 2295 } 2296 2297 while (val_len) { 2298 if (map->max_raw_write && map->max_raw_write < val_len) 2299 write_len = map->max_raw_write; 2300 else 2301 write_len = val_len; 2302 ret = _regmap_raw_write(map, reg, val, write_len, true); 2303 if (ret) 2304 goto out_unlock; 2305 val = ((u8 *)val) + write_len; 2306 val_len -= write_len; 2307 } 2308 2309 out_unlock: 2310 map->unlock(map->lock_arg); 2311 return ret; 2312 } 2313 EXPORT_SYMBOL_GPL(regmap_noinc_write); 2314 2315 /** 2316 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a 2317 * register field. 2318 * 2319 * @field: Register field to write to 2320 * @mask: Bitmask to change 2321 * @val: Value to be written 2322 * @change: Boolean indicating if a write was done 2323 * @async: Boolean indicating asynchronously 2324 * @force: Boolean indicating use force update 2325 * 2326 * Perform a read/modify/write cycle on the register field with change, 2327 * async, force option. 2328 * 2329 * A value of zero will be returned on success, a negative errno will 2330 * be returned in error cases. 2331 */ 2332 int regmap_field_update_bits_base(struct regmap_field *field, 2333 unsigned int mask, unsigned int val, 2334 bool *change, bool async, bool force) 2335 { 2336 mask = (mask << field->shift) & field->mask; 2337 2338 return regmap_update_bits_base(field->regmap, field->reg, 2339 mask, val << field->shift, 2340 change, async, force); 2341 } 2342 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base); 2343 2344 /** 2345 * regmap_field_test_bits() - Check if all specified bits are set in a 2346 * register field. 2347 * 2348 * @field: Register field to operate on 2349 * @bits: Bits to test 2350 * 2351 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the 2352 * tested bits is not set and 1 if all tested bits are set. 2353 */ 2354 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits) 2355 { 2356 unsigned int val, ret; 2357 2358 ret = regmap_field_read(field, &val); 2359 if (ret) 2360 return ret; 2361 2362 return (val & bits) == bits; 2363 } 2364 EXPORT_SYMBOL_GPL(regmap_field_test_bits); 2365 2366 /** 2367 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a 2368 * register field with port ID 2369 * 2370 * @field: Register field to write to 2371 * @id: port ID 2372 * @mask: Bitmask to change 2373 * @val: Value to be written 2374 * @change: Boolean indicating if a write was done 2375 * @async: Boolean indicating asynchronously 2376 * @force: Boolean indicating use force update 2377 * 2378 * A value of zero will be returned on success, a negative errno will 2379 * be returned in error cases. 2380 */ 2381 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id, 2382 unsigned int mask, unsigned int val, 2383 bool *change, bool async, bool force) 2384 { 2385 if (id >= field->id_size) 2386 return -EINVAL; 2387 2388 mask = (mask << field->shift) & field->mask; 2389 2390 return regmap_update_bits_base(field->regmap, 2391 field->reg + (field->id_offset * id), 2392 mask, val << field->shift, 2393 change, async, force); 2394 } 2395 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base); 2396 2397 /** 2398 * regmap_bulk_write() - Write multiple registers to the device 2399 * 2400 * @map: Register map to write to 2401 * @reg: First register to be write from 2402 * @val: Block of data to be written, in native register size for device 2403 * @val_count: Number of registers to write 2404 * 2405 * This function is intended to be used for writing a large block of 2406 * data to the device either in single transfer or multiple transfer. 2407 * 2408 * A value of zero will be returned on success, a negative errno will 2409 * be returned in error cases. 2410 */ 2411 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, 2412 size_t val_count) 2413 { 2414 int ret = 0, i; 2415 size_t val_bytes = map->format.val_bytes; 2416 2417 if (!IS_ALIGNED(reg, map->reg_stride)) 2418 return -EINVAL; 2419 2420 /* 2421 * Some devices don't support bulk write, for them we have a series of 2422 * single write operations. 2423 */ 2424 if (!map->write || !map->format.parse_inplace) { 2425 map->lock(map->lock_arg); 2426 for (i = 0; i < val_count; i++) { 2427 unsigned int ival; 2428 2429 switch (val_bytes) { 2430 case 1: 2431 ival = *(u8 *)(val + (i * val_bytes)); 2432 break; 2433 case 2: 2434 ival = *(u16 *)(val + (i * val_bytes)); 2435 break; 2436 case 4: 2437 ival = *(u32 *)(val + (i * val_bytes)); 2438 break; 2439 #ifdef CONFIG_64BIT 2440 case 8: 2441 ival = *(u64 *)(val + (i * val_bytes)); 2442 break; 2443 #endif 2444 default: 2445 ret = -EINVAL; 2446 goto out; 2447 } 2448 2449 ret = _regmap_write(map, 2450 reg + regmap_get_offset(map, i), 2451 ival); 2452 if (ret != 0) 2453 goto out; 2454 } 2455 out: 2456 map->unlock(map->lock_arg); 2457 } else { 2458 void *wval; 2459 2460 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags); 2461 if (!wval) 2462 return -ENOMEM; 2463 2464 for (i = 0; i < val_count * val_bytes; i += val_bytes) 2465 map->format.parse_inplace(wval + i); 2466 2467 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count); 2468 2469 kfree(wval); 2470 } 2471 2472 if (!ret) 2473 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count); 2474 2475 return ret; 2476 } 2477 EXPORT_SYMBOL_GPL(regmap_bulk_write); 2478 2479 /* 2480 * _regmap_raw_multi_reg_write() 2481 * 2482 * the (register,newvalue) pairs in regs have not been formatted, but 2483 * they are all in the same page and have been changed to being page 2484 * relative. The page register has been written if that was necessary. 2485 */ 2486 static int _regmap_raw_multi_reg_write(struct regmap *map, 2487 const struct reg_sequence *regs, 2488 size_t num_regs) 2489 { 2490 int ret; 2491 void *buf; 2492 int i; 2493 u8 *u8; 2494 size_t val_bytes = map->format.val_bytes; 2495 size_t reg_bytes = map->format.reg_bytes; 2496 size_t pad_bytes = map->format.pad_bytes; 2497 size_t pair_size = reg_bytes + pad_bytes + val_bytes; 2498 size_t len = pair_size * num_regs; 2499 2500 if (!len) 2501 return -EINVAL; 2502 2503 buf = kzalloc(len, GFP_KERNEL); 2504 if (!buf) 2505 return -ENOMEM; 2506 2507 /* We have to linearise by hand. */ 2508 2509 u8 = buf; 2510 2511 for (i = 0; i < num_regs; i++) { 2512 unsigned int reg = regs[i].reg; 2513 unsigned int val = regs[i].def; 2514 trace_regmap_hw_write_start(map, reg, 1); 2515 reg = regmap_reg_addr(map, reg); 2516 map->format.format_reg(u8, reg, map->reg_shift); 2517 u8 += reg_bytes + pad_bytes; 2518 map->format.format_val(u8, val, 0); 2519 u8 += val_bytes; 2520 } 2521 u8 = buf; 2522 *u8 |= map->write_flag_mask; 2523 2524 ret = map->write(map->bus_context, buf, len); 2525 2526 kfree(buf); 2527 2528 for (i = 0; i < num_regs; i++) { 2529 int reg = regs[i].reg; 2530 trace_regmap_hw_write_done(map, reg, 1); 2531 } 2532 return ret; 2533 } 2534 2535 static unsigned int _regmap_register_page(struct regmap *map, 2536 unsigned int reg, 2537 struct regmap_range_node *range) 2538 { 2539 unsigned int win_page = (reg - range->range_min) / range->window_len; 2540 2541 return win_page; 2542 } 2543 2544 static int _regmap_range_multi_paged_reg_write(struct regmap *map, 2545 struct reg_sequence *regs, 2546 size_t num_regs) 2547 { 2548 int ret; 2549 int i, n; 2550 struct reg_sequence *base; 2551 unsigned int this_page = 0; 2552 unsigned int page_change = 0; 2553 /* 2554 * the set of registers are not neccessarily in order, but 2555 * since the order of write must be preserved this algorithm 2556 * chops the set each time the page changes. This also applies 2557 * if there is a delay required at any point in the sequence. 2558 */ 2559 base = regs; 2560 for (i = 0, n = 0; i < num_regs; i++, n++) { 2561 unsigned int reg = regs[i].reg; 2562 struct regmap_range_node *range; 2563 2564 range = _regmap_range_lookup(map, reg); 2565 if (range) { 2566 unsigned int win_page = _regmap_register_page(map, reg, 2567 range); 2568 2569 if (i == 0) 2570 this_page = win_page; 2571 if (win_page != this_page) { 2572 this_page = win_page; 2573 page_change = 1; 2574 } 2575 } 2576 2577 /* If we have both a page change and a delay make sure to 2578 * write the regs and apply the delay before we change the 2579 * page. 2580 */ 2581 2582 if (page_change || regs[i].delay_us) { 2583 2584 /* For situations where the first write requires 2585 * a delay we need to make sure we don't call 2586 * raw_multi_reg_write with n=0 2587 * This can't occur with page breaks as we 2588 * never write on the first iteration 2589 */ 2590 if (regs[i].delay_us && i == 0) 2591 n = 1; 2592 2593 ret = _regmap_raw_multi_reg_write(map, base, n); 2594 if (ret != 0) 2595 return ret; 2596 2597 if (regs[i].delay_us) { 2598 if (map->can_sleep) 2599 fsleep(regs[i].delay_us); 2600 else 2601 udelay(regs[i].delay_us); 2602 } 2603 2604 base += n; 2605 n = 0; 2606 2607 if (page_change) { 2608 ret = _regmap_select_page(map, 2609 &base[n].reg, 2610 range, 1); 2611 if (ret != 0) 2612 return ret; 2613 2614 page_change = 0; 2615 } 2616 2617 } 2618 2619 } 2620 if (n > 0) 2621 return _regmap_raw_multi_reg_write(map, base, n); 2622 return 0; 2623 } 2624 2625 static int _regmap_multi_reg_write(struct regmap *map, 2626 const struct reg_sequence *regs, 2627 size_t num_regs) 2628 { 2629 int i; 2630 int ret; 2631 2632 if (!map->can_multi_write) { 2633 for (i = 0; i < num_regs; i++) { 2634 ret = _regmap_write(map, regs[i].reg, regs[i].def); 2635 if (ret != 0) 2636 return ret; 2637 2638 if (regs[i].delay_us) { 2639 if (map->can_sleep) 2640 fsleep(regs[i].delay_us); 2641 else 2642 udelay(regs[i].delay_us); 2643 } 2644 } 2645 return 0; 2646 } 2647 2648 if (!map->format.parse_inplace) 2649 return -EINVAL; 2650 2651 if (map->writeable_reg) 2652 for (i = 0; i < num_regs; i++) { 2653 int reg = regs[i].reg; 2654 if (!map->writeable_reg(map->dev, reg)) 2655 return -EINVAL; 2656 if (!IS_ALIGNED(reg, map->reg_stride)) 2657 return -EINVAL; 2658 } 2659 2660 if (!map->cache_bypass) { 2661 for (i = 0; i < num_regs; i++) { 2662 unsigned int val = regs[i].def; 2663 unsigned int reg = regs[i].reg; 2664 ret = regcache_write(map, reg, val); 2665 if (ret) { 2666 dev_err(map->dev, 2667 "Error in caching of register: %x ret: %d\n", 2668 reg, ret); 2669 return ret; 2670 } 2671 } 2672 if (map->cache_only) { 2673 map->cache_dirty = true; 2674 return 0; 2675 } 2676 } 2677 2678 WARN_ON(!map->bus); 2679 2680 for (i = 0; i < num_regs; i++) { 2681 unsigned int reg = regs[i].reg; 2682 struct regmap_range_node *range; 2683 2684 /* Coalesce all the writes between a page break or a delay 2685 * in a sequence 2686 */ 2687 range = _regmap_range_lookup(map, reg); 2688 if (range || regs[i].delay_us) { 2689 size_t len = sizeof(struct reg_sequence)*num_regs; 2690 struct reg_sequence *base = kmemdup(regs, len, 2691 GFP_KERNEL); 2692 if (!base) 2693 return -ENOMEM; 2694 ret = _regmap_range_multi_paged_reg_write(map, base, 2695 num_regs); 2696 kfree(base); 2697 2698 return ret; 2699 } 2700 } 2701 return _regmap_raw_multi_reg_write(map, regs, num_regs); 2702 } 2703 2704 /** 2705 * regmap_multi_reg_write() - Write multiple registers to the device 2706 * 2707 * @map: Register map to write to 2708 * @regs: Array of structures containing register,value to be written 2709 * @num_regs: Number of registers to write 2710 * 2711 * Write multiple registers to the device where the set of register, value 2712 * pairs are supplied in any order, possibly not all in a single range. 2713 * 2714 * The 'normal' block write mode will send ultimately send data on the 2715 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are 2716 * addressed. However, this alternative block multi write mode will send 2717 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device 2718 * must of course support the mode. 2719 * 2720 * A value of zero will be returned on success, a negative errno will be 2721 * returned in error cases. 2722 */ 2723 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, 2724 int num_regs) 2725 { 2726 int ret; 2727 2728 map->lock(map->lock_arg); 2729 2730 ret = _regmap_multi_reg_write(map, regs, num_regs); 2731 2732 map->unlock(map->lock_arg); 2733 2734 return ret; 2735 } 2736 EXPORT_SYMBOL_GPL(regmap_multi_reg_write); 2737 2738 /** 2739 * regmap_multi_reg_write_bypassed() - Write multiple registers to the 2740 * device but not the cache 2741 * 2742 * @map: Register map to write to 2743 * @regs: Array of structures containing register,value to be written 2744 * @num_regs: Number of registers to write 2745 * 2746 * Write multiple registers to the device but not the cache where the set 2747 * of register are supplied in any order. 2748 * 2749 * This function is intended to be used for writing a large block of data 2750 * atomically to the device in single transfer for those I2C client devices 2751 * that implement this alternative block write mode. 2752 * 2753 * A value of zero will be returned on success, a negative errno will 2754 * be returned in error cases. 2755 */ 2756 int regmap_multi_reg_write_bypassed(struct regmap *map, 2757 const struct reg_sequence *regs, 2758 int num_regs) 2759 { 2760 int ret; 2761 bool bypass; 2762 2763 map->lock(map->lock_arg); 2764 2765 bypass = map->cache_bypass; 2766 map->cache_bypass = true; 2767 2768 ret = _regmap_multi_reg_write(map, regs, num_regs); 2769 2770 map->cache_bypass = bypass; 2771 2772 map->unlock(map->lock_arg); 2773 2774 return ret; 2775 } 2776 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); 2777 2778 /** 2779 * regmap_raw_write_async() - Write raw values to one or more registers 2780 * asynchronously 2781 * 2782 * @map: Register map to write to 2783 * @reg: Initial register to write to 2784 * @val: Block of data to be written, laid out for direct transmission to the 2785 * device. Must be valid until regmap_async_complete() is called. 2786 * @val_len: Length of data pointed to by val. 2787 * 2788 * This function is intended to be used for things like firmware 2789 * download where a large block of data needs to be transferred to the 2790 * device. No formatting will be done on the data provided. 2791 * 2792 * If supported by the underlying bus the write will be scheduled 2793 * asynchronously, helping maximise I/O speed on higher speed buses 2794 * like SPI. regmap_async_complete() can be called to ensure that all 2795 * asynchrnous writes have been completed. 2796 * 2797 * A value of zero will be returned on success, a negative errno will 2798 * be returned in error cases. 2799 */ 2800 int regmap_raw_write_async(struct regmap *map, unsigned int reg, 2801 const void *val, size_t val_len) 2802 { 2803 int ret; 2804 2805 if (val_len % map->format.val_bytes) 2806 return -EINVAL; 2807 if (!IS_ALIGNED(reg, map->reg_stride)) 2808 return -EINVAL; 2809 2810 map->lock(map->lock_arg); 2811 2812 map->async = true; 2813 2814 ret = _regmap_raw_write(map, reg, val, val_len, false); 2815 2816 map->async = false; 2817 2818 map->unlock(map->lock_arg); 2819 2820 return ret; 2821 } 2822 EXPORT_SYMBOL_GPL(regmap_raw_write_async); 2823 2824 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2825 unsigned int val_len, bool noinc) 2826 { 2827 struct regmap_range_node *range; 2828 int ret; 2829 2830 if (!map->read) 2831 return -EINVAL; 2832 2833 range = _regmap_range_lookup(map, reg); 2834 if (range) { 2835 ret = _regmap_select_page(map, ®, range, 2836 noinc ? 1 : val_len / map->format.val_bytes); 2837 if (ret != 0) 2838 return ret; 2839 } 2840 2841 reg = regmap_reg_addr(map, reg); 2842 map->format.format_reg(map->work_buf, reg, map->reg_shift); 2843 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, 2844 map->read_flag_mask); 2845 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); 2846 2847 ret = map->read(map->bus_context, map->work_buf, 2848 map->format.reg_bytes + map->format.pad_bytes, 2849 val, val_len); 2850 2851 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); 2852 2853 return ret; 2854 } 2855 2856 static int _regmap_bus_reg_read(void *context, unsigned int reg, 2857 unsigned int *val) 2858 { 2859 struct regmap *map = context; 2860 struct regmap_range_node *range; 2861 int ret; 2862 2863 range = _regmap_range_lookup(map, reg); 2864 if (range) { 2865 ret = _regmap_select_page(map, ®, range, 1); 2866 if (ret != 0) 2867 return ret; 2868 } 2869 2870 reg = regmap_reg_addr(map, reg); 2871 return map->bus->reg_read(map->bus_context, reg, val); 2872 } 2873 2874 static int _regmap_bus_read(void *context, unsigned int reg, 2875 unsigned int *val) 2876 { 2877 int ret; 2878 struct regmap *map = context; 2879 void *work_val = map->work_buf + map->format.reg_bytes + 2880 map->format.pad_bytes; 2881 2882 if (!map->format.parse_val) 2883 return -EINVAL; 2884 2885 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false); 2886 if (ret == 0) 2887 *val = map->format.parse_val(work_val); 2888 2889 return ret; 2890 } 2891 2892 static int _regmap_read(struct regmap *map, unsigned int reg, 2893 unsigned int *val) 2894 { 2895 int ret; 2896 void *context = _regmap_map_get_context(map); 2897 2898 if (!map->cache_bypass) { 2899 ret = regcache_read(map, reg, val); 2900 if (ret == 0) 2901 return 0; 2902 } 2903 2904 if (map->cache_only) 2905 return -EBUSY; 2906 2907 if (!regmap_readable(map, reg)) 2908 return -EIO; 2909 2910 ret = map->reg_read(context, reg, val); 2911 if (ret == 0) { 2912 if (regmap_should_log(map)) 2913 dev_info(map->dev, "%x => %x\n", reg, *val); 2914 2915 trace_regmap_reg_read(map, reg, *val); 2916 2917 if (!map->cache_bypass) 2918 regcache_write(map, reg, *val); 2919 } 2920 2921 return ret; 2922 } 2923 2924 /** 2925 * regmap_read() - Read a value from a single register 2926 * 2927 * @map: Register map to read from 2928 * @reg: Register to be read from 2929 * @val: Pointer to store read value 2930 * 2931 * A value of zero will be returned on success, a negative errno will 2932 * be returned in error cases. 2933 */ 2934 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) 2935 { 2936 int ret; 2937 2938 if (!IS_ALIGNED(reg, map->reg_stride)) 2939 return -EINVAL; 2940 2941 map->lock(map->lock_arg); 2942 2943 ret = _regmap_read(map, reg, val); 2944 2945 map->unlock(map->lock_arg); 2946 2947 return ret; 2948 } 2949 EXPORT_SYMBOL_GPL(regmap_read); 2950 2951 /** 2952 * regmap_raw_read() - Read raw data from the device 2953 * 2954 * @map: Register map to read from 2955 * @reg: First register to be read from 2956 * @val: Pointer to store read value 2957 * @val_len: Size of data to read 2958 * 2959 * A value of zero will be returned on success, a negative errno will 2960 * be returned in error cases. 2961 */ 2962 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, 2963 size_t val_len) 2964 { 2965 size_t val_bytes = map->format.val_bytes; 2966 size_t val_count = val_len / val_bytes; 2967 unsigned int v; 2968 int ret, i; 2969 2970 if (val_len % map->format.val_bytes) 2971 return -EINVAL; 2972 if (!IS_ALIGNED(reg, map->reg_stride)) 2973 return -EINVAL; 2974 if (val_count == 0) 2975 return -EINVAL; 2976 2977 map->lock(map->lock_arg); 2978 2979 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || 2980 map->cache_type == REGCACHE_NONE) { 2981 size_t chunk_count, chunk_bytes; 2982 size_t chunk_regs = val_count; 2983 2984 if (!map->read) { 2985 ret = -ENOTSUPP; 2986 goto out; 2987 } 2988 2989 if (map->use_single_read) 2990 chunk_regs = 1; 2991 else if (map->max_raw_read && val_len > map->max_raw_read) 2992 chunk_regs = map->max_raw_read / val_bytes; 2993 2994 chunk_count = val_count / chunk_regs; 2995 chunk_bytes = chunk_regs * val_bytes; 2996 2997 /* Read bytes that fit into whole chunks */ 2998 for (i = 0; i < chunk_count; i++) { 2999 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false); 3000 if (ret != 0) 3001 goto out; 3002 3003 reg += regmap_get_offset(map, chunk_regs); 3004 val += chunk_bytes; 3005 val_len -= chunk_bytes; 3006 } 3007 3008 /* Read remaining bytes */ 3009 if (val_len) { 3010 ret = _regmap_raw_read(map, reg, val, val_len, false); 3011 if (ret != 0) 3012 goto out; 3013 } 3014 } else { 3015 /* Otherwise go word by word for the cache; should be low 3016 * cost as we expect to hit the cache. 3017 */ 3018 for (i = 0; i < val_count; i++) { 3019 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 3020 &v); 3021 if (ret != 0) 3022 goto out; 3023 3024 map->format.format_val(val + (i * val_bytes), v, 0); 3025 } 3026 } 3027 3028 out: 3029 map->unlock(map->lock_arg); 3030 3031 return ret; 3032 } 3033 EXPORT_SYMBOL_GPL(regmap_raw_read); 3034 3035 /** 3036 * regmap_noinc_read(): Read data from a register without incrementing the 3037 * register number 3038 * 3039 * @map: Register map to read from 3040 * @reg: Register to read from 3041 * @val: Pointer to data buffer 3042 * @val_len: Length of output buffer in bytes. 3043 * 3044 * The regmap API usually assumes that bulk read operations will read a 3045 * range of registers. Some devices have certain registers for which a read 3046 * operation read will read from an internal FIFO. 3047 * 3048 * The target register must be volatile but registers after it can be 3049 * completely unrelated cacheable registers. 3050 * 3051 * This will attempt multiple reads as required to read val_len bytes. 3052 * 3053 * A value of zero will be returned on success, a negative errno will be 3054 * returned in error cases. 3055 */ 3056 int regmap_noinc_read(struct regmap *map, unsigned int reg, 3057 void *val, size_t val_len) 3058 { 3059 size_t read_len; 3060 int ret; 3061 3062 if (!map->read) 3063 return -ENOTSUPP; 3064 3065 if (val_len % map->format.val_bytes) 3066 return -EINVAL; 3067 if (!IS_ALIGNED(reg, map->reg_stride)) 3068 return -EINVAL; 3069 if (val_len == 0) 3070 return -EINVAL; 3071 3072 map->lock(map->lock_arg); 3073 3074 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) { 3075 ret = -EINVAL; 3076 goto out_unlock; 3077 } 3078 3079 /* Use the accelerated operation if we can */ 3080 if (map->bus->reg_noinc_read) { 3081 /* 3082 * We have not defined the FIFO semantics for cache, as the 3083 * cache is just one value deep. Should we return the last 3084 * written value? Just avoid this by always reading the FIFO 3085 * even when using cache. Cache only will not work. 3086 */ 3087 if (map->cache_only) { 3088 ret = -EBUSY; 3089 goto out_unlock; 3090 } 3091 ret = regmap_noinc_readwrite(map, reg, val, val_len, false); 3092 goto out_unlock; 3093 } 3094 3095 while (val_len) { 3096 if (map->max_raw_read && map->max_raw_read < val_len) 3097 read_len = map->max_raw_read; 3098 else 3099 read_len = val_len; 3100 ret = _regmap_raw_read(map, reg, val, read_len, true); 3101 if (ret) 3102 goto out_unlock; 3103 val = ((u8 *)val) + read_len; 3104 val_len -= read_len; 3105 } 3106 3107 out_unlock: 3108 map->unlock(map->lock_arg); 3109 return ret; 3110 } 3111 EXPORT_SYMBOL_GPL(regmap_noinc_read); 3112 3113 /** 3114 * regmap_field_read(): Read a value to a single register field 3115 * 3116 * @field: Register field to read from 3117 * @val: Pointer to store read value 3118 * 3119 * A value of zero will be returned on success, a negative errno will 3120 * be returned in error cases. 3121 */ 3122 int regmap_field_read(struct regmap_field *field, unsigned int *val) 3123 { 3124 int ret; 3125 unsigned int reg_val; 3126 ret = regmap_read(field->regmap, field->reg, ®_val); 3127 if (ret != 0) 3128 return ret; 3129 3130 reg_val &= field->mask; 3131 reg_val >>= field->shift; 3132 *val = reg_val; 3133 3134 return ret; 3135 } 3136 EXPORT_SYMBOL_GPL(regmap_field_read); 3137 3138 /** 3139 * regmap_fields_read() - Read a value to a single register field with port ID 3140 * 3141 * @field: Register field to read from 3142 * @id: port ID 3143 * @val: Pointer to store read value 3144 * 3145 * A value of zero will be returned on success, a negative errno will 3146 * be returned in error cases. 3147 */ 3148 int regmap_fields_read(struct regmap_field *field, unsigned int id, 3149 unsigned int *val) 3150 { 3151 int ret; 3152 unsigned int reg_val; 3153 3154 if (id >= field->id_size) 3155 return -EINVAL; 3156 3157 ret = regmap_read(field->regmap, 3158 field->reg + (field->id_offset * id), 3159 ®_val); 3160 if (ret != 0) 3161 return ret; 3162 3163 reg_val &= field->mask; 3164 reg_val >>= field->shift; 3165 *val = reg_val; 3166 3167 return ret; 3168 } 3169 EXPORT_SYMBOL_GPL(regmap_fields_read); 3170 3171 /** 3172 * regmap_bulk_read() - Read multiple registers from the device 3173 * 3174 * @map: Register map to read from 3175 * @reg: First register to be read from 3176 * @val: Pointer to store read value, in native register size for device 3177 * @val_count: Number of registers to read 3178 * 3179 * A value of zero will be returned on success, a negative errno will 3180 * be returned in error cases. 3181 */ 3182 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, 3183 size_t val_count) 3184 { 3185 int ret, i; 3186 size_t val_bytes = map->format.val_bytes; 3187 bool vol = regmap_volatile_range(map, reg, val_count); 3188 3189 if (!IS_ALIGNED(reg, map->reg_stride)) 3190 return -EINVAL; 3191 if (val_count == 0) 3192 return -EINVAL; 3193 3194 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { 3195 ret = regmap_raw_read(map, reg, val, val_bytes * val_count); 3196 if (ret != 0) 3197 return ret; 3198 3199 for (i = 0; i < val_count * val_bytes; i += val_bytes) 3200 map->format.parse_inplace(val + i); 3201 } else { 3202 #ifdef CONFIG_64BIT 3203 u64 *u64 = val; 3204 #endif 3205 u32 *u32 = val; 3206 u16 *u16 = val; 3207 u8 *u8 = val; 3208 3209 map->lock(map->lock_arg); 3210 3211 for (i = 0; i < val_count; i++) { 3212 unsigned int ival; 3213 3214 ret = _regmap_read(map, reg + regmap_get_offset(map, i), 3215 &ival); 3216 if (ret != 0) 3217 goto out; 3218 3219 switch (map->format.val_bytes) { 3220 #ifdef CONFIG_64BIT 3221 case 8: 3222 u64[i] = ival; 3223 break; 3224 #endif 3225 case 4: 3226 u32[i] = ival; 3227 break; 3228 case 2: 3229 u16[i] = ival; 3230 break; 3231 case 1: 3232 u8[i] = ival; 3233 break; 3234 default: 3235 ret = -EINVAL; 3236 goto out; 3237 } 3238 } 3239 3240 out: 3241 map->unlock(map->lock_arg); 3242 } 3243 3244 if (!ret) 3245 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count); 3246 3247 return ret; 3248 } 3249 EXPORT_SYMBOL_GPL(regmap_bulk_read); 3250 3251 static int _regmap_update_bits(struct regmap *map, unsigned int reg, 3252 unsigned int mask, unsigned int val, 3253 bool *change, bool force_write) 3254 { 3255 int ret; 3256 unsigned int tmp, orig; 3257 3258 if (change) 3259 *change = false; 3260 3261 if (regmap_volatile(map, reg) && map->reg_update_bits) { 3262 reg = regmap_reg_addr(map, reg); 3263 ret = map->reg_update_bits(map->bus_context, reg, mask, val); 3264 if (ret == 0 && change) 3265 *change = true; 3266 } else { 3267 ret = _regmap_read(map, reg, &orig); 3268 if (ret != 0) 3269 return ret; 3270 3271 tmp = orig & ~mask; 3272 tmp |= val & mask; 3273 3274 if (force_write || (tmp != orig)) { 3275 ret = _regmap_write(map, reg, tmp); 3276 if (ret == 0 && change) 3277 *change = true; 3278 } 3279 } 3280 3281 return ret; 3282 } 3283 3284 /** 3285 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register 3286 * 3287 * @map: Register map to update 3288 * @reg: Register to update 3289 * @mask: Bitmask to change 3290 * @val: New value for bitmask 3291 * @change: Boolean indicating if a write was done 3292 * @async: Boolean indicating asynchronously 3293 * @force: Boolean indicating use force update 3294 * 3295 * Perform a read/modify/write cycle on a register map with change, async, force 3296 * options. 3297 * 3298 * If async is true: 3299 * 3300 * With most buses the read must be done synchronously so this is most useful 3301 * for devices with a cache which do not need to interact with the hardware to 3302 * determine the current register value. 3303 * 3304 * Returns zero for success, a negative number on error. 3305 */ 3306 int regmap_update_bits_base(struct regmap *map, unsigned int reg, 3307 unsigned int mask, unsigned int val, 3308 bool *change, bool async, bool force) 3309 { 3310 int ret; 3311 3312 map->lock(map->lock_arg); 3313 3314 map->async = async; 3315 3316 ret = _regmap_update_bits(map, reg, mask, val, change, force); 3317 3318 map->async = false; 3319 3320 map->unlock(map->lock_arg); 3321 3322 return ret; 3323 } 3324 EXPORT_SYMBOL_GPL(regmap_update_bits_base); 3325 3326 /** 3327 * regmap_test_bits() - Check if all specified bits are set in a register. 3328 * 3329 * @map: Register map to operate on 3330 * @reg: Register to read from 3331 * @bits: Bits to test 3332 * 3333 * Returns 0 if at least one of the tested bits is not set, 1 if all tested 3334 * bits are set and a negative error number if the underlying regmap_read() 3335 * fails. 3336 */ 3337 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits) 3338 { 3339 unsigned int val, ret; 3340 3341 ret = regmap_read(map, reg, &val); 3342 if (ret) 3343 return ret; 3344 3345 return (val & bits) == bits; 3346 } 3347 EXPORT_SYMBOL_GPL(regmap_test_bits); 3348 3349 void regmap_async_complete_cb(struct regmap_async *async, int ret) 3350 { 3351 struct regmap *map = async->map; 3352 bool wake; 3353 3354 trace_regmap_async_io_complete(map); 3355 3356 spin_lock(&map->async_lock); 3357 list_move(&async->list, &map->async_free); 3358 wake = list_empty(&map->async_list); 3359 3360 if (ret != 0) 3361 map->async_ret = ret; 3362 3363 spin_unlock(&map->async_lock); 3364 3365 if (wake) 3366 wake_up(&map->async_waitq); 3367 } 3368 EXPORT_SYMBOL_GPL(regmap_async_complete_cb); 3369 3370 static int regmap_async_is_done(struct regmap *map) 3371 { 3372 unsigned long flags; 3373 int ret; 3374 3375 spin_lock_irqsave(&map->async_lock, flags); 3376 ret = list_empty(&map->async_list); 3377 spin_unlock_irqrestore(&map->async_lock, flags); 3378 3379 return ret; 3380 } 3381 3382 /** 3383 * regmap_async_complete - Ensure all asynchronous I/O has completed. 3384 * 3385 * @map: Map to operate on. 3386 * 3387 * Blocks until any pending asynchronous I/O has completed. Returns 3388 * an error code for any failed I/O operations. 3389 */ 3390 int regmap_async_complete(struct regmap *map) 3391 { 3392 unsigned long flags; 3393 int ret; 3394 3395 /* Nothing to do with no async support */ 3396 if (!map->bus || !map->bus->async_write) 3397 return 0; 3398 3399 trace_regmap_async_complete_start(map); 3400 3401 wait_event(map->async_waitq, regmap_async_is_done(map)); 3402 3403 spin_lock_irqsave(&map->async_lock, flags); 3404 ret = map->async_ret; 3405 map->async_ret = 0; 3406 spin_unlock_irqrestore(&map->async_lock, flags); 3407 3408 trace_regmap_async_complete_done(map); 3409 3410 return ret; 3411 } 3412 EXPORT_SYMBOL_GPL(regmap_async_complete); 3413 3414 /** 3415 * regmap_register_patch - Register and apply register updates to be applied 3416 * on device initialistion 3417 * 3418 * @map: Register map to apply updates to. 3419 * @regs: Values to update. 3420 * @num_regs: Number of entries in regs. 3421 * 3422 * Register a set of register updates to be applied to the device 3423 * whenever the device registers are synchronised with the cache and 3424 * apply them immediately. Typically this is used to apply 3425 * corrections to be applied to the device defaults on startup, such 3426 * as the updates some vendors provide to undocumented registers. 3427 * 3428 * The caller must ensure that this function cannot be called 3429 * concurrently with either itself or regcache_sync(). 3430 */ 3431 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, 3432 int num_regs) 3433 { 3434 struct reg_sequence *p; 3435 int ret; 3436 bool bypass; 3437 3438 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", 3439 num_regs)) 3440 return 0; 3441 3442 p = krealloc(map->patch, 3443 sizeof(struct reg_sequence) * (map->patch_regs + num_regs), 3444 GFP_KERNEL); 3445 if (p) { 3446 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); 3447 map->patch = p; 3448 map->patch_regs += num_regs; 3449 } else { 3450 return -ENOMEM; 3451 } 3452 3453 map->lock(map->lock_arg); 3454 3455 bypass = map->cache_bypass; 3456 3457 map->cache_bypass = true; 3458 map->async = true; 3459 3460 ret = _regmap_multi_reg_write(map, regs, num_regs); 3461 3462 map->async = false; 3463 map->cache_bypass = bypass; 3464 3465 map->unlock(map->lock_arg); 3466 3467 regmap_async_complete(map); 3468 3469 return ret; 3470 } 3471 EXPORT_SYMBOL_GPL(regmap_register_patch); 3472 3473 /** 3474 * regmap_get_val_bytes() - Report the size of a register value 3475 * 3476 * @map: Register map to operate on. 3477 * 3478 * Report the size of a register value, mainly intended to for use by 3479 * generic infrastructure built on top of regmap. 3480 */ 3481 int regmap_get_val_bytes(struct regmap *map) 3482 { 3483 if (map->format.format_write) 3484 return -EINVAL; 3485 3486 return map->format.val_bytes; 3487 } 3488 EXPORT_SYMBOL_GPL(regmap_get_val_bytes); 3489 3490 /** 3491 * regmap_get_max_register() - Report the max register value 3492 * 3493 * @map: Register map to operate on. 3494 * 3495 * Report the max register value, mainly intended to for use by 3496 * generic infrastructure built on top of regmap. 3497 */ 3498 int regmap_get_max_register(struct regmap *map) 3499 { 3500 return map->max_register ? map->max_register : -EINVAL; 3501 } 3502 EXPORT_SYMBOL_GPL(regmap_get_max_register); 3503 3504 /** 3505 * regmap_get_reg_stride() - Report the register address stride 3506 * 3507 * @map: Register map to operate on. 3508 * 3509 * Report the register address stride, mainly intended to for use by 3510 * generic infrastructure built on top of regmap. 3511 */ 3512 int regmap_get_reg_stride(struct regmap *map) 3513 { 3514 return map->reg_stride; 3515 } 3516 EXPORT_SYMBOL_GPL(regmap_get_reg_stride); 3517 3518 /** 3519 * regmap_might_sleep() - Returns whether a regmap access might sleep. 3520 * 3521 * @map: Register map to operate on. 3522 * 3523 * Returns true if an access to the register might sleep, else false. 3524 */ 3525 bool regmap_might_sleep(struct regmap *map) 3526 { 3527 return map->can_sleep; 3528 } 3529 EXPORT_SYMBOL_GPL(regmap_might_sleep); 3530 3531 int regmap_parse_val(struct regmap *map, const void *buf, 3532 unsigned int *val) 3533 { 3534 if (!map->format.parse_val) 3535 return -EINVAL; 3536 3537 *val = map->format.parse_val(buf); 3538 3539 return 0; 3540 } 3541 EXPORT_SYMBOL_GPL(regmap_parse_val); 3542 3543 static int __init regmap_initcall(void) 3544 { 3545 regmap_debugfs_initcall(); 3546 3547 return 0; 3548 } 3549 postcore_initcall(regmap_initcall); 3550