xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 08b7cf13)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292 {
293 	u8 *b = buf;
294 
295 	val <<= shift;
296 
297 	b[0] = val >> 16;
298 	b[1] = val >> 8;
299 	b[2] = val;
300 }
301 
302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303 {
304 	put_unaligned_be32(val << shift, buf);
305 }
306 
307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308 {
309 	put_unaligned_le32(val << shift, buf);
310 }
311 
312 static void regmap_format_32_native(void *buf, unsigned int val,
313 				    unsigned int shift)
314 {
315 	u32 v = val << shift;
316 
317 	memcpy(buf, &v, sizeof(v));
318 }
319 
320 #ifdef CONFIG_64BIT
321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322 {
323 	put_unaligned_be64((u64) val << shift, buf);
324 }
325 
326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327 {
328 	put_unaligned_le64((u64) val << shift, buf);
329 }
330 
331 static void regmap_format_64_native(void *buf, unsigned int val,
332 				    unsigned int shift)
333 {
334 	u64 v = (u64) val << shift;
335 
336 	memcpy(buf, &v, sizeof(v));
337 }
338 #endif
339 
340 static void regmap_parse_inplace_noop(void *buf)
341 {
342 }
343 
344 static unsigned int regmap_parse_8(const void *buf)
345 {
346 	const u8 *b = buf;
347 
348 	return b[0];
349 }
350 
351 static unsigned int regmap_parse_16_be(const void *buf)
352 {
353 	return get_unaligned_be16(buf);
354 }
355 
356 static unsigned int regmap_parse_16_le(const void *buf)
357 {
358 	return get_unaligned_le16(buf);
359 }
360 
361 static void regmap_parse_16_be_inplace(void *buf)
362 {
363 	u16 v = get_unaligned_be16(buf);
364 
365 	memcpy(buf, &v, sizeof(v));
366 }
367 
368 static void regmap_parse_16_le_inplace(void *buf)
369 {
370 	u16 v = get_unaligned_le16(buf);
371 
372 	memcpy(buf, &v, sizeof(v));
373 }
374 
375 static unsigned int regmap_parse_16_native(const void *buf)
376 {
377 	u16 v;
378 
379 	memcpy(&v, buf, sizeof(v));
380 	return v;
381 }
382 
383 static unsigned int regmap_parse_24(const void *buf)
384 {
385 	const u8 *b = buf;
386 	unsigned int ret = b[2];
387 	ret |= ((unsigned int)b[1]) << 8;
388 	ret |= ((unsigned int)b[0]) << 16;
389 
390 	return ret;
391 }
392 
393 static unsigned int regmap_parse_32_be(const void *buf)
394 {
395 	return get_unaligned_be32(buf);
396 }
397 
398 static unsigned int regmap_parse_32_le(const void *buf)
399 {
400 	return get_unaligned_le32(buf);
401 }
402 
403 static void regmap_parse_32_be_inplace(void *buf)
404 {
405 	u32 v = get_unaligned_be32(buf);
406 
407 	memcpy(buf, &v, sizeof(v));
408 }
409 
410 static void regmap_parse_32_le_inplace(void *buf)
411 {
412 	u32 v = get_unaligned_le32(buf);
413 
414 	memcpy(buf, &v, sizeof(v));
415 }
416 
417 static unsigned int regmap_parse_32_native(const void *buf)
418 {
419 	u32 v;
420 
421 	memcpy(&v, buf, sizeof(v));
422 	return v;
423 }
424 
425 #ifdef CONFIG_64BIT
426 static unsigned int regmap_parse_64_be(const void *buf)
427 {
428 	return get_unaligned_be64(buf);
429 }
430 
431 static unsigned int regmap_parse_64_le(const void *buf)
432 {
433 	return get_unaligned_le64(buf);
434 }
435 
436 static void regmap_parse_64_be_inplace(void *buf)
437 {
438 	u64 v =  get_unaligned_be64(buf);
439 
440 	memcpy(buf, &v, sizeof(v));
441 }
442 
443 static void regmap_parse_64_le_inplace(void *buf)
444 {
445 	u64 v = get_unaligned_le64(buf);
446 
447 	memcpy(buf, &v, sizeof(v));
448 }
449 
450 static unsigned int regmap_parse_64_native(const void *buf)
451 {
452 	u64 v;
453 
454 	memcpy(&v, buf, sizeof(v));
455 	return v;
456 }
457 #endif
458 
459 static void regmap_lock_hwlock(void *__map)
460 {
461 	struct regmap *map = __map;
462 
463 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
464 }
465 
466 static void regmap_lock_hwlock_irq(void *__map)
467 {
468 	struct regmap *map = __map;
469 
470 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471 }
472 
473 static void regmap_lock_hwlock_irqsave(void *__map)
474 {
475 	struct regmap *map = __map;
476 
477 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 				    &map->spinlock_flags);
479 }
480 
481 static void regmap_unlock_hwlock(void *__map)
482 {
483 	struct regmap *map = __map;
484 
485 	hwspin_unlock(map->hwlock);
486 }
487 
488 static void regmap_unlock_hwlock_irq(void *__map)
489 {
490 	struct regmap *map = __map;
491 
492 	hwspin_unlock_irq(map->hwlock);
493 }
494 
495 static void regmap_unlock_hwlock_irqrestore(void *__map)
496 {
497 	struct regmap *map = __map;
498 
499 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500 }
501 
502 static void regmap_lock_unlock_none(void *__map)
503 {
504 
505 }
506 
507 static void regmap_lock_mutex(void *__map)
508 {
509 	struct regmap *map = __map;
510 	mutex_lock(&map->mutex);
511 }
512 
513 static void regmap_unlock_mutex(void *__map)
514 {
515 	struct regmap *map = __map;
516 	mutex_unlock(&map->mutex);
517 }
518 
519 static void regmap_lock_spinlock(void *__map)
520 __acquires(&map->spinlock)
521 {
522 	struct regmap *map = __map;
523 	unsigned long flags;
524 
525 	spin_lock_irqsave(&map->spinlock, flags);
526 	map->spinlock_flags = flags;
527 }
528 
529 static void regmap_unlock_spinlock(void *__map)
530 __releases(&map->spinlock)
531 {
532 	struct regmap *map = __map;
533 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534 }
535 
536 static void regmap_lock_raw_spinlock(void *__map)
537 __acquires(&map->raw_spinlock)
538 {
539 	struct regmap *map = __map;
540 	unsigned long flags;
541 
542 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 	map->raw_spinlock_flags = flags;
544 }
545 
546 static void regmap_unlock_raw_spinlock(void *__map)
547 __releases(&map->raw_spinlock)
548 {
549 	struct regmap *map = __map;
550 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
551 }
552 
553 static void dev_get_regmap_release(struct device *dev, void *res)
554 {
555 	/*
556 	 * We don't actually have anything to do here; the goal here
557 	 * is not to manage the regmap but to provide a simple way to
558 	 * get the regmap back given a struct device.
559 	 */
560 }
561 
562 static bool _regmap_range_add(struct regmap *map,
563 			      struct regmap_range_node *data)
564 {
565 	struct rb_root *root = &map->range_tree;
566 	struct rb_node **new = &(root->rb_node), *parent = NULL;
567 
568 	while (*new) {
569 		struct regmap_range_node *this =
570 			rb_entry(*new, struct regmap_range_node, node);
571 
572 		parent = *new;
573 		if (data->range_max < this->range_min)
574 			new = &((*new)->rb_left);
575 		else if (data->range_min > this->range_max)
576 			new = &((*new)->rb_right);
577 		else
578 			return false;
579 	}
580 
581 	rb_link_node(&data->node, parent, new);
582 	rb_insert_color(&data->node, root);
583 
584 	return true;
585 }
586 
587 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
588 						      unsigned int reg)
589 {
590 	struct rb_node *node = map->range_tree.rb_node;
591 
592 	while (node) {
593 		struct regmap_range_node *this =
594 			rb_entry(node, struct regmap_range_node, node);
595 
596 		if (reg < this->range_min)
597 			node = node->rb_left;
598 		else if (reg > this->range_max)
599 			node = node->rb_right;
600 		else
601 			return this;
602 	}
603 
604 	return NULL;
605 }
606 
607 static void regmap_range_exit(struct regmap *map)
608 {
609 	struct rb_node *next;
610 	struct regmap_range_node *range_node;
611 
612 	next = rb_first(&map->range_tree);
613 	while (next) {
614 		range_node = rb_entry(next, struct regmap_range_node, node);
615 		next = rb_next(&range_node->node);
616 		rb_erase(&range_node->node, &map->range_tree);
617 		kfree(range_node);
618 	}
619 
620 	kfree(map->selector_work_buf);
621 }
622 
623 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
624 {
625 	if (config->name) {
626 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
627 
628 		if (!name)
629 			return -ENOMEM;
630 
631 		kfree_const(map->name);
632 		map->name = name;
633 	}
634 
635 	return 0;
636 }
637 
638 int regmap_attach_dev(struct device *dev, struct regmap *map,
639 		      const struct regmap_config *config)
640 {
641 	struct regmap **m;
642 	int ret;
643 
644 	map->dev = dev;
645 
646 	ret = regmap_set_name(map, config);
647 	if (ret)
648 		return ret;
649 
650 	regmap_debugfs_exit(map);
651 	regmap_debugfs_init(map);
652 
653 	/* Add a devres resource for dev_get_regmap() */
654 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
655 	if (!m) {
656 		regmap_debugfs_exit(map);
657 		return -ENOMEM;
658 	}
659 	*m = map;
660 	devres_add(dev, m);
661 
662 	return 0;
663 }
664 EXPORT_SYMBOL_GPL(regmap_attach_dev);
665 
666 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
667 					const struct regmap_config *config)
668 {
669 	enum regmap_endian endian;
670 
671 	/* Retrieve the endianness specification from the regmap config */
672 	endian = config->reg_format_endian;
673 
674 	/* If the regmap config specified a non-default value, use that */
675 	if (endian != REGMAP_ENDIAN_DEFAULT)
676 		return endian;
677 
678 	/* Retrieve the endianness specification from the bus config */
679 	if (bus && bus->reg_format_endian_default)
680 		endian = bus->reg_format_endian_default;
681 
682 	/* If the bus specified a non-default value, use that */
683 	if (endian != REGMAP_ENDIAN_DEFAULT)
684 		return endian;
685 
686 	/* Use this if no other value was found */
687 	return REGMAP_ENDIAN_BIG;
688 }
689 
690 enum regmap_endian regmap_get_val_endian(struct device *dev,
691 					 const struct regmap_bus *bus,
692 					 const struct regmap_config *config)
693 {
694 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695 	enum regmap_endian endian;
696 
697 	/* Retrieve the endianness specification from the regmap config */
698 	endian = config->val_format_endian;
699 
700 	/* If the regmap config specified a non-default value, use that */
701 	if (endian != REGMAP_ENDIAN_DEFAULT)
702 		return endian;
703 
704 	/* If the firmware node exist try to get endianness from it */
705 	if (fwnode_property_read_bool(fwnode, "big-endian"))
706 		endian = REGMAP_ENDIAN_BIG;
707 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
708 		endian = REGMAP_ENDIAN_LITTLE;
709 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
710 		endian = REGMAP_ENDIAN_NATIVE;
711 
712 	/* If the endianness was specified in fwnode, use that */
713 	if (endian != REGMAP_ENDIAN_DEFAULT)
714 		return endian;
715 
716 	/* Retrieve the endianness specification from the bus config */
717 	if (bus && bus->val_format_endian_default)
718 		endian = bus->val_format_endian_default;
719 
720 	/* If the bus specified a non-default value, use that */
721 	if (endian != REGMAP_ENDIAN_DEFAULT)
722 		return endian;
723 
724 	/* Use this if no other value was found */
725 	return REGMAP_ENDIAN_BIG;
726 }
727 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728 
729 struct regmap *__regmap_init(struct device *dev,
730 			     const struct regmap_bus *bus,
731 			     void *bus_context,
732 			     const struct regmap_config *config,
733 			     struct lock_class_key *lock_key,
734 			     const char *lock_name)
735 {
736 	struct regmap *map;
737 	int ret = -EINVAL;
738 	enum regmap_endian reg_endian, val_endian;
739 	int i, j;
740 
741 	if (!config)
742 		goto err;
743 
744 	map = kzalloc(sizeof(*map), GFP_KERNEL);
745 	if (map == NULL) {
746 		ret = -ENOMEM;
747 		goto err;
748 	}
749 
750 	ret = regmap_set_name(map, config);
751 	if (ret)
752 		goto err_map;
753 
754 	ret = -EINVAL; /* Later error paths rely on this */
755 
756 	if (config->disable_locking) {
757 		map->lock = map->unlock = regmap_lock_unlock_none;
758 		map->can_sleep = config->can_sleep;
759 		regmap_debugfs_disable(map);
760 	} else if (config->lock && config->unlock) {
761 		map->lock = config->lock;
762 		map->unlock = config->unlock;
763 		map->lock_arg = config->lock_arg;
764 		map->can_sleep = config->can_sleep;
765 	} else if (config->use_hwlock) {
766 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
767 		if (!map->hwlock) {
768 			ret = -ENXIO;
769 			goto err_name;
770 		}
771 
772 		switch (config->hwlock_mode) {
773 		case HWLOCK_IRQSTATE:
774 			map->lock = regmap_lock_hwlock_irqsave;
775 			map->unlock = regmap_unlock_hwlock_irqrestore;
776 			break;
777 		case HWLOCK_IRQ:
778 			map->lock = regmap_lock_hwlock_irq;
779 			map->unlock = regmap_unlock_hwlock_irq;
780 			break;
781 		default:
782 			map->lock = regmap_lock_hwlock;
783 			map->unlock = regmap_unlock_hwlock;
784 			break;
785 		}
786 
787 		map->lock_arg = map;
788 	} else {
789 		if ((bus && bus->fast_io) ||
790 		    config->fast_io) {
791 			if (config->use_raw_spinlock) {
792 				raw_spin_lock_init(&map->raw_spinlock);
793 				map->lock = regmap_lock_raw_spinlock;
794 				map->unlock = regmap_unlock_raw_spinlock;
795 				lockdep_set_class_and_name(&map->raw_spinlock,
796 							   lock_key, lock_name);
797 			} else {
798 				spin_lock_init(&map->spinlock);
799 				map->lock = regmap_lock_spinlock;
800 				map->unlock = regmap_unlock_spinlock;
801 				lockdep_set_class_and_name(&map->spinlock,
802 							   lock_key, lock_name);
803 			}
804 		} else {
805 			mutex_init(&map->mutex);
806 			map->lock = regmap_lock_mutex;
807 			map->unlock = regmap_unlock_mutex;
808 			map->can_sleep = true;
809 			lockdep_set_class_and_name(&map->mutex,
810 						   lock_key, lock_name);
811 		}
812 		map->lock_arg = map;
813 	}
814 
815 	/*
816 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
817 	 * scratch buffers with sleeping allocations.
818 	 */
819 	if ((bus && bus->fast_io) || config->fast_io)
820 		map->alloc_flags = GFP_ATOMIC;
821 	else
822 		map->alloc_flags = GFP_KERNEL;
823 
824 	map->reg_base = config->reg_base;
825 
826 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
827 	map->format.pad_bytes = config->pad_bits / 8;
828 	map->format.reg_downshift = config->reg_downshift;
829 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
830 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
831 			config->val_bits + config->pad_bits, 8);
832 	map->reg_shift = config->pad_bits % 8;
833 	if (config->reg_stride)
834 		map->reg_stride = config->reg_stride;
835 	else
836 		map->reg_stride = 1;
837 	if (is_power_of_2(map->reg_stride))
838 		map->reg_stride_order = ilog2(map->reg_stride);
839 	else
840 		map->reg_stride_order = -1;
841 	map->use_single_read = config->use_single_read || !bus || !bus->read;
842 	map->use_single_write = config->use_single_write || !bus || !bus->write;
843 	map->can_multi_write = config->can_multi_write && bus && bus->write;
844 	if (bus) {
845 		map->max_raw_read = bus->max_raw_read;
846 		map->max_raw_write = bus->max_raw_write;
847 	}
848 	map->dev = dev;
849 	map->bus = bus;
850 	map->bus_context = bus_context;
851 	map->max_register = config->max_register;
852 	map->wr_table = config->wr_table;
853 	map->rd_table = config->rd_table;
854 	map->volatile_table = config->volatile_table;
855 	map->precious_table = config->precious_table;
856 	map->wr_noinc_table = config->wr_noinc_table;
857 	map->rd_noinc_table = config->rd_noinc_table;
858 	map->writeable_reg = config->writeable_reg;
859 	map->readable_reg = config->readable_reg;
860 	map->volatile_reg = config->volatile_reg;
861 	map->precious_reg = config->precious_reg;
862 	map->writeable_noinc_reg = config->writeable_noinc_reg;
863 	map->readable_noinc_reg = config->readable_noinc_reg;
864 	map->cache_type = config->cache_type;
865 
866 	spin_lock_init(&map->async_lock);
867 	INIT_LIST_HEAD(&map->async_list);
868 	INIT_LIST_HEAD(&map->async_free);
869 	init_waitqueue_head(&map->async_waitq);
870 
871 	if (config->read_flag_mask ||
872 	    config->write_flag_mask ||
873 	    config->zero_flag_mask) {
874 		map->read_flag_mask = config->read_flag_mask;
875 		map->write_flag_mask = config->write_flag_mask;
876 	} else if (bus) {
877 		map->read_flag_mask = bus->read_flag_mask;
878 	}
879 
880 	if (!bus) {
881 		map->reg_read  = config->reg_read;
882 		map->reg_write = config->reg_write;
883 		map->reg_update_bits = config->reg_update_bits;
884 
885 		map->defer_caching = false;
886 		goto skip_format_initialization;
887 	} else if (!bus->read || !bus->write) {
888 		map->reg_read = _regmap_bus_reg_read;
889 		map->reg_write = _regmap_bus_reg_write;
890 		map->reg_update_bits = bus->reg_update_bits;
891 
892 		map->defer_caching = false;
893 		goto skip_format_initialization;
894 	} else {
895 		map->reg_read  = _regmap_bus_read;
896 		map->reg_update_bits = bus->reg_update_bits;
897 	}
898 
899 	reg_endian = regmap_get_reg_endian(bus, config);
900 	val_endian = regmap_get_val_endian(dev, bus, config);
901 
902 	switch (config->reg_bits + map->reg_shift) {
903 	case 2:
904 		switch (config->val_bits) {
905 		case 6:
906 			map->format.format_write = regmap_format_2_6_write;
907 			break;
908 		default:
909 			goto err_hwlock;
910 		}
911 		break;
912 
913 	case 4:
914 		switch (config->val_bits) {
915 		case 12:
916 			map->format.format_write = regmap_format_4_12_write;
917 			break;
918 		default:
919 			goto err_hwlock;
920 		}
921 		break;
922 
923 	case 7:
924 		switch (config->val_bits) {
925 		case 9:
926 			map->format.format_write = regmap_format_7_9_write;
927 			break;
928 		case 17:
929 			map->format.format_write = regmap_format_7_17_write;
930 			break;
931 		default:
932 			goto err_hwlock;
933 		}
934 		break;
935 
936 	case 10:
937 		switch (config->val_bits) {
938 		case 14:
939 			map->format.format_write = regmap_format_10_14_write;
940 			break;
941 		default:
942 			goto err_hwlock;
943 		}
944 		break;
945 
946 	case 12:
947 		switch (config->val_bits) {
948 		case 20:
949 			map->format.format_write = regmap_format_12_20_write;
950 			break;
951 		default:
952 			goto err_hwlock;
953 		}
954 		break;
955 
956 	case 8:
957 		map->format.format_reg = regmap_format_8;
958 		break;
959 
960 	case 16:
961 		switch (reg_endian) {
962 		case REGMAP_ENDIAN_BIG:
963 			map->format.format_reg = regmap_format_16_be;
964 			break;
965 		case REGMAP_ENDIAN_LITTLE:
966 			map->format.format_reg = regmap_format_16_le;
967 			break;
968 		case REGMAP_ENDIAN_NATIVE:
969 			map->format.format_reg = regmap_format_16_native;
970 			break;
971 		default:
972 			goto err_hwlock;
973 		}
974 		break;
975 
976 	case 24:
977 		if (reg_endian != REGMAP_ENDIAN_BIG)
978 			goto err_hwlock;
979 		map->format.format_reg = regmap_format_24;
980 		break;
981 
982 	case 32:
983 		switch (reg_endian) {
984 		case REGMAP_ENDIAN_BIG:
985 			map->format.format_reg = regmap_format_32_be;
986 			break;
987 		case REGMAP_ENDIAN_LITTLE:
988 			map->format.format_reg = regmap_format_32_le;
989 			break;
990 		case REGMAP_ENDIAN_NATIVE:
991 			map->format.format_reg = regmap_format_32_native;
992 			break;
993 		default:
994 			goto err_hwlock;
995 		}
996 		break;
997 
998 #ifdef CONFIG_64BIT
999 	case 64:
1000 		switch (reg_endian) {
1001 		case REGMAP_ENDIAN_BIG:
1002 			map->format.format_reg = regmap_format_64_be;
1003 			break;
1004 		case REGMAP_ENDIAN_LITTLE:
1005 			map->format.format_reg = regmap_format_64_le;
1006 			break;
1007 		case REGMAP_ENDIAN_NATIVE:
1008 			map->format.format_reg = regmap_format_64_native;
1009 			break;
1010 		default:
1011 			goto err_hwlock;
1012 		}
1013 		break;
1014 #endif
1015 
1016 	default:
1017 		goto err_hwlock;
1018 	}
1019 
1020 	if (val_endian == REGMAP_ENDIAN_NATIVE)
1021 		map->format.parse_inplace = regmap_parse_inplace_noop;
1022 
1023 	switch (config->val_bits) {
1024 	case 8:
1025 		map->format.format_val = regmap_format_8;
1026 		map->format.parse_val = regmap_parse_8;
1027 		map->format.parse_inplace = regmap_parse_inplace_noop;
1028 		break;
1029 	case 16:
1030 		switch (val_endian) {
1031 		case REGMAP_ENDIAN_BIG:
1032 			map->format.format_val = regmap_format_16_be;
1033 			map->format.parse_val = regmap_parse_16_be;
1034 			map->format.parse_inplace = regmap_parse_16_be_inplace;
1035 			break;
1036 		case REGMAP_ENDIAN_LITTLE:
1037 			map->format.format_val = regmap_format_16_le;
1038 			map->format.parse_val = regmap_parse_16_le;
1039 			map->format.parse_inplace = regmap_parse_16_le_inplace;
1040 			break;
1041 		case REGMAP_ENDIAN_NATIVE:
1042 			map->format.format_val = regmap_format_16_native;
1043 			map->format.parse_val = regmap_parse_16_native;
1044 			break;
1045 		default:
1046 			goto err_hwlock;
1047 		}
1048 		break;
1049 	case 24:
1050 		if (val_endian != REGMAP_ENDIAN_BIG)
1051 			goto err_hwlock;
1052 		map->format.format_val = regmap_format_24;
1053 		map->format.parse_val = regmap_parse_24;
1054 		break;
1055 	case 32:
1056 		switch (val_endian) {
1057 		case REGMAP_ENDIAN_BIG:
1058 			map->format.format_val = regmap_format_32_be;
1059 			map->format.parse_val = regmap_parse_32_be;
1060 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1061 			break;
1062 		case REGMAP_ENDIAN_LITTLE:
1063 			map->format.format_val = regmap_format_32_le;
1064 			map->format.parse_val = regmap_parse_32_le;
1065 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1066 			break;
1067 		case REGMAP_ENDIAN_NATIVE:
1068 			map->format.format_val = regmap_format_32_native;
1069 			map->format.parse_val = regmap_parse_32_native;
1070 			break;
1071 		default:
1072 			goto err_hwlock;
1073 		}
1074 		break;
1075 #ifdef CONFIG_64BIT
1076 	case 64:
1077 		switch (val_endian) {
1078 		case REGMAP_ENDIAN_BIG:
1079 			map->format.format_val = regmap_format_64_be;
1080 			map->format.parse_val = regmap_parse_64_be;
1081 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1082 			break;
1083 		case REGMAP_ENDIAN_LITTLE:
1084 			map->format.format_val = regmap_format_64_le;
1085 			map->format.parse_val = regmap_parse_64_le;
1086 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1087 			break;
1088 		case REGMAP_ENDIAN_NATIVE:
1089 			map->format.format_val = regmap_format_64_native;
1090 			map->format.parse_val = regmap_parse_64_native;
1091 			break;
1092 		default:
1093 			goto err_hwlock;
1094 		}
1095 		break;
1096 #endif
1097 	}
1098 
1099 	if (map->format.format_write) {
1100 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1101 		    (val_endian != REGMAP_ENDIAN_BIG))
1102 			goto err_hwlock;
1103 		map->use_single_write = true;
1104 	}
1105 
1106 	if (!map->format.format_write &&
1107 	    !(map->format.format_reg && map->format.format_val))
1108 		goto err_hwlock;
1109 
1110 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1111 	if (map->work_buf == NULL) {
1112 		ret = -ENOMEM;
1113 		goto err_hwlock;
1114 	}
1115 
1116 	if (map->format.format_write) {
1117 		map->defer_caching = false;
1118 		map->reg_write = _regmap_bus_formatted_write;
1119 	} else if (map->format.format_val) {
1120 		map->defer_caching = true;
1121 		map->reg_write = _regmap_bus_raw_write;
1122 	}
1123 
1124 skip_format_initialization:
1125 
1126 	map->range_tree = RB_ROOT;
1127 	for (i = 0; i < config->num_ranges; i++) {
1128 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1129 		struct regmap_range_node *new;
1130 
1131 		/* Sanity check */
1132 		if (range_cfg->range_max < range_cfg->range_min) {
1133 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1134 				range_cfg->range_max, range_cfg->range_min);
1135 			goto err_range;
1136 		}
1137 
1138 		if (range_cfg->range_max > map->max_register) {
1139 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1140 				range_cfg->range_max, map->max_register);
1141 			goto err_range;
1142 		}
1143 
1144 		if (range_cfg->selector_reg > map->max_register) {
1145 			dev_err(map->dev,
1146 				"Invalid range %d: selector out of map\n", i);
1147 			goto err_range;
1148 		}
1149 
1150 		if (range_cfg->window_len == 0) {
1151 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1152 				i);
1153 			goto err_range;
1154 		}
1155 
1156 		/* Make sure, that this register range has no selector
1157 		   or data window within its boundary */
1158 		for (j = 0; j < config->num_ranges; j++) {
1159 			unsigned int sel_reg = config->ranges[j].selector_reg;
1160 			unsigned int win_min = config->ranges[j].window_start;
1161 			unsigned int win_max = win_min +
1162 					       config->ranges[j].window_len - 1;
1163 
1164 			/* Allow data window inside its own virtual range */
1165 			if (j == i)
1166 				continue;
1167 
1168 			if (range_cfg->range_min <= sel_reg &&
1169 			    sel_reg <= range_cfg->range_max) {
1170 				dev_err(map->dev,
1171 					"Range %d: selector for %d in window\n",
1172 					i, j);
1173 				goto err_range;
1174 			}
1175 
1176 			if (!(win_max < range_cfg->range_min ||
1177 			      win_min > range_cfg->range_max)) {
1178 				dev_err(map->dev,
1179 					"Range %d: window for %d in window\n",
1180 					i, j);
1181 				goto err_range;
1182 			}
1183 		}
1184 
1185 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1186 		if (new == NULL) {
1187 			ret = -ENOMEM;
1188 			goto err_range;
1189 		}
1190 
1191 		new->map = map;
1192 		new->name = range_cfg->name;
1193 		new->range_min = range_cfg->range_min;
1194 		new->range_max = range_cfg->range_max;
1195 		new->selector_reg = range_cfg->selector_reg;
1196 		new->selector_mask = range_cfg->selector_mask;
1197 		new->selector_shift = range_cfg->selector_shift;
1198 		new->window_start = range_cfg->window_start;
1199 		new->window_len = range_cfg->window_len;
1200 
1201 		if (!_regmap_range_add(map, new)) {
1202 			dev_err(map->dev, "Failed to add range %d\n", i);
1203 			kfree(new);
1204 			goto err_range;
1205 		}
1206 
1207 		if (map->selector_work_buf == NULL) {
1208 			map->selector_work_buf =
1209 				kzalloc(map->format.buf_size, GFP_KERNEL);
1210 			if (map->selector_work_buf == NULL) {
1211 				ret = -ENOMEM;
1212 				goto err_range;
1213 			}
1214 		}
1215 	}
1216 
1217 	ret = regcache_init(map, config);
1218 	if (ret != 0)
1219 		goto err_range;
1220 
1221 	if (dev) {
1222 		ret = regmap_attach_dev(dev, map, config);
1223 		if (ret != 0)
1224 			goto err_regcache;
1225 	} else {
1226 		regmap_debugfs_init(map);
1227 	}
1228 
1229 	return map;
1230 
1231 err_regcache:
1232 	regcache_exit(map);
1233 err_range:
1234 	regmap_range_exit(map);
1235 	kfree(map->work_buf);
1236 err_hwlock:
1237 	if (map->hwlock)
1238 		hwspin_lock_free(map->hwlock);
1239 err_name:
1240 	kfree_const(map->name);
1241 err_map:
1242 	kfree(map);
1243 err:
1244 	return ERR_PTR(ret);
1245 }
1246 EXPORT_SYMBOL_GPL(__regmap_init);
1247 
1248 static void devm_regmap_release(struct device *dev, void *res)
1249 {
1250 	regmap_exit(*(struct regmap **)res);
1251 }
1252 
1253 struct regmap *__devm_regmap_init(struct device *dev,
1254 				  const struct regmap_bus *bus,
1255 				  void *bus_context,
1256 				  const struct regmap_config *config,
1257 				  struct lock_class_key *lock_key,
1258 				  const char *lock_name)
1259 {
1260 	struct regmap **ptr, *regmap;
1261 
1262 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1263 	if (!ptr)
1264 		return ERR_PTR(-ENOMEM);
1265 
1266 	regmap = __regmap_init(dev, bus, bus_context, config,
1267 			       lock_key, lock_name);
1268 	if (!IS_ERR(regmap)) {
1269 		*ptr = regmap;
1270 		devres_add(dev, ptr);
1271 	} else {
1272 		devres_free(ptr);
1273 	}
1274 
1275 	return regmap;
1276 }
1277 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1278 
1279 static void regmap_field_init(struct regmap_field *rm_field,
1280 	struct regmap *regmap, struct reg_field reg_field)
1281 {
1282 	rm_field->regmap = regmap;
1283 	rm_field->reg = reg_field.reg;
1284 	rm_field->shift = reg_field.lsb;
1285 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1286 	rm_field->id_size = reg_field.id_size;
1287 	rm_field->id_offset = reg_field.id_offset;
1288 }
1289 
1290 /**
1291  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1292  *
1293  * @dev: Device that will be interacted with
1294  * @regmap: regmap bank in which this register field is located.
1295  * @reg_field: Register field with in the bank.
1296  *
1297  * The return value will be an ERR_PTR() on error or a valid pointer
1298  * to a struct regmap_field. The regmap_field will be automatically freed
1299  * by the device management code.
1300  */
1301 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1302 		struct regmap *regmap, struct reg_field reg_field)
1303 {
1304 	struct regmap_field *rm_field = devm_kzalloc(dev,
1305 					sizeof(*rm_field), GFP_KERNEL);
1306 	if (!rm_field)
1307 		return ERR_PTR(-ENOMEM);
1308 
1309 	regmap_field_init(rm_field, regmap, reg_field);
1310 
1311 	return rm_field;
1312 
1313 }
1314 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1315 
1316 
1317 /**
1318  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1319  *
1320  * @regmap: regmap bank in which this register field is located.
1321  * @rm_field: regmap register fields within the bank.
1322  * @reg_field: Register fields within the bank.
1323  * @num_fields: Number of register fields.
1324  *
1325  * The return value will be an -ENOMEM on error or zero for success.
1326  * Newly allocated regmap_fields should be freed by calling
1327  * regmap_field_bulk_free()
1328  */
1329 int regmap_field_bulk_alloc(struct regmap *regmap,
1330 			    struct regmap_field **rm_field,
1331 			    const struct reg_field *reg_field,
1332 			    int num_fields)
1333 {
1334 	struct regmap_field *rf;
1335 	int i;
1336 
1337 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1338 	if (!rf)
1339 		return -ENOMEM;
1340 
1341 	for (i = 0; i < num_fields; i++) {
1342 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1343 		rm_field[i] = &rf[i];
1344 	}
1345 
1346 	return 0;
1347 }
1348 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1349 
1350 /**
1351  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1352  * fields.
1353  *
1354  * @dev: Device that will be interacted with
1355  * @regmap: regmap bank in which this register field is located.
1356  * @rm_field: regmap register fields within the bank.
1357  * @reg_field: Register fields within the bank.
1358  * @num_fields: Number of register fields.
1359  *
1360  * The return value will be an -ENOMEM on error or zero for success.
1361  * Newly allocated regmap_fields will be automatically freed by the
1362  * device management code.
1363  */
1364 int devm_regmap_field_bulk_alloc(struct device *dev,
1365 				 struct regmap *regmap,
1366 				 struct regmap_field **rm_field,
1367 				 const struct reg_field *reg_field,
1368 				 int num_fields)
1369 {
1370 	struct regmap_field *rf;
1371 	int i;
1372 
1373 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1374 	if (!rf)
1375 		return -ENOMEM;
1376 
1377 	for (i = 0; i < num_fields; i++) {
1378 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1379 		rm_field[i] = &rf[i];
1380 	}
1381 
1382 	return 0;
1383 }
1384 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1385 
1386 /**
1387  * regmap_field_bulk_free() - Free register field allocated using
1388  *                       regmap_field_bulk_alloc.
1389  *
1390  * @field: regmap fields which should be freed.
1391  */
1392 void regmap_field_bulk_free(struct regmap_field *field)
1393 {
1394 	kfree(field);
1395 }
1396 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1397 
1398 /**
1399  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1400  *                            devm_regmap_field_bulk_alloc.
1401  *
1402  * @dev: Device that will be interacted with
1403  * @field: regmap field which should be freed.
1404  *
1405  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1406  * drivers need not call this function, as the memory allocated via devm
1407  * will be freed as per device-driver life-cycle.
1408  */
1409 void devm_regmap_field_bulk_free(struct device *dev,
1410 				 struct regmap_field *field)
1411 {
1412 	devm_kfree(dev, field);
1413 }
1414 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1415 
1416 /**
1417  * devm_regmap_field_free() - Free a register field allocated using
1418  *                            devm_regmap_field_alloc.
1419  *
1420  * @dev: Device that will be interacted with
1421  * @field: regmap field which should be freed.
1422  *
1423  * Free register field allocated using devm_regmap_field_alloc(). Usually
1424  * drivers need not call this function, as the memory allocated via devm
1425  * will be freed as per device-driver life-cyle.
1426  */
1427 void devm_regmap_field_free(struct device *dev,
1428 	struct regmap_field *field)
1429 {
1430 	devm_kfree(dev, field);
1431 }
1432 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1433 
1434 /**
1435  * regmap_field_alloc() - Allocate and initialise a register field.
1436  *
1437  * @regmap: regmap bank in which this register field is located.
1438  * @reg_field: Register field with in the bank.
1439  *
1440  * The return value will be an ERR_PTR() on error or a valid pointer
1441  * to a struct regmap_field. The regmap_field should be freed by the
1442  * user once its finished working with it using regmap_field_free().
1443  */
1444 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1445 		struct reg_field reg_field)
1446 {
1447 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1448 
1449 	if (!rm_field)
1450 		return ERR_PTR(-ENOMEM);
1451 
1452 	regmap_field_init(rm_field, regmap, reg_field);
1453 
1454 	return rm_field;
1455 }
1456 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1457 
1458 /**
1459  * regmap_field_free() - Free register field allocated using
1460  *                       regmap_field_alloc.
1461  *
1462  * @field: regmap field which should be freed.
1463  */
1464 void regmap_field_free(struct regmap_field *field)
1465 {
1466 	kfree(field);
1467 }
1468 EXPORT_SYMBOL_GPL(regmap_field_free);
1469 
1470 /**
1471  * regmap_reinit_cache() - Reinitialise the current register cache
1472  *
1473  * @map: Register map to operate on.
1474  * @config: New configuration.  Only the cache data will be used.
1475  *
1476  * Discard any existing register cache for the map and initialize a
1477  * new cache.  This can be used to restore the cache to defaults or to
1478  * update the cache configuration to reflect runtime discovery of the
1479  * hardware.
1480  *
1481  * No explicit locking is done here, the user needs to ensure that
1482  * this function will not race with other calls to regmap.
1483  */
1484 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1485 {
1486 	int ret;
1487 
1488 	regcache_exit(map);
1489 	regmap_debugfs_exit(map);
1490 
1491 	map->max_register = config->max_register;
1492 	map->writeable_reg = config->writeable_reg;
1493 	map->readable_reg = config->readable_reg;
1494 	map->volatile_reg = config->volatile_reg;
1495 	map->precious_reg = config->precious_reg;
1496 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1497 	map->readable_noinc_reg = config->readable_noinc_reg;
1498 	map->cache_type = config->cache_type;
1499 
1500 	ret = regmap_set_name(map, config);
1501 	if (ret)
1502 		return ret;
1503 
1504 	regmap_debugfs_init(map);
1505 
1506 	map->cache_bypass = false;
1507 	map->cache_only = false;
1508 
1509 	return regcache_init(map, config);
1510 }
1511 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1512 
1513 /**
1514  * regmap_exit() - Free a previously allocated register map
1515  *
1516  * @map: Register map to operate on.
1517  */
1518 void regmap_exit(struct regmap *map)
1519 {
1520 	struct regmap_async *async;
1521 
1522 	regcache_exit(map);
1523 	regmap_debugfs_exit(map);
1524 	regmap_range_exit(map);
1525 	if (map->bus && map->bus->free_context)
1526 		map->bus->free_context(map->bus_context);
1527 	kfree(map->work_buf);
1528 	while (!list_empty(&map->async_free)) {
1529 		async = list_first_entry_or_null(&map->async_free,
1530 						 struct regmap_async,
1531 						 list);
1532 		list_del(&async->list);
1533 		kfree(async->work_buf);
1534 		kfree(async);
1535 	}
1536 	if (map->hwlock)
1537 		hwspin_lock_free(map->hwlock);
1538 	if (map->lock == regmap_lock_mutex)
1539 		mutex_destroy(&map->mutex);
1540 	kfree_const(map->name);
1541 	kfree(map->patch);
1542 	if (map->bus && map->bus->free_on_exit)
1543 		kfree(map->bus);
1544 	kfree(map);
1545 }
1546 EXPORT_SYMBOL_GPL(regmap_exit);
1547 
1548 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1549 {
1550 	struct regmap **r = res;
1551 	if (!r || !*r) {
1552 		WARN_ON(!r || !*r);
1553 		return 0;
1554 	}
1555 
1556 	/* If the user didn't specify a name match any */
1557 	if (data)
1558 		return !strcmp((*r)->name, data);
1559 	else
1560 		return 1;
1561 }
1562 
1563 /**
1564  * dev_get_regmap() - Obtain the regmap (if any) for a device
1565  *
1566  * @dev: Device to retrieve the map for
1567  * @name: Optional name for the register map, usually NULL.
1568  *
1569  * Returns the regmap for the device if one is present, or NULL.  If
1570  * name is specified then it must match the name specified when
1571  * registering the device, if it is NULL then the first regmap found
1572  * will be used.  Devices with multiple register maps are very rare,
1573  * generic code should normally not need to specify a name.
1574  */
1575 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1576 {
1577 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1578 					dev_get_regmap_match, (void *)name);
1579 
1580 	if (!r)
1581 		return NULL;
1582 	return *r;
1583 }
1584 EXPORT_SYMBOL_GPL(dev_get_regmap);
1585 
1586 /**
1587  * regmap_get_device() - Obtain the device from a regmap
1588  *
1589  * @map: Register map to operate on.
1590  *
1591  * Returns the underlying device that the regmap has been created for.
1592  */
1593 struct device *regmap_get_device(struct regmap *map)
1594 {
1595 	return map->dev;
1596 }
1597 EXPORT_SYMBOL_GPL(regmap_get_device);
1598 
1599 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1600 			       struct regmap_range_node *range,
1601 			       unsigned int val_num)
1602 {
1603 	void *orig_work_buf;
1604 	unsigned int win_offset;
1605 	unsigned int win_page;
1606 	bool page_chg;
1607 	int ret;
1608 
1609 	win_offset = (*reg - range->range_min) % range->window_len;
1610 	win_page = (*reg - range->range_min) / range->window_len;
1611 
1612 	if (val_num > 1) {
1613 		/* Bulk write shouldn't cross range boundary */
1614 		if (*reg + val_num - 1 > range->range_max)
1615 			return -EINVAL;
1616 
1617 		/* ... or single page boundary */
1618 		if (val_num > range->window_len - win_offset)
1619 			return -EINVAL;
1620 	}
1621 
1622 	/* It is possible to have selector register inside data window.
1623 	   In that case, selector register is located on every page and
1624 	   it needs no page switching, when accessed alone. */
1625 	if (val_num > 1 ||
1626 	    range->window_start + win_offset != range->selector_reg) {
1627 		/* Use separate work_buf during page switching */
1628 		orig_work_buf = map->work_buf;
1629 		map->work_buf = map->selector_work_buf;
1630 
1631 		ret = _regmap_update_bits(map, range->selector_reg,
1632 					  range->selector_mask,
1633 					  win_page << range->selector_shift,
1634 					  &page_chg, false);
1635 
1636 		map->work_buf = orig_work_buf;
1637 
1638 		if (ret != 0)
1639 			return ret;
1640 	}
1641 
1642 	*reg = range->window_start + win_offset;
1643 
1644 	return 0;
1645 }
1646 
1647 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1648 					  unsigned long mask)
1649 {
1650 	u8 *buf;
1651 	int i;
1652 
1653 	if (!mask || !map->work_buf)
1654 		return;
1655 
1656 	buf = map->work_buf;
1657 
1658 	for (i = 0; i < max_bytes; i++)
1659 		buf[i] |= (mask >> (8 * i)) & 0xff;
1660 }
1661 
1662 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1663 				  const void *val, size_t val_len, bool noinc)
1664 {
1665 	struct regmap_range_node *range;
1666 	unsigned long flags;
1667 	void *work_val = map->work_buf + map->format.reg_bytes +
1668 		map->format.pad_bytes;
1669 	void *buf;
1670 	int ret = -ENOTSUPP;
1671 	size_t len;
1672 	int i;
1673 
1674 	WARN_ON(!map->bus);
1675 
1676 	/* Check for unwritable or noinc registers in range
1677 	 * before we start
1678 	 */
1679 	if (!regmap_writeable_noinc(map, reg)) {
1680 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1681 			unsigned int element =
1682 				reg + regmap_get_offset(map, i);
1683 			if (!regmap_writeable(map, element) ||
1684 				regmap_writeable_noinc(map, element))
1685 				return -EINVAL;
1686 		}
1687 	}
1688 
1689 	if (!map->cache_bypass && map->format.parse_val) {
1690 		unsigned int ival;
1691 		int val_bytes = map->format.val_bytes;
1692 		for (i = 0; i < val_len / val_bytes; i++) {
1693 			ival = map->format.parse_val(val + (i * val_bytes));
1694 			ret = regcache_write(map,
1695 					     reg + regmap_get_offset(map, i),
1696 					     ival);
1697 			if (ret) {
1698 				dev_err(map->dev,
1699 					"Error in caching of register: %x ret: %d\n",
1700 					reg + regmap_get_offset(map, i), ret);
1701 				return ret;
1702 			}
1703 		}
1704 		if (map->cache_only) {
1705 			map->cache_dirty = true;
1706 			return 0;
1707 		}
1708 	}
1709 
1710 	range = _regmap_range_lookup(map, reg);
1711 	if (range) {
1712 		int val_num = val_len / map->format.val_bytes;
1713 		int win_offset = (reg - range->range_min) % range->window_len;
1714 		int win_residue = range->window_len - win_offset;
1715 
1716 		/* If the write goes beyond the end of the window split it */
1717 		while (val_num > win_residue) {
1718 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1719 				win_residue, val_len / map->format.val_bytes);
1720 			ret = _regmap_raw_write_impl(map, reg, val,
1721 						     win_residue *
1722 						     map->format.val_bytes, noinc);
1723 			if (ret != 0)
1724 				return ret;
1725 
1726 			reg += win_residue;
1727 			val_num -= win_residue;
1728 			val += win_residue * map->format.val_bytes;
1729 			val_len -= win_residue * map->format.val_bytes;
1730 
1731 			win_offset = (reg - range->range_min) %
1732 				range->window_len;
1733 			win_residue = range->window_len - win_offset;
1734 		}
1735 
1736 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1737 		if (ret != 0)
1738 			return ret;
1739 	}
1740 
1741 	reg += map->reg_base;
1742 	reg >>= map->format.reg_downshift;
1743 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1744 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1745 				      map->write_flag_mask);
1746 
1747 	/*
1748 	 * Essentially all I/O mechanisms will be faster with a single
1749 	 * buffer to write.  Since register syncs often generate raw
1750 	 * writes of single registers optimise that case.
1751 	 */
1752 	if (val != work_val && val_len == map->format.val_bytes) {
1753 		memcpy(work_val, val, map->format.val_bytes);
1754 		val = work_val;
1755 	}
1756 
1757 	if (map->async && map->bus->async_write) {
1758 		struct regmap_async *async;
1759 
1760 		trace_regmap_async_write_start(map, reg, val_len);
1761 
1762 		spin_lock_irqsave(&map->async_lock, flags);
1763 		async = list_first_entry_or_null(&map->async_free,
1764 						 struct regmap_async,
1765 						 list);
1766 		if (async)
1767 			list_del(&async->list);
1768 		spin_unlock_irqrestore(&map->async_lock, flags);
1769 
1770 		if (!async) {
1771 			async = map->bus->async_alloc();
1772 			if (!async)
1773 				return -ENOMEM;
1774 
1775 			async->work_buf = kzalloc(map->format.buf_size,
1776 						  GFP_KERNEL | GFP_DMA);
1777 			if (!async->work_buf) {
1778 				kfree(async);
1779 				return -ENOMEM;
1780 			}
1781 		}
1782 
1783 		async->map = map;
1784 
1785 		/* If the caller supplied the value we can use it safely. */
1786 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1787 		       map->format.reg_bytes + map->format.val_bytes);
1788 
1789 		spin_lock_irqsave(&map->async_lock, flags);
1790 		list_add_tail(&async->list, &map->async_list);
1791 		spin_unlock_irqrestore(&map->async_lock, flags);
1792 
1793 		if (val != work_val)
1794 			ret = map->bus->async_write(map->bus_context,
1795 						    async->work_buf,
1796 						    map->format.reg_bytes +
1797 						    map->format.pad_bytes,
1798 						    val, val_len, async);
1799 		else
1800 			ret = map->bus->async_write(map->bus_context,
1801 						    async->work_buf,
1802 						    map->format.reg_bytes +
1803 						    map->format.pad_bytes +
1804 						    val_len, NULL, 0, async);
1805 
1806 		if (ret != 0) {
1807 			dev_err(map->dev, "Failed to schedule write: %d\n",
1808 				ret);
1809 
1810 			spin_lock_irqsave(&map->async_lock, flags);
1811 			list_move(&async->list, &map->async_free);
1812 			spin_unlock_irqrestore(&map->async_lock, flags);
1813 		}
1814 
1815 		return ret;
1816 	}
1817 
1818 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1819 
1820 	/* If we're doing a single register write we can probably just
1821 	 * send the work_buf directly, otherwise try to do a gather
1822 	 * write.
1823 	 */
1824 	if (val == work_val)
1825 		ret = map->bus->write(map->bus_context, map->work_buf,
1826 				      map->format.reg_bytes +
1827 				      map->format.pad_bytes +
1828 				      val_len);
1829 	else if (map->bus->gather_write)
1830 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1831 					     map->format.reg_bytes +
1832 					     map->format.pad_bytes,
1833 					     val, val_len);
1834 	else
1835 		ret = -ENOTSUPP;
1836 
1837 	/* If that didn't work fall back on linearising by hand. */
1838 	if (ret == -ENOTSUPP) {
1839 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1840 		buf = kzalloc(len, GFP_KERNEL);
1841 		if (!buf)
1842 			return -ENOMEM;
1843 
1844 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1845 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1846 		       val, val_len);
1847 		ret = map->bus->write(map->bus_context, buf, len);
1848 
1849 		kfree(buf);
1850 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1851 		/* regcache_drop_region() takes lock that we already have,
1852 		 * thus call map->cache_ops->drop() directly
1853 		 */
1854 		if (map->cache_ops && map->cache_ops->drop)
1855 			map->cache_ops->drop(map, reg, reg + 1);
1856 	}
1857 
1858 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1859 
1860 	return ret;
1861 }
1862 
1863 /**
1864  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1865  *
1866  * @map: Map to check.
1867  */
1868 bool regmap_can_raw_write(struct regmap *map)
1869 {
1870 	return map->bus && map->bus->write && map->format.format_val &&
1871 		map->format.format_reg;
1872 }
1873 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1874 
1875 /**
1876  * regmap_get_raw_read_max - Get the maximum size we can read
1877  *
1878  * @map: Map to check.
1879  */
1880 size_t regmap_get_raw_read_max(struct regmap *map)
1881 {
1882 	return map->max_raw_read;
1883 }
1884 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1885 
1886 /**
1887  * regmap_get_raw_write_max - Get the maximum size we can read
1888  *
1889  * @map: Map to check.
1890  */
1891 size_t regmap_get_raw_write_max(struct regmap *map)
1892 {
1893 	return map->max_raw_write;
1894 }
1895 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1896 
1897 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1898 				       unsigned int val)
1899 {
1900 	int ret;
1901 	struct regmap_range_node *range;
1902 	struct regmap *map = context;
1903 
1904 	WARN_ON(!map->bus || !map->format.format_write);
1905 
1906 	range = _regmap_range_lookup(map, reg);
1907 	if (range) {
1908 		ret = _regmap_select_page(map, &reg, range, 1);
1909 		if (ret != 0)
1910 			return ret;
1911 	}
1912 
1913 	reg += map->reg_base;
1914 	reg >>= map->format.reg_downshift;
1915 	map->format.format_write(map, reg, val);
1916 
1917 	trace_regmap_hw_write_start(map, reg, 1);
1918 
1919 	ret = map->bus->write(map->bus_context, map->work_buf,
1920 			      map->format.buf_size);
1921 
1922 	trace_regmap_hw_write_done(map, reg, 1);
1923 
1924 	return ret;
1925 }
1926 
1927 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1928 				 unsigned int val)
1929 {
1930 	struct regmap *map = context;
1931 
1932 	return map->bus->reg_write(map->bus_context, reg, val);
1933 }
1934 
1935 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1936 				 unsigned int val)
1937 {
1938 	struct regmap *map = context;
1939 
1940 	WARN_ON(!map->bus || !map->format.format_val);
1941 
1942 	map->format.format_val(map->work_buf + map->format.reg_bytes
1943 			       + map->format.pad_bytes, val, 0);
1944 	return _regmap_raw_write_impl(map, reg,
1945 				      map->work_buf +
1946 				      map->format.reg_bytes +
1947 				      map->format.pad_bytes,
1948 				      map->format.val_bytes,
1949 				      false);
1950 }
1951 
1952 static inline void *_regmap_map_get_context(struct regmap *map)
1953 {
1954 	return (map->bus) ? map : map->bus_context;
1955 }
1956 
1957 int _regmap_write(struct regmap *map, unsigned int reg,
1958 		  unsigned int val)
1959 {
1960 	int ret;
1961 	void *context = _regmap_map_get_context(map);
1962 
1963 	if (!regmap_writeable(map, reg))
1964 		return -EIO;
1965 
1966 	if (!map->cache_bypass && !map->defer_caching) {
1967 		ret = regcache_write(map, reg, val);
1968 		if (ret != 0)
1969 			return ret;
1970 		if (map->cache_only) {
1971 			map->cache_dirty = true;
1972 			return 0;
1973 		}
1974 	}
1975 
1976 	ret = map->reg_write(context, reg, val);
1977 	if (ret == 0) {
1978 		if (regmap_should_log(map))
1979 			dev_info(map->dev, "%x <= %x\n", reg, val);
1980 
1981 		trace_regmap_reg_write(map, reg, val);
1982 	}
1983 
1984 	return ret;
1985 }
1986 
1987 /**
1988  * regmap_write() - Write a value to a single register
1989  *
1990  * @map: Register map to write to
1991  * @reg: Register to write to
1992  * @val: Value to be written
1993  *
1994  * A value of zero will be returned on success, a negative errno will
1995  * be returned in error cases.
1996  */
1997 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1998 {
1999 	int ret;
2000 
2001 	if (!IS_ALIGNED(reg, map->reg_stride))
2002 		return -EINVAL;
2003 
2004 	map->lock(map->lock_arg);
2005 
2006 	ret = _regmap_write(map, reg, val);
2007 
2008 	map->unlock(map->lock_arg);
2009 
2010 	return ret;
2011 }
2012 EXPORT_SYMBOL_GPL(regmap_write);
2013 
2014 /**
2015  * regmap_write_async() - Write a value to a single register asynchronously
2016  *
2017  * @map: Register map to write to
2018  * @reg: Register to write to
2019  * @val: Value to be written
2020  *
2021  * A value of zero will be returned on success, a negative errno will
2022  * be returned in error cases.
2023  */
2024 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2025 {
2026 	int ret;
2027 
2028 	if (!IS_ALIGNED(reg, map->reg_stride))
2029 		return -EINVAL;
2030 
2031 	map->lock(map->lock_arg);
2032 
2033 	map->async = true;
2034 
2035 	ret = _regmap_write(map, reg, val);
2036 
2037 	map->async = false;
2038 
2039 	map->unlock(map->lock_arg);
2040 
2041 	return ret;
2042 }
2043 EXPORT_SYMBOL_GPL(regmap_write_async);
2044 
2045 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2046 		      const void *val, size_t val_len, bool noinc)
2047 {
2048 	size_t val_bytes = map->format.val_bytes;
2049 	size_t val_count = val_len / val_bytes;
2050 	size_t chunk_count, chunk_bytes;
2051 	size_t chunk_regs = val_count;
2052 	int ret, i;
2053 
2054 	if (!val_count)
2055 		return -EINVAL;
2056 
2057 	if (map->use_single_write)
2058 		chunk_regs = 1;
2059 	else if (map->max_raw_write && val_len > map->max_raw_write)
2060 		chunk_regs = map->max_raw_write / val_bytes;
2061 
2062 	chunk_count = val_count / chunk_regs;
2063 	chunk_bytes = chunk_regs * val_bytes;
2064 
2065 	/* Write as many bytes as possible with chunk_size */
2066 	for (i = 0; i < chunk_count; i++) {
2067 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2068 		if (ret)
2069 			return ret;
2070 
2071 		reg += regmap_get_offset(map, chunk_regs);
2072 		val += chunk_bytes;
2073 		val_len -= chunk_bytes;
2074 	}
2075 
2076 	/* Write remaining bytes */
2077 	if (val_len)
2078 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2079 
2080 	return ret;
2081 }
2082 
2083 /**
2084  * regmap_raw_write() - Write raw values to one or more registers
2085  *
2086  * @map: Register map to write to
2087  * @reg: Initial register to write to
2088  * @val: Block of data to be written, laid out for direct transmission to the
2089  *       device
2090  * @val_len: Length of data pointed to by val.
2091  *
2092  * This function is intended to be used for things like firmware
2093  * download where a large block of data needs to be transferred to the
2094  * device.  No formatting will be done on the data provided.
2095  *
2096  * A value of zero will be returned on success, a negative errno will
2097  * be returned in error cases.
2098  */
2099 int regmap_raw_write(struct regmap *map, unsigned int reg,
2100 		     const void *val, size_t val_len)
2101 {
2102 	int ret;
2103 
2104 	if (!regmap_can_raw_write(map))
2105 		return -EINVAL;
2106 	if (val_len % map->format.val_bytes)
2107 		return -EINVAL;
2108 
2109 	map->lock(map->lock_arg);
2110 
2111 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2112 
2113 	map->unlock(map->lock_arg);
2114 
2115 	return ret;
2116 }
2117 EXPORT_SYMBOL_GPL(regmap_raw_write);
2118 
2119 /**
2120  * regmap_noinc_write(): Write data from a register without incrementing the
2121  *			register number
2122  *
2123  * @map: Register map to write to
2124  * @reg: Register to write to
2125  * @val: Pointer to data buffer
2126  * @val_len: Length of output buffer in bytes.
2127  *
2128  * The regmap API usually assumes that bulk bus write operations will write a
2129  * range of registers. Some devices have certain registers for which a write
2130  * operation can write to an internal FIFO.
2131  *
2132  * The target register must be volatile but registers after it can be
2133  * completely unrelated cacheable registers.
2134  *
2135  * This will attempt multiple writes as required to write val_len bytes.
2136  *
2137  * A value of zero will be returned on success, a negative errno will be
2138  * returned in error cases.
2139  */
2140 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2141 		      const void *val, size_t val_len)
2142 {
2143 	size_t write_len;
2144 	int ret;
2145 
2146 	if (!map->bus)
2147 		return -EINVAL;
2148 	if (!map->bus->write)
2149 		return -ENOTSUPP;
2150 	if (val_len % map->format.val_bytes)
2151 		return -EINVAL;
2152 	if (!IS_ALIGNED(reg, map->reg_stride))
2153 		return -EINVAL;
2154 	if (val_len == 0)
2155 		return -EINVAL;
2156 
2157 	map->lock(map->lock_arg);
2158 
2159 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2160 		ret = -EINVAL;
2161 		goto out_unlock;
2162 	}
2163 
2164 	while (val_len) {
2165 		if (map->max_raw_write && map->max_raw_write < val_len)
2166 			write_len = map->max_raw_write;
2167 		else
2168 			write_len = val_len;
2169 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2170 		if (ret)
2171 			goto out_unlock;
2172 		val = ((u8 *)val) + write_len;
2173 		val_len -= write_len;
2174 	}
2175 
2176 out_unlock:
2177 	map->unlock(map->lock_arg);
2178 	return ret;
2179 }
2180 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2181 
2182 /**
2183  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2184  *                                   register field.
2185  *
2186  * @field: Register field to write to
2187  * @mask: Bitmask to change
2188  * @val: Value to be written
2189  * @change: Boolean indicating if a write was done
2190  * @async: Boolean indicating asynchronously
2191  * @force: Boolean indicating use force update
2192  *
2193  * Perform a read/modify/write cycle on the register field with change,
2194  * async, force option.
2195  *
2196  * A value of zero will be returned on success, a negative errno will
2197  * be returned in error cases.
2198  */
2199 int regmap_field_update_bits_base(struct regmap_field *field,
2200 				  unsigned int mask, unsigned int val,
2201 				  bool *change, bool async, bool force)
2202 {
2203 	mask = (mask << field->shift) & field->mask;
2204 
2205 	return regmap_update_bits_base(field->regmap, field->reg,
2206 				       mask, val << field->shift,
2207 				       change, async, force);
2208 }
2209 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2210 
2211 /**
2212  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2213  *                                    register field with port ID
2214  *
2215  * @field: Register field to write to
2216  * @id: port ID
2217  * @mask: Bitmask to change
2218  * @val: Value to be written
2219  * @change: Boolean indicating if a write was done
2220  * @async: Boolean indicating asynchronously
2221  * @force: Boolean indicating use force update
2222  *
2223  * A value of zero will be returned on success, a negative errno will
2224  * be returned in error cases.
2225  */
2226 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2227 				   unsigned int mask, unsigned int val,
2228 				   bool *change, bool async, bool force)
2229 {
2230 	if (id >= field->id_size)
2231 		return -EINVAL;
2232 
2233 	mask = (mask << field->shift) & field->mask;
2234 
2235 	return regmap_update_bits_base(field->regmap,
2236 				       field->reg + (field->id_offset * id),
2237 				       mask, val << field->shift,
2238 				       change, async, force);
2239 }
2240 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2241 
2242 /**
2243  * regmap_bulk_write() - Write multiple registers to the device
2244  *
2245  * @map: Register map to write to
2246  * @reg: First register to be write from
2247  * @val: Block of data to be written, in native register size for device
2248  * @val_count: Number of registers to write
2249  *
2250  * This function is intended to be used for writing a large block of
2251  * data to the device either in single transfer or multiple transfer.
2252  *
2253  * A value of zero will be returned on success, a negative errno will
2254  * be returned in error cases.
2255  */
2256 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2257 		     size_t val_count)
2258 {
2259 	int ret = 0, i;
2260 	size_t val_bytes = map->format.val_bytes;
2261 
2262 	if (!IS_ALIGNED(reg, map->reg_stride))
2263 		return -EINVAL;
2264 
2265 	/*
2266 	 * Some devices don't support bulk write, for them we have a series of
2267 	 * single write operations.
2268 	 */
2269 	if (!map->bus || !map->format.parse_inplace) {
2270 		map->lock(map->lock_arg);
2271 		for (i = 0; i < val_count; i++) {
2272 			unsigned int ival;
2273 
2274 			switch (val_bytes) {
2275 			case 1:
2276 				ival = *(u8 *)(val + (i * val_bytes));
2277 				break;
2278 			case 2:
2279 				ival = *(u16 *)(val + (i * val_bytes));
2280 				break;
2281 			case 4:
2282 				ival = *(u32 *)(val + (i * val_bytes));
2283 				break;
2284 #ifdef CONFIG_64BIT
2285 			case 8:
2286 				ival = *(u64 *)(val + (i * val_bytes));
2287 				break;
2288 #endif
2289 			default:
2290 				ret = -EINVAL;
2291 				goto out;
2292 			}
2293 
2294 			ret = _regmap_write(map,
2295 					    reg + regmap_get_offset(map, i),
2296 					    ival);
2297 			if (ret != 0)
2298 				goto out;
2299 		}
2300 out:
2301 		map->unlock(map->lock_arg);
2302 	} else {
2303 		void *wval;
2304 
2305 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2306 		if (!wval)
2307 			return -ENOMEM;
2308 
2309 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2310 			map->format.parse_inplace(wval + i);
2311 
2312 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2313 
2314 		kfree(wval);
2315 	}
2316 	return ret;
2317 }
2318 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2319 
2320 /*
2321  * _regmap_raw_multi_reg_write()
2322  *
2323  * the (register,newvalue) pairs in regs have not been formatted, but
2324  * they are all in the same page and have been changed to being page
2325  * relative. The page register has been written if that was necessary.
2326  */
2327 static int _regmap_raw_multi_reg_write(struct regmap *map,
2328 				       const struct reg_sequence *regs,
2329 				       size_t num_regs)
2330 {
2331 	int ret;
2332 	void *buf;
2333 	int i;
2334 	u8 *u8;
2335 	size_t val_bytes = map->format.val_bytes;
2336 	size_t reg_bytes = map->format.reg_bytes;
2337 	size_t pad_bytes = map->format.pad_bytes;
2338 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2339 	size_t len = pair_size * num_regs;
2340 
2341 	if (!len)
2342 		return -EINVAL;
2343 
2344 	buf = kzalloc(len, GFP_KERNEL);
2345 	if (!buf)
2346 		return -ENOMEM;
2347 
2348 	/* We have to linearise by hand. */
2349 
2350 	u8 = buf;
2351 
2352 	for (i = 0; i < num_regs; i++) {
2353 		unsigned int reg = regs[i].reg;
2354 		unsigned int val = regs[i].def;
2355 		trace_regmap_hw_write_start(map, reg, 1);
2356 		reg += map->reg_base;
2357 		reg >>= map->format.reg_downshift;
2358 		map->format.format_reg(u8, reg, map->reg_shift);
2359 		u8 += reg_bytes + pad_bytes;
2360 		map->format.format_val(u8, val, 0);
2361 		u8 += val_bytes;
2362 	}
2363 	u8 = buf;
2364 	*u8 |= map->write_flag_mask;
2365 
2366 	ret = map->bus->write(map->bus_context, buf, len);
2367 
2368 	kfree(buf);
2369 
2370 	for (i = 0; i < num_regs; i++) {
2371 		int reg = regs[i].reg;
2372 		trace_regmap_hw_write_done(map, reg, 1);
2373 	}
2374 	return ret;
2375 }
2376 
2377 static unsigned int _regmap_register_page(struct regmap *map,
2378 					  unsigned int reg,
2379 					  struct regmap_range_node *range)
2380 {
2381 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2382 
2383 	return win_page;
2384 }
2385 
2386 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2387 					       struct reg_sequence *regs,
2388 					       size_t num_regs)
2389 {
2390 	int ret;
2391 	int i, n;
2392 	struct reg_sequence *base;
2393 	unsigned int this_page = 0;
2394 	unsigned int page_change = 0;
2395 	/*
2396 	 * the set of registers are not neccessarily in order, but
2397 	 * since the order of write must be preserved this algorithm
2398 	 * chops the set each time the page changes. This also applies
2399 	 * if there is a delay required at any point in the sequence.
2400 	 */
2401 	base = regs;
2402 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2403 		unsigned int reg = regs[i].reg;
2404 		struct regmap_range_node *range;
2405 
2406 		range = _regmap_range_lookup(map, reg);
2407 		if (range) {
2408 			unsigned int win_page = _regmap_register_page(map, reg,
2409 								      range);
2410 
2411 			if (i == 0)
2412 				this_page = win_page;
2413 			if (win_page != this_page) {
2414 				this_page = win_page;
2415 				page_change = 1;
2416 			}
2417 		}
2418 
2419 		/* If we have both a page change and a delay make sure to
2420 		 * write the regs and apply the delay before we change the
2421 		 * page.
2422 		 */
2423 
2424 		if (page_change || regs[i].delay_us) {
2425 
2426 				/* For situations where the first write requires
2427 				 * a delay we need to make sure we don't call
2428 				 * raw_multi_reg_write with n=0
2429 				 * This can't occur with page breaks as we
2430 				 * never write on the first iteration
2431 				 */
2432 				if (regs[i].delay_us && i == 0)
2433 					n = 1;
2434 
2435 				ret = _regmap_raw_multi_reg_write(map, base, n);
2436 				if (ret != 0)
2437 					return ret;
2438 
2439 				if (regs[i].delay_us) {
2440 					if (map->can_sleep)
2441 						fsleep(regs[i].delay_us);
2442 					else
2443 						udelay(regs[i].delay_us);
2444 				}
2445 
2446 				base += n;
2447 				n = 0;
2448 
2449 				if (page_change) {
2450 					ret = _regmap_select_page(map,
2451 								  &base[n].reg,
2452 								  range, 1);
2453 					if (ret != 0)
2454 						return ret;
2455 
2456 					page_change = 0;
2457 				}
2458 
2459 		}
2460 
2461 	}
2462 	if (n > 0)
2463 		return _regmap_raw_multi_reg_write(map, base, n);
2464 	return 0;
2465 }
2466 
2467 static int _regmap_multi_reg_write(struct regmap *map,
2468 				   const struct reg_sequence *regs,
2469 				   size_t num_regs)
2470 {
2471 	int i;
2472 	int ret;
2473 
2474 	if (!map->can_multi_write) {
2475 		for (i = 0; i < num_regs; i++) {
2476 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2477 			if (ret != 0)
2478 				return ret;
2479 
2480 			if (regs[i].delay_us) {
2481 				if (map->can_sleep)
2482 					fsleep(regs[i].delay_us);
2483 				else
2484 					udelay(regs[i].delay_us);
2485 			}
2486 		}
2487 		return 0;
2488 	}
2489 
2490 	if (!map->format.parse_inplace)
2491 		return -EINVAL;
2492 
2493 	if (map->writeable_reg)
2494 		for (i = 0; i < num_regs; i++) {
2495 			int reg = regs[i].reg;
2496 			if (!map->writeable_reg(map->dev, reg))
2497 				return -EINVAL;
2498 			if (!IS_ALIGNED(reg, map->reg_stride))
2499 				return -EINVAL;
2500 		}
2501 
2502 	if (!map->cache_bypass) {
2503 		for (i = 0; i < num_regs; i++) {
2504 			unsigned int val = regs[i].def;
2505 			unsigned int reg = regs[i].reg;
2506 			ret = regcache_write(map, reg, val);
2507 			if (ret) {
2508 				dev_err(map->dev,
2509 				"Error in caching of register: %x ret: %d\n",
2510 								reg, ret);
2511 				return ret;
2512 			}
2513 		}
2514 		if (map->cache_only) {
2515 			map->cache_dirty = true;
2516 			return 0;
2517 		}
2518 	}
2519 
2520 	WARN_ON(!map->bus);
2521 
2522 	for (i = 0; i < num_regs; i++) {
2523 		unsigned int reg = regs[i].reg;
2524 		struct regmap_range_node *range;
2525 
2526 		/* Coalesce all the writes between a page break or a delay
2527 		 * in a sequence
2528 		 */
2529 		range = _regmap_range_lookup(map, reg);
2530 		if (range || regs[i].delay_us) {
2531 			size_t len = sizeof(struct reg_sequence)*num_regs;
2532 			struct reg_sequence *base = kmemdup(regs, len,
2533 							   GFP_KERNEL);
2534 			if (!base)
2535 				return -ENOMEM;
2536 			ret = _regmap_range_multi_paged_reg_write(map, base,
2537 								  num_regs);
2538 			kfree(base);
2539 
2540 			return ret;
2541 		}
2542 	}
2543 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2544 }
2545 
2546 /**
2547  * regmap_multi_reg_write() - Write multiple registers to the device
2548  *
2549  * @map: Register map to write to
2550  * @regs: Array of structures containing register,value to be written
2551  * @num_regs: Number of registers to write
2552  *
2553  * Write multiple registers to the device where the set of register, value
2554  * pairs are supplied in any order, possibly not all in a single range.
2555  *
2556  * The 'normal' block write mode will send ultimately send data on the
2557  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2558  * addressed. However, this alternative block multi write mode will send
2559  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2560  * must of course support the mode.
2561  *
2562  * A value of zero will be returned on success, a negative errno will be
2563  * returned in error cases.
2564  */
2565 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2566 			   int num_regs)
2567 {
2568 	int ret;
2569 
2570 	map->lock(map->lock_arg);
2571 
2572 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2573 
2574 	map->unlock(map->lock_arg);
2575 
2576 	return ret;
2577 }
2578 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2579 
2580 /**
2581  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2582  *                                     device but not the cache
2583  *
2584  * @map: Register map to write to
2585  * @regs: Array of structures containing register,value to be written
2586  * @num_regs: Number of registers to write
2587  *
2588  * Write multiple registers to the device but not the cache where the set
2589  * of register are supplied in any order.
2590  *
2591  * This function is intended to be used for writing a large block of data
2592  * atomically to the device in single transfer for those I2C client devices
2593  * that implement this alternative block write mode.
2594  *
2595  * A value of zero will be returned on success, a negative errno will
2596  * be returned in error cases.
2597  */
2598 int regmap_multi_reg_write_bypassed(struct regmap *map,
2599 				    const struct reg_sequence *regs,
2600 				    int num_regs)
2601 {
2602 	int ret;
2603 	bool bypass;
2604 
2605 	map->lock(map->lock_arg);
2606 
2607 	bypass = map->cache_bypass;
2608 	map->cache_bypass = true;
2609 
2610 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2611 
2612 	map->cache_bypass = bypass;
2613 
2614 	map->unlock(map->lock_arg);
2615 
2616 	return ret;
2617 }
2618 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2619 
2620 /**
2621  * regmap_raw_write_async() - Write raw values to one or more registers
2622  *                            asynchronously
2623  *
2624  * @map: Register map to write to
2625  * @reg: Initial register to write to
2626  * @val: Block of data to be written, laid out for direct transmission to the
2627  *       device.  Must be valid until regmap_async_complete() is called.
2628  * @val_len: Length of data pointed to by val.
2629  *
2630  * This function is intended to be used for things like firmware
2631  * download where a large block of data needs to be transferred to the
2632  * device.  No formatting will be done on the data provided.
2633  *
2634  * If supported by the underlying bus the write will be scheduled
2635  * asynchronously, helping maximise I/O speed on higher speed buses
2636  * like SPI.  regmap_async_complete() can be called to ensure that all
2637  * asynchrnous writes have been completed.
2638  *
2639  * A value of zero will be returned on success, a negative errno will
2640  * be returned in error cases.
2641  */
2642 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2643 			   const void *val, size_t val_len)
2644 {
2645 	int ret;
2646 
2647 	if (val_len % map->format.val_bytes)
2648 		return -EINVAL;
2649 	if (!IS_ALIGNED(reg, map->reg_stride))
2650 		return -EINVAL;
2651 
2652 	map->lock(map->lock_arg);
2653 
2654 	map->async = true;
2655 
2656 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2657 
2658 	map->async = false;
2659 
2660 	map->unlock(map->lock_arg);
2661 
2662 	return ret;
2663 }
2664 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2665 
2666 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2667 			    unsigned int val_len, bool noinc)
2668 {
2669 	struct regmap_range_node *range;
2670 	int ret;
2671 
2672 	WARN_ON(!map->bus);
2673 
2674 	if (!map->bus || !map->bus->read)
2675 		return -EINVAL;
2676 
2677 	range = _regmap_range_lookup(map, reg);
2678 	if (range) {
2679 		ret = _regmap_select_page(map, &reg, range,
2680 					  noinc ? 1 : val_len / map->format.val_bytes);
2681 		if (ret != 0)
2682 			return ret;
2683 	}
2684 
2685 	reg += map->reg_base;
2686 	reg >>= map->format.reg_downshift;
2687 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2688 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2689 				      map->read_flag_mask);
2690 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2691 
2692 	ret = map->bus->read(map->bus_context, map->work_buf,
2693 			     map->format.reg_bytes + map->format.pad_bytes,
2694 			     val, val_len);
2695 
2696 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2697 
2698 	return ret;
2699 }
2700 
2701 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2702 				unsigned int *val)
2703 {
2704 	struct regmap *map = context;
2705 
2706 	return map->bus->reg_read(map->bus_context, reg, val);
2707 }
2708 
2709 static int _regmap_bus_read(void *context, unsigned int reg,
2710 			    unsigned int *val)
2711 {
2712 	int ret;
2713 	struct regmap *map = context;
2714 	void *work_val = map->work_buf + map->format.reg_bytes +
2715 		map->format.pad_bytes;
2716 
2717 	if (!map->format.parse_val)
2718 		return -EINVAL;
2719 
2720 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2721 	if (ret == 0)
2722 		*val = map->format.parse_val(work_val);
2723 
2724 	return ret;
2725 }
2726 
2727 static int _regmap_read(struct regmap *map, unsigned int reg,
2728 			unsigned int *val)
2729 {
2730 	int ret;
2731 	void *context = _regmap_map_get_context(map);
2732 
2733 	if (!map->cache_bypass) {
2734 		ret = regcache_read(map, reg, val);
2735 		if (ret == 0)
2736 			return 0;
2737 	}
2738 
2739 	if (map->cache_only)
2740 		return -EBUSY;
2741 
2742 	if (!regmap_readable(map, reg))
2743 		return -EIO;
2744 
2745 	ret = map->reg_read(context, reg, val);
2746 	if (ret == 0) {
2747 		if (regmap_should_log(map))
2748 			dev_info(map->dev, "%x => %x\n", reg, *val);
2749 
2750 		trace_regmap_reg_read(map, reg, *val);
2751 
2752 		if (!map->cache_bypass)
2753 			regcache_write(map, reg, *val);
2754 	}
2755 
2756 	return ret;
2757 }
2758 
2759 /**
2760  * regmap_read() - Read a value from a single register
2761  *
2762  * @map: Register map to read from
2763  * @reg: Register to be read from
2764  * @val: Pointer to store read value
2765  *
2766  * A value of zero will be returned on success, a negative errno will
2767  * be returned in error cases.
2768  */
2769 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2770 {
2771 	int ret;
2772 
2773 	if (!IS_ALIGNED(reg, map->reg_stride))
2774 		return -EINVAL;
2775 
2776 	map->lock(map->lock_arg);
2777 
2778 	ret = _regmap_read(map, reg, val);
2779 
2780 	map->unlock(map->lock_arg);
2781 
2782 	return ret;
2783 }
2784 EXPORT_SYMBOL_GPL(regmap_read);
2785 
2786 /**
2787  * regmap_raw_read() - Read raw data from the device
2788  *
2789  * @map: Register map to read from
2790  * @reg: First register to be read from
2791  * @val: Pointer to store read value
2792  * @val_len: Size of data to read
2793  *
2794  * A value of zero will be returned on success, a negative errno will
2795  * be returned in error cases.
2796  */
2797 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2798 		    size_t val_len)
2799 {
2800 	size_t val_bytes = map->format.val_bytes;
2801 	size_t val_count = val_len / val_bytes;
2802 	unsigned int v;
2803 	int ret, i;
2804 
2805 	if (!map->bus)
2806 		return -EINVAL;
2807 	if (val_len % map->format.val_bytes)
2808 		return -EINVAL;
2809 	if (!IS_ALIGNED(reg, map->reg_stride))
2810 		return -EINVAL;
2811 	if (val_count == 0)
2812 		return -EINVAL;
2813 
2814 	map->lock(map->lock_arg);
2815 
2816 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2817 	    map->cache_type == REGCACHE_NONE) {
2818 		size_t chunk_count, chunk_bytes;
2819 		size_t chunk_regs = val_count;
2820 
2821 		if (!map->bus->read) {
2822 			ret = -ENOTSUPP;
2823 			goto out;
2824 		}
2825 
2826 		if (map->use_single_read)
2827 			chunk_regs = 1;
2828 		else if (map->max_raw_read && val_len > map->max_raw_read)
2829 			chunk_regs = map->max_raw_read / val_bytes;
2830 
2831 		chunk_count = val_count / chunk_regs;
2832 		chunk_bytes = chunk_regs * val_bytes;
2833 
2834 		/* Read bytes that fit into whole chunks */
2835 		for (i = 0; i < chunk_count; i++) {
2836 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2837 			if (ret != 0)
2838 				goto out;
2839 
2840 			reg += regmap_get_offset(map, chunk_regs);
2841 			val += chunk_bytes;
2842 			val_len -= chunk_bytes;
2843 		}
2844 
2845 		/* Read remaining bytes */
2846 		if (val_len) {
2847 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2848 			if (ret != 0)
2849 				goto out;
2850 		}
2851 	} else {
2852 		/* Otherwise go word by word for the cache; should be low
2853 		 * cost as we expect to hit the cache.
2854 		 */
2855 		for (i = 0; i < val_count; i++) {
2856 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2857 					   &v);
2858 			if (ret != 0)
2859 				goto out;
2860 
2861 			map->format.format_val(val + (i * val_bytes), v, 0);
2862 		}
2863 	}
2864 
2865  out:
2866 	map->unlock(map->lock_arg);
2867 
2868 	return ret;
2869 }
2870 EXPORT_SYMBOL_GPL(regmap_raw_read);
2871 
2872 /**
2873  * regmap_noinc_read(): Read data from a register without incrementing the
2874  *			register number
2875  *
2876  * @map: Register map to read from
2877  * @reg: Register to read from
2878  * @val: Pointer to data buffer
2879  * @val_len: Length of output buffer in bytes.
2880  *
2881  * The regmap API usually assumes that bulk bus read operations will read a
2882  * range of registers. Some devices have certain registers for which a read
2883  * operation read will read from an internal FIFO.
2884  *
2885  * The target register must be volatile but registers after it can be
2886  * completely unrelated cacheable registers.
2887  *
2888  * This will attempt multiple reads as required to read val_len bytes.
2889  *
2890  * A value of zero will be returned on success, a negative errno will be
2891  * returned in error cases.
2892  */
2893 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2894 		      void *val, size_t val_len)
2895 {
2896 	size_t read_len;
2897 	int ret;
2898 
2899 	if (!map->bus)
2900 		return -EINVAL;
2901 	if (!map->bus->read)
2902 		return -ENOTSUPP;
2903 	if (val_len % map->format.val_bytes)
2904 		return -EINVAL;
2905 	if (!IS_ALIGNED(reg, map->reg_stride))
2906 		return -EINVAL;
2907 	if (val_len == 0)
2908 		return -EINVAL;
2909 
2910 	map->lock(map->lock_arg);
2911 
2912 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2913 		ret = -EINVAL;
2914 		goto out_unlock;
2915 	}
2916 
2917 	while (val_len) {
2918 		if (map->max_raw_read && map->max_raw_read < val_len)
2919 			read_len = map->max_raw_read;
2920 		else
2921 			read_len = val_len;
2922 		ret = _regmap_raw_read(map, reg, val, read_len, true);
2923 		if (ret)
2924 			goto out_unlock;
2925 		val = ((u8 *)val) + read_len;
2926 		val_len -= read_len;
2927 	}
2928 
2929 out_unlock:
2930 	map->unlock(map->lock_arg);
2931 	return ret;
2932 }
2933 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2934 
2935 /**
2936  * regmap_field_read(): Read a value to a single register field
2937  *
2938  * @field: Register field to read from
2939  * @val: Pointer to store read value
2940  *
2941  * A value of zero will be returned on success, a negative errno will
2942  * be returned in error cases.
2943  */
2944 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2945 {
2946 	int ret;
2947 	unsigned int reg_val;
2948 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2949 	if (ret != 0)
2950 		return ret;
2951 
2952 	reg_val &= field->mask;
2953 	reg_val >>= field->shift;
2954 	*val = reg_val;
2955 
2956 	return ret;
2957 }
2958 EXPORT_SYMBOL_GPL(regmap_field_read);
2959 
2960 /**
2961  * regmap_fields_read() - Read a value to a single register field with port ID
2962  *
2963  * @field: Register field to read from
2964  * @id: port ID
2965  * @val: Pointer to store read value
2966  *
2967  * A value of zero will be returned on success, a negative errno will
2968  * be returned in error cases.
2969  */
2970 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2971 		       unsigned int *val)
2972 {
2973 	int ret;
2974 	unsigned int reg_val;
2975 
2976 	if (id >= field->id_size)
2977 		return -EINVAL;
2978 
2979 	ret = regmap_read(field->regmap,
2980 			  field->reg + (field->id_offset * id),
2981 			  &reg_val);
2982 	if (ret != 0)
2983 		return ret;
2984 
2985 	reg_val &= field->mask;
2986 	reg_val >>= field->shift;
2987 	*val = reg_val;
2988 
2989 	return ret;
2990 }
2991 EXPORT_SYMBOL_GPL(regmap_fields_read);
2992 
2993 /**
2994  * regmap_bulk_read() - Read multiple registers from the device
2995  *
2996  * @map: Register map to read from
2997  * @reg: First register to be read from
2998  * @val: Pointer to store read value, in native register size for device
2999  * @val_count: Number of registers to read
3000  *
3001  * A value of zero will be returned on success, a negative errno will
3002  * be returned in error cases.
3003  */
3004 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3005 		     size_t val_count)
3006 {
3007 	int ret, i;
3008 	size_t val_bytes = map->format.val_bytes;
3009 	bool vol = regmap_volatile_range(map, reg, val_count);
3010 
3011 	if (!IS_ALIGNED(reg, map->reg_stride))
3012 		return -EINVAL;
3013 	if (val_count == 0)
3014 		return -EINVAL;
3015 
3016 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3017 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3018 		if (ret != 0)
3019 			return ret;
3020 
3021 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3022 			map->format.parse_inplace(val + i);
3023 	} else {
3024 #ifdef CONFIG_64BIT
3025 		u64 *u64 = val;
3026 #endif
3027 		u32 *u32 = val;
3028 		u16 *u16 = val;
3029 		u8 *u8 = val;
3030 
3031 		map->lock(map->lock_arg);
3032 
3033 		for (i = 0; i < val_count; i++) {
3034 			unsigned int ival;
3035 
3036 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3037 					   &ival);
3038 			if (ret != 0)
3039 				goto out;
3040 
3041 			switch (map->format.val_bytes) {
3042 #ifdef CONFIG_64BIT
3043 			case 8:
3044 				u64[i] = ival;
3045 				break;
3046 #endif
3047 			case 4:
3048 				u32[i] = ival;
3049 				break;
3050 			case 2:
3051 				u16[i] = ival;
3052 				break;
3053 			case 1:
3054 				u8[i] = ival;
3055 				break;
3056 			default:
3057 				ret = -EINVAL;
3058 				goto out;
3059 			}
3060 		}
3061 
3062 out:
3063 		map->unlock(map->lock_arg);
3064 	}
3065 
3066 	return ret;
3067 }
3068 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3069 
3070 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3071 			       unsigned int mask, unsigned int val,
3072 			       bool *change, bool force_write)
3073 {
3074 	int ret;
3075 	unsigned int tmp, orig;
3076 
3077 	if (change)
3078 		*change = false;
3079 
3080 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3081 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3082 		if (ret == 0 && change)
3083 			*change = true;
3084 	} else {
3085 		ret = _regmap_read(map, reg, &orig);
3086 		if (ret != 0)
3087 			return ret;
3088 
3089 		tmp = orig & ~mask;
3090 		tmp |= val & mask;
3091 
3092 		if (force_write || (tmp != orig)) {
3093 			ret = _regmap_write(map, reg, tmp);
3094 			if (ret == 0 && change)
3095 				*change = true;
3096 		}
3097 	}
3098 
3099 	return ret;
3100 }
3101 
3102 /**
3103  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3104  *
3105  * @map: Register map to update
3106  * @reg: Register to update
3107  * @mask: Bitmask to change
3108  * @val: New value for bitmask
3109  * @change: Boolean indicating if a write was done
3110  * @async: Boolean indicating asynchronously
3111  * @force: Boolean indicating use force update
3112  *
3113  * Perform a read/modify/write cycle on a register map with change, async, force
3114  * options.
3115  *
3116  * If async is true:
3117  *
3118  * With most buses the read must be done synchronously so this is most useful
3119  * for devices with a cache which do not need to interact with the hardware to
3120  * determine the current register value.
3121  *
3122  * Returns zero for success, a negative number on error.
3123  */
3124 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3125 			    unsigned int mask, unsigned int val,
3126 			    bool *change, bool async, bool force)
3127 {
3128 	int ret;
3129 
3130 	map->lock(map->lock_arg);
3131 
3132 	map->async = async;
3133 
3134 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3135 
3136 	map->async = false;
3137 
3138 	map->unlock(map->lock_arg);
3139 
3140 	return ret;
3141 }
3142 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3143 
3144 /**
3145  * regmap_test_bits() - Check if all specified bits are set in a register.
3146  *
3147  * @map: Register map to operate on
3148  * @reg: Register to read from
3149  * @bits: Bits to test
3150  *
3151  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3152  * bits are set and a negative error number if the underlying regmap_read()
3153  * fails.
3154  */
3155 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3156 {
3157 	unsigned int val, ret;
3158 
3159 	ret = regmap_read(map, reg, &val);
3160 	if (ret)
3161 		return ret;
3162 
3163 	return (val & bits) == bits;
3164 }
3165 EXPORT_SYMBOL_GPL(regmap_test_bits);
3166 
3167 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3168 {
3169 	struct regmap *map = async->map;
3170 	bool wake;
3171 
3172 	trace_regmap_async_io_complete(map);
3173 
3174 	spin_lock(&map->async_lock);
3175 	list_move(&async->list, &map->async_free);
3176 	wake = list_empty(&map->async_list);
3177 
3178 	if (ret != 0)
3179 		map->async_ret = ret;
3180 
3181 	spin_unlock(&map->async_lock);
3182 
3183 	if (wake)
3184 		wake_up(&map->async_waitq);
3185 }
3186 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3187 
3188 static int regmap_async_is_done(struct regmap *map)
3189 {
3190 	unsigned long flags;
3191 	int ret;
3192 
3193 	spin_lock_irqsave(&map->async_lock, flags);
3194 	ret = list_empty(&map->async_list);
3195 	spin_unlock_irqrestore(&map->async_lock, flags);
3196 
3197 	return ret;
3198 }
3199 
3200 /**
3201  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3202  *
3203  * @map: Map to operate on.
3204  *
3205  * Blocks until any pending asynchronous I/O has completed.  Returns
3206  * an error code for any failed I/O operations.
3207  */
3208 int regmap_async_complete(struct regmap *map)
3209 {
3210 	unsigned long flags;
3211 	int ret;
3212 
3213 	/* Nothing to do with no async support */
3214 	if (!map->bus || !map->bus->async_write)
3215 		return 0;
3216 
3217 	trace_regmap_async_complete_start(map);
3218 
3219 	wait_event(map->async_waitq, regmap_async_is_done(map));
3220 
3221 	spin_lock_irqsave(&map->async_lock, flags);
3222 	ret = map->async_ret;
3223 	map->async_ret = 0;
3224 	spin_unlock_irqrestore(&map->async_lock, flags);
3225 
3226 	trace_regmap_async_complete_done(map);
3227 
3228 	return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(regmap_async_complete);
3231 
3232 /**
3233  * regmap_register_patch - Register and apply register updates to be applied
3234  *                         on device initialistion
3235  *
3236  * @map: Register map to apply updates to.
3237  * @regs: Values to update.
3238  * @num_regs: Number of entries in regs.
3239  *
3240  * Register a set of register updates to be applied to the device
3241  * whenever the device registers are synchronised with the cache and
3242  * apply them immediately.  Typically this is used to apply
3243  * corrections to be applied to the device defaults on startup, such
3244  * as the updates some vendors provide to undocumented registers.
3245  *
3246  * The caller must ensure that this function cannot be called
3247  * concurrently with either itself or regcache_sync().
3248  */
3249 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3250 			  int num_regs)
3251 {
3252 	struct reg_sequence *p;
3253 	int ret;
3254 	bool bypass;
3255 
3256 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3257 	    num_regs))
3258 		return 0;
3259 
3260 	p = krealloc(map->patch,
3261 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3262 		     GFP_KERNEL);
3263 	if (p) {
3264 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3265 		map->patch = p;
3266 		map->patch_regs += num_regs;
3267 	} else {
3268 		return -ENOMEM;
3269 	}
3270 
3271 	map->lock(map->lock_arg);
3272 
3273 	bypass = map->cache_bypass;
3274 
3275 	map->cache_bypass = true;
3276 	map->async = true;
3277 
3278 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3279 
3280 	map->async = false;
3281 	map->cache_bypass = bypass;
3282 
3283 	map->unlock(map->lock_arg);
3284 
3285 	regmap_async_complete(map);
3286 
3287 	return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(regmap_register_patch);
3290 
3291 /**
3292  * regmap_get_val_bytes() - Report the size of a register value
3293  *
3294  * @map: Register map to operate on.
3295  *
3296  * Report the size of a register value, mainly intended to for use by
3297  * generic infrastructure built on top of regmap.
3298  */
3299 int regmap_get_val_bytes(struct regmap *map)
3300 {
3301 	if (map->format.format_write)
3302 		return -EINVAL;
3303 
3304 	return map->format.val_bytes;
3305 }
3306 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3307 
3308 /**
3309  * regmap_get_max_register() - Report the max register value
3310  *
3311  * @map: Register map to operate on.
3312  *
3313  * Report the max register value, mainly intended to for use by
3314  * generic infrastructure built on top of regmap.
3315  */
3316 int regmap_get_max_register(struct regmap *map)
3317 {
3318 	return map->max_register ? map->max_register : -EINVAL;
3319 }
3320 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3321 
3322 /**
3323  * regmap_get_reg_stride() - Report the register address stride
3324  *
3325  * @map: Register map to operate on.
3326  *
3327  * Report the register address stride, mainly intended to for use by
3328  * generic infrastructure built on top of regmap.
3329  */
3330 int regmap_get_reg_stride(struct regmap *map)
3331 {
3332 	return map->reg_stride;
3333 }
3334 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3335 
3336 int regmap_parse_val(struct regmap *map, const void *buf,
3337 			unsigned int *val)
3338 {
3339 	if (!map->format.parse_val)
3340 		return -EINVAL;
3341 
3342 	*val = map->format.parse_val(buf);
3343 
3344 	return 0;
3345 }
3346 EXPORT_SYMBOL_GPL(regmap_parse_val);
3347 
3348 static int __init regmap_initcall(void)
3349 {
3350 	regmap_debugfs_initcall();
3351 
3352 	return 0;
3353 }
3354 postcore_initcall(regmap_initcall);
3355