xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * regmap based irq_chip
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21 
22 #include "internal.h"
23 
24 struct regmap_irq_chip_data {
25 	struct mutex lock;
26 	struct irq_chip irq_chip;
27 
28 	struct regmap *map;
29 	const struct regmap_irq_chip *chip;
30 
31 	int irq_base;
32 	struct irq_domain *domain;
33 
34 	int irq;
35 	int wake_count;
36 
37 	void *status_reg_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 
43 	unsigned int irq_reg_stride;
44 };
45 
46 static inline const
47 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
48 				     int irq)
49 {
50 	return &data->chip->irqs[irq];
51 }
52 
53 static void regmap_irq_lock(struct irq_data *data)
54 {
55 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
56 
57 	mutex_lock(&d->lock);
58 }
59 
60 static void regmap_irq_sync_unlock(struct irq_data *data)
61 {
62 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
63 	struct regmap *map = d->map;
64 	int i, ret;
65 	u32 reg;
66 
67 	if (d->chip->runtime_pm) {
68 		ret = pm_runtime_get_sync(map->dev);
69 		if (ret < 0)
70 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
71 				ret);
72 	}
73 
74 	/*
75 	 * If there's been a change in the mask write it back to the
76 	 * hardware.  We rely on the use of the regmap core cache to
77 	 * suppress pointless writes.
78 	 */
79 	for (i = 0; i < d->chip->num_regs; i++) {
80 		reg = d->chip->mask_base +
81 			(i * map->reg_stride * d->irq_reg_stride);
82 		if (d->chip->mask_invert)
83 			ret = regmap_update_bits(d->map, reg,
84 					 d->mask_buf_def[i], ~d->mask_buf[i]);
85 		else
86 			ret = regmap_update_bits(d->map, reg,
87 					 d->mask_buf_def[i], d->mask_buf[i]);
88 		if (ret != 0)
89 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
90 				reg);
91 
92 		reg = d->chip->wake_base +
93 			(i * map->reg_stride * d->irq_reg_stride);
94 		if (d->wake_buf) {
95 			if (d->chip->wake_invert)
96 				ret = regmap_update_bits(d->map, reg,
97 							 d->mask_buf_def[i],
98 							 ~d->wake_buf[i]);
99 			else
100 				ret = regmap_update_bits(d->map, reg,
101 							 d->mask_buf_def[i],
102 							 d->wake_buf[i]);
103 			if (ret != 0)
104 				dev_err(d->map->dev,
105 					"Failed to sync wakes in %x: %d\n",
106 					reg, ret);
107 		}
108 
109 		if (!d->chip->init_ack_masked)
110 			continue;
111 		/*
112 		 * Ack all the masked interrupts unconditionally,
113 		 * OR if there is masked interrupt which hasn't been Acked,
114 		 * it'll be ignored in irq handler, then may introduce irq storm
115 		 */
116 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
117 			reg = d->chip->ack_base +
118 				(i * map->reg_stride * d->irq_reg_stride);
119 			ret = regmap_write(map, reg, d->mask_buf[i]);
120 			if (ret != 0)
121 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
122 					reg, ret);
123 		}
124 	}
125 
126 	if (d->chip->runtime_pm)
127 		pm_runtime_put(map->dev);
128 
129 	/* If we've changed our wakeup count propagate it to the parent */
130 	if (d->wake_count < 0)
131 		for (i = d->wake_count; i < 0; i++)
132 			irq_set_irq_wake(d->irq, 0);
133 	else if (d->wake_count > 0)
134 		for (i = 0; i < d->wake_count; i++)
135 			irq_set_irq_wake(d->irq, 1);
136 
137 	d->wake_count = 0;
138 
139 	mutex_unlock(&d->lock);
140 }
141 
142 static void regmap_irq_enable(struct irq_data *data)
143 {
144 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
145 	struct regmap *map = d->map;
146 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
147 
148 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
149 }
150 
151 static void regmap_irq_disable(struct irq_data *data)
152 {
153 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
154 	struct regmap *map = d->map;
155 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
156 
157 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
158 }
159 
160 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
161 {
162 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
163 	struct regmap *map = d->map;
164 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
165 
166 	if (on) {
167 		if (d->wake_buf)
168 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
169 				&= ~irq_data->mask;
170 		d->wake_count++;
171 	} else {
172 		if (d->wake_buf)
173 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
174 				|= irq_data->mask;
175 		d->wake_count--;
176 	}
177 
178 	return 0;
179 }
180 
181 static const struct irq_chip regmap_irq_chip = {
182 	.irq_bus_lock		= regmap_irq_lock,
183 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
184 	.irq_disable		= regmap_irq_disable,
185 	.irq_enable		= regmap_irq_enable,
186 	.irq_set_wake		= regmap_irq_set_wake,
187 };
188 
189 static irqreturn_t regmap_irq_thread(int irq, void *d)
190 {
191 	struct regmap_irq_chip_data *data = d;
192 	const struct regmap_irq_chip *chip = data->chip;
193 	struct regmap *map = data->map;
194 	int ret, i;
195 	bool handled = false;
196 	u32 reg;
197 
198 	if (chip->runtime_pm) {
199 		ret = pm_runtime_get_sync(map->dev);
200 		if (ret < 0) {
201 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
202 				ret);
203 			pm_runtime_put(map->dev);
204 			return IRQ_NONE;
205 		}
206 	}
207 
208 	/*
209 	 * Read in the statuses, using a single bulk read if possible
210 	 * in order to reduce the I/O overheads.
211 	 */
212 	if (!map->use_single_read && map->reg_stride == 1 &&
213 	    data->irq_reg_stride == 1) {
214 		u8 *buf8 = data->status_reg_buf;
215 		u16 *buf16 = data->status_reg_buf;
216 		u32 *buf32 = data->status_reg_buf;
217 
218 		BUG_ON(!data->status_reg_buf);
219 
220 		ret = regmap_bulk_read(map, chip->status_base,
221 				       data->status_reg_buf,
222 				       chip->num_regs);
223 		if (ret != 0) {
224 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
225 				ret);
226 			return IRQ_NONE;
227 		}
228 
229 		for (i = 0; i < data->chip->num_regs; i++) {
230 			switch (map->format.val_bytes) {
231 			case 1:
232 				data->status_buf[i] = buf8[i];
233 				break;
234 			case 2:
235 				data->status_buf[i] = buf16[i];
236 				break;
237 			case 4:
238 				data->status_buf[i] = buf32[i];
239 				break;
240 			default:
241 				BUG();
242 				return IRQ_NONE;
243 			}
244 		}
245 
246 	} else {
247 		for (i = 0; i < data->chip->num_regs; i++) {
248 			ret = regmap_read(map, chip->status_base +
249 					  (i * map->reg_stride
250 					   * data->irq_reg_stride),
251 					  &data->status_buf[i]);
252 
253 			if (ret != 0) {
254 				dev_err(map->dev,
255 					"Failed to read IRQ status: %d\n",
256 					ret);
257 				if (chip->runtime_pm)
258 					pm_runtime_put(map->dev);
259 				return IRQ_NONE;
260 			}
261 		}
262 	}
263 
264 	/*
265 	 * Ignore masked IRQs and ack if we need to; we ack early so
266 	 * there is no race between handling and acknowleding the
267 	 * interrupt.  We assume that typically few of the interrupts
268 	 * will fire simultaneously so don't worry about overhead from
269 	 * doing a write per register.
270 	 */
271 	for (i = 0; i < data->chip->num_regs; i++) {
272 		data->status_buf[i] &= ~data->mask_buf[i];
273 
274 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
275 			reg = chip->ack_base +
276 				(i * map->reg_stride * data->irq_reg_stride);
277 			ret = regmap_write(map, reg, data->status_buf[i]);
278 			if (ret != 0)
279 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
280 					reg, ret);
281 		}
282 	}
283 
284 	for (i = 0; i < chip->num_irqs; i++) {
285 		if (data->status_buf[chip->irqs[i].reg_offset /
286 				     map->reg_stride] & chip->irqs[i].mask) {
287 			handle_nested_irq(irq_find_mapping(data->domain, i));
288 			handled = true;
289 		}
290 	}
291 
292 	if (chip->runtime_pm)
293 		pm_runtime_put(map->dev);
294 
295 	if (handled)
296 		return IRQ_HANDLED;
297 	else
298 		return IRQ_NONE;
299 }
300 
301 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
302 			  irq_hw_number_t hw)
303 {
304 	struct regmap_irq_chip_data *data = h->host_data;
305 
306 	irq_set_chip_data(virq, data);
307 	irq_set_chip(virq, &data->irq_chip);
308 	irq_set_nested_thread(virq, 1);
309 	irq_set_noprobe(virq);
310 
311 	return 0;
312 }
313 
314 static const struct irq_domain_ops regmap_domain_ops = {
315 	.map	= regmap_irq_map,
316 	.xlate	= irq_domain_xlate_twocell,
317 };
318 
319 /**
320  * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
321  *
322  * map:       The regmap for the device.
323  * irq:       The IRQ the device uses to signal interrupts
324  * irq_flags: The IRQF_ flags to use for the primary interrupt.
325  * chip:      Configuration for the interrupt controller.
326  * data:      Runtime data structure for the controller, allocated on success
327  *
328  * Returns 0 on success or an errno on failure.
329  *
330  * In order for this to be efficient the chip really should use a
331  * register cache.  The chip driver is responsible for restoring the
332  * register values used by the IRQ controller over suspend and resume.
333  */
334 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
335 			int irq_base, const struct regmap_irq_chip *chip,
336 			struct regmap_irq_chip_data **data)
337 {
338 	struct regmap_irq_chip_data *d;
339 	int i;
340 	int ret = -ENOMEM;
341 	u32 reg;
342 
343 	if (chip->num_regs <= 0)
344 		return -EINVAL;
345 
346 	for (i = 0; i < chip->num_irqs; i++) {
347 		if (chip->irqs[i].reg_offset % map->reg_stride)
348 			return -EINVAL;
349 		if (chip->irqs[i].reg_offset / map->reg_stride >=
350 		    chip->num_regs)
351 			return -EINVAL;
352 	}
353 
354 	if (irq_base) {
355 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
356 		if (irq_base < 0) {
357 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
358 				 irq_base);
359 			return irq_base;
360 		}
361 	}
362 
363 	d = kzalloc(sizeof(*d), GFP_KERNEL);
364 	if (!d)
365 		return -ENOMEM;
366 
367 	d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
368 				GFP_KERNEL);
369 	if (!d->status_buf)
370 		goto err_alloc;
371 
372 	d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
373 			      GFP_KERNEL);
374 	if (!d->mask_buf)
375 		goto err_alloc;
376 
377 	d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
378 				  GFP_KERNEL);
379 	if (!d->mask_buf_def)
380 		goto err_alloc;
381 
382 	if (chip->wake_base) {
383 		d->wake_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
384 				      GFP_KERNEL);
385 		if (!d->wake_buf)
386 			goto err_alloc;
387 	}
388 
389 	d->irq_chip = regmap_irq_chip;
390 	d->irq_chip.name = chip->name;
391 	d->irq = irq;
392 	d->map = map;
393 	d->chip = chip;
394 	d->irq_base = irq_base;
395 
396 	if (chip->irq_reg_stride)
397 		d->irq_reg_stride = chip->irq_reg_stride;
398 	else
399 		d->irq_reg_stride = 1;
400 
401 	if (!map->use_single_read && map->reg_stride == 1 &&
402 	    d->irq_reg_stride == 1) {
403 		d->status_reg_buf = kmalloc(map->format.val_bytes *
404 					    chip->num_regs, GFP_KERNEL);
405 		if (!d->status_reg_buf)
406 			goto err_alloc;
407 	}
408 
409 	mutex_init(&d->lock);
410 
411 	for (i = 0; i < chip->num_irqs; i++)
412 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
413 			|= chip->irqs[i].mask;
414 
415 	/* Mask all the interrupts by default */
416 	for (i = 0; i < chip->num_regs; i++) {
417 		d->mask_buf[i] = d->mask_buf_def[i];
418 		reg = chip->mask_base +
419 			(i * map->reg_stride * d->irq_reg_stride);
420 		if (chip->mask_invert)
421 			ret = regmap_update_bits(map, reg,
422 					 d->mask_buf[i], ~d->mask_buf[i]);
423 		else
424 			ret = regmap_update_bits(map, reg,
425 					 d->mask_buf[i], d->mask_buf[i]);
426 		if (ret != 0) {
427 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
428 				reg, ret);
429 			goto err_alloc;
430 		}
431 
432 		if (!chip->init_ack_masked)
433 			continue;
434 
435 		/* Ack masked but set interrupts */
436 		reg = chip->status_base +
437 			(i * map->reg_stride * d->irq_reg_stride);
438 		ret = regmap_read(map, reg, &d->status_buf[i]);
439 		if (ret != 0) {
440 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
441 				ret);
442 			goto err_alloc;
443 		}
444 
445 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
446 			reg = chip->ack_base +
447 				(i * map->reg_stride * d->irq_reg_stride);
448 			ret = regmap_write(map, reg,
449 					d->status_buf[i] & d->mask_buf[i]);
450 			if (ret != 0) {
451 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
452 					reg, ret);
453 				goto err_alloc;
454 			}
455 		}
456 	}
457 
458 	/* Wake is disabled by default */
459 	if (d->wake_buf) {
460 		for (i = 0; i < chip->num_regs; i++) {
461 			d->wake_buf[i] = d->mask_buf_def[i];
462 			reg = chip->wake_base +
463 				(i * map->reg_stride * d->irq_reg_stride);
464 
465 			if (chip->wake_invert)
466 				ret = regmap_update_bits(map, reg,
467 							 d->mask_buf_def[i],
468 							 0);
469 			else
470 				ret = regmap_update_bits(map, reg,
471 							 d->mask_buf_def[i],
472 							 d->wake_buf[i]);
473 			if (ret != 0) {
474 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
475 					reg, ret);
476 				goto err_alloc;
477 			}
478 		}
479 	}
480 
481 	if (irq_base)
482 		d->domain = irq_domain_add_legacy(map->dev->of_node,
483 						  chip->num_irqs, irq_base, 0,
484 						  &regmap_domain_ops, d);
485 	else
486 		d->domain = irq_domain_add_linear(map->dev->of_node,
487 						  chip->num_irqs,
488 						  &regmap_domain_ops, d);
489 	if (!d->domain) {
490 		dev_err(map->dev, "Failed to create IRQ domain\n");
491 		ret = -ENOMEM;
492 		goto err_alloc;
493 	}
494 
495 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
496 				   irq_flags | IRQF_ONESHOT,
497 				   chip->name, d);
498 	if (ret != 0) {
499 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
500 			irq, chip->name, ret);
501 		goto err_domain;
502 	}
503 
504 	*data = d;
505 
506 	return 0;
507 
508 err_domain:
509 	/* Should really dispose of the domain but... */
510 err_alloc:
511 	kfree(d->wake_buf);
512 	kfree(d->mask_buf_def);
513 	kfree(d->mask_buf);
514 	kfree(d->status_buf);
515 	kfree(d->status_reg_buf);
516 	kfree(d);
517 	return ret;
518 }
519 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
520 
521 /**
522  * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
523  *
524  * @irq: Primary IRQ for the device
525  * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
526  */
527 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
528 {
529 	if (!d)
530 		return;
531 
532 	free_irq(irq, d);
533 	irq_domain_remove(d->domain);
534 	kfree(d->wake_buf);
535 	kfree(d->mask_buf_def);
536 	kfree(d->mask_buf);
537 	kfree(d->status_reg_buf);
538 	kfree(d->status_buf);
539 	kfree(d);
540 }
541 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
542 
543 /**
544  * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
545  *
546  * Useful for drivers to request their own IRQs.
547  *
548  * @data: regmap_irq controller to operate on.
549  */
550 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
551 {
552 	WARN_ON(!data->irq_base);
553 	return data->irq_base;
554 }
555 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
556 
557 /**
558  * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
559  *
560  * Useful for drivers to request their own IRQs.
561  *
562  * @data: regmap_irq controller to operate on.
563  * @irq: index of the interrupt requested in the chip IRQs
564  */
565 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
566 {
567 	/* Handle holes in the IRQ list */
568 	if (!data->chip->irqs[irq].mask)
569 		return -EINVAL;
570 
571 	return irq_create_mapping(data->domain, irq);
572 }
573 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
574 
575 /**
576  * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
577  *
578  * Useful for drivers to request their own IRQs and for integration
579  * with subsystems.  For ease of integration NULL is accepted as a
580  * domain, allowing devices to just call this even if no domain is
581  * allocated.
582  *
583  * @data: regmap_irq controller to operate on.
584  */
585 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
586 {
587 	if (data)
588 		return data->domain;
589 	else
590 		return NULL;
591 }
592 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
593