1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Register map access API - SPI AVMM support 4 // 5 // Copyright (C) 2018-2020 Intel Corporation. All rights reserved. 6 7 #include <linux/module.h> 8 #include <linux/regmap.h> 9 #include <linux/spi/spi.h> 10 11 /* 12 * This driver implements the regmap operations for a generic SPI 13 * master to access the registers of the spi slave chip which has an 14 * Avalone bus in it. 15 * 16 * The "SPI slave to Avalon Master Bridge" (spi-avmm) IP should be integrated 17 * in the spi slave chip. The IP acts as a bridge to convert encoded streams of 18 * bytes from the host to the internal register read/write on Avalon bus. In 19 * order to issue register access requests to the slave chip, the host should 20 * send formatted bytes that conform to the transfer protocol. 21 * The transfer protocol contains 3 layers: transaction layer, packet layer 22 * and physical layer. 23 * 24 * Reference Documents could be found at: 25 * https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html 26 * 27 * Chapter "SPI Slave/JTAG to Avalon Master Bridge Cores" is a general 28 * introduction to the protocol. 29 * 30 * Chapter "Avalon Packets to Transactions Converter Core" describes 31 * the transaction layer. 32 * 33 * Chapter "Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores" 34 * describes the packet layer. 35 * 36 * Chapter "Avalon-ST Serial Peripheral Interface Core" describes the 37 * physical layer. 38 * 39 * 40 * When host issues a regmap read/write, the driver will transform the request 41 * to byte stream layer by layer. It formats the register addr, value and 42 * length to the transaction layer request, then converts the request to packet 43 * layer bytes stream and then to physical layer bytes stream. Finally the 44 * driver sends the formatted byte stream over SPI bus to the slave chip. 45 * 46 * The spi-avmm IP on the slave chip decodes the byte stream and initiates 47 * register read/write on its internal Avalon bus, and then encodes the 48 * response to byte stream and sends back to host. 49 * 50 * The driver receives the byte stream, reverses the 3 layers transformation, 51 * and finally gets the response value (read out data for register read, 52 * successful written size for register write). 53 */ 54 55 #define PKT_SOP 0x7a 56 #define PKT_EOP 0x7b 57 #define PKT_CHANNEL 0x7c 58 #define PKT_ESC 0x7d 59 60 #define PHY_IDLE 0x4a 61 #define PHY_ESC 0x4d 62 63 #define TRANS_CODE_WRITE 0x0 64 #define TRANS_CODE_SEQ_WRITE 0x4 65 #define TRANS_CODE_READ 0x10 66 #define TRANS_CODE_SEQ_READ 0x14 67 #define TRANS_CODE_NO_TRANS 0x7f 68 69 #define SPI_AVMM_XFER_TIMEOUT (msecs_to_jiffies(200)) 70 71 /* slave's register addr is 32 bits */ 72 #define SPI_AVMM_REG_SIZE 4UL 73 /* slave's register value is 32 bits */ 74 #define SPI_AVMM_VAL_SIZE 4UL 75 76 /* 77 * max rx size could be larger. But considering the buffer consuming, 78 * it is proper that we limit 1KB xfer at max. 79 */ 80 #define MAX_READ_CNT 256UL 81 #define MAX_WRITE_CNT 1UL 82 83 struct trans_req_header { 84 u8 code; 85 u8 rsvd; 86 __be16 size; 87 __be32 addr; 88 } __packed; 89 90 struct trans_resp_header { 91 u8 r_code; 92 u8 rsvd; 93 __be16 size; 94 } __packed; 95 96 #define TRANS_REQ_HD_SIZE (sizeof(struct trans_req_header)) 97 #define TRANS_RESP_HD_SIZE (sizeof(struct trans_resp_header)) 98 99 /* 100 * In transaction layer, 101 * the write request format is: Transaction request header + data 102 * the read request format is: Transaction request header 103 * the write response format is: Transaction response header 104 * the read response format is: pure data, no Transaction response header 105 */ 106 #define TRANS_WR_TX_SIZE(n) (TRANS_REQ_HD_SIZE + SPI_AVMM_VAL_SIZE * (n)) 107 #define TRANS_RD_TX_SIZE TRANS_REQ_HD_SIZE 108 #define TRANS_TX_MAX TRANS_WR_TX_SIZE(MAX_WRITE_CNT) 109 110 #define TRANS_RD_RX_SIZE(n) (SPI_AVMM_VAL_SIZE * (n)) 111 #define TRANS_WR_RX_SIZE TRANS_RESP_HD_SIZE 112 #define TRANS_RX_MAX TRANS_RD_RX_SIZE(MAX_READ_CNT) 113 114 /* tx & rx share one transaction layer buffer */ 115 #define TRANS_BUF_SIZE ((TRANS_TX_MAX > TRANS_RX_MAX) ? \ 116 TRANS_TX_MAX : TRANS_RX_MAX) 117 118 /* 119 * In tx phase, the host prepares all the phy layer bytes of a request in the 120 * phy buffer and sends them in a batch. 121 * 122 * The packet layer and physical layer defines several special chars for 123 * various purpose, when a transaction layer byte hits one of these special 124 * chars, it should be escaped. The escape rule is, "Escape char first, 125 * following the byte XOR'ed with 0x20". 126 * 127 * This macro defines the max possible length of the phy data. In the worst 128 * case, all transaction layer bytes need to be escaped (so the data length 129 * doubles), plus 4 special chars (SOP, CHANNEL, CHANNEL_NUM, EOP). Finally 130 * we should make sure the length is aligned to SPI BPW. 131 */ 132 #define PHY_TX_MAX ALIGN(2 * TRANS_TX_MAX + 4, 4) 133 134 /* 135 * Unlike tx, phy rx is affected by possible PHY_IDLE bytes from slave, the max 136 * length of the rx bit stream is unpredictable. So the driver reads the words 137 * one by one, and parses each word immediately into transaction layer buffer. 138 * Only one word length of phy buffer is used for rx. 139 */ 140 #define PHY_BUF_SIZE PHY_TX_MAX 141 142 /** 143 * struct spi_avmm_bridge - SPI slave to AVMM bus master bridge 144 * 145 * @spi: spi slave associated with this bridge. 146 * @word_len: bytes of word for spi transfer. 147 * @trans_len: length of valid data in trans_buf. 148 * @phy_len: length of valid data in phy_buf. 149 * @trans_buf: the bridge buffer for transaction layer data. 150 * @phy_buf: the bridge buffer for physical layer data. 151 * @swap_words: the word swapping cb for phy data. NULL if not needed. 152 * 153 * As a device's registers are implemented on the AVMM bus address space, it 154 * requires the driver to issue formatted requests to spi slave to AVMM bus 155 * master bridge to perform register access. 156 */ 157 struct spi_avmm_bridge { 158 struct spi_device *spi; 159 unsigned char word_len; 160 unsigned int trans_len; 161 unsigned int phy_len; 162 /* bridge buffer used in translation between protocol layers */ 163 char trans_buf[TRANS_BUF_SIZE]; 164 char phy_buf[PHY_BUF_SIZE]; 165 void (*swap_words)(char *buf, unsigned int len); 166 }; 167 168 static void br_swap_words_32(char *buf, unsigned int len) 169 { 170 u32 *p = (u32 *)buf; 171 unsigned int count; 172 173 count = len / 4; 174 while (count--) { 175 *p = swab32p(p); 176 p++; 177 } 178 } 179 180 /* 181 * Format transaction layer data in br->trans_buf according to the register 182 * access request, Store valid transaction layer data length in br->trans_len. 183 */ 184 static int br_trans_tx_prepare(struct spi_avmm_bridge *br, bool is_read, u32 reg, 185 u32 *wr_val, u32 count) 186 { 187 struct trans_req_header *header; 188 unsigned int trans_len; 189 u8 code; 190 __le32 *data; 191 int i; 192 193 if (is_read) { 194 if (count == 1) 195 code = TRANS_CODE_READ; 196 else 197 code = TRANS_CODE_SEQ_READ; 198 } else { 199 if (count == 1) 200 code = TRANS_CODE_WRITE; 201 else 202 code = TRANS_CODE_SEQ_WRITE; 203 } 204 205 header = (struct trans_req_header *)br->trans_buf; 206 header->code = code; 207 header->rsvd = 0; 208 header->size = cpu_to_be16((u16)count * SPI_AVMM_VAL_SIZE); 209 header->addr = cpu_to_be32(reg); 210 211 trans_len = TRANS_REQ_HD_SIZE; 212 213 if (!is_read) { 214 trans_len += SPI_AVMM_VAL_SIZE * count; 215 if (trans_len > sizeof(br->trans_buf)) 216 return -ENOMEM; 217 218 data = (__le32 *)(br->trans_buf + TRANS_REQ_HD_SIZE); 219 220 for (i = 0; i < count; i++) 221 *data++ = cpu_to_le32(*wr_val++); 222 } 223 224 /* Store valid trans data length for next layer */ 225 br->trans_len = trans_len; 226 227 return 0; 228 } 229 230 /* 231 * Convert transaction layer data (in br->trans_buf) to phy layer data, store 232 * them in br->phy_buf. Pad the phy_buf aligned with SPI's BPW. Store valid phy 233 * layer data length in br->phy_len. 234 * 235 * phy_buf len should be aligned with SPI's BPW. Spare bytes should be padded 236 * with PHY_IDLE, then the slave will just drop them. 237 * 238 * The driver will not simply pad 4a at the tail. The concern is that driver 239 * will not store MISO data during tx phase, if the driver pads 4a at the tail, 240 * it is possible that if the slave is fast enough to response at the padding 241 * time. As a result these rx bytes are lost. In the following case, 7a,7c,00 242 * will lost. 243 * MOSI ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|4a|4a|4a| |XX|XX|... 244 * MISO ...|4a|4a|4a|4a| |4a|4a|4a|4a| |4a|4a|4a|4a| |4a|7a|7c|00| |78|56|... 245 * 246 * So the driver moves EOP and bytes after EOP to the end of the aligned size, 247 * then fill the hole with PHY_IDLE. As following: 248 * before pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40| 249 * after pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|4a| |4a|4a|7b|40| 250 * Then if the slave will not get the entire packet before the tx phase is 251 * over, it can't responsed to anything either. 252 */ 253 static int br_pkt_phy_tx_prepare(struct spi_avmm_bridge *br) 254 { 255 char *tb, *tb_end, *pb, *pb_limit, *pb_eop = NULL; 256 unsigned int aligned_phy_len, move_size; 257 bool need_esc = false; 258 259 tb = br->trans_buf; 260 tb_end = tb + br->trans_len; 261 pb = br->phy_buf; 262 pb_limit = pb + ARRAY_SIZE(br->phy_buf); 263 264 *pb++ = PKT_SOP; 265 266 /* 267 * The driver doesn't support multiple channels so the channel number 268 * is always 0. 269 */ 270 *pb++ = PKT_CHANNEL; 271 *pb++ = 0x0; 272 273 for (; pb < pb_limit && tb < tb_end; pb++) { 274 if (need_esc) { 275 *pb = *tb++ ^ 0x20; 276 need_esc = false; 277 continue; 278 } 279 280 /* EOP should be inserted before the last valid char */ 281 if (tb == tb_end - 1 && !pb_eop) { 282 *pb = PKT_EOP; 283 pb_eop = pb; 284 continue; 285 } 286 287 /* 288 * insert an ESCAPE char if the data value equals any special 289 * char. 290 */ 291 switch (*tb) { 292 case PKT_SOP: 293 case PKT_EOP: 294 case PKT_CHANNEL: 295 case PKT_ESC: 296 *pb = PKT_ESC; 297 need_esc = true; 298 break; 299 case PHY_IDLE: 300 case PHY_ESC: 301 *pb = PHY_ESC; 302 need_esc = true; 303 break; 304 default: 305 *pb = *tb++; 306 break; 307 } 308 } 309 310 /* The phy buffer is used out but transaction layer data remains */ 311 if (tb < tb_end) 312 return -ENOMEM; 313 314 /* Store valid phy data length for spi transfer */ 315 br->phy_len = pb - br->phy_buf; 316 317 if (br->word_len == 1) 318 return 0; 319 320 /* Do phy buf padding if word_len > 1 byte. */ 321 aligned_phy_len = ALIGN(br->phy_len, br->word_len); 322 if (aligned_phy_len > sizeof(br->phy_buf)) 323 return -ENOMEM; 324 325 if (aligned_phy_len == br->phy_len) 326 return 0; 327 328 /* move EOP and bytes after EOP to the end of aligned size */ 329 move_size = pb - pb_eop; 330 memmove(&br->phy_buf[aligned_phy_len - move_size], pb_eop, move_size); 331 332 /* fill the hole with PHY_IDLEs */ 333 memset(pb_eop, PHY_IDLE, aligned_phy_len - br->phy_len); 334 335 /* update the phy data length */ 336 br->phy_len = aligned_phy_len; 337 338 return 0; 339 } 340 341 /* 342 * In tx phase, the slave only returns PHY_IDLE (0x4a). So the driver will 343 * ignore rx in tx phase. 344 */ 345 static int br_do_tx(struct spi_avmm_bridge *br) 346 { 347 /* reorder words for spi transfer */ 348 if (br->swap_words) 349 br->swap_words(br->phy_buf, br->phy_len); 350 351 /* send all data in phy_buf */ 352 return spi_write(br->spi, br->phy_buf, br->phy_len); 353 } 354 355 /* 356 * This function read the rx byte stream from SPI word by word and convert 357 * them to transaction layer data in br->trans_buf. It also stores the length 358 * of rx transaction layer data in br->trans_len 359 * 360 * The slave may send an unknown number of PHY_IDLEs in rx phase, so we cannot 361 * prepare a fixed length buffer to receive all of the rx data in a batch. We 362 * have to read word by word and convert them to transaction layer data at 363 * once. 364 */ 365 static int br_do_rx_and_pkt_phy_parse(struct spi_avmm_bridge *br) 366 { 367 bool eop_found = false, channel_found = false, esc_found = false; 368 bool valid_word = false, last_try = false; 369 struct device *dev = &br->spi->dev; 370 char *pb, *tb_limit, *tb = NULL; 371 unsigned long poll_timeout; 372 int ret, i; 373 374 tb_limit = br->trans_buf + ARRAY_SIZE(br->trans_buf); 375 pb = br->phy_buf; 376 poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT; 377 while (tb < tb_limit) { 378 ret = spi_read(br->spi, pb, br->word_len); 379 if (ret) 380 return ret; 381 382 /* reorder the word back */ 383 if (br->swap_words) 384 br->swap_words(pb, br->word_len); 385 386 valid_word = false; 387 for (i = 0; i < br->word_len; i++) { 388 /* drop everything before first SOP */ 389 if (!tb && pb[i] != PKT_SOP) 390 continue; 391 392 /* drop PHY_IDLE */ 393 if (pb[i] == PHY_IDLE) 394 continue; 395 396 valid_word = true; 397 398 /* 399 * We don't support multiple channels, so error out if 400 * a non-zero channel number is found. 401 */ 402 if (channel_found) { 403 if (pb[i] != 0) { 404 dev_err(dev, "%s channel num != 0\n", 405 __func__); 406 return -EFAULT; 407 } 408 409 channel_found = false; 410 continue; 411 } 412 413 switch (pb[i]) { 414 case PKT_SOP: 415 /* 416 * reset the parsing if a second SOP appears. 417 */ 418 tb = br->trans_buf; 419 eop_found = false; 420 channel_found = false; 421 esc_found = false; 422 break; 423 case PKT_EOP: 424 /* 425 * No special char is expected after ESC char. 426 * No special char (except ESC & PHY_IDLE) is 427 * expected after EOP char. 428 * 429 * The special chars are all dropped. 430 */ 431 if (esc_found || eop_found) 432 return -EFAULT; 433 434 eop_found = true; 435 break; 436 case PKT_CHANNEL: 437 if (esc_found || eop_found) 438 return -EFAULT; 439 440 channel_found = true; 441 break; 442 case PKT_ESC: 443 case PHY_ESC: 444 if (esc_found) 445 return -EFAULT; 446 447 esc_found = true; 448 break; 449 default: 450 /* Record the normal byte in trans_buf. */ 451 if (esc_found) { 452 *tb++ = pb[i] ^ 0x20; 453 esc_found = false; 454 } else { 455 *tb++ = pb[i]; 456 } 457 458 /* 459 * We get the last normal byte after EOP, it is 460 * time we finish. Normally the function should 461 * return here. 462 */ 463 if (eop_found) { 464 br->trans_len = tb - br->trans_buf; 465 return 0; 466 } 467 } 468 } 469 470 if (valid_word) { 471 /* update poll timeout when we get valid word */ 472 poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT; 473 last_try = false; 474 } else { 475 /* 476 * We timeout when rx keeps invalid for some time. But 477 * it is possible we are scheduled out for long time 478 * after a spi_read. So when we are scheduled in, a SW 479 * timeout happens. But actually HW may have worked fine and 480 * has been ready long time ago. So we need to do an extra 481 * read, if we get a valid word then we could continue rx, 482 * otherwise real a HW issue happens. 483 */ 484 if (last_try) 485 return -ETIMEDOUT; 486 487 if (time_after(jiffies, poll_timeout)) 488 last_try = true; 489 } 490 } 491 492 /* 493 * We have used out all transfer layer buffer but cannot find the end 494 * of the byte stream. 495 */ 496 dev_err(dev, "%s transfer buffer is full but rx doesn't end\n", 497 __func__); 498 499 return -EFAULT; 500 } 501 502 /* 503 * For read transactions, the avmm bus will directly return register values 504 * without transaction response header. 505 */ 506 static int br_rd_trans_rx_parse(struct spi_avmm_bridge *br, 507 u32 *val, unsigned int expected_count) 508 { 509 unsigned int i, trans_len = br->trans_len; 510 __le32 *data; 511 512 if (expected_count * SPI_AVMM_VAL_SIZE != trans_len) 513 return -EFAULT; 514 515 data = (__le32 *)br->trans_buf; 516 for (i = 0; i < expected_count; i++) 517 *val++ = le32_to_cpu(*data++); 518 519 return 0; 520 } 521 522 /* 523 * For write transactions, the slave will return a transaction response 524 * header. 525 */ 526 static int br_wr_trans_rx_parse(struct spi_avmm_bridge *br, 527 unsigned int expected_count) 528 { 529 unsigned int trans_len = br->trans_len; 530 struct trans_resp_header *resp; 531 u8 code; 532 u16 val_len; 533 534 if (trans_len != TRANS_RESP_HD_SIZE) 535 return -EFAULT; 536 537 resp = (struct trans_resp_header *)br->trans_buf; 538 539 code = resp->r_code ^ 0x80; 540 val_len = be16_to_cpu(resp->size); 541 if (!val_len || val_len != expected_count * SPI_AVMM_VAL_SIZE) 542 return -EFAULT; 543 544 /* error out if the trans code doesn't align with the val size */ 545 if ((val_len == SPI_AVMM_VAL_SIZE && code != TRANS_CODE_WRITE) || 546 (val_len > SPI_AVMM_VAL_SIZE && code != TRANS_CODE_SEQ_WRITE)) 547 return -EFAULT; 548 549 return 0; 550 } 551 552 static int do_reg_access(void *context, bool is_read, unsigned int reg, 553 unsigned int *value, unsigned int count) 554 { 555 struct spi_avmm_bridge *br = context; 556 int ret; 557 558 /* invalidate bridge buffers first */ 559 br->trans_len = 0; 560 br->phy_len = 0; 561 562 ret = br_trans_tx_prepare(br, is_read, reg, value, count); 563 if (ret) 564 return ret; 565 566 ret = br_pkt_phy_tx_prepare(br); 567 if (ret) 568 return ret; 569 570 ret = br_do_tx(br); 571 if (ret) 572 return ret; 573 574 ret = br_do_rx_and_pkt_phy_parse(br); 575 if (ret) 576 return ret; 577 578 if (is_read) 579 return br_rd_trans_rx_parse(br, value, count); 580 else 581 return br_wr_trans_rx_parse(br, count); 582 } 583 584 static int regmap_spi_avmm_gather_write(void *context, 585 const void *reg_buf, size_t reg_len, 586 const void *val_buf, size_t val_len) 587 { 588 if (reg_len != SPI_AVMM_REG_SIZE) 589 return -EINVAL; 590 591 if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE)) 592 return -EINVAL; 593 594 return do_reg_access(context, false, *(u32 *)reg_buf, (u32 *)val_buf, 595 val_len / SPI_AVMM_VAL_SIZE); 596 } 597 598 static int regmap_spi_avmm_write(void *context, const void *data, size_t bytes) 599 { 600 if (bytes < SPI_AVMM_REG_SIZE + SPI_AVMM_VAL_SIZE) 601 return -EINVAL; 602 603 return regmap_spi_avmm_gather_write(context, data, SPI_AVMM_REG_SIZE, 604 data + SPI_AVMM_REG_SIZE, 605 bytes - SPI_AVMM_REG_SIZE); 606 } 607 608 static int regmap_spi_avmm_read(void *context, 609 const void *reg_buf, size_t reg_len, 610 void *val_buf, size_t val_len) 611 { 612 if (reg_len != SPI_AVMM_REG_SIZE) 613 return -EINVAL; 614 615 if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE)) 616 return -EINVAL; 617 618 return do_reg_access(context, true, *(u32 *)reg_buf, val_buf, 619 (val_len / SPI_AVMM_VAL_SIZE)); 620 } 621 622 static struct spi_avmm_bridge * 623 spi_avmm_bridge_ctx_gen(struct spi_device *spi) 624 { 625 struct spi_avmm_bridge *br; 626 627 if (!spi) 628 return ERR_PTR(-ENODEV); 629 630 /* Only support BPW == 8 or 32 now. Try 32 BPW first. */ 631 spi->mode = SPI_MODE_1; 632 spi->bits_per_word = 32; 633 if (spi_setup(spi)) { 634 spi->bits_per_word = 8; 635 if (spi_setup(spi)) 636 return ERR_PTR(-EINVAL); 637 } 638 639 br = kzalloc(sizeof(*br), GFP_KERNEL); 640 if (!br) 641 return ERR_PTR(-ENOMEM); 642 643 br->spi = spi; 644 br->word_len = spi->bits_per_word / 8; 645 if (br->word_len == 4) { 646 /* 647 * The protocol requires little endian byte order but MSB 648 * first. So driver needs to swap the byte order word by word 649 * if word length > 1. 650 */ 651 br->swap_words = br_swap_words_32; 652 } 653 654 return br; 655 } 656 657 static void spi_avmm_bridge_ctx_free(void *context) 658 { 659 kfree(context); 660 } 661 662 static const struct regmap_bus regmap_spi_avmm_bus = { 663 .write = regmap_spi_avmm_write, 664 .gather_write = regmap_spi_avmm_gather_write, 665 .read = regmap_spi_avmm_read, 666 .reg_format_endian_default = REGMAP_ENDIAN_NATIVE, 667 .val_format_endian_default = REGMAP_ENDIAN_NATIVE, 668 .max_raw_read = SPI_AVMM_VAL_SIZE * MAX_READ_CNT, 669 .max_raw_write = SPI_AVMM_VAL_SIZE * MAX_WRITE_CNT, 670 .free_context = spi_avmm_bridge_ctx_free, 671 }; 672 673 struct regmap *__regmap_init_spi_avmm(struct spi_device *spi, 674 const struct regmap_config *config, 675 struct lock_class_key *lock_key, 676 const char *lock_name) 677 { 678 struct spi_avmm_bridge *bridge; 679 struct regmap *map; 680 681 bridge = spi_avmm_bridge_ctx_gen(spi); 682 if (IS_ERR(bridge)) 683 return ERR_CAST(bridge); 684 685 map = __regmap_init(&spi->dev, ®map_spi_avmm_bus, 686 bridge, config, lock_key, lock_name); 687 if (IS_ERR(map)) { 688 spi_avmm_bridge_ctx_free(bridge); 689 return ERR_CAST(map); 690 } 691 692 return map; 693 } 694 EXPORT_SYMBOL_GPL(__regmap_init_spi_avmm); 695 696 struct regmap *__devm_regmap_init_spi_avmm(struct spi_device *spi, 697 const struct regmap_config *config, 698 struct lock_class_key *lock_key, 699 const char *lock_name) 700 { 701 struct spi_avmm_bridge *bridge; 702 struct regmap *map; 703 704 bridge = spi_avmm_bridge_ctx_gen(spi); 705 if (IS_ERR(bridge)) 706 return ERR_CAST(bridge); 707 708 map = __devm_regmap_init(&spi->dev, ®map_spi_avmm_bus, 709 bridge, config, lock_key, lock_name); 710 if (IS_ERR(map)) { 711 spi_avmm_bridge_ctx_free(bridge); 712 return ERR_CAST(map); 713 } 714 715 return map; 716 } 717 EXPORT_SYMBOL_GPL(__devm_regmap_init_spi_avmm); 718 719 MODULE_LICENSE("GPL v2"); 720