xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
246 static void regmap_format_10_14_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = (val >> 8) | (reg << 6);
253 	out[0] = reg >> 2;
254 }
255 
256 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
257 {
258 	u8 *b = buf;
259 
260 	b[0] = val << shift;
261 }
262 
263 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
264 {
265 	put_unaligned_be16(val << shift, buf);
266 }
267 
268 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
269 {
270 	put_unaligned_le16(val << shift, buf);
271 }
272 
273 static void regmap_format_16_native(void *buf, unsigned int val,
274 				    unsigned int shift)
275 {
276 	u16 v = val << shift;
277 
278 	memcpy(buf, &v, sizeof(v));
279 }
280 
281 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
282 {
283 	u8 *b = buf;
284 
285 	val <<= shift;
286 
287 	b[0] = val >> 16;
288 	b[1] = val >> 8;
289 	b[2] = val;
290 }
291 
292 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
293 {
294 	put_unaligned_be32(val << shift, buf);
295 }
296 
297 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
298 {
299 	put_unaligned_le32(val << shift, buf);
300 }
301 
302 static void regmap_format_32_native(void *buf, unsigned int val,
303 				    unsigned int shift)
304 {
305 	u32 v = val << shift;
306 
307 	memcpy(buf, &v, sizeof(v));
308 }
309 
310 #ifdef CONFIG_64BIT
311 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
312 {
313 	put_unaligned_be64((u64) val << shift, buf);
314 }
315 
316 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
317 {
318 	put_unaligned_le64((u64) val << shift, buf);
319 }
320 
321 static void regmap_format_64_native(void *buf, unsigned int val,
322 				    unsigned int shift)
323 {
324 	u64 v = (u64) val << shift;
325 
326 	memcpy(buf, &v, sizeof(v));
327 }
328 #endif
329 
330 static void regmap_parse_inplace_noop(void *buf)
331 {
332 }
333 
334 static unsigned int regmap_parse_8(const void *buf)
335 {
336 	const u8 *b = buf;
337 
338 	return b[0];
339 }
340 
341 static unsigned int regmap_parse_16_be(const void *buf)
342 {
343 	return get_unaligned_be16(buf);
344 }
345 
346 static unsigned int regmap_parse_16_le(const void *buf)
347 {
348 	return get_unaligned_le16(buf);
349 }
350 
351 static void regmap_parse_16_be_inplace(void *buf)
352 {
353 	u16 v = get_unaligned_be16(buf);
354 
355 	memcpy(buf, &v, sizeof(v));
356 }
357 
358 static void regmap_parse_16_le_inplace(void *buf)
359 {
360 	u16 v = get_unaligned_le16(buf);
361 
362 	memcpy(buf, &v, sizeof(v));
363 }
364 
365 static unsigned int regmap_parse_16_native(const void *buf)
366 {
367 	u16 v;
368 
369 	memcpy(&v, buf, sizeof(v));
370 	return v;
371 }
372 
373 static unsigned int regmap_parse_24(const void *buf)
374 {
375 	const u8 *b = buf;
376 	unsigned int ret = b[2];
377 	ret |= ((unsigned int)b[1]) << 8;
378 	ret |= ((unsigned int)b[0]) << 16;
379 
380 	return ret;
381 }
382 
383 static unsigned int regmap_parse_32_be(const void *buf)
384 {
385 	return get_unaligned_be32(buf);
386 }
387 
388 static unsigned int regmap_parse_32_le(const void *buf)
389 {
390 	return get_unaligned_le32(buf);
391 }
392 
393 static void regmap_parse_32_be_inplace(void *buf)
394 {
395 	u32 v = get_unaligned_be32(buf);
396 
397 	memcpy(buf, &v, sizeof(v));
398 }
399 
400 static void regmap_parse_32_le_inplace(void *buf)
401 {
402 	u32 v = get_unaligned_le32(buf);
403 
404 	memcpy(buf, &v, sizeof(v));
405 }
406 
407 static unsigned int regmap_parse_32_native(const void *buf)
408 {
409 	u32 v;
410 
411 	memcpy(&v, buf, sizeof(v));
412 	return v;
413 }
414 
415 #ifdef CONFIG_64BIT
416 static unsigned int regmap_parse_64_be(const void *buf)
417 {
418 	return get_unaligned_be64(buf);
419 }
420 
421 static unsigned int regmap_parse_64_le(const void *buf)
422 {
423 	return get_unaligned_le64(buf);
424 }
425 
426 static void regmap_parse_64_be_inplace(void *buf)
427 {
428 	u64 v =  get_unaligned_be64(buf);
429 
430 	memcpy(buf, &v, sizeof(v));
431 }
432 
433 static void regmap_parse_64_le_inplace(void *buf)
434 {
435 	u64 v = get_unaligned_le64(buf);
436 
437 	memcpy(buf, &v, sizeof(v));
438 }
439 
440 static unsigned int regmap_parse_64_native(const void *buf)
441 {
442 	u64 v;
443 
444 	memcpy(&v, buf, sizeof(v));
445 	return v;
446 }
447 #endif
448 
449 static void regmap_lock_hwlock(void *__map)
450 {
451 	struct regmap *map = __map;
452 
453 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
454 }
455 
456 static void regmap_lock_hwlock_irq(void *__map)
457 {
458 	struct regmap *map = __map;
459 
460 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
461 }
462 
463 static void regmap_lock_hwlock_irqsave(void *__map)
464 {
465 	struct regmap *map = __map;
466 
467 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
468 				    &map->spinlock_flags);
469 }
470 
471 static void regmap_unlock_hwlock(void *__map)
472 {
473 	struct regmap *map = __map;
474 
475 	hwspin_unlock(map->hwlock);
476 }
477 
478 static void regmap_unlock_hwlock_irq(void *__map)
479 {
480 	struct regmap *map = __map;
481 
482 	hwspin_unlock_irq(map->hwlock);
483 }
484 
485 static void regmap_unlock_hwlock_irqrestore(void *__map)
486 {
487 	struct regmap *map = __map;
488 
489 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
490 }
491 
492 static void regmap_lock_unlock_none(void *__map)
493 {
494 
495 }
496 
497 static void regmap_lock_mutex(void *__map)
498 {
499 	struct regmap *map = __map;
500 	mutex_lock(&map->mutex);
501 }
502 
503 static void regmap_unlock_mutex(void *__map)
504 {
505 	struct regmap *map = __map;
506 	mutex_unlock(&map->mutex);
507 }
508 
509 static void regmap_lock_spinlock(void *__map)
510 __acquires(&map->spinlock)
511 {
512 	struct regmap *map = __map;
513 	unsigned long flags;
514 
515 	spin_lock_irqsave(&map->spinlock, flags);
516 	map->spinlock_flags = flags;
517 }
518 
519 static void regmap_unlock_spinlock(void *__map)
520 __releases(&map->spinlock)
521 {
522 	struct regmap *map = __map;
523 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
524 }
525 
526 static void dev_get_regmap_release(struct device *dev, void *res)
527 {
528 	/*
529 	 * We don't actually have anything to do here; the goal here
530 	 * is not to manage the regmap but to provide a simple way to
531 	 * get the regmap back given a struct device.
532 	 */
533 }
534 
535 static bool _regmap_range_add(struct regmap *map,
536 			      struct regmap_range_node *data)
537 {
538 	struct rb_root *root = &map->range_tree;
539 	struct rb_node **new = &(root->rb_node), *parent = NULL;
540 
541 	while (*new) {
542 		struct regmap_range_node *this =
543 			rb_entry(*new, struct regmap_range_node, node);
544 
545 		parent = *new;
546 		if (data->range_max < this->range_min)
547 			new = &((*new)->rb_left);
548 		else if (data->range_min > this->range_max)
549 			new = &((*new)->rb_right);
550 		else
551 			return false;
552 	}
553 
554 	rb_link_node(&data->node, parent, new);
555 	rb_insert_color(&data->node, root);
556 
557 	return true;
558 }
559 
560 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
561 						      unsigned int reg)
562 {
563 	struct rb_node *node = map->range_tree.rb_node;
564 
565 	while (node) {
566 		struct regmap_range_node *this =
567 			rb_entry(node, struct regmap_range_node, node);
568 
569 		if (reg < this->range_min)
570 			node = node->rb_left;
571 		else if (reg > this->range_max)
572 			node = node->rb_right;
573 		else
574 			return this;
575 	}
576 
577 	return NULL;
578 }
579 
580 static void regmap_range_exit(struct regmap *map)
581 {
582 	struct rb_node *next;
583 	struct regmap_range_node *range_node;
584 
585 	next = rb_first(&map->range_tree);
586 	while (next) {
587 		range_node = rb_entry(next, struct regmap_range_node, node);
588 		next = rb_next(&range_node->node);
589 		rb_erase(&range_node->node, &map->range_tree);
590 		kfree(range_node);
591 	}
592 
593 	kfree(map->selector_work_buf);
594 }
595 
596 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
597 {
598 	if (config->name) {
599 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
600 
601 		if (!name)
602 			return -ENOMEM;
603 
604 		kfree_const(map->name);
605 		map->name = name;
606 	}
607 
608 	return 0;
609 }
610 
611 int regmap_attach_dev(struct device *dev, struct regmap *map,
612 		      const struct regmap_config *config)
613 {
614 	struct regmap **m;
615 	int ret;
616 
617 	map->dev = dev;
618 
619 	ret = regmap_set_name(map, config);
620 	if (ret)
621 		return ret;
622 
623 	regmap_debugfs_init(map);
624 
625 	/* Add a devres resource for dev_get_regmap() */
626 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
627 	if (!m) {
628 		regmap_debugfs_exit(map);
629 		return -ENOMEM;
630 	}
631 	*m = map;
632 	devres_add(dev, m);
633 
634 	return 0;
635 }
636 EXPORT_SYMBOL_GPL(regmap_attach_dev);
637 
638 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
639 					const struct regmap_config *config)
640 {
641 	enum regmap_endian endian;
642 
643 	/* Retrieve the endianness specification from the regmap config */
644 	endian = config->reg_format_endian;
645 
646 	/* If the regmap config specified a non-default value, use that */
647 	if (endian != REGMAP_ENDIAN_DEFAULT)
648 		return endian;
649 
650 	/* Retrieve the endianness specification from the bus config */
651 	if (bus && bus->reg_format_endian_default)
652 		endian = bus->reg_format_endian_default;
653 
654 	/* If the bus specified a non-default value, use that */
655 	if (endian != REGMAP_ENDIAN_DEFAULT)
656 		return endian;
657 
658 	/* Use this if no other value was found */
659 	return REGMAP_ENDIAN_BIG;
660 }
661 
662 enum regmap_endian regmap_get_val_endian(struct device *dev,
663 					 const struct regmap_bus *bus,
664 					 const struct regmap_config *config)
665 {
666 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
667 	enum regmap_endian endian;
668 
669 	/* Retrieve the endianness specification from the regmap config */
670 	endian = config->val_format_endian;
671 
672 	/* If the regmap config specified a non-default value, use that */
673 	if (endian != REGMAP_ENDIAN_DEFAULT)
674 		return endian;
675 
676 	/* If the firmware node exist try to get endianness from it */
677 	if (fwnode_property_read_bool(fwnode, "big-endian"))
678 		endian = REGMAP_ENDIAN_BIG;
679 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
680 		endian = REGMAP_ENDIAN_LITTLE;
681 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
682 		endian = REGMAP_ENDIAN_NATIVE;
683 
684 	/* If the endianness was specified in fwnode, use that */
685 	if (endian != REGMAP_ENDIAN_DEFAULT)
686 		return endian;
687 
688 	/* Retrieve the endianness specification from the bus config */
689 	if (bus && bus->val_format_endian_default)
690 		endian = bus->val_format_endian_default;
691 
692 	/* If the bus specified a non-default value, use that */
693 	if (endian != REGMAP_ENDIAN_DEFAULT)
694 		return endian;
695 
696 	/* Use this if no other value was found */
697 	return REGMAP_ENDIAN_BIG;
698 }
699 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
700 
701 struct regmap *__regmap_init(struct device *dev,
702 			     const struct regmap_bus *bus,
703 			     void *bus_context,
704 			     const struct regmap_config *config,
705 			     struct lock_class_key *lock_key,
706 			     const char *lock_name)
707 {
708 	struct regmap *map;
709 	int ret = -EINVAL;
710 	enum regmap_endian reg_endian, val_endian;
711 	int i, j;
712 
713 	if (!config)
714 		goto err;
715 
716 	map = kzalloc(sizeof(*map), GFP_KERNEL);
717 	if (map == NULL) {
718 		ret = -ENOMEM;
719 		goto err;
720 	}
721 
722 	ret = regmap_set_name(map, config);
723 	if (ret)
724 		goto err_map;
725 
726 	ret = -EINVAL; /* Later error paths rely on this */
727 
728 	if (config->disable_locking) {
729 		map->lock = map->unlock = regmap_lock_unlock_none;
730 		map->can_sleep = config->can_sleep;
731 		regmap_debugfs_disable(map);
732 	} else if (config->lock && config->unlock) {
733 		map->lock = config->lock;
734 		map->unlock = config->unlock;
735 		map->lock_arg = config->lock_arg;
736 		map->can_sleep = config->can_sleep;
737 	} else if (config->use_hwlock) {
738 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
739 		if (!map->hwlock) {
740 			ret = -ENXIO;
741 			goto err_name;
742 		}
743 
744 		switch (config->hwlock_mode) {
745 		case HWLOCK_IRQSTATE:
746 			map->lock = regmap_lock_hwlock_irqsave;
747 			map->unlock = regmap_unlock_hwlock_irqrestore;
748 			break;
749 		case HWLOCK_IRQ:
750 			map->lock = regmap_lock_hwlock_irq;
751 			map->unlock = regmap_unlock_hwlock_irq;
752 			break;
753 		default:
754 			map->lock = regmap_lock_hwlock;
755 			map->unlock = regmap_unlock_hwlock;
756 			break;
757 		}
758 
759 		map->lock_arg = map;
760 	} else {
761 		if ((bus && bus->fast_io) ||
762 		    config->fast_io) {
763 			spin_lock_init(&map->spinlock);
764 			map->lock = regmap_lock_spinlock;
765 			map->unlock = regmap_unlock_spinlock;
766 			lockdep_set_class_and_name(&map->spinlock,
767 						   lock_key, lock_name);
768 		} else {
769 			mutex_init(&map->mutex);
770 			map->lock = regmap_lock_mutex;
771 			map->unlock = regmap_unlock_mutex;
772 			map->can_sleep = true;
773 			lockdep_set_class_and_name(&map->mutex,
774 						   lock_key, lock_name);
775 		}
776 		map->lock_arg = map;
777 	}
778 
779 	/*
780 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
781 	 * scratch buffers with sleeping allocations.
782 	 */
783 	if ((bus && bus->fast_io) || config->fast_io)
784 		map->alloc_flags = GFP_ATOMIC;
785 	else
786 		map->alloc_flags = GFP_KERNEL;
787 
788 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
789 	map->format.pad_bytes = config->pad_bits / 8;
790 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
791 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
792 			config->val_bits + config->pad_bits, 8);
793 	map->reg_shift = config->pad_bits % 8;
794 	if (config->reg_stride)
795 		map->reg_stride = config->reg_stride;
796 	else
797 		map->reg_stride = 1;
798 	if (is_power_of_2(map->reg_stride))
799 		map->reg_stride_order = ilog2(map->reg_stride);
800 	else
801 		map->reg_stride_order = -1;
802 	map->use_single_read = config->use_single_read || !bus || !bus->read;
803 	map->use_single_write = config->use_single_write || !bus || !bus->write;
804 	map->can_multi_write = config->can_multi_write && bus && bus->write;
805 	if (bus) {
806 		map->max_raw_read = bus->max_raw_read;
807 		map->max_raw_write = bus->max_raw_write;
808 	}
809 	map->dev = dev;
810 	map->bus = bus;
811 	map->bus_context = bus_context;
812 	map->max_register = config->max_register;
813 	map->wr_table = config->wr_table;
814 	map->rd_table = config->rd_table;
815 	map->volatile_table = config->volatile_table;
816 	map->precious_table = config->precious_table;
817 	map->wr_noinc_table = config->wr_noinc_table;
818 	map->rd_noinc_table = config->rd_noinc_table;
819 	map->writeable_reg = config->writeable_reg;
820 	map->readable_reg = config->readable_reg;
821 	map->volatile_reg = config->volatile_reg;
822 	map->precious_reg = config->precious_reg;
823 	map->writeable_noinc_reg = config->writeable_noinc_reg;
824 	map->readable_noinc_reg = config->readable_noinc_reg;
825 	map->cache_type = config->cache_type;
826 
827 	spin_lock_init(&map->async_lock);
828 	INIT_LIST_HEAD(&map->async_list);
829 	INIT_LIST_HEAD(&map->async_free);
830 	init_waitqueue_head(&map->async_waitq);
831 
832 	if (config->read_flag_mask ||
833 	    config->write_flag_mask ||
834 	    config->zero_flag_mask) {
835 		map->read_flag_mask = config->read_flag_mask;
836 		map->write_flag_mask = config->write_flag_mask;
837 	} else if (bus) {
838 		map->read_flag_mask = bus->read_flag_mask;
839 	}
840 
841 	if (!bus) {
842 		map->reg_read  = config->reg_read;
843 		map->reg_write = config->reg_write;
844 
845 		map->defer_caching = false;
846 		goto skip_format_initialization;
847 	} else if (!bus->read || !bus->write) {
848 		map->reg_read = _regmap_bus_reg_read;
849 		map->reg_write = _regmap_bus_reg_write;
850 		map->reg_update_bits = bus->reg_update_bits;
851 
852 		map->defer_caching = false;
853 		goto skip_format_initialization;
854 	} else {
855 		map->reg_read  = _regmap_bus_read;
856 		map->reg_update_bits = bus->reg_update_bits;
857 	}
858 
859 	reg_endian = regmap_get_reg_endian(bus, config);
860 	val_endian = regmap_get_val_endian(dev, bus, config);
861 
862 	switch (config->reg_bits + map->reg_shift) {
863 	case 2:
864 		switch (config->val_bits) {
865 		case 6:
866 			map->format.format_write = regmap_format_2_6_write;
867 			break;
868 		default:
869 			goto err_hwlock;
870 		}
871 		break;
872 
873 	case 4:
874 		switch (config->val_bits) {
875 		case 12:
876 			map->format.format_write = regmap_format_4_12_write;
877 			break;
878 		default:
879 			goto err_hwlock;
880 		}
881 		break;
882 
883 	case 7:
884 		switch (config->val_bits) {
885 		case 9:
886 			map->format.format_write = regmap_format_7_9_write;
887 			break;
888 		default:
889 			goto err_hwlock;
890 		}
891 		break;
892 
893 	case 10:
894 		switch (config->val_bits) {
895 		case 14:
896 			map->format.format_write = regmap_format_10_14_write;
897 			break;
898 		default:
899 			goto err_hwlock;
900 		}
901 		break;
902 
903 	case 12:
904 		switch (config->val_bits) {
905 		case 20:
906 			map->format.format_write = regmap_format_12_20_write;
907 			break;
908 		default:
909 			goto err_hwlock;
910 		}
911 		break;
912 
913 	case 8:
914 		map->format.format_reg = regmap_format_8;
915 		break;
916 
917 	case 16:
918 		switch (reg_endian) {
919 		case REGMAP_ENDIAN_BIG:
920 			map->format.format_reg = regmap_format_16_be;
921 			break;
922 		case REGMAP_ENDIAN_LITTLE:
923 			map->format.format_reg = regmap_format_16_le;
924 			break;
925 		case REGMAP_ENDIAN_NATIVE:
926 			map->format.format_reg = regmap_format_16_native;
927 			break;
928 		default:
929 			goto err_hwlock;
930 		}
931 		break;
932 
933 	case 24:
934 		if (reg_endian != REGMAP_ENDIAN_BIG)
935 			goto err_hwlock;
936 		map->format.format_reg = regmap_format_24;
937 		break;
938 
939 	case 32:
940 		switch (reg_endian) {
941 		case REGMAP_ENDIAN_BIG:
942 			map->format.format_reg = regmap_format_32_be;
943 			break;
944 		case REGMAP_ENDIAN_LITTLE:
945 			map->format.format_reg = regmap_format_32_le;
946 			break;
947 		case REGMAP_ENDIAN_NATIVE:
948 			map->format.format_reg = regmap_format_32_native;
949 			break;
950 		default:
951 			goto err_hwlock;
952 		}
953 		break;
954 
955 #ifdef CONFIG_64BIT
956 	case 64:
957 		switch (reg_endian) {
958 		case REGMAP_ENDIAN_BIG:
959 			map->format.format_reg = regmap_format_64_be;
960 			break;
961 		case REGMAP_ENDIAN_LITTLE:
962 			map->format.format_reg = regmap_format_64_le;
963 			break;
964 		case REGMAP_ENDIAN_NATIVE:
965 			map->format.format_reg = regmap_format_64_native;
966 			break;
967 		default:
968 			goto err_hwlock;
969 		}
970 		break;
971 #endif
972 
973 	default:
974 		goto err_hwlock;
975 	}
976 
977 	if (val_endian == REGMAP_ENDIAN_NATIVE)
978 		map->format.parse_inplace = regmap_parse_inplace_noop;
979 
980 	switch (config->val_bits) {
981 	case 8:
982 		map->format.format_val = regmap_format_8;
983 		map->format.parse_val = regmap_parse_8;
984 		map->format.parse_inplace = regmap_parse_inplace_noop;
985 		break;
986 	case 16:
987 		switch (val_endian) {
988 		case REGMAP_ENDIAN_BIG:
989 			map->format.format_val = regmap_format_16_be;
990 			map->format.parse_val = regmap_parse_16_be;
991 			map->format.parse_inplace = regmap_parse_16_be_inplace;
992 			break;
993 		case REGMAP_ENDIAN_LITTLE:
994 			map->format.format_val = regmap_format_16_le;
995 			map->format.parse_val = regmap_parse_16_le;
996 			map->format.parse_inplace = regmap_parse_16_le_inplace;
997 			break;
998 		case REGMAP_ENDIAN_NATIVE:
999 			map->format.format_val = regmap_format_16_native;
1000 			map->format.parse_val = regmap_parse_16_native;
1001 			break;
1002 		default:
1003 			goto err_hwlock;
1004 		}
1005 		break;
1006 	case 24:
1007 		if (val_endian != REGMAP_ENDIAN_BIG)
1008 			goto err_hwlock;
1009 		map->format.format_val = regmap_format_24;
1010 		map->format.parse_val = regmap_parse_24;
1011 		break;
1012 	case 32:
1013 		switch (val_endian) {
1014 		case REGMAP_ENDIAN_BIG:
1015 			map->format.format_val = regmap_format_32_be;
1016 			map->format.parse_val = regmap_parse_32_be;
1017 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1018 			break;
1019 		case REGMAP_ENDIAN_LITTLE:
1020 			map->format.format_val = regmap_format_32_le;
1021 			map->format.parse_val = regmap_parse_32_le;
1022 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1023 			break;
1024 		case REGMAP_ENDIAN_NATIVE:
1025 			map->format.format_val = regmap_format_32_native;
1026 			map->format.parse_val = regmap_parse_32_native;
1027 			break;
1028 		default:
1029 			goto err_hwlock;
1030 		}
1031 		break;
1032 #ifdef CONFIG_64BIT
1033 	case 64:
1034 		switch (val_endian) {
1035 		case REGMAP_ENDIAN_BIG:
1036 			map->format.format_val = regmap_format_64_be;
1037 			map->format.parse_val = regmap_parse_64_be;
1038 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1039 			break;
1040 		case REGMAP_ENDIAN_LITTLE:
1041 			map->format.format_val = regmap_format_64_le;
1042 			map->format.parse_val = regmap_parse_64_le;
1043 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1044 			break;
1045 		case REGMAP_ENDIAN_NATIVE:
1046 			map->format.format_val = regmap_format_64_native;
1047 			map->format.parse_val = regmap_parse_64_native;
1048 			break;
1049 		default:
1050 			goto err_hwlock;
1051 		}
1052 		break;
1053 #endif
1054 	}
1055 
1056 	if (map->format.format_write) {
1057 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1058 		    (val_endian != REGMAP_ENDIAN_BIG))
1059 			goto err_hwlock;
1060 		map->use_single_write = true;
1061 	}
1062 
1063 	if (!map->format.format_write &&
1064 	    !(map->format.format_reg && map->format.format_val))
1065 		goto err_hwlock;
1066 
1067 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1068 	if (map->work_buf == NULL) {
1069 		ret = -ENOMEM;
1070 		goto err_hwlock;
1071 	}
1072 
1073 	if (map->format.format_write) {
1074 		map->defer_caching = false;
1075 		map->reg_write = _regmap_bus_formatted_write;
1076 	} else if (map->format.format_val) {
1077 		map->defer_caching = true;
1078 		map->reg_write = _regmap_bus_raw_write;
1079 	}
1080 
1081 skip_format_initialization:
1082 
1083 	map->range_tree = RB_ROOT;
1084 	for (i = 0; i < config->num_ranges; i++) {
1085 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1086 		struct regmap_range_node *new;
1087 
1088 		/* Sanity check */
1089 		if (range_cfg->range_max < range_cfg->range_min) {
1090 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1091 				range_cfg->range_max, range_cfg->range_min);
1092 			goto err_range;
1093 		}
1094 
1095 		if (range_cfg->range_max > map->max_register) {
1096 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1097 				range_cfg->range_max, map->max_register);
1098 			goto err_range;
1099 		}
1100 
1101 		if (range_cfg->selector_reg > map->max_register) {
1102 			dev_err(map->dev,
1103 				"Invalid range %d: selector out of map\n", i);
1104 			goto err_range;
1105 		}
1106 
1107 		if (range_cfg->window_len == 0) {
1108 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1109 				i);
1110 			goto err_range;
1111 		}
1112 
1113 		/* Make sure, that this register range has no selector
1114 		   or data window within its boundary */
1115 		for (j = 0; j < config->num_ranges; j++) {
1116 			unsigned sel_reg = config->ranges[j].selector_reg;
1117 			unsigned win_min = config->ranges[j].window_start;
1118 			unsigned win_max = win_min +
1119 					   config->ranges[j].window_len - 1;
1120 
1121 			/* Allow data window inside its own virtual range */
1122 			if (j == i)
1123 				continue;
1124 
1125 			if (range_cfg->range_min <= sel_reg &&
1126 			    sel_reg <= range_cfg->range_max) {
1127 				dev_err(map->dev,
1128 					"Range %d: selector for %d in window\n",
1129 					i, j);
1130 				goto err_range;
1131 			}
1132 
1133 			if (!(win_max < range_cfg->range_min ||
1134 			      win_min > range_cfg->range_max)) {
1135 				dev_err(map->dev,
1136 					"Range %d: window for %d in window\n",
1137 					i, j);
1138 				goto err_range;
1139 			}
1140 		}
1141 
1142 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1143 		if (new == NULL) {
1144 			ret = -ENOMEM;
1145 			goto err_range;
1146 		}
1147 
1148 		new->map = map;
1149 		new->name = range_cfg->name;
1150 		new->range_min = range_cfg->range_min;
1151 		new->range_max = range_cfg->range_max;
1152 		new->selector_reg = range_cfg->selector_reg;
1153 		new->selector_mask = range_cfg->selector_mask;
1154 		new->selector_shift = range_cfg->selector_shift;
1155 		new->window_start = range_cfg->window_start;
1156 		new->window_len = range_cfg->window_len;
1157 
1158 		if (!_regmap_range_add(map, new)) {
1159 			dev_err(map->dev, "Failed to add range %d\n", i);
1160 			kfree(new);
1161 			goto err_range;
1162 		}
1163 
1164 		if (map->selector_work_buf == NULL) {
1165 			map->selector_work_buf =
1166 				kzalloc(map->format.buf_size, GFP_KERNEL);
1167 			if (map->selector_work_buf == NULL) {
1168 				ret = -ENOMEM;
1169 				goto err_range;
1170 			}
1171 		}
1172 	}
1173 
1174 	ret = regcache_init(map, config);
1175 	if (ret != 0)
1176 		goto err_range;
1177 
1178 	if (dev) {
1179 		ret = regmap_attach_dev(dev, map, config);
1180 		if (ret != 0)
1181 			goto err_regcache;
1182 	} else {
1183 		regmap_debugfs_init(map);
1184 	}
1185 
1186 	return map;
1187 
1188 err_regcache:
1189 	regcache_exit(map);
1190 err_range:
1191 	regmap_range_exit(map);
1192 	kfree(map->work_buf);
1193 err_hwlock:
1194 	if (map->hwlock)
1195 		hwspin_lock_free(map->hwlock);
1196 err_name:
1197 	kfree_const(map->name);
1198 err_map:
1199 	kfree(map);
1200 err:
1201 	return ERR_PTR(ret);
1202 }
1203 EXPORT_SYMBOL_GPL(__regmap_init);
1204 
1205 static void devm_regmap_release(struct device *dev, void *res)
1206 {
1207 	regmap_exit(*(struct regmap **)res);
1208 }
1209 
1210 struct regmap *__devm_regmap_init(struct device *dev,
1211 				  const struct regmap_bus *bus,
1212 				  void *bus_context,
1213 				  const struct regmap_config *config,
1214 				  struct lock_class_key *lock_key,
1215 				  const char *lock_name)
1216 {
1217 	struct regmap **ptr, *regmap;
1218 
1219 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1220 	if (!ptr)
1221 		return ERR_PTR(-ENOMEM);
1222 
1223 	regmap = __regmap_init(dev, bus, bus_context, config,
1224 			       lock_key, lock_name);
1225 	if (!IS_ERR(regmap)) {
1226 		*ptr = regmap;
1227 		devres_add(dev, ptr);
1228 	} else {
1229 		devres_free(ptr);
1230 	}
1231 
1232 	return regmap;
1233 }
1234 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1235 
1236 static void regmap_field_init(struct regmap_field *rm_field,
1237 	struct regmap *regmap, struct reg_field reg_field)
1238 {
1239 	rm_field->regmap = regmap;
1240 	rm_field->reg = reg_field.reg;
1241 	rm_field->shift = reg_field.lsb;
1242 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1243 	rm_field->id_size = reg_field.id_size;
1244 	rm_field->id_offset = reg_field.id_offset;
1245 }
1246 
1247 /**
1248  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1249  *
1250  * @dev: Device that will be interacted with
1251  * @regmap: regmap bank in which this register field is located.
1252  * @reg_field: Register field with in the bank.
1253  *
1254  * The return value will be an ERR_PTR() on error or a valid pointer
1255  * to a struct regmap_field. The regmap_field will be automatically freed
1256  * by the device management code.
1257  */
1258 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1259 		struct regmap *regmap, struct reg_field reg_field)
1260 {
1261 	struct regmap_field *rm_field = devm_kzalloc(dev,
1262 					sizeof(*rm_field), GFP_KERNEL);
1263 	if (!rm_field)
1264 		return ERR_PTR(-ENOMEM);
1265 
1266 	regmap_field_init(rm_field, regmap, reg_field);
1267 
1268 	return rm_field;
1269 
1270 }
1271 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1272 
1273 
1274 /**
1275  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1276  *
1277  * @regmap: regmap bank in which this register field is located.
1278  * @rm_field: regmap register fields within the bank.
1279  * @reg_field: Register fields within the bank.
1280  * @num_fields: Number of register fields.
1281  *
1282  * The return value will be an -ENOMEM on error or zero for success.
1283  * Newly allocated regmap_fields should be freed by calling
1284  * regmap_field_bulk_free()
1285  */
1286 int regmap_field_bulk_alloc(struct regmap *regmap,
1287 			    struct regmap_field **rm_field,
1288 			    struct reg_field *reg_field,
1289 			    int num_fields)
1290 {
1291 	struct regmap_field *rf;
1292 	int i;
1293 
1294 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1295 	if (!rf)
1296 		return -ENOMEM;
1297 
1298 	for (i = 0; i < num_fields; i++) {
1299 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1300 		rm_field[i] = &rf[i];
1301 	}
1302 
1303 	return 0;
1304 }
1305 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1306 
1307 /**
1308  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1309  * fields.
1310  *
1311  * @dev: Device that will be interacted with
1312  * @regmap: regmap bank in which this register field is located.
1313  * @rm_field: regmap register fields within the bank.
1314  * @reg_field: Register fields within the bank.
1315  * @num_fields: Number of register fields.
1316  *
1317  * The return value will be an -ENOMEM on error or zero for success.
1318  * Newly allocated regmap_fields will be automatically freed by the
1319  * device management code.
1320  */
1321 int devm_regmap_field_bulk_alloc(struct device *dev,
1322 				 struct regmap *regmap,
1323 				 struct regmap_field **rm_field,
1324 				 struct reg_field *reg_field,
1325 				 int num_fields)
1326 {
1327 	struct regmap_field *rf;
1328 	int i;
1329 
1330 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1331 	if (!rf)
1332 		return -ENOMEM;
1333 
1334 	for (i = 0; i < num_fields; i++) {
1335 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1336 		rm_field[i] = &rf[i];
1337 	}
1338 
1339 	return 0;
1340 }
1341 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1342 
1343 /**
1344  * regmap_field_bulk_free() - Free register field allocated using
1345  *                       regmap_field_bulk_alloc.
1346  *
1347  * @field: regmap fields which should be freed.
1348  */
1349 void regmap_field_bulk_free(struct regmap_field *field)
1350 {
1351 	kfree(field);
1352 }
1353 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1354 
1355 /**
1356  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1357  *                            devm_regmap_field_bulk_alloc.
1358  *
1359  * @dev: Device that will be interacted with
1360  * @field: regmap field which should be freed.
1361  *
1362  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1363  * drivers need not call this function, as the memory allocated via devm
1364  * will be freed as per device-driver life-cycle.
1365  */
1366 void devm_regmap_field_bulk_free(struct device *dev,
1367 				 struct regmap_field *field)
1368 {
1369 	devm_kfree(dev, field);
1370 }
1371 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1372 
1373 /**
1374  * devm_regmap_field_free() - Free a register field allocated using
1375  *                            devm_regmap_field_alloc.
1376  *
1377  * @dev: Device that will be interacted with
1378  * @field: regmap field which should be freed.
1379  *
1380  * Free register field allocated using devm_regmap_field_alloc(). Usually
1381  * drivers need not call this function, as the memory allocated via devm
1382  * will be freed as per device-driver life-cyle.
1383  */
1384 void devm_regmap_field_free(struct device *dev,
1385 	struct regmap_field *field)
1386 {
1387 	devm_kfree(dev, field);
1388 }
1389 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1390 
1391 /**
1392  * regmap_field_alloc() - Allocate and initialise a register field.
1393  *
1394  * @regmap: regmap bank in which this register field is located.
1395  * @reg_field: Register field with in the bank.
1396  *
1397  * The return value will be an ERR_PTR() on error or a valid pointer
1398  * to a struct regmap_field. The regmap_field should be freed by the
1399  * user once its finished working with it using regmap_field_free().
1400  */
1401 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1402 		struct reg_field reg_field)
1403 {
1404 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1405 
1406 	if (!rm_field)
1407 		return ERR_PTR(-ENOMEM);
1408 
1409 	regmap_field_init(rm_field, regmap, reg_field);
1410 
1411 	return rm_field;
1412 }
1413 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1414 
1415 /**
1416  * regmap_field_free() - Free register field allocated using
1417  *                       regmap_field_alloc.
1418  *
1419  * @field: regmap field which should be freed.
1420  */
1421 void regmap_field_free(struct regmap_field *field)
1422 {
1423 	kfree(field);
1424 }
1425 EXPORT_SYMBOL_GPL(regmap_field_free);
1426 
1427 /**
1428  * regmap_reinit_cache() - Reinitialise the current register cache
1429  *
1430  * @map: Register map to operate on.
1431  * @config: New configuration.  Only the cache data will be used.
1432  *
1433  * Discard any existing register cache for the map and initialize a
1434  * new cache.  This can be used to restore the cache to defaults or to
1435  * update the cache configuration to reflect runtime discovery of the
1436  * hardware.
1437  *
1438  * No explicit locking is done here, the user needs to ensure that
1439  * this function will not race with other calls to regmap.
1440  */
1441 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1442 {
1443 	int ret;
1444 
1445 	regcache_exit(map);
1446 	regmap_debugfs_exit(map);
1447 
1448 	map->max_register = config->max_register;
1449 	map->writeable_reg = config->writeable_reg;
1450 	map->readable_reg = config->readable_reg;
1451 	map->volatile_reg = config->volatile_reg;
1452 	map->precious_reg = config->precious_reg;
1453 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1454 	map->readable_noinc_reg = config->readable_noinc_reg;
1455 	map->cache_type = config->cache_type;
1456 
1457 	ret = regmap_set_name(map, config);
1458 	if (ret)
1459 		return ret;
1460 
1461 	regmap_debugfs_init(map);
1462 
1463 	map->cache_bypass = false;
1464 	map->cache_only = false;
1465 
1466 	return regcache_init(map, config);
1467 }
1468 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1469 
1470 /**
1471  * regmap_exit() - Free a previously allocated register map
1472  *
1473  * @map: Register map to operate on.
1474  */
1475 void regmap_exit(struct regmap *map)
1476 {
1477 	struct regmap_async *async;
1478 
1479 	regcache_exit(map);
1480 	regmap_debugfs_exit(map);
1481 	regmap_range_exit(map);
1482 	if (map->bus && map->bus->free_context)
1483 		map->bus->free_context(map->bus_context);
1484 	kfree(map->work_buf);
1485 	while (!list_empty(&map->async_free)) {
1486 		async = list_first_entry_or_null(&map->async_free,
1487 						 struct regmap_async,
1488 						 list);
1489 		list_del(&async->list);
1490 		kfree(async->work_buf);
1491 		kfree(async);
1492 	}
1493 	if (map->hwlock)
1494 		hwspin_lock_free(map->hwlock);
1495 	if (map->lock == regmap_lock_mutex)
1496 		mutex_destroy(&map->mutex);
1497 	kfree_const(map->name);
1498 	kfree(map->patch);
1499 	kfree(map);
1500 }
1501 EXPORT_SYMBOL_GPL(regmap_exit);
1502 
1503 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1504 {
1505 	struct regmap **r = res;
1506 	if (!r || !*r) {
1507 		WARN_ON(!r || !*r);
1508 		return 0;
1509 	}
1510 
1511 	/* If the user didn't specify a name match any */
1512 	if (data)
1513 		return !strcmp((*r)->name, data);
1514 	else
1515 		return 1;
1516 }
1517 
1518 /**
1519  * dev_get_regmap() - Obtain the regmap (if any) for a device
1520  *
1521  * @dev: Device to retrieve the map for
1522  * @name: Optional name for the register map, usually NULL.
1523  *
1524  * Returns the regmap for the device if one is present, or NULL.  If
1525  * name is specified then it must match the name specified when
1526  * registering the device, if it is NULL then the first regmap found
1527  * will be used.  Devices with multiple register maps are very rare,
1528  * generic code should normally not need to specify a name.
1529  */
1530 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1531 {
1532 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1533 					dev_get_regmap_match, (void *)name);
1534 
1535 	if (!r)
1536 		return NULL;
1537 	return *r;
1538 }
1539 EXPORT_SYMBOL_GPL(dev_get_regmap);
1540 
1541 /**
1542  * regmap_get_device() - Obtain the device from a regmap
1543  *
1544  * @map: Register map to operate on.
1545  *
1546  * Returns the underlying device that the regmap has been created for.
1547  */
1548 struct device *regmap_get_device(struct regmap *map)
1549 {
1550 	return map->dev;
1551 }
1552 EXPORT_SYMBOL_GPL(regmap_get_device);
1553 
1554 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1555 			       struct regmap_range_node *range,
1556 			       unsigned int val_num)
1557 {
1558 	void *orig_work_buf;
1559 	unsigned int win_offset;
1560 	unsigned int win_page;
1561 	bool page_chg;
1562 	int ret;
1563 
1564 	win_offset = (*reg - range->range_min) % range->window_len;
1565 	win_page = (*reg - range->range_min) / range->window_len;
1566 
1567 	if (val_num > 1) {
1568 		/* Bulk write shouldn't cross range boundary */
1569 		if (*reg + val_num - 1 > range->range_max)
1570 			return -EINVAL;
1571 
1572 		/* ... or single page boundary */
1573 		if (val_num > range->window_len - win_offset)
1574 			return -EINVAL;
1575 	}
1576 
1577 	/* It is possible to have selector register inside data window.
1578 	   In that case, selector register is located on every page and
1579 	   it needs no page switching, when accessed alone. */
1580 	if (val_num > 1 ||
1581 	    range->window_start + win_offset != range->selector_reg) {
1582 		/* Use separate work_buf during page switching */
1583 		orig_work_buf = map->work_buf;
1584 		map->work_buf = map->selector_work_buf;
1585 
1586 		ret = _regmap_update_bits(map, range->selector_reg,
1587 					  range->selector_mask,
1588 					  win_page << range->selector_shift,
1589 					  &page_chg, false);
1590 
1591 		map->work_buf = orig_work_buf;
1592 
1593 		if (ret != 0)
1594 			return ret;
1595 	}
1596 
1597 	*reg = range->window_start + win_offset;
1598 
1599 	return 0;
1600 }
1601 
1602 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1603 					  unsigned long mask)
1604 {
1605 	u8 *buf;
1606 	int i;
1607 
1608 	if (!mask || !map->work_buf)
1609 		return;
1610 
1611 	buf = map->work_buf;
1612 
1613 	for (i = 0; i < max_bytes; i++)
1614 		buf[i] |= (mask >> (8 * i)) & 0xff;
1615 }
1616 
1617 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1618 				  const void *val, size_t val_len, bool noinc)
1619 {
1620 	struct regmap_range_node *range;
1621 	unsigned long flags;
1622 	void *work_val = map->work_buf + map->format.reg_bytes +
1623 		map->format.pad_bytes;
1624 	void *buf;
1625 	int ret = -ENOTSUPP;
1626 	size_t len;
1627 	int i;
1628 
1629 	WARN_ON(!map->bus);
1630 
1631 	/* Check for unwritable or noinc registers in range
1632 	 * before we start
1633 	 */
1634 	if (!regmap_writeable_noinc(map, reg)) {
1635 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1636 			unsigned int element =
1637 				reg + regmap_get_offset(map, i);
1638 			if (!regmap_writeable(map, element) ||
1639 				regmap_writeable_noinc(map, element))
1640 				return -EINVAL;
1641 		}
1642 	}
1643 
1644 	if (!map->cache_bypass && map->format.parse_val) {
1645 		unsigned int ival;
1646 		int val_bytes = map->format.val_bytes;
1647 		for (i = 0; i < val_len / val_bytes; i++) {
1648 			ival = map->format.parse_val(val + (i * val_bytes));
1649 			ret = regcache_write(map,
1650 					     reg + regmap_get_offset(map, i),
1651 					     ival);
1652 			if (ret) {
1653 				dev_err(map->dev,
1654 					"Error in caching of register: %x ret: %d\n",
1655 					reg + i, ret);
1656 				return ret;
1657 			}
1658 		}
1659 		if (map->cache_only) {
1660 			map->cache_dirty = true;
1661 			return 0;
1662 		}
1663 	}
1664 
1665 	range = _regmap_range_lookup(map, reg);
1666 	if (range) {
1667 		int val_num = val_len / map->format.val_bytes;
1668 		int win_offset = (reg - range->range_min) % range->window_len;
1669 		int win_residue = range->window_len - win_offset;
1670 
1671 		/* If the write goes beyond the end of the window split it */
1672 		while (val_num > win_residue) {
1673 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1674 				win_residue, val_len / map->format.val_bytes);
1675 			ret = _regmap_raw_write_impl(map, reg, val,
1676 						     win_residue *
1677 						     map->format.val_bytes, noinc);
1678 			if (ret != 0)
1679 				return ret;
1680 
1681 			reg += win_residue;
1682 			val_num -= win_residue;
1683 			val += win_residue * map->format.val_bytes;
1684 			val_len -= win_residue * map->format.val_bytes;
1685 
1686 			win_offset = (reg - range->range_min) %
1687 				range->window_len;
1688 			win_residue = range->window_len - win_offset;
1689 		}
1690 
1691 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1692 		if (ret != 0)
1693 			return ret;
1694 	}
1695 
1696 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1697 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1698 				      map->write_flag_mask);
1699 
1700 	/*
1701 	 * Essentially all I/O mechanisms will be faster with a single
1702 	 * buffer to write.  Since register syncs often generate raw
1703 	 * writes of single registers optimise that case.
1704 	 */
1705 	if (val != work_val && val_len == map->format.val_bytes) {
1706 		memcpy(work_val, val, map->format.val_bytes);
1707 		val = work_val;
1708 	}
1709 
1710 	if (map->async && map->bus->async_write) {
1711 		struct regmap_async *async;
1712 
1713 		trace_regmap_async_write_start(map, reg, val_len);
1714 
1715 		spin_lock_irqsave(&map->async_lock, flags);
1716 		async = list_first_entry_or_null(&map->async_free,
1717 						 struct regmap_async,
1718 						 list);
1719 		if (async)
1720 			list_del(&async->list);
1721 		spin_unlock_irqrestore(&map->async_lock, flags);
1722 
1723 		if (!async) {
1724 			async = map->bus->async_alloc();
1725 			if (!async)
1726 				return -ENOMEM;
1727 
1728 			async->work_buf = kzalloc(map->format.buf_size,
1729 						  GFP_KERNEL | GFP_DMA);
1730 			if (!async->work_buf) {
1731 				kfree(async);
1732 				return -ENOMEM;
1733 			}
1734 		}
1735 
1736 		async->map = map;
1737 
1738 		/* If the caller supplied the value we can use it safely. */
1739 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1740 		       map->format.reg_bytes + map->format.val_bytes);
1741 
1742 		spin_lock_irqsave(&map->async_lock, flags);
1743 		list_add_tail(&async->list, &map->async_list);
1744 		spin_unlock_irqrestore(&map->async_lock, flags);
1745 
1746 		if (val != work_val)
1747 			ret = map->bus->async_write(map->bus_context,
1748 						    async->work_buf,
1749 						    map->format.reg_bytes +
1750 						    map->format.pad_bytes,
1751 						    val, val_len, async);
1752 		else
1753 			ret = map->bus->async_write(map->bus_context,
1754 						    async->work_buf,
1755 						    map->format.reg_bytes +
1756 						    map->format.pad_bytes +
1757 						    val_len, NULL, 0, async);
1758 
1759 		if (ret != 0) {
1760 			dev_err(map->dev, "Failed to schedule write: %d\n",
1761 				ret);
1762 
1763 			spin_lock_irqsave(&map->async_lock, flags);
1764 			list_move(&async->list, &map->async_free);
1765 			spin_unlock_irqrestore(&map->async_lock, flags);
1766 		}
1767 
1768 		return ret;
1769 	}
1770 
1771 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1772 
1773 	/* If we're doing a single register write we can probably just
1774 	 * send the work_buf directly, otherwise try to do a gather
1775 	 * write.
1776 	 */
1777 	if (val == work_val)
1778 		ret = map->bus->write(map->bus_context, map->work_buf,
1779 				      map->format.reg_bytes +
1780 				      map->format.pad_bytes +
1781 				      val_len);
1782 	else if (map->bus->gather_write)
1783 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1784 					     map->format.reg_bytes +
1785 					     map->format.pad_bytes,
1786 					     val, val_len);
1787 	else
1788 		ret = -ENOTSUPP;
1789 
1790 	/* If that didn't work fall back on linearising by hand. */
1791 	if (ret == -ENOTSUPP) {
1792 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1793 		buf = kzalloc(len, GFP_KERNEL);
1794 		if (!buf)
1795 			return -ENOMEM;
1796 
1797 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1798 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1799 		       val, val_len);
1800 		ret = map->bus->write(map->bus_context, buf, len);
1801 
1802 		kfree(buf);
1803 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1804 		/* regcache_drop_region() takes lock that we already have,
1805 		 * thus call map->cache_ops->drop() directly
1806 		 */
1807 		if (map->cache_ops && map->cache_ops->drop)
1808 			map->cache_ops->drop(map, reg, reg + 1);
1809 	}
1810 
1811 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1812 
1813 	return ret;
1814 }
1815 
1816 /**
1817  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1818  *
1819  * @map: Map to check.
1820  */
1821 bool regmap_can_raw_write(struct regmap *map)
1822 {
1823 	return map->bus && map->bus->write && map->format.format_val &&
1824 		map->format.format_reg;
1825 }
1826 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1827 
1828 /**
1829  * regmap_get_raw_read_max - Get the maximum size we can read
1830  *
1831  * @map: Map to check.
1832  */
1833 size_t regmap_get_raw_read_max(struct regmap *map)
1834 {
1835 	return map->max_raw_read;
1836 }
1837 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1838 
1839 /**
1840  * regmap_get_raw_write_max - Get the maximum size we can read
1841  *
1842  * @map: Map to check.
1843  */
1844 size_t regmap_get_raw_write_max(struct regmap *map)
1845 {
1846 	return map->max_raw_write;
1847 }
1848 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1849 
1850 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1851 				       unsigned int val)
1852 {
1853 	int ret;
1854 	struct regmap_range_node *range;
1855 	struct regmap *map = context;
1856 
1857 	WARN_ON(!map->bus || !map->format.format_write);
1858 
1859 	range = _regmap_range_lookup(map, reg);
1860 	if (range) {
1861 		ret = _regmap_select_page(map, &reg, range, 1);
1862 		if (ret != 0)
1863 			return ret;
1864 	}
1865 
1866 	map->format.format_write(map, reg, val);
1867 
1868 	trace_regmap_hw_write_start(map, reg, 1);
1869 
1870 	ret = map->bus->write(map->bus_context, map->work_buf,
1871 			      map->format.buf_size);
1872 
1873 	trace_regmap_hw_write_done(map, reg, 1);
1874 
1875 	return ret;
1876 }
1877 
1878 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1879 				 unsigned int val)
1880 {
1881 	struct regmap *map = context;
1882 
1883 	return map->bus->reg_write(map->bus_context, reg, val);
1884 }
1885 
1886 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1887 				 unsigned int val)
1888 {
1889 	struct regmap *map = context;
1890 
1891 	WARN_ON(!map->bus || !map->format.format_val);
1892 
1893 	map->format.format_val(map->work_buf + map->format.reg_bytes
1894 			       + map->format.pad_bytes, val, 0);
1895 	return _regmap_raw_write_impl(map, reg,
1896 				      map->work_buf +
1897 				      map->format.reg_bytes +
1898 				      map->format.pad_bytes,
1899 				      map->format.val_bytes,
1900 				      false);
1901 }
1902 
1903 static inline void *_regmap_map_get_context(struct regmap *map)
1904 {
1905 	return (map->bus) ? map : map->bus_context;
1906 }
1907 
1908 int _regmap_write(struct regmap *map, unsigned int reg,
1909 		  unsigned int val)
1910 {
1911 	int ret;
1912 	void *context = _regmap_map_get_context(map);
1913 
1914 	if (!regmap_writeable(map, reg))
1915 		return -EIO;
1916 
1917 	if (!map->cache_bypass && !map->defer_caching) {
1918 		ret = regcache_write(map, reg, val);
1919 		if (ret != 0)
1920 			return ret;
1921 		if (map->cache_only) {
1922 			map->cache_dirty = true;
1923 			return 0;
1924 		}
1925 	}
1926 
1927 	if (regmap_should_log(map))
1928 		dev_info(map->dev, "%x <= %x\n", reg, val);
1929 
1930 	trace_regmap_reg_write(map, reg, val);
1931 
1932 	return map->reg_write(context, reg, val);
1933 }
1934 
1935 /**
1936  * regmap_write() - Write a value to a single register
1937  *
1938  * @map: Register map to write to
1939  * @reg: Register to write to
1940  * @val: Value to be written
1941  *
1942  * A value of zero will be returned on success, a negative errno will
1943  * be returned in error cases.
1944  */
1945 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1946 {
1947 	int ret;
1948 
1949 	if (!IS_ALIGNED(reg, map->reg_stride))
1950 		return -EINVAL;
1951 
1952 	map->lock(map->lock_arg);
1953 
1954 	ret = _regmap_write(map, reg, val);
1955 
1956 	map->unlock(map->lock_arg);
1957 
1958 	return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(regmap_write);
1961 
1962 /**
1963  * regmap_write_async() - Write a value to a single register asynchronously
1964  *
1965  * @map: Register map to write to
1966  * @reg: Register to write to
1967  * @val: Value to be written
1968  *
1969  * A value of zero will be returned on success, a negative errno will
1970  * be returned in error cases.
1971  */
1972 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1973 {
1974 	int ret;
1975 
1976 	if (!IS_ALIGNED(reg, map->reg_stride))
1977 		return -EINVAL;
1978 
1979 	map->lock(map->lock_arg);
1980 
1981 	map->async = true;
1982 
1983 	ret = _regmap_write(map, reg, val);
1984 
1985 	map->async = false;
1986 
1987 	map->unlock(map->lock_arg);
1988 
1989 	return ret;
1990 }
1991 EXPORT_SYMBOL_GPL(regmap_write_async);
1992 
1993 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1994 		      const void *val, size_t val_len, bool noinc)
1995 {
1996 	size_t val_bytes = map->format.val_bytes;
1997 	size_t val_count = val_len / val_bytes;
1998 	size_t chunk_count, chunk_bytes;
1999 	size_t chunk_regs = val_count;
2000 	int ret, i;
2001 
2002 	if (!val_count)
2003 		return -EINVAL;
2004 
2005 	if (map->use_single_write)
2006 		chunk_regs = 1;
2007 	else if (map->max_raw_write && val_len > map->max_raw_write)
2008 		chunk_regs = map->max_raw_write / val_bytes;
2009 
2010 	chunk_count = val_count / chunk_regs;
2011 	chunk_bytes = chunk_regs * val_bytes;
2012 
2013 	/* Write as many bytes as possible with chunk_size */
2014 	for (i = 0; i < chunk_count; i++) {
2015 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2016 		if (ret)
2017 			return ret;
2018 
2019 		reg += regmap_get_offset(map, chunk_regs);
2020 		val += chunk_bytes;
2021 		val_len -= chunk_bytes;
2022 	}
2023 
2024 	/* Write remaining bytes */
2025 	if (val_len)
2026 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2027 
2028 	return ret;
2029 }
2030 
2031 /**
2032  * regmap_raw_write() - Write raw values to one or more registers
2033  *
2034  * @map: Register map to write to
2035  * @reg: Initial register to write to
2036  * @val: Block of data to be written, laid out for direct transmission to the
2037  *       device
2038  * @val_len: Length of data pointed to by val.
2039  *
2040  * This function is intended to be used for things like firmware
2041  * download where a large block of data needs to be transferred to the
2042  * device.  No formatting will be done on the data provided.
2043  *
2044  * A value of zero will be returned on success, a negative errno will
2045  * be returned in error cases.
2046  */
2047 int regmap_raw_write(struct regmap *map, unsigned int reg,
2048 		     const void *val, size_t val_len)
2049 {
2050 	int ret;
2051 
2052 	if (!regmap_can_raw_write(map))
2053 		return -EINVAL;
2054 	if (val_len % map->format.val_bytes)
2055 		return -EINVAL;
2056 
2057 	map->lock(map->lock_arg);
2058 
2059 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2060 
2061 	map->unlock(map->lock_arg);
2062 
2063 	return ret;
2064 }
2065 EXPORT_SYMBOL_GPL(regmap_raw_write);
2066 
2067 /**
2068  * regmap_noinc_write(): Write data from a register without incrementing the
2069  *			register number
2070  *
2071  * @map: Register map to write to
2072  * @reg: Register to write to
2073  * @val: Pointer to data buffer
2074  * @val_len: Length of output buffer in bytes.
2075  *
2076  * The regmap API usually assumes that bulk bus write operations will write a
2077  * range of registers. Some devices have certain registers for which a write
2078  * operation can write to an internal FIFO.
2079  *
2080  * The target register must be volatile but registers after it can be
2081  * completely unrelated cacheable registers.
2082  *
2083  * This will attempt multiple writes as required to write val_len bytes.
2084  *
2085  * A value of zero will be returned on success, a negative errno will be
2086  * returned in error cases.
2087  */
2088 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2089 		      const void *val, size_t val_len)
2090 {
2091 	size_t write_len;
2092 	int ret;
2093 
2094 	if (!map->bus)
2095 		return -EINVAL;
2096 	if (!map->bus->write)
2097 		return -ENOTSUPP;
2098 	if (val_len % map->format.val_bytes)
2099 		return -EINVAL;
2100 	if (!IS_ALIGNED(reg, map->reg_stride))
2101 		return -EINVAL;
2102 	if (val_len == 0)
2103 		return -EINVAL;
2104 
2105 	map->lock(map->lock_arg);
2106 
2107 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2108 		ret = -EINVAL;
2109 		goto out_unlock;
2110 	}
2111 
2112 	while (val_len) {
2113 		if (map->max_raw_write && map->max_raw_write < val_len)
2114 			write_len = map->max_raw_write;
2115 		else
2116 			write_len = val_len;
2117 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2118 		if (ret)
2119 			goto out_unlock;
2120 		val = ((u8 *)val) + write_len;
2121 		val_len -= write_len;
2122 	}
2123 
2124 out_unlock:
2125 	map->unlock(map->lock_arg);
2126 	return ret;
2127 }
2128 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2129 
2130 /**
2131  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2132  *                                   register field.
2133  *
2134  * @field: Register field to write to
2135  * @mask: Bitmask to change
2136  * @val: Value to be written
2137  * @change: Boolean indicating if a write was done
2138  * @async: Boolean indicating asynchronously
2139  * @force: Boolean indicating use force update
2140  *
2141  * Perform a read/modify/write cycle on the register field with change,
2142  * async, force option.
2143  *
2144  * A value of zero will be returned on success, a negative errno will
2145  * be returned in error cases.
2146  */
2147 int regmap_field_update_bits_base(struct regmap_field *field,
2148 				  unsigned int mask, unsigned int val,
2149 				  bool *change, bool async, bool force)
2150 {
2151 	mask = (mask << field->shift) & field->mask;
2152 
2153 	return regmap_update_bits_base(field->regmap, field->reg,
2154 				       mask, val << field->shift,
2155 				       change, async, force);
2156 }
2157 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2158 
2159 /**
2160  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2161  *                                    register field with port ID
2162  *
2163  * @field: Register field to write to
2164  * @id: port ID
2165  * @mask: Bitmask to change
2166  * @val: Value to be written
2167  * @change: Boolean indicating if a write was done
2168  * @async: Boolean indicating asynchronously
2169  * @force: Boolean indicating use force update
2170  *
2171  * A value of zero will be returned on success, a negative errno will
2172  * be returned in error cases.
2173  */
2174 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2175 				   unsigned int mask, unsigned int val,
2176 				   bool *change, bool async, bool force)
2177 {
2178 	if (id >= field->id_size)
2179 		return -EINVAL;
2180 
2181 	mask = (mask << field->shift) & field->mask;
2182 
2183 	return regmap_update_bits_base(field->regmap,
2184 				       field->reg + (field->id_offset * id),
2185 				       mask, val << field->shift,
2186 				       change, async, force);
2187 }
2188 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2189 
2190 /**
2191  * regmap_bulk_write() - Write multiple registers to the device
2192  *
2193  * @map: Register map to write to
2194  * @reg: First register to be write from
2195  * @val: Block of data to be written, in native register size for device
2196  * @val_count: Number of registers to write
2197  *
2198  * This function is intended to be used for writing a large block of
2199  * data to the device either in single transfer or multiple transfer.
2200  *
2201  * A value of zero will be returned on success, a negative errno will
2202  * be returned in error cases.
2203  */
2204 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2205 		     size_t val_count)
2206 {
2207 	int ret = 0, i;
2208 	size_t val_bytes = map->format.val_bytes;
2209 
2210 	if (!IS_ALIGNED(reg, map->reg_stride))
2211 		return -EINVAL;
2212 
2213 	/*
2214 	 * Some devices don't support bulk write, for them we have a series of
2215 	 * single write operations.
2216 	 */
2217 	if (!map->bus || !map->format.parse_inplace) {
2218 		map->lock(map->lock_arg);
2219 		for (i = 0; i < val_count; i++) {
2220 			unsigned int ival;
2221 
2222 			switch (val_bytes) {
2223 			case 1:
2224 				ival = *(u8 *)(val + (i * val_bytes));
2225 				break;
2226 			case 2:
2227 				ival = *(u16 *)(val + (i * val_bytes));
2228 				break;
2229 			case 4:
2230 				ival = *(u32 *)(val + (i * val_bytes));
2231 				break;
2232 #ifdef CONFIG_64BIT
2233 			case 8:
2234 				ival = *(u64 *)(val + (i * val_bytes));
2235 				break;
2236 #endif
2237 			default:
2238 				ret = -EINVAL;
2239 				goto out;
2240 			}
2241 
2242 			ret = _regmap_write(map,
2243 					    reg + regmap_get_offset(map, i),
2244 					    ival);
2245 			if (ret != 0)
2246 				goto out;
2247 		}
2248 out:
2249 		map->unlock(map->lock_arg);
2250 	} else {
2251 		void *wval;
2252 
2253 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2254 		if (!wval)
2255 			return -ENOMEM;
2256 
2257 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2258 			map->format.parse_inplace(wval + i);
2259 
2260 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2261 
2262 		kfree(wval);
2263 	}
2264 	return ret;
2265 }
2266 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2267 
2268 /*
2269  * _regmap_raw_multi_reg_write()
2270  *
2271  * the (register,newvalue) pairs in regs have not been formatted, but
2272  * they are all in the same page and have been changed to being page
2273  * relative. The page register has been written if that was necessary.
2274  */
2275 static int _regmap_raw_multi_reg_write(struct regmap *map,
2276 				       const struct reg_sequence *regs,
2277 				       size_t num_regs)
2278 {
2279 	int ret;
2280 	void *buf;
2281 	int i;
2282 	u8 *u8;
2283 	size_t val_bytes = map->format.val_bytes;
2284 	size_t reg_bytes = map->format.reg_bytes;
2285 	size_t pad_bytes = map->format.pad_bytes;
2286 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2287 	size_t len = pair_size * num_regs;
2288 
2289 	if (!len)
2290 		return -EINVAL;
2291 
2292 	buf = kzalloc(len, GFP_KERNEL);
2293 	if (!buf)
2294 		return -ENOMEM;
2295 
2296 	/* We have to linearise by hand. */
2297 
2298 	u8 = buf;
2299 
2300 	for (i = 0; i < num_regs; i++) {
2301 		unsigned int reg = regs[i].reg;
2302 		unsigned int val = regs[i].def;
2303 		trace_regmap_hw_write_start(map, reg, 1);
2304 		map->format.format_reg(u8, reg, map->reg_shift);
2305 		u8 += reg_bytes + pad_bytes;
2306 		map->format.format_val(u8, val, 0);
2307 		u8 += val_bytes;
2308 	}
2309 	u8 = buf;
2310 	*u8 |= map->write_flag_mask;
2311 
2312 	ret = map->bus->write(map->bus_context, buf, len);
2313 
2314 	kfree(buf);
2315 
2316 	for (i = 0; i < num_regs; i++) {
2317 		int reg = regs[i].reg;
2318 		trace_regmap_hw_write_done(map, reg, 1);
2319 	}
2320 	return ret;
2321 }
2322 
2323 static unsigned int _regmap_register_page(struct regmap *map,
2324 					  unsigned int reg,
2325 					  struct regmap_range_node *range)
2326 {
2327 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2328 
2329 	return win_page;
2330 }
2331 
2332 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2333 					       struct reg_sequence *regs,
2334 					       size_t num_regs)
2335 {
2336 	int ret;
2337 	int i, n;
2338 	struct reg_sequence *base;
2339 	unsigned int this_page = 0;
2340 	unsigned int page_change = 0;
2341 	/*
2342 	 * the set of registers are not neccessarily in order, but
2343 	 * since the order of write must be preserved this algorithm
2344 	 * chops the set each time the page changes. This also applies
2345 	 * if there is a delay required at any point in the sequence.
2346 	 */
2347 	base = regs;
2348 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2349 		unsigned int reg = regs[i].reg;
2350 		struct regmap_range_node *range;
2351 
2352 		range = _regmap_range_lookup(map, reg);
2353 		if (range) {
2354 			unsigned int win_page = _regmap_register_page(map, reg,
2355 								      range);
2356 
2357 			if (i == 0)
2358 				this_page = win_page;
2359 			if (win_page != this_page) {
2360 				this_page = win_page;
2361 				page_change = 1;
2362 			}
2363 		}
2364 
2365 		/* If we have both a page change and a delay make sure to
2366 		 * write the regs and apply the delay before we change the
2367 		 * page.
2368 		 */
2369 
2370 		if (page_change || regs[i].delay_us) {
2371 
2372 				/* For situations where the first write requires
2373 				 * a delay we need to make sure we don't call
2374 				 * raw_multi_reg_write with n=0
2375 				 * This can't occur with page breaks as we
2376 				 * never write on the first iteration
2377 				 */
2378 				if (regs[i].delay_us && i == 0)
2379 					n = 1;
2380 
2381 				ret = _regmap_raw_multi_reg_write(map, base, n);
2382 				if (ret != 0)
2383 					return ret;
2384 
2385 				if (regs[i].delay_us) {
2386 					if (map->can_sleep)
2387 						fsleep(regs[i].delay_us);
2388 					else
2389 						udelay(regs[i].delay_us);
2390 				}
2391 
2392 				base += n;
2393 				n = 0;
2394 
2395 				if (page_change) {
2396 					ret = _regmap_select_page(map,
2397 								  &base[n].reg,
2398 								  range, 1);
2399 					if (ret != 0)
2400 						return ret;
2401 
2402 					page_change = 0;
2403 				}
2404 
2405 		}
2406 
2407 	}
2408 	if (n > 0)
2409 		return _regmap_raw_multi_reg_write(map, base, n);
2410 	return 0;
2411 }
2412 
2413 static int _regmap_multi_reg_write(struct regmap *map,
2414 				   const struct reg_sequence *regs,
2415 				   size_t num_regs)
2416 {
2417 	int i;
2418 	int ret;
2419 
2420 	if (!map->can_multi_write) {
2421 		for (i = 0; i < num_regs; i++) {
2422 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2423 			if (ret != 0)
2424 				return ret;
2425 
2426 			if (regs[i].delay_us) {
2427 				if (map->can_sleep)
2428 					fsleep(regs[i].delay_us);
2429 				else
2430 					udelay(regs[i].delay_us);
2431 			}
2432 		}
2433 		return 0;
2434 	}
2435 
2436 	if (!map->format.parse_inplace)
2437 		return -EINVAL;
2438 
2439 	if (map->writeable_reg)
2440 		for (i = 0; i < num_regs; i++) {
2441 			int reg = regs[i].reg;
2442 			if (!map->writeable_reg(map->dev, reg))
2443 				return -EINVAL;
2444 			if (!IS_ALIGNED(reg, map->reg_stride))
2445 				return -EINVAL;
2446 		}
2447 
2448 	if (!map->cache_bypass) {
2449 		for (i = 0; i < num_regs; i++) {
2450 			unsigned int val = regs[i].def;
2451 			unsigned int reg = regs[i].reg;
2452 			ret = regcache_write(map, reg, val);
2453 			if (ret) {
2454 				dev_err(map->dev,
2455 				"Error in caching of register: %x ret: %d\n",
2456 								reg, ret);
2457 				return ret;
2458 			}
2459 		}
2460 		if (map->cache_only) {
2461 			map->cache_dirty = true;
2462 			return 0;
2463 		}
2464 	}
2465 
2466 	WARN_ON(!map->bus);
2467 
2468 	for (i = 0; i < num_regs; i++) {
2469 		unsigned int reg = regs[i].reg;
2470 		struct regmap_range_node *range;
2471 
2472 		/* Coalesce all the writes between a page break or a delay
2473 		 * in a sequence
2474 		 */
2475 		range = _regmap_range_lookup(map, reg);
2476 		if (range || regs[i].delay_us) {
2477 			size_t len = sizeof(struct reg_sequence)*num_regs;
2478 			struct reg_sequence *base = kmemdup(regs, len,
2479 							   GFP_KERNEL);
2480 			if (!base)
2481 				return -ENOMEM;
2482 			ret = _regmap_range_multi_paged_reg_write(map, base,
2483 								  num_regs);
2484 			kfree(base);
2485 
2486 			return ret;
2487 		}
2488 	}
2489 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2490 }
2491 
2492 /**
2493  * regmap_multi_reg_write() - Write multiple registers to the device
2494  *
2495  * @map: Register map to write to
2496  * @regs: Array of structures containing register,value to be written
2497  * @num_regs: Number of registers to write
2498  *
2499  * Write multiple registers to the device where the set of register, value
2500  * pairs are supplied in any order, possibly not all in a single range.
2501  *
2502  * The 'normal' block write mode will send ultimately send data on the
2503  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2504  * addressed. However, this alternative block multi write mode will send
2505  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2506  * must of course support the mode.
2507  *
2508  * A value of zero will be returned on success, a negative errno will be
2509  * returned in error cases.
2510  */
2511 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2512 			   int num_regs)
2513 {
2514 	int ret;
2515 
2516 	map->lock(map->lock_arg);
2517 
2518 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2519 
2520 	map->unlock(map->lock_arg);
2521 
2522 	return ret;
2523 }
2524 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2525 
2526 /**
2527  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2528  *                                     device but not the cache
2529  *
2530  * @map: Register map to write to
2531  * @regs: Array of structures containing register,value to be written
2532  * @num_regs: Number of registers to write
2533  *
2534  * Write multiple registers to the device but not the cache where the set
2535  * of register are supplied in any order.
2536  *
2537  * This function is intended to be used for writing a large block of data
2538  * atomically to the device in single transfer for those I2C client devices
2539  * that implement this alternative block write mode.
2540  *
2541  * A value of zero will be returned on success, a negative errno will
2542  * be returned in error cases.
2543  */
2544 int regmap_multi_reg_write_bypassed(struct regmap *map,
2545 				    const struct reg_sequence *regs,
2546 				    int num_regs)
2547 {
2548 	int ret;
2549 	bool bypass;
2550 
2551 	map->lock(map->lock_arg);
2552 
2553 	bypass = map->cache_bypass;
2554 	map->cache_bypass = true;
2555 
2556 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2557 
2558 	map->cache_bypass = bypass;
2559 
2560 	map->unlock(map->lock_arg);
2561 
2562 	return ret;
2563 }
2564 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2565 
2566 /**
2567  * regmap_raw_write_async() - Write raw values to one or more registers
2568  *                            asynchronously
2569  *
2570  * @map: Register map to write to
2571  * @reg: Initial register to write to
2572  * @val: Block of data to be written, laid out for direct transmission to the
2573  *       device.  Must be valid until regmap_async_complete() is called.
2574  * @val_len: Length of data pointed to by val.
2575  *
2576  * This function is intended to be used for things like firmware
2577  * download where a large block of data needs to be transferred to the
2578  * device.  No formatting will be done on the data provided.
2579  *
2580  * If supported by the underlying bus the write will be scheduled
2581  * asynchronously, helping maximise I/O speed on higher speed buses
2582  * like SPI.  regmap_async_complete() can be called to ensure that all
2583  * asynchrnous writes have been completed.
2584  *
2585  * A value of zero will be returned on success, a negative errno will
2586  * be returned in error cases.
2587  */
2588 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2589 			   const void *val, size_t val_len)
2590 {
2591 	int ret;
2592 
2593 	if (val_len % map->format.val_bytes)
2594 		return -EINVAL;
2595 	if (!IS_ALIGNED(reg, map->reg_stride))
2596 		return -EINVAL;
2597 
2598 	map->lock(map->lock_arg);
2599 
2600 	map->async = true;
2601 
2602 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2603 
2604 	map->async = false;
2605 
2606 	map->unlock(map->lock_arg);
2607 
2608 	return ret;
2609 }
2610 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2611 
2612 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2613 			    unsigned int val_len, bool noinc)
2614 {
2615 	struct regmap_range_node *range;
2616 	int ret;
2617 
2618 	WARN_ON(!map->bus);
2619 
2620 	if (!map->bus || !map->bus->read)
2621 		return -EINVAL;
2622 
2623 	range = _regmap_range_lookup(map, reg);
2624 	if (range) {
2625 		ret = _regmap_select_page(map, &reg, range,
2626 					  noinc ? 1 : val_len / map->format.val_bytes);
2627 		if (ret != 0)
2628 			return ret;
2629 	}
2630 
2631 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2632 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2633 				      map->read_flag_mask);
2634 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2635 
2636 	ret = map->bus->read(map->bus_context, map->work_buf,
2637 			     map->format.reg_bytes + map->format.pad_bytes,
2638 			     val, val_len);
2639 
2640 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2641 
2642 	return ret;
2643 }
2644 
2645 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2646 				unsigned int *val)
2647 {
2648 	struct regmap *map = context;
2649 
2650 	return map->bus->reg_read(map->bus_context, reg, val);
2651 }
2652 
2653 static int _regmap_bus_read(void *context, unsigned int reg,
2654 			    unsigned int *val)
2655 {
2656 	int ret;
2657 	struct regmap *map = context;
2658 	void *work_val = map->work_buf + map->format.reg_bytes +
2659 		map->format.pad_bytes;
2660 
2661 	if (!map->format.parse_val)
2662 		return -EINVAL;
2663 
2664 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2665 	if (ret == 0)
2666 		*val = map->format.parse_val(work_val);
2667 
2668 	return ret;
2669 }
2670 
2671 static int _regmap_read(struct regmap *map, unsigned int reg,
2672 			unsigned int *val)
2673 {
2674 	int ret;
2675 	void *context = _regmap_map_get_context(map);
2676 
2677 	if (!map->cache_bypass) {
2678 		ret = regcache_read(map, reg, val);
2679 		if (ret == 0)
2680 			return 0;
2681 	}
2682 
2683 	if (map->cache_only)
2684 		return -EBUSY;
2685 
2686 	if (!regmap_readable(map, reg))
2687 		return -EIO;
2688 
2689 	ret = map->reg_read(context, reg, val);
2690 	if (ret == 0) {
2691 		if (regmap_should_log(map))
2692 			dev_info(map->dev, "%x => %x\n", reg, *val);
2693 
2694 		trace_regmap_reg_read(map, reg, *val);
2695 
2696 		if (!map->cache_bypass)
2697 			regcache_write(map, reg, *val);
2698 	}
2699 
2700 	return ret;
2701 }
2702 
2703 /**
2704  * regmap_read() - Read a value from a single register
2705  *
2706  * @map: Register map to read from
2707  * @reg: Register to be read from
2708  * @val: Pointer to store read value
2709  *
2710  * A value of zero will be returned on success, a negative errno will
2711  * be returned in error cases.
2712  */
2713 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2714 {
2715 	int ret;
2716 
2717 	if (!IS_ALIGNED(reg, map->reg_stride))
2718 		return -EINVAL;
2719 
2720 	map->lock(map->lock_arg);
2721 
2722 	ret = _regmap_read(map, reg, val);
2723 
2724 	map->unlock(map->lock_arg);
2725 
2726 	return ret;
2727 }
2728 EXPORT_SYMBOL_GPL(regmap_read);
2729 
2730 /**
2731  * regmap_raw_read() - Read raw data from the device
2732  *
2733  * @map: Register map to read from
2734  * @reg: First register to be read from
2735  * @val: Pointer to store read value
2736  * @val_len: Size of data to read
2737  *
2738  * A value of zero will be returned on success, a negative errno will
2739  * be returned in error cases.
2740  */
2741 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2742 		    size_t val_len)
2743 {
2744 	size_t val_bytes = map->format.val_bytes;
2745 	size_t val_count = val_len / val_bytes;
2746 	unsigned int v;
2747 	int ret, i;
2748 
2749 	if (!map->bus)
2750 		return -EINVAL;
2751 	if (val_len % map->format.val_bytes)
2752 		return -EINVAL;
2753 	if (!IS_ALIGNED(reg, map->reg_stride))
2754 		return -EINVAL;
2755 	if (val_count == 0)
2756 		return -EINVAL;
2757 
2758 	map->lock(map->lock_arg);
2759 
2760 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2761 	    map->cache_type == REGCACHE_NONE) {
2762 		size_t chunk_count, chunk_bytes;
2763 		size_t chunk_regs = val_count;
2764 
2765 		if (!map->bus->read) {
2766 			ret = -ENOTSUPP;
2767 			goto out;
2768 		}
2769 
2770 		if (map->use_single_read)
2771 			chunk_regs = 1;
2772 		else if (map->max_raw_read && val_len > map->max_raw_read)
2773 			chunk_regs = map->max_raw_read / val_bytes;
2774 
2775 		chunk_count = val_count / chunk_regs;
2776 		chunk_bytes = chunk_regs * val_bytes;
2777 
2778 		/* Read bytes that fit into whole chunks */
2779 		for (i = 0; i < chunk_count; i++) {
2780 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2781 			if (ret != 0)
2782 				goto out;
2783 
2784 			reg += regmap_get_offset(map, chunk_regs);
2785 			val += chunk_bytes;
2786 			val_len -= chunk_bytes;
2787 		}
2788 
2789 		/* Read remaining bytes */
2790 		if (val_len) {
2791 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2792 			if (ret != 0)
2793 				goto out;
2794 		}
2795 	} else {
2796 		/* Otherwise go word by word for the cache; should be low
2797 		 * cost as we expect to hit the cache.
2798 		 */
2799 		for (i = 0; i < val_count; i++) {
2800 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2801 					   &v);
2802 			if (ret != 0)
2803 				goto out;
2804 
2805 			map->format.format_val(val + (i * val_bytes), v, 0);
2806 		}
2807 	}
2808 
2809  out:
2810 	map->unlock(map->lock_arg);
2811 
2812 	return ret;
2813 }
2814 EXPORT_SYMBOL_GPL(regmap_raw_read);
2815 
2816 /**
2817  * regmap_noinc_read(): Read data from a register without incrementing the
2818  *			register number
2819  *
2820  * @map: Register map to read from
2821  * @reg: Register to read from
2822  * @val: Pointer to data buffer
2823  * @val_len: Length of output buffer in bytes.
2824  *
2825  * The regmap API usually assumes that bulk bus read operations will read a
2826  * range of registers. Some devices have certain registers for which a read
2827  * operation read will read from an internal FIFO.
2828  *
2829  * The target register must be volatile but registers after it can be
2830  * completely unrelated cacheable registers.
2831  *
2832  * This will attempt multiple reads as required to read val_len bytes.
2833  *
2834  * A value of zero will be returned on success, a negative errno will be
2835  * returned in error cases.
2836  */
2837 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2838 		      void *val, size_t val_len)
2839 {
2840 	size_t read_len;
2841 	int ret;
2842 
2843 	if (!map->bus)
2844 		return -EINVAL;
2845 	if (!map->bus->read)
2846 		return -ENOTSUPP;
2847 	if (val_len % map->format.val_bytes)
2848 		return -EINVAL;
2849 	if (!IS_ALIGNED(reg, map->reg_stride))
2850 		return -EINVAL;
2851 	if (val_len == 0)
2852 		return -EINVAL;
2853 
2854 	map->lock(map->lock_arg);
2855 
2856 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2857 		ret = -EINVAL;
2858 		goto out_unlock;
2859 	}
2860 
2861 	while (val_len) {
2862 		if (map->max_raw_read && map->max_raw_read < val_len)
2863 			read_len = map->max_raw_read;
2864 		else
2865 			read_len = val_len;
2866 		ret = _regmap_raw_read(map, reg, val, read_len, true);
2867 		if (ret)
2868 			goto out_unlock;
2869 		val = ((u8 *)val) + read_len;
2870 		val_len -= read_len;
2871 	}
2872 
2873 out_unlock:
2874 	map->unlock(map->lock_arg);
2875 	return ret;
2876 }
2877 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2878 
2879 /**
2880  * regmap_field_read(): Read a value to a single register field
2881  *
2882  * @field: Register field to read from
2883  * @val: Pointer to store read value
2884  *
2885  * A value of zero will be returned on success, a negative errno will
2886  * be returned in error cases.
2887  */
2888 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2889 {
2890 	int ret;
2891 	unsigned int reg_val;
2892 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2893 	if (ret != 0)
2894 		return ret;
2895 
2896 	reg_val &= field->mask;
2897 	reg_val >>= field->shift;
2898 	*val = reg_val;
2899 
2900 	return ret;
2901 }
2902 EXPORT_SYMBOL_GPL(regmap_field_read);
2903 
2904 /**
2905  * regmap_fields_read() - Read a value to a single register field with port ID
2906  *
2907  * @field: Register field to read from
2908  * @id: port ID
2909  * @val: Pointer to store read value
2910  *
2911  * A value of zero will be returned on success, a negative errno will
2912  * be returned in error cases.
2913  */
2914 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2915 		       unsigned int *val)
2916 {
2917 	int ret;
2918 	unsigned int reg_val;
2919 
2920 	if (id >= field->id_size)
2921 		return -EINVAL;
2922 
2923 	ret = regmap_read(field->regmap,
2924 			  field->reg + (field->id_offset * id),
2925 			  &reg_val);
2926 	if (ret != 0)
2927 		return ret;
2928 
2929 	reg_val &= field->mask;
2930 	reg_val >>= field->shift;
2931 	*val = reg_val;
2932 
2933 	return ret;
2934 }
2935 EXPORT_SYMBOL_GPL(regmap_fields_read);
2936 
2937 /**
2938  * regmap_bulk_read() - Read multiple registers from the device
2939  *
2940  * @map: Register map to read from
2941  * @reg: First register to be read from
2942  * @val: Pointer to store read value, in native register size for device
2943  * @val_count: Number of registers to read
2944  *
2945  * A value of zero will be returned on success, a negative errno will
2946  * be returned in error cases.
2947  */
2948 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2949 		     size_t val_count)
2950 {
2951 	int ret, i;
2952 	size_t val_bytes = map->format.val_bytes;
2953 	bool vol = regmap_volatile_range(map, reg, val_count);
2954 
2955 	if (!IS_ALIGNED(reg, map->reg_stride))
2956 		return -EINVAL;
2957 	if (val_count == 0)
2958 		return -EINVAL;
2959 
2960 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2961 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2962 		if (ret != 0)
2963 			return ret;
2964 
2965 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2966 			map->format.parse_inplace(val + i);
2967 	} else {
2968 #ifdef CONFIG_64BIT
2969 		u64 *u64 = val;
2970 #endif
2971 		u32 *u32 = val;
2972 		u16 *u16 = val;
2973 		u8 *u8 = val;
2974 
2975 		map->lock(map->lock_arg);
2976 
2977 		for (i = 0; i < val_count; i++) {
2978 			unsigned int ival;
2979 
2980 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2981 					   &ival);
2982 			if (ret != 0)
2983 				goto out;
2984 
2985 			switch (map->format.val_bytes) {
2986 #ifdef CONFIG_64BIT
2987 			case 8:
2988 				u64[i] = ival;
2989 				break;
2990 #endif
2991 			case 4:
2992 				u32[i] = ival;
2993 				break;
2994 			case 2:
2995 				u16[i] = ival;
2996 				break;
2997 			case 1:
2998 				u8[i] = ival;
2999 				break;
3000 			default:
3001 				ret = -EINVAL;
3002 				goto out;
3003 			}
3004 		}
3005 
3006 out:
3007 		map->unlock(map->lock_arg);
3008 	}
3009 
3010 	return ret;
3011 }
3012 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3013 
3014 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3015 			       unsigned int mask, unsigned int val,
3016 			       bool *change, bool force_write)
3017 {
3018 	int ret;
3019 	unsigned int tmp, orig;
3020 
3021 	if (change)
3022 		*change = false;
3023 
3024 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3025 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3026 		if (ret == 0 && change)
3027 			*change = true;
3028 	} else {
3029 		ret = _regmap_read(map, reg, &orig);
3030 		if (ret != 0)
3031 			return ret;
3032 
3033 		tmp = orig & ~mask;
3034 		tmp |= val & mask;
3035 
3036 		if (force_write || (tmp != orig)) {
3037 			ret = _regmap_write(map, reg, tmp);
3038 			if (ret == 0 && change)
3039 				*change = true;
3040 		}
3041 	}
3042 
3043 	return ret;
3044 }
3045 
3046 /**
3047  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3048  *
3049  * @map: Register map to update
3050  * @reg: Register to update
3051  * @mask: Bitmask to change
3052  * @val: New value for bitmask
3053  * @change: Boolean indicating if a write was done
3054  * @async: Boolean indicating asynchronously
3055  * @force: Boolean indicating use force update
3056  *
3057  * Perform a read/modify/write cycle on a register map with change, async, force
3058  * options.
3059  *
3060  * If async is true:
3061  *
3062  * With most buses the read must be done synchronously so this is most useful
3063  * for devices with a cache which do not need to interact with the hardware to
3064  * determine the current register value.
3065  *
3066  * Returns zero for success, a negative number on error.
3067  */
3068 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3069 			    unsigned int mask, unsigned int val,
3070 			    bool *change, bool async, bool force)
3071 {
3072 	int ret;
3073 
3074 	map->lock(map->lock_arg);
3075 
3076 	map->async = async;
3077 
3078 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3079 
3080 	map->async = false;
3081 
3082 	map->unlock(map->lock_arg);
3083 
3084 	return ret;
3085 }
3086 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3087 
3088 /**
3089  * regmap_test_bits() - Check if all specified bits are set in a register.
3090  *
3091  * @map: Register map to operate on
3092  * @reg: Register to read from
3093  * @bits: Bits to test
3094  *
3095  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3096  * bits are set and a negative error number if the underlying regmap_read()
3097  * fails.
3098  */
3099 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3100 {
3101 	unsigned int val, ret;
3102 
3103 	ret = regmap_read(map, reg, &val);
3104 	if (ret)
3105 		return ret;
3106 
3107 	return (val & bits) == bits;
3108 }
3109 EXPORT_SYMBOL_GPL(regmap_test_bits);
3110 
3111 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3112 {
3113 	struct regmap *map = async->map;
3114 	bool wake;
3115 
3116 	trace_regmap_async_io_complete(map);
3117 
3118 	spin_lock(&map->async_lock);
3119 	list_move(&async->list, &map->async_free);
3120 	wake = list_empty(&map->async_list);
3121 
3122 	if (ret != 0)
3123 		map->async_ret = ret;
3124 
3125 	spin_unlock(&map->async_lock);
3126 
3127 	if (wake)
3128 		wake_up(&map->async_waitq);
3129 }
3130 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3131 
3132 static int regmap_async_is_done(struct regmap *map)
3133 {
3134 	unsigned long flags;
3135 	int ret;
3136 
3137 	spin_lock_irqsave(&map->async_lock, flags);
3138 	ret = list_empty(&map->async_list);
3139 	spin_unlock_irqrestore(&map->async_lock, flags);
3140 
3141 	return ret;
3142 }
3143 
3144 /**
3145  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3146  *
3147  * @map: Map to operate on.
3148  *
3149  * Blocks until any pending asynchronous I/O has completed.  Returns
3150  * an error code for any failed I/O operations.
3151  */
3152 int regmap_async_complete(struct regmap *map)
3153 {
3154 	unsigned long flags;
3155 	int ret;
3156 
3157 	/* Nothing to do with no async support */
3158 	if (!map->bus || !map->bus->async_write)
3159 		return 0;
3160 
3161 	trace_regmap_async_complete_start(map);
3162 
3163 	wait_event(map->async_waitq, regmap_async_is_done(map));
3164 
3165 	spin_lock_irqsave(&map->async_lock, flags);
3166 	ret = map->async_ret;
3167 	map->async_ret = 0;
3168 	spin_unlock_irqrestore(&map->async_lock, flags);
3169 
3170 	trace_regmap_async_complete_done(map);
3171 
3172 	return ret;
3173 }
3174 EXPORT_SYMBOL_GPL(regmap_async_complete);
3175 
3176 /**
3177  * regmap_register_patch - Register and apply register updates to be applied
3178  *                         on device initialistion
3179  *
3180  * @map: Register map to apply updates to.
3181  * @regs: Values to update.
3182  * @num_regs: Number of entries in regs.
3183  *
3184  * Register a set of register updates to be applied to the device
3185  * whenever the device registers are synchronised with the cache and
3186  * apply them immediately.  Typically this is used to apply
3187  * corrections to be applied to the device defaults on startup, such
3188  * as the updates some vendors provide to undocumented registers.
3189  *
3190  * The caller must ensure that this function cannot be called
3191  * concurrently with either itself or regcache_sync().
3192  */
3193 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3194 			  int num_regs)
3195 {
3196 	struct reg_sequence *p;
3197 	int ret;
3198 	bool bypass;
3199 
3200 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3201 	    num_regs))
3202 		return 0;
3203 
3204 	p = krealloc(map->patch,
3205 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3206 		     GFP_KERNEL);
3207 	if (p) {
3208 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3209 		map->patch = p;
3210 		map->patch_regs += num_regs;
3211 	} else {
3212 		return -ENOMEM;
3213 	}
3214 
3215 	map->lock(map->lock_arg);
3216 
3217 	bypass = map->cache_bypass;
3218 
3219 	map->cache_bypass = true;
3220 	map->async = true;
3221 
3222 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3223 
3224 	map->async = false;
3225 	map->cache_bypass = bypass;
3226 
3227 	map->unlock(map->lock_arg);
3228 
3229 	regmap_async_complete(map);
3230 
3231 	return ret;
3232 }
3233 EXPORT_SYMBOL_GPL(regmap_register_patch);
3234 
3235 /**
3236  * regmap_get_val_bytes() - Report the size of a register value
3237  *
3238  * @map: Register map to operate on.
3239  *
3240  * Report the size of a register value, mainly intended to for use by
3241  * generic infrastructure built on top of regmap.
3242  */
3243 int regmap_get_val_bytes(struct regmap *map)
3244 {
3245 	if (map->format.format_write)
3246 		return -EINVAL;
3247 
3248 	return map->format.val_bytes;
3249 }
3250 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3251 
3252 /**
3253  * regmap_get_max_register() - Report the max register value
3254  *
3255  * @map: Register map to operate on.
3256  *
3257  * Report the max register value, mainly intended to for use by
3258  * generic infrastructure built on top of regmap.
3259  */
3260 int regmap_get_max_register(struct regmap *map)
3261 {
3262 	return map->max_register ? map->max_register : -EINVAL;
3263 }
3264 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3265 
3266 /**
3267  * regmap_get_reg_stride() - Report the register address stride
3268  *
3269  * @map: Register map to operate on.
3270  *
3271  * Report the register address stride, mainly intended to for use by
3272  * generic infrastructure built on top of regmap.
3273  */
3274 int regmap_get_reg_stride(struct regmap *map)
3275 {
3276 	return map->reg_stride;
3277 }
3278 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3279 
3280 int regmap_parse_val(struct regmap *map, const void *buf,
3281 			unsigned int *val)
3282 {
3283 	if (!map->format.parse_val)
3284 		return -EINVAL;
3285 
3286 	*val = map->format.parse_val(buf);
3287 
3288 	return 0;
3289 }
3290 EXPORT_SYMBOL_GPL(regmap_parse_val);
3291 
3292 static int __init regmap_initcall(void)
3293 {
3294 	regmap_debugfs_initcall();
3295 
3296 	return 0;
3297 }
3298 postcore_initcall(regmap_initcall);
3299