1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // regmap based irq_chip 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/interrupt.h> 12 #include <linux/irq.h> 13 #include <linux/irqdomain.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/regmap.h> 16 #include <linux/slab.h> 17 18 #include "internal.h" 19 20 struct regmap_irq_chip_data { 21 struct mutex lock; 22 struct irq_chip irq_chip; 23 24 struct regmap *map; 25 const struct regmap_irq_chip *chip; 26 27 int irq_base; 28 struct irq_domain *domain; 29 30 int irq; 31 int wake_count; 32 33 void *status_reg_buf; 34 unsigned int *main_status_buf; 35 unsigned int *status_buf; 36 unsigned int *mask_buf; 37 unsigned int *mask_buf_def; 38 unsigned int *wake_buf; 39 unsigned int *type_buf; 40 unsigned int *type_buf_def; 41 unsigned int **virt_buf; 42 43 unsigned int irq_reg_stride; 44 unsigned int type_reg_stride; 45 46 bool clear_status:1; 47 }; 48 49 static int sub_irq_reg(struct regmap_irq_chip_data *data, 50 unsigned int base_reg, int i) 51 { 52 const struct regmap_irq_chip *chip = data->chip; 53 struct regmap *map = data->map; 54 struct regmap_irq_sub_irq_map *subreg; 55 unsigned int offset; 56 int reg = 0; 57 58 if (!chip->sub_reg_offsets || !chip->not_fixed_stride) { 59 /* Assume linear mapping */ 60 reg = base_reg + (i * map->reg_stride * data->irq_reg_stride); 61 } else { 62 subreg = &chip->sub_reg_offsets[i]; 63 offset = subreg->offset[0]; 64 reg = base_reg + offset; 65 } 66 67 return reg; 68 } 69 70 static inline const 71 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, 72 int irq) 73 { 74 return &data->chip->irqs[irq]; 75 } 76 77 static void regmap_irq_lock(struct irq_data *data) 78 { 79 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 80 81 mutex_lock(&d->lock); 82 } 83 84 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d, 85 unsigned int reg, unsigned int mask, 86 unsigned int val) 87 { 88 if (d->chip->mask_writeonly) 89 return regmap_write_bits(d->map, reg, mask, val); 90 else 91 return regmap_update_bits(d->map, reg, mask, val); 92 } 93 94 static void regmap_irq_sync_unlock(struct irq_data *data) 95 { 96 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 97 struct regmap *map = d->map; 98 int i, j, ret; 99 u32 reg; 100 u32 unmask_offset; 101 u32 val; 102 103 if (d->chip->runtime_pm) { 104 ret = pm_runtime_get_sync(map->dev); 105 if (ret < 0) 106 dev_err(map->dev, "IRQ sync failed to resume: %d\n", 107 ret); 108 } 109 110 if (d->clear_status) { 111 for (i = 0; i < d->chip->num_regs; i++) { 112 reg = sub_irq_reg(d, d->chip->status_base, i); 113 114 ret = regmap_read(map, reg, &val); 115 if (ret) 116 dev_err(d->map->dev, 117 "Failed to clear the interrupt status bits\n"); 118 } 119 120 d->clear_status = false; 121 } 122 123 /* 124 * If there's been a change in the mask write it back to the 125 * hardware. We rely on the use of the regmap core cache to 126 * suppress pointless writes. 127 */ 128 for (i = 0; i < d->chip->num_regs; i++) { 129 if (!d->chip->mask_base) 130 continue; 131 132 reg = sub_irq_reg(d, d->chip->mask_base, i); 133 if (d->chip->mask_invert) { 134 ret = regmap_irq_update_bits(d, reg, 135 d->mask_buf_def[i], ~d->mask_buf[i]); 136 } else if (d->chip->unmask_base) { 137 /* set mask with mask_base register */ 138 ret = regmap_irq_update_bits(d, reg, 139 d->mask_buf_def[i], ~d->mask_buf[i]); 140 if (ret < 0) 141 dev_err(d->map->dev, 142 "Failed to sync unmasks in %x\n", 143 reg); 144 unmask_offset = d->chip->unmask_base - 145 d->chip->mask_base; 146 /* clear mask with unmask_base register */ 147 ret = regmap_irq_update_bits(d, 148 reg + unmask_offset, 149 d->mask_buf_def[i], 150 d->mask_buf[i]); 151 } else { 152 ret = regmap_irq_update_bits(d, reg, 153 d->mask_buf_def[i], d->mask_buf[i]); 154 } 155 if (ret != 0) 156 dev_err(d->map->dev, "Failed to sync masks in %x\n", 157 reg); 158 159 reg = sub_irq_reg(d, d->chip->wake_base, i); 160 if (d->wake_buf) { 161 if (d->chip->wake_invert) 162 ret = regmap_irq_update_bits(d, reg, 163 d->mask_buf_def[i], 164 ~d->wake_buf[i]); 165 else 166 ret = regmap_irq_update_bits(d, reg, 167 d->mask_buf_def[i], 168 d->wake_buf[i]); 169 if (ret != 0) 170 dev_err(d->map->dev, 171 "Failed to sync wakes in %x: %d\n", 172 reg, ret); 173 } 174 175 if (!d->chip->init_ack_masked) 176 continue; 177 /* 178 * Ack all the masked interrupts unconditionally, 179 * OR if there is masked interrupt which hasn't been Acked, 180 * it'll be ignored in irq handler, then may introduce irq storm 181 */ 182 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { 183 reg = sub_irq_reg(d, d->chip->ack_base, i); 184 185 /* some chips ack by write 0 */ 186 if (d->chip->ack_invert) 187 ret = regmap_write(map, reg, ~d->mask_buf[i]); 188 else 189 ret = regmap_write(map, reg, d->mask_buf[i]); 190 if (d->chip->clear_ack) { 191 if (d->chip->ack_invert && !ret) 192 ret = regmap_write(map, reg, 193 d->mask_buf[i]); 194 else if (!ret) 195 ret = regmap_write(map, reg, 196 ~d->mask_buf[i]); 197 } 198 if (ret != 0) 199 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", 200 reg, ret); 201 } 202 } 203 204 /* Don't update the type bits if we're using mask bits for irq type. */ 205 if (!d->chip->type_in_mask) { 206 for (i = 0; i < d->chip->num_type_reg; i++) { 207 if (!d->type_buf_def[i]) 208 continue; 209 reg = sub_irq_reg(d, d->chip->type_base, i); 210 if (d->chip->type_invert) 211 ret = regmap_irq_update_bits(d, reg, 212 d->type_buf_def[i], ~d->type_buf[i]); 213 else 214 ret = regmap_irq_update_bits(d, reg, 215 d->type_buf_def[i], d->type_buf[i]); 216 if (ret != 0) 217 dev_err(d->map->dev, "Failed to sync type in %x\n", 218 reg); 219 } 220 } 221 222 if (d->chip->num_virt_regs) { 223 for (i = 0; i < d->chip->num_virt_regs; i++) { 224 for (j = 0; j < d->chip->num_regs; j++) { 225 reg = sub_irq_reg(d, d->chip->virt_reg_base[i], 226 j); 227 ret = regmap_write(map, reg, d->virt_buf[i][j]); 228 if (ret != 0) 229 dev_err(d->map->dev, 230 "Failed to write virt 0x%x: %d\n", 231 reg, ret); 232 } 233 } 234 } 235 236 if (d->chip->runtime_pm) 237 pm_runtime_put(map->dev); 238 239 /* If we've changed our wakeup count propagate it to the parent */ 240 if (d->wake_count < 0) 241 for (i = d->wake_count; i < 0; i++) 242 irq_set_irq_wake(d->irq, 0); 243 else if (d->wake_count > 0) 244 for (i = 0; i < d->wake_count; i++) 245 irq_set_irq_wake(d->irq, 1); 246 247 d->wake_count = 0; 248 249 mutex_unlock(&d->lock); 250 } 251 252 static void regmap_irq_enable(struct irq_data *data) 253 { 254 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 255 struct regmap *map = d->map; 256 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 257 unsigned int mask, type; 258 259 type = irq_data->type.type_falling_val | irq_data->type.type_rising_val; 260 261 /* 262 * The type_in_mask flag means that the underlying hardware uses 263 * separate mask bits for rising and falling edge interrupts, but 264 * we want to make them into a single virtual interrupt with 265 * configurable edge. 266 * 267 * If the interrupt we're enabling defines the falling or rising 268 * masks then instead of using the regular mask bits for this 269 * interrupt, use the value previously written to the type buffer 270 * at the corresponding offset in regmap_irq_set_type(). 271 */ 272 if (d->chip->type_in_mask && type) 273 mask = d->type_buf[irq_data->reg_offset / map->reg_stride]; 274 else 275 mask = irq_data->mask; 276 277 if (d->chip->clear_on_unmask) 278 d->clear_status = true; 279 280 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask; 281 } 282 283 static void regmap_irq_disable(struct irq_data *data) 284 { 285 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 286 struct regmap *map = d->map; 287 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 288 289 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; 290 } 291 292 static int regmap_irq_set_type(struct irq_data *data, unsigned int type) 293 { 294 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 295 struct regmap *map = d->map; 296 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 297 int reg; 298 const struct regmap_irq_type *t = &irq_data->type; 299 300 if ((t->types_supported & type) != type) 301 return 0; 302 303 reg = t->type_reg_offset / map->reg_stride; 304 305 if (t->type_reg_mask) 306 d->type_buf[reg] &= ~t->type_reg_mask; 307 else 308 d->type_buf[reg] &= ~(t->type_falling_val | 309 t->type_rising_val | 310 t->type_level_low_val | 311 t->type_level_high_val); 312 switch (type) { 313 case IRQ_TYPE_EDGE_FALLING: 314 d->type_buf[reg] |= t->type_falling_val; 315 break; 316 317 case IRQ_TYPE_EDGE_RISING: 318 d->type_buf[reg] |= t->type_rising_val; 319 break; 320 321 case IRQ_TYPE_EDGE_BOTH: 322 d->type_buf[reg] |= (t->type_falling_val | 323 t->type_rising_val); 324 break; 325 326 case IRQ_TYPE_LEVEL_HIGH: 327 d->type_buf[reg] |= t->type_level_high_val; 328 break; 329 330 case IRQ_TYPE_LEVEL_LOW: 331 d->type_buf[reg] |= t->type_level_low_val; 332 break; 333 default: 334 return -EINVAL; 335 } 336 337 if (d->chip->set_type_virt) 338 return d->chip->set_type_virt(d->virt_buf, type, data->hwirq, 339 reg); 340 341 return 0; 342 } 343 344 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) 345 { 346 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 347 struct regmap *map = d->map; 348 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 349 350 if (on) { 351 if (d->wake_buf) 352 d->wake_buf[irq_data->reg_offset / map->reg_stride] 353 &= ~irq_data->mask; 354 d->wake_count++; 355 } else { 356 if (d->wake_buf) 357 d->wake_buf[irq_data->reg_offset / map->reg_stride] 358 |= irq_data->mask; 359 d->wake_count--; 360 } 361 362 return 0; 363 } 364 365 static const struct irq_chip regmap_irq_chip = { 366 .irq_bus_lock = regmap_irq_lock, 367 .irq_bus_sync_unlock = regmap_irq_sync_unlock, 368 .irq_disable = regmap_irq_disable, 369 .irq_enable = regmap_irq_enable, 370 .irq_set_type = regmap_irq_set_type, 371 .irq_set_wake = regmap_irq_set_wake, 372 }; 373 374 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data, 375 unsigned int b) 376 { 377 const struct regmap_irq_chip *chip = data->chip; 378 struct regmap *map = data->map; 379 struct regmap_irq_sub_irq_map *subreg; 380 int i, ret = 0; 381 382 if (!chip->sub_reg_offsets) { 383 /* Assume linear mapping */ 384 ret = regmap_read(map, chip->status_base + 385 (b * map->reg_stride * data->irq_reg_stride), 386 &data->status_buf[b]); 387 } else { 388 subreg = &chip->sub_reg_offsets[b]; 389 for (i = 0; i < subreg->num_regs; i++) { 390 unsigned int offset = subreg->offset[i]; 391 392 if (chip->not_fixed_stride) 393 ret = regmap_read(map, 394 chip->status_base + offset, 395 &data->status_buf[b]); 396 else 397 ret = regmap_read(map, 398 chip->status_base + offset, 399 &data->status_buf[offset]); 400 401 if (ret) 402 break; 403 } 404 } 405 return ret; 406 } 407 408 static irqreturn_t regmap_irq_thread(int irq, void *d) 409 { 410 struct regmap_irq_chip_data *data = d; 411 const struct regmap_irq_chip *chip = data->chip; 412 struct regmap *map = data->map; 413 int ret, i; 414 bool handled = false; 415 u32 reg; 416 417 if (chip->handle_pre_irq) 418 chip->handle_pre_irq(chip->irq_drv_data); 419 420 if (chip->runtime_pm) { 421 ret = pm_runtime_get_sync(map->dev); 422 if (ret < 0) { 423 dev_err(map->dev, "IRQ thread failed to resume: %d\n", 424 ret); 425 goto exit; 426 } 427 } 428 429 /* 430 * Read only registers with active IRQs if the chip has 'main status 431 * register'. Else read in the statuses, using a single bulk read if 432 * possible in order to reduce the I/O overheads. 433 */ 434 435 if (chip->num_main_regs) { 436 unsigned int max_main_bits; 437 unsigned long size; 438 439 size = chip->num_regs * sizeof(unsigned int); 440 441 max_main_bits = (chip->num_main_status_bits) ? 442 chip->num_main_status_bits : chip->num_regs; 443 /* Clear the status buf as we don't read all status regs */ 444 memset(data->status_buf, 0, size); 445 446 /* We could support bulk read for main status registers 447 * but I don't expect to see devices with really many main 448 * status registers so let's only support single reads for the 449 * sake of simplicity. and add bulk reads only if needed 450 */ 451 for (i = 0; i < chip->num_main_regs; i++) { 452 ret = regmap_read(map, chip->main_status + 453 (i * map->reg_stride 454 * data->irq_reg_stride), 455 &data->main_status_buf[i]); 456 if (ret) { 457 dev_err(map->dev, 458 "Failed to read IRQ status %d\n", 459 ret); 460 goto exit; 461 } 462 } 463 464 /* Read sub registers with active IRQs */ 465 for (i = 0; i < chip->num_main_regs; i++) { 466 unsigned int b; 467 const unsigned long mreg = data->main_status_buf[i]; 468 469 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) { 470 if (i * map->format.val_bytes * 8 + b > 471 max_main_bits) 472 break; 473 ret = read_sub_irq_data(data, b); 474 475 if (ret != 0) { 476 dev_err(map->dev, 477 "Failed to read IRQ status %d\n", 478 ret); 479 goto exit; 480 } 481 } 482 483 } 484 } else if (!map->use_single_read && map->reg_stride == 1 && 485 data->irq_reg_stride == 1) { 486 487 u8 *buf8 = data->status_reg_buf; 488 u16 *buf16 = data->status_reg_buf; 489 u32 *buf32 = data->status_reg_buf; 490 491 BUG_ON(!data->status_reg_buf); 492 493 ret = regmap_bulk_read(map, chip->status_base, 494 data->status_reg_buf, 495 chip->num_regs); 496 if (ret != 0) { 497 dev_err(map->dev, "Failed to read IRQ status: %d\n", 498 ret); 499 goto exit; 500 } 501 502 for (i = 0; i < data->chip->num_regs; i++) { 503 switch (map->format.val_bytes) { 504 case 1: 505 data->status_buf[i] = buf8[i]; 506 break; 507 case 2: 508 data->status_buf[i] = buf16[i]; 509 break; 510 case 4: 511 data->status_buf[i] = buf32[i]; 512 break; 513 default: 514 BUG(); 515 goto exit; 516 } 517 } 518 519 } else { 520 for (i = 0; i < data->chip->num_regs; i++) { 521 unsigned int reg = sub_irq_reg(data, 522 data->chip->status_base, i); 523 ret = regmap_read(map, reg, &data->status_buf[i]); 524 525 if (ret != 0) { 526 dev_err(map->dev, 527 "Failed to read IRQ status: %d\n", 528 ret); 529 goto exit; 530 } 531 } 532 } 533 534 /* 535 * Ignore masked IRQs and ack if we need to; we ack early so 536 * there is no race between handling and acknowleding the 537 * interrupt. We assume that typically few of the interrupts 538 * will fire simultaneously so don't worry about overhead from 539 * doing a write per register. 540 */ 541 for (i = 0; i < data->chip->num_regs; i++) { 542 data->status_buf[i] &= ~data->mask_buf[i]; 543 544 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { 545 reg = sub_irq_reg(data, data->chip->ack_base, i); 546 547 if (chip->ack_invert) 548 ret = regmap_write(map, reg, 549 ~data->status_buf[i]); 550 else 551 ret = regmap_write(map, reg, 552 data->status_buf[i]); 553 if (chip->clear_ack) { 554 if (chip->ack_invert && !ret) 555 ret = regmap_write(map, reg, 556 data->status_buf[i]); 557 else if (!ret) 558 ret = regmap_write(map, reg, 559 ~data->status_buf[i]); 560 } 561 if (ret != 0) 562 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 563 reg, ret); 564 } 565 } 566 567 for (i = 0; i < chip->num_irqs; i++) { 568 if (data->status_buf[chip->irqs[i].reg_offset / 569 map->reg_stride] & chip->irqs[i].mask) { 570 handle_nested_irq(irq_find_mapping(data->domain, i)); 571 handled = true; 572 } 573 } 574 575 exit: 576 if (chip->runtime_pm) 577 pm_runtime_put(map->dev); 578 579 if (chip->handle_post_irq) 580 chip->handle_post_irq(chip->irq_drv_data); 581 582 if (handled) 583 return IRQ_HANDLED; 584 else 585 return IRQ_NONE; 586 } 587 588 static int regmap_irq_map(struct irq_domain *h, unsigned int virq, 589 irq_hw_number_t hw) 590 { 591 struct regmap_irq_chip_data *data = h->host_data; 592 593 irq_set_chip_data(virq, data); 594 irq_set_chip(virq, &data->irq_chip); 595 irq_set_nested_thread(virq, 1); 596 irq_set_parent(virq, data->irq); 597 irq_set_noprobe(virq); 598 599 return 0; 600 } 601 602 static const struct irq_domain_ops regmap_domain_ops = { 603 .map = regmap_irq_map, 604 .xlate = irq_domain_xlate_onetwocell, 605 }; 606 607 /** 608 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling 609 * 610 * @fwnode: The firmware node where the IRQ domain should be added to. 611 * @map: The regmap for the device. 612 * @irq: The IRQ the device uses to signal interrupts. 613 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 614 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 615 * @chip: Configuration for the interrupt controller. 616 * @data: Runtime data structure for the controller, allocated on success. 617 * 618 * Returns 0 on success or an errno on failure. 619 * 620 * In order for this to be efficient the chip really should use a 621 * register cache. The chip driver is responsible for restoring the 622 * register values used by the IRQ controller over suspend and resume. 623 */ 624 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode, 625 struct regmap *map, int irq, 626 int irq_flags, int irq_base, 627 const struct regmap_irq_chip *chip, 628 struct regmap_irq_chip_data **data) 629 { 630 struct regmap_irq_chip_data *d; 631 int i; 632 int ret = -ENOMEM; 633 int num_type_reg; 634 u32 reg; 635 u32 unmask_offset; 636 637 if (chip->num_regs <= 0) 638 return -EINVAL; 639 640 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack)) 641 return -EINVAL; 642 643 for (i = 0; i < chip->num_irqs; i++) { 644 if (chip->irqs[i].reg_offset % map->reg_stride) 645 return -EINVAL; 646 if (chip->irqs[i].reg_offset / map->reg_stride >= 647 chip->num_regs) 648 return -EINVAL; 649 } 650 651 if (chip->not_fixed_stride) { 652 for (i = 0; i < chip->num_regs; i++) 653 if (chip->sub_reg_offsets[i].num_regs != 1) 654 return -EINVAL; 655 } 656 657 if (irq_base) { 658 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); 659 if (irq_base < 0) { 660 dev_warn(map->dev, "Failed to allocate IRQs: %d\n", 661 irq_base); 662 return irq_base; 663 } 664 } 665 666 d = kzalloc(sizeof(*d), GFP_KERNEL); 667 if (!d) 668 return -ENOMEM; 669 670 if (chip->num_main_regs) { 671 d->main_status_buf = kcalloc(chip->num_main_regs, 672 sizeof(unsigned int), 673 GFP_KERNEL); 674 675 if (!d->main_status_buf) 676 goto err_alloc; 677 } 678 679 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 680 GFP_KERNEL); 681 if (!d->status_buf) 682 goto err_alloc; 683 684 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 685 GFP_KERNEL); 686 if (!d->mask_buf) 687 goto err_alloc; 688 689 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int), 690 GFP_KERNEL); 691 if (!d->mask_buf_def) 692 goto err_alloc; 693 694 if (chip->wake_base) { 695 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 696 GFP_KERNEL); 697 if (!d->wake_buf) 698 goto err_alloc; 699 } 700 701 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg; 702 if (num_type_reg) { 703 d->type_buf_def = kcalloc(num_type_reg, 704 sizeof(unsigned int), GFP_KERNEL); 705 if (!d->type_buf_def) 706 goto err_alloc; 707 708 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int), 709 GFP_KERNEL); 710 if (!d->type_buf) 711 goto err_alloc; 712 } 713 714 if (chip->num_virt_regs) { 715 /* 716 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs] 717 */ 718 d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf), 719 GFP_KERNEL); 720 if (!d->virt_buf) 721 goto err_alloc; 722 723 for (i = 0; i < chip->num_virt_regs; i++) { 724 d->virt_buf[i] = kcalloc(chip->num_regs, 725 sizeof(unsigned int), 726 GFP_KERNEL); 727 if (!d->virt_buf[i]) 728 goto err_alloc; 729 } 730 } 731 732 d->irq_chip = regmap_irq_chip; 733 d->irq_chip.name = chip->name; 734 d->irq = irq; 735 d->map = map; 736 d->chip = chip; 737 d->irq_base = irq_base; 738 739 if (chip->irq_reg_stride) 740 d->irq_reg_stride = chip->irq_reg_stride; 741 else 742 d->irq_reg_stride = 1; 743 744 if (chip->type_reg_stride) 745 d->type_reg_stride = chip->type_reg_stride; 746 else 747 d->type_reg_stride = 1; 748 749 if (!map->use_single_read && map->reg_stride == 1 && 750 d->irq_reg_stride == 1) { 751 d->status_reg_buf = kmalloc_array(chip->num_regs, 752 map->format.val_bytes, 753 GFP_KERNEL); 754 if (!d->status_reg_buf) 755 goto err_alloc; 756 } 757 758 mutex_init(&d->lock); 759 760 for (i = 0; i < chip->num_irqs; i++) 761 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] 762 |= chip->irqs[i].mask; 763 764 /* Mask all the interrupts by default */ 765 for (i = 0; i < chip->num_regs; i++) { 766 d->mask_buf[i] = d->mask_buf_def[i]; 767 if (!chip->mask_base) 768 continue; 769 770 reg = sub_irq_reg(d, d->chip->mask_base, i); 771 772 if (chip->mask_invert) 773 ret = regmap_irq_update_bits(d, reg, 774 d->mask_buf[i], ~d->mask_buf[i]); 775 else if (d->chip->unmask_base) { 776 unmask_offset = d->chip->unmask_base - 777 d->chip->mask_base; 778 ret = regmap_irq_update_bits(d, 779 reg + unmask_offset, 780 d->mask_buf[i], 781 d->mask_buf[i]); 782 } else 783 ret = regmap_irq_update_bits(d, reg, 784 d->mask_buf[i], d->mask_buf[i]); 785 if (ret != 0) { 786 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 787 reg, ret); 788 goto err_alloc; 789 } 790 791 if (!chip->init_ack_masked) 792 continue; 793 794 /* Ack masked but set interrupts */ 795 reg = sub_irq_reg(d, d->chip->status_base, i); 796 ret = regmap_read(map, reg, &d->status_buf[i]); 797 if (ret != 0) { 798 dev_err(map->dev, "Failed to read IRQ status: %d\n", 799 ret); 800 goto err_alloc; 801 } 802 803 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { 804 reg = sub_irq_reg(d, d->chip->ack_base, i); 805 if (chip->ack_invert) 806 ret = regmap_write(map, reg, 807 ~(d->status_buf[i] & d->mask_buf[i])); 808 else 809 ret = regmap_write(map, reg, 810 d->status_buf[i] & d->mask_buf[i]); 811 if (chip->clear_ack) { 812 if (chip->ack_invert && !ret) 813 ret = regmap_write(map, reg, 814 (d->status_buf[i] & 815 d->mask_buf[i])); 816 else if (!ret) 817 ret = regmap_write(map, reg, 818 ~(d->status_buf[i] & 819 d->mask_buf[i])); 820 } 821 if (ret != 0) { 822 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 823 reg, ret); 824 goto err_alloc; 825 } 826 } 827 } 828 829 /* Wake is disabled by default */ 830 if (d->wake_buf) { 831 for (i = 0; i < chip->num_regs; i++) { 832 d->wake_buf[i] = d->mask_buf_def[i]; 833 reg = sub_irq_reg(d, d->chip->wake_base, i); 834 835 if (chip->wake_invert) 836 ret = regmap_irq_update_bits(d, reg, 837 d->mask_buf_def[i], 838 0); 839 else 840 ret = regmap_irq_update_bits(d, reg, 841 d->mask_buf_def[i], 842 d->wake_buf[i]); 843 if (ret != 0) { 844 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 845 reg, ret); 846 goto err_alloc; 847 } 848 } 849 } 850 851 if (chip->num_type_reg && !chip->type_in_mask) { 852 for (i = 0; i < chip->num_type_reg; ++i) { 853 reg = sub_irq_reg(d, d->chip->type_base, i); 854 855 ret = regmap_read(map, reg, &d->type_buf_def[i]); 856 857 if (d->chip->type_invert) 858 d->type_buf_def[i] = ~d->type_buf_def[i]; 859 860 if (ret) { 861 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n", 862 reg, ret); 863 goto err_alloc; 864 } 865 } 866 } 867 868 if (irq_base) 869 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs, 870 irq_base, 0, 871 ®map_domain_ops, d); 872 else 873 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs, 874 ®map_domain_ops, d); 875 if (!d->domain) { 876 dev_err(map->dev, "Failed to create IRQ domain\n"); 877 ret = -ENOMEM; 878 goto err_alloc; 879 } 880 881 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, 882 irq_flags | IRQF_ONESHOT, 883 chip->name, d); 884 if (ret != 0) { 885 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", 886 irq, chip->name, ret); 887 goto err_domain; 888 } 889 890 *data = d; 891 892 return 0; 893 894 err_domain: 895 /* Should really dispose of the domain but... */ 896 err_alloc: 897 kfree(d->type_buf); 898 kfree(d->type_buf_def); 899 kfree(d->wake_buf); 900 kfree(d->mask_buf_def); 901 kfree(d->mask_buf); 902 kfree(d->status_buf); 903 kfree(d->status_reg_buf); 904 if (d->virt_buf) { 905 for (i = 0; i < chip->num_virt_regs; i++) 906 kfree(d->virt_buf[i]); 907 kfree(d->virt_buf); 908 } 909 kfree(d); 910 return ret; 911 } 912 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode); 913 914 /** 915 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling 916 * 917 * @map: The regmap for the device. 918 * @irq: The IRQ the device uses to signal interrupts. 919 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 920 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 921 * @chip: Configuration for the interrupt controller. 922 * @data: Runtime data structure for the controller, allocated on success. 923 * 924 * Returns 0 on success or an errno on failure. 925 * 926 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware 927 * node of the regmap is used. 928 */ 929 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 930 int irq_base, const struct regmap_irq_chip *chip, 931 struct regmap_irq_chip_data **data) 932 { 933 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq, 934 irq_flags, irq_base, chip, data); 935 } 936 EXPORT_SYMBOL_GPL(regmap_add_irq_chip); 937 938 /** 939 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip 940 * 941 * @irq: Primary IRQ for the device 942 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() 943 * 944 * This function also disposes of all mapped IRQs on the chip. 945 */ 946 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) 947 { 948 unsigned int virq; 949 int hwirq; 950 951 if (!d) 952 return; 953 954 free_irq(irq, d); 955 956 /* Dispose all virtual irq from irq domain before removing it */ 957 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { 958 /* Ignore hwirq if holes in the IRQ list */ 959 if (!d->chip->irqs[hwirq].mask) 960 continue; 961 962 /* 963 * Find the virtual irq of hwirq on chip and if it is 964 * there then dispose it 965 */ 966 virq = irq_find_mapping(d->domain, hwirq); 967 if (virq) 968 irq_dispose_mapping(virq); 969 } 970 971 irq_domain_remove(d->domain); 972 kfree(d->type_buf); 973 kfree(d->type_buf_def); 974 kfree(d->wake_buf); 975 kfree(d->mask_buf_def); 976 kfree(d->mask_buf); 977 kfree(d->status_reg_buf); 978 kfree(d->status_buf); 979 kfree(d); 980 } 981 EXPORT_SYMBOL_GPL(regmap_del_irq_chip); 982 983 static void devm_regmap_irq_chip_release(struct device *dev, void *res) 984 { 985 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; 986 987 regmap_del_irq_chip(d->irq, d); 988 } 989 990 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) 991 992 { 993 struct regmap_irq_chip_data **r = res; 994 995 if (!r || !*r) { 996 WARN_ON(!r || !*r); 997 return 0; 998 } 999 return *r == data; 1000 } 1001 1002 /** 1003 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode() 1004 * 1005 * @dev: The device pointer on which irq_chip belongs to. 1006 * @fwnode: The firmware node where the IRQ domain should be added to. 1007 * @map: The regmap for the device. 1008 * @irq: The IRQ the device uses to signal interrupts 1009 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1010 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1011 * @chip: Configuration for the interrupt controller. 1012 * @data: Runtime data structure for the controller, allocated on success 1013 * 1014 * Returns 0 on success or an errno on failure. 1015 * 1016 * The ®map_irq_chip_data will be automatically released when the device is 1017 * unbound. 1018 */ 1019 int devm_regmap_add_irq_chip_fwnode(struct device *dev, 1020 struct fwnode_handle *fwnode, 1021 struct regmap *map, int irq, 1022 int irq_flags, int irq_base, 1023 const struct regmap_irq_chip *chip, 1024 struct regmap_irq_chip_data **data) 1025 { 1026 struct regmap_irq_chip_data **ptr, *d; 1027 int ret; 1028 1029 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), 1030 GFP_KERNEL); 1031 if (!ptr) 1032 return -ENOMEM; 1033 1034 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base, 1035 chip, &d); 1036 if (ret < 0) { 1037 devres_free(ptr); 1038 return ret; 1039 } 1040 1041 *ptr = d; 1042 devres_add(dev, ptr); 1043 *data = d; 1044 return 0; 1045 } 1046 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode); 1047 1048 /** 1049 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip() 1050 * 1051 * @dev: The device pointer on which irq_chip belongs to. 1052 * @map: The regmap for the device. 1053 * @irq: The IRQ the device uses to signal interrupts 1054 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1055 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1056 * @chip: Configuration for the interrupt controller. 1057 * @data: Runtime data structure for the controller, allocated on success 1058 * 1059 * Returns 0 on success or an errno on failure. 1060 * 1061 * The ®map_irq_chip_data will be automatically released when the device is 1062 * unbound. 1063 */ 1064 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, 1065 int irq_flags, int irq_base, 1066 const struct regmap_irq_chip *chip, 1067 struct regmap_irq_chip_data **data) 1068 { 1069 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map, 1070 irq, irq_flags, irq_base, chip, 1071 data); 1072 } 1073 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); 1074 1075 /** 1076 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() 1077 * 1078 * @dev: Device for which which resource was allocated. 1079 * @irq: Primary IRQ for the device. 1080 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). 1081 * 1082 * A resource managed version of regmap_del_irq_chip(). 1083 */ 1084 void devm_regmap_del_irq_chip(struct device *dev, int irq, 1085 struct regmap_irq_chip_data *data) 1086 { 1087 int rc; 1088 1089 WARN_ON(irq != data->irq); 1090 rc = devres_release(dev, devm_regmap_irq_chip_release, 1091 devm_regmap_irq_chip_match, data); 1092 1093 if (rc != 0) 1094 WARN_ON(rc); 1095 } 1096 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); 1097 1098 /** 1099 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip 1100 * 1101 * @data: regmap irq controller to operate on. 1102 * 1103 * Useful for drivers to request their own IRQs. 1104 */ 1105 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) 1106 { 1107 WARN_ON(!data->irq_base); 1108 return data->irq_base; 1109 } 1110 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); 1111 1112 /** 1113 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ 1114 * 1115 * @data: regmap irq controller to operate on. 1116 * @irq: index of the interrupt requested in the chip IRQs. 1117 * 1118 * Useful for drivers to request their own IRQs. 1119 */ 1120 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) 1121 { 1122 /* Handle holes in the IRQ list */ 1123 if (!data->chip->irqs[irq].mask) 1124 return -EINVAL; 1125 1126 return irq_create_mapping(data->domain, irq); 1127 } 1128 EXPORT_SYMBOL_GPL(regmap_irq_get_virq); 1129 1130 /** 1131 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip 1132 * 1133 * @data: regmap_irq controller to operate on. 1134 * 1135 * Useful for drivers to request their own IRQs and for integration 1136 * with subsystems. For ease of integration NULL is accepted as a 1137 * domain, allowing devices to just call this even if no domain is 1138 * allocated. 1139 */ 1140 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) 1141 { 1142 if (data) 1143 return data->domain; 1144 else 1145 return NULL; 1146 } 1147 EXPORT_SYMBOL_GPL(regmap_irq_get_domain); 1148