xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision da1d9caf)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	void *status_reg_buf;
34 	unsigned int *main_status_buf;
35 	unsigned int *status_buf;
36 	unsigned int *mask_buf;
37 	unsigned int *mask_buf_def;
38 	unsigned int *wake_buf;
39 	unsigned int *type_buf;
40 	unsigned int *type_buf_def;
41 	unsigned int **virt_buf;
42 
43 	unsigned int irq_reg_stride;
44 	unsigned int type_reg_stride;
45 
46 	bool clear_status:1;
47 };
48 
49 static int sub_irq_reg(struct regmap_irq_chip_data *data,
50 		       unsigned int base_reg, int i)
51 {
52 	const struct regmap_irq_chip *chip = data->chip;
53 	struct regmap *map = data->map;
54 	struct regmap_irq_sub_irq_map *subreg;
55 	unsigned int offset;
56 	int reg = 0;
57 
58 	if (!chip->sub_reg_offsets || !chip->not_fixed_stride) {
59 		/* Assume linear mapping */
60 		reg = base_reg + (i * map->reg_stride * data->irq_reg_stride);
61 	} else {
62 		subreg = &chip->sub_reg_offsets[i];
63 		offset = subreg->offset[0];
64 		reg = base_reg + offset;
65 	}
66 
67 	return reg;
68 }
69 
70 static inline const
71 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
72 				     int irq)
73 {
74 	return &data->chip->irqs[irq];
75 }
76 
77 static void regmap_irq_lock(struct irq_data *data)
78 {
79 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
80 
81 	mutex_lock(&d->lock);
82 }
83 
84 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
85 				  unsigned int reg, unsigned int mask,
86 				  unsigned int val)
87 {
88 	if (d->chip->mask_writeonly)
89 		return regmap_write_bits(d->map, reg, mask, val);
90 	else
91 		return regmap_update_bits(d->map, reg, mask, val);
92 }
93 
94 static void regmap_irq_sync_unlock(struct irq_data *data)
95 {
96 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
97 	struct regmap *map = d->map;
98 	int i, j, ret;
99 	u32 reg;
100 	u32 unmask_offset;
101 	u32 val;
102 
103 	if (d->chip->runtime_pm) {
104 		ret = pm_runtime_get_sync(map->dev);
105 		if (ret < 0)
106 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
107 				ret);
108 	}
109 
110 	if (d->clear_status) {
111 		for (i = 0; i < d->chip->num_regs; i++) {
112 			reg = sub_irq_reg(d, d->chip->status_base, i);
113 
114 			ret = regmap_read(map, reg, &val);
115 			if (ret)
116 				dev_err(d->map->dev,
117 					"Failed to clear the interrupt status bits\n");
118 		}
119 
120 		d->clear_status = false;
121 	}
122 
123 	/*
124 	 * If there's been a change in the mask write it back to the
125 	 * hardware.  We rely on the use of the regmap core cache to
126 	 * suppress pointless writes.
127 	 */
128 	for (i = 0; i < d->chip->num_regs; i++) {
129 		if (!d->chip->mask_base)
130 			continue;
131 
132 		reg = sub_irq_reg(d, d->chip->mask_base, i);
133 		if (d->chip->mask_invert) {
134 			ret = regmap_irq_update_bits(d, reg,
135 					 d->mask_buf_def[i], ~d->mask_buf[i]);
136 		} else if (d->chip->unmask_base) {
137 			/* set mask with mask_base register */
138 			ret = regmap_irq_update_bits(d, reg,
139 					d->mask_buf_def[i], ~d->mask_buf[i]);
140 			if (ret < 0)
141 				dev_err(d->map->dev,
142 					"Failed to sync unmasks in %x\n",
143 					reg);
144 			unmask_offset = d->chip->unmask_base -
145 							d->chip->mask_base;
146 			/* clear mask with unmask_base register */
147 			ret = regmap_irq_update_bits(d,
148 					reg + unmask_offset,
149 					d->mask_buf_def[i],
150 					d->mask_buf[i]);
151 		} else {
152 			ret = regmap_irq_update_bits(d, reg,
153 					 d->mask_buf_def[i], d->mask_buf[i]);
154 		}
155 		if (ret != 0)
156 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
157 				reg);
158 
159 		reg = sub_irq_reg(d, d->chip->wake_base, i);
160 		if (d->wake_buf) {
161 			if (d->chip->wake_invert)
162 				ret = regmap_irq_update_bits(d, reg,
163 							 d->mask_buf_def[i],
164 							 ~d->wake_buf[i]);
165 			else
166 				ret = regmap_irq_update_bits(d, reg,
167 							 d->mask_buf_def[i],
168 							 d->wake_buf[i]);
169 			if (ret != 0)
170 				dev_err(d->map->dev,
171 					"Failed to sync wakes in %x: %d\n",
172 					reg, ret);
173 		}
174 
175 		if (!d->chip->init_ack_masked)
176 			continue;
177 		/*
178 		 * Ack all the masked interrupts unconditionally,
179 		 * OR if there is masked interrupt which hasn't been Acked,
180 		 * it'll be ignored in irq handler, then may introduce irq storm
181 		 */
182 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
183 			reg = sub_irq_reg(d, d->chip->ack_base, i);
184 
185 			/* some chips ack by write 0 */
186 			if (d->chip->ack_invert)
187 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
188 			else
189 				ret = regmap_write(map, reg, d->mask_buf[i]);
190 			if (d->chip->clear_ack) {
191 				if (d->chip->ack_invert && !ret)
192 					ret = regmap_write(map, reg, UINT_MAX);
193 				else if (!ret)
194 					ret = regmap_write(map, reg, 0);
195 			}
196 			if (ret != 0)
197 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
198 					reg, ret);
199 		}
200 	}
201 
202 	/* Don't update the type bits if we're using mask bits for irq type. */
203 	if (!d->chip->type_in_mask) {
204 		for (i = 0; i < d->chip->num_type_reg; i++) {
205 			if (!d->type_buf_def[i])
206 				continue;
207 			reg = sub_irq_reg(d, d->chip->type_base, i);
208 			if (d->chip->type_invert)
209 				ret = regmap_irq_update_bits(d, reg,
210 					d->type_buf_def[i], ~d->type_buf[i]);
211 			else
212 				ret = regmap_irq_update_bits(d, reg,
213 					d->type_buf_def[i], d->type_buf[i]);
214 			if (ret != 0)
215 				dev_err(d->map->dev, "Failed to sync type in %x\n",
216 					reg);
217 		}
218 	}
219 
220 	if (d->chip->num_virt_regs) {
221 		for (i = 0; i < d->chip->num_virt_regs; i++) {
222 			for (j = 0; j < d->chip->num_regs; j++) {
223 				reg = sub_irq_reg(d, d->chip->virt_reg_base[i],
224 						  j);
225 				ret = regmap_write(map, reg, d->virt_buf[i][j]);
226 				if (ret != 0)
227 					dev_err(d->map->dev,
228 						"Failed to write virt 0x%x: %d\n",
229 						reg, ret);
230 			}
231 		}
232 	}
233 
234 	if (d->chip->runtime_pm)
235 		pm_runtime_put(map->dev);
236 
237 	/* If we've changed our wakeup count propagate it to the parent */
238 	if (d->wake_count < 0)
239 		for (i = d->wake_count; i < 0; i++)
240 			irq_set_irq_wake(d->irq, 0);
241 	else if (d->wake_count > 0)
242 		for (i = 0; i < d->wake_count; i++)
243 			irq_set_irq_wake(d->irq, 1);
244 
245 	d->wake_count = 0;
246 
247 	mutex_unlock(&d->lock);
248 }
249 
250 static void regmap_irq_enable(struct irq_data *data)
251 {
252 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
253 	struct regmap *map = d->map;
254 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
255 	unsigned int mask, type;
256 
257 	type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
258 
259 	/*
260 	 * The type_in_mask flag means that the underlying hardware uses
261 	 * separate mask bits for rising and falling edge interrupts, but
262 	 * we want to make them into a single virtual interrupt with
263 	 * configurable edge.
264 	 *
265 	 * If the interrupt we're enabling defines the falling or rising
266 	 * masks then instead of using the regular mask bits for this
267 	 * interrupt, use the value previously written to the type buffer
268 	 * at the corresponding offset in regmap_irq_set_type().
269 	 */
270 	if (d->chip->type_in_mask && type)
271 		mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
272 	else
273 		mask = irq_data->mask;
274 
275 	if (d->chip->clear_on_unmask)
276 		d->clear_status = true;
277 
278 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
279 }
280 
281 static void regmap_irq_disable(struct irq_data *data)
282 {
283 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
284 	struct regmap *map = d->map;
285 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
286 
287 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
288 }
289 
290 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
291 {
292 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
293 	struct regmap *map = d->map;
294 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
295 	int reg;
296 	const struct regmap_irq_type *t = &irq_data->type;
297 
298 	if ((t->types_supported & type) != type)
299 		return 0;
300 
301 	reg = t->type_reg_offset / map->reg_stride;
302 
303 	if (t->type_reg_mask)
304 		d->type_buf[reg] &= ~t->type_reg_mask;
305 	else
306 		d->type_buf[reg] &= ~(t->type_falling_val |
307 				      t->type_rising_val |
308 				      t->type_level_low_val |
309 				      t->type_level_high_val);
310 	switch (type) {
311 	case IRQ_TYPE_EDGE_FALLING:
312 		d->type_buf[reg] |= t->type_falling_val;
313 		break;
314 
315 	case IRQ_TYPE_EDGE_RISING:
316 		d->type_buf[reg] |= t->type_rising_val;
317 		break;
318 
319 	case IRQ_TYPE_EDGE_BOTH:
320 		d->type_buf[reg] |= (t->type_falling_val |
321 					t->type_rising_val);
322 		break;
323 
324 	case IRQ_TYPE_LEVEL_HIGH:
325 		d->type_buf[reg] |= t->type_level_high_val;
326 		break;
327 
328 	case IRQ_TYPE_LEVEL_LOW:
329 		d->type_buf[reg] |= t->type_level_low_val;
330 		break;
331 	default:
332 		return -EINVAL;
333 	}
334 
335 	if (d->chip->set_type_virt)
336 		return d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
337 					      reg);
338 
339 	return 0;
340 }
341 
342 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
343 {
344 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
345 	struct regmap *map = d->map;
346 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
347 
348 	if (on) {
349 		if (d->wake_buf)
350 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
351 				&= ~irq_data->mask;
352 		d->wake_count++;
353 	} else {
354 		if (d->wake_buf)
355 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
356 				|= irq_data->mask;
357 		d->wake_count--;
358 	}
359 
360 	return 0;
361 }
362 
363 static const struct irq_chip regmap_irq_chip = {
364 	.irq_bus_lock		= regmap_irq_lock,
365 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
366 	.irq_disable		= regmap_irq_disable,
367 	.irq_enable		= regmap_irq_enable,
368 	.irq_set_type		= regmap_irq_set_type,
369 	.irq_set_wake		= regmap_irq_set_wake,
370 };
371 
372 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
373 					   unsigned int b)
374 {
375 	const struct regmap_irq_chip *chip = data->chip;
376 	struct regmap *map = data->map;
377 	struct regmap_irq_sub_irq_map *subreg;
378 	int i, ret = 0;
379 
380 	if (!chip->sub_reg_offsets) {
381 		/* Assume linear mapping */
382 		ret = regmap_read(map, chip->status_base +
383 				  (b * map->reg_stride * data->irq_reg_stride),
384 				   &data->status_buf[b]);
385 	} else {
386 		subreg = &chip->sub_reg_offsets[b];
387 		for (i = 0; i < subreg->num_regs; i++) {
388 			unsigned int offset = subreg->offset[i];
389 
390 			if (chip->not_fixed_stride)
391 				ret = regmap_read(map,
392 						chip->status_base + offset,
393 						&data->status_buf[b]);
394 			else
395 				ret = regmap_read(map,
396 						chip->status_base + offset,
397 						&data->status_buf[offset]);
398 
399 			if (ret)
400 				break;
401 		}
402 	}
403 	return ret;
404 }
405 
406 static irqreturn_t regmap_irq_thread(int irq, void *d)
407 {
408 	struct regmap_irq_chip_data *data = d;
409 	const struct regmap_irq_chip *chip = data->chip;
410 	struct regmap *map = data->map;
411 	int ret, i;
412 	bool handled = false;
413 	u32 reg;
414 
415 	if (chip->handle_pre_irq)
416 		chip->handle_pre_irq(chip->irq_drv_data);
417 
418 	if (chip->runtime_pm) {
419 		ret = pm_runtime_get_sync(map->dev);
420 		if (ret < 0) {
421 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
422 				ret);
423 			goto exit;
424 		}
425 	}
426 
427 	/*
428 	 * Read only registers with active IRQs if the chip has 'main status
429 	 * register'. Else read in the statuses, using a single bulk read if
430 	 * possible in order to reduce the I/O overheads.
431 	 */
432 
433 	if (chip->num_main_regs) {
434 		unsigned int max_main_bits;
435 		unsigned long size;
436 
437 		size = chip->num_regs * sizeof(unsigned int);
438 
439 		max_main_bits = (chip->num_main_status_bits) ?
440 				 chip->num_main_status_bits : chip->num_regs;
441 		/* Clear the status buf as we don't read all status regs */
442 		memset(data->status_buf, 0, size);
443 
444 		/* We could support bulk read for main status registers
445 		 * but I don't expect to see devices with really many main
446 		 * status registers so let's only support single reads for the
447 		 * sake of simplicity. and add bulk reads only if needed
448 		 */
449 		for (i = 0; i < chip->num_main_regs; i++) {
450 			ret = regmap_read(map, chip->main_status +
451 				  (i * map->reg_stride
452 				   * data->irq_reg_stride),
453 				  &data->main_status_buf[i]);
454 			if (ret) {
455 				dev_err(map->dev,
456 					"Failed to read IRQ status %d\n",
457 					ret);
458 				goto exit;
459 			}
460 		}
461 
462 		/* Read sub registers with active IRQs */
463 		for (i = 0; i < chip->num_main_regs; i++) {
464 			unsigned int b;
465 			const unsigned long mreg = data->main_status_buf[i];
466 
467 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
468 				if (i * map->format.val_bytes * 8 + b >
469 				    max_main_bits)
470 					break;
471 				ret = read_sub_irq_data(data, b);
472 
473 				if (ret != 0) {
474 					dev_err(map->dev,
475 						"Failed to read IRQ status %d\n",
476 						ret);
477 					goto exit;
478 				}
479 			}
480 
481 		}
482 	} else if (!map->use_single_read && map->reg_stride == 1 &&
483 		   data->irq_reg_stride == 1) {
484 
485 		u8 *buf8 = data->status_reg_buf;
486 		u16 *buf16 = data->status_reg_buf;
487 		u32 *buf32 = data->status_reg_buf;
488 
489 		BUG_ON(!data->status_reg_buf);
490 
491 		ret = regmap_bulk_read(map, chip->status_base,
492 				       data->status_reg_buf,
493 				       chip->num_regs);
494 		if (ret != 0) {
495 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
496 				ret);
497 			goto exit;
498 		}
499 
500 		for (i = 0; i < data->chip->num_regs; i++) {
501 			switch (map->format.val_bytes) {
502 			case 1:
503 				data->status_buf[i] = buf8[i];
504 				break;
505 			case 2:
506 				data->status_buf[i] = buf16[i];
507 				break;
508 			case 4:
509 				data->status_buf[i] = buf32[i];
510 				break;
511 			default:
512 				BUG();
513 				goto exit;
514 			}
515 		}
516 
517 	} else {
518 		for (i = 0; i < data->chip->num_regs; i++) {
519 			unsigned int reg = sub_irq_reg(data,
520 					data->chip->status_base, i);
521 			ret = regmap_read(map, reg, &data->status_buf[i]);
522 
523 			if (ret != 0) {
524 				dev_err(map->dev,
525 					"Failed to read IRQ status: %d\n",
526 					ret);
527 				goto exit;
528 			}
529 		}
530 	}
531 
532 	if (chip->status_invert)
533 		for (i = 0; i < data->chip->num_regs; i++)
534 			data->status_buf[i] = ~data->status_buf[i];
535 
536 	/*
537 	 * Ignore masked IRQs and ack if we need to; we ack early so
538 	 * there is no race between handling and acknowledging the
539 	 * interrupt.  We assume that typically few of the interrupts
540 	 * will fire simultaneously so don't worry about overhead from
541 	 * doing a write per register.
542 	 */
543 	for (i = 0; i < data->chip->num_regs; i++) {
544 		data->status_buf[i] &= ~data->mask_buf[i];
545 
546 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
547 			reg = sub_irq_reg(data, data->chip->ack_base, i);
548 
549 			if (chip->ack_invert)
550 				ret = regmap_write(map, reg,
551 						~data->status_buf[i]);
552 			else
553 				ret = regmap_write(map, reg,
554 						data->status_buf[i]);
555 			if (chip->clear_ack) {
556 				if (chip->ack_invert && !ret)
557 					ret = regmap_write(map, reg, UINT_MAX);
558 				else if (!ret)
559 					ret = regmap_write(map, reg, 0);
560 			}
561 			if (ret != 0)
562 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
563 					reg, ret);
564 		}
565 	}
566 
567 	for (i = 0; i < chip->num_irqs; i++) {
568 		if (data->status_buf[chip->irqs[i].reg_offset /
569 				     map->reg_stride] & chip->irqs[i].mask) {
570 			handle_nested_irq(irq_find_mapping(data->domain, i));
571 			handled = true;
572 		}
573 	}
574 
575 exit:
576 	if (chip->runtime_pm)
577 		pm_runtime_put(map->dev);
578 
579 	if (chip->handle_post_irq)
580 		chip->handle_post_irq(chip->irq_drv_data);
581 
582 	if (handled)
583 		return IRQ_HANDLED;
584 	else
585 		return IRQ_NONE;
586 }
587 
588 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
589 			  irq_hw_number_t hw)
590 {
591 	struct regmap_irq_chip_data *data = h->host_data;
592 
593 	irq_set_chip_data(virq, data);
594 	irq_set_chip(virq, &data->irq_chip);
595 	irq_set_nested_thread(virq, 1);
596 	irq_set_parent(virq, data->irq);
597 	irq_set_noprobe(virq);
598 
599 	return 0;
600 }
601 
602 static const struct irq_domain_ops regmap_domain_ops = {
603 	.map	= regmap_irq_map,
604 	.xlate	= irq_domain_xlate_onetwocell,
605 };
606 
607 /**
608  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
609  *
610  * @fwnode: The firmware node where the IRQ domain should be added to.
611  * @map: The regmap for the device.
612  * @irq: The IRQ the device uses to signal interrupts.
613  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
614  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
615  * @chip: Configuration for the interrupt controller.
616  * @data: Runtime data structure for the controller, allocated on success.
617  *
618  * Returns 0 on success or an errno on failure.
619  *
620  * In order for this to be efficient the chip really should use a
621  * register cache.  The chip driver is responsible for restoring the
622  * register values used by the IRQ controller over suspend and resume.
623  */
624 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
625 			       struct regmap *map, int irq,
626 			       int irq_flags, int irq_base,
627 			       const struct regmap_irq_chip *chip,
628 			       struct regmap_irq_chip_data **data)
629 {
630 	struct regmap_irq_chip_data *d;
631 	int i;
632 	int ret = -ENOMEM;
633 	int num_type_reg;
634 	u32 reg;
635 	u32 unmask_offset;
636 
637 	if (chip->num_regs <= 0)
638 		return -EINVAL;
639 
640 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
641 		return -EINVAL;
642 
643 	for (i = 0; i < chip->num_irqs; i++) {
644 		if (chip->irqs[i].reg_offset % map->reg_stride)
645 			return -EINVAL;
646 		if (chip->irqs[i].reg_offset / map->reg_stride >=
647 		    chip->num_regs)
648 			return -EINVAL;
649 	}
650 
651 	if (chip->not_fixed_stride) {
652 		for (i = 0; i < chip->num_regs; i++)
653 			if (chip->sub_reg_offsets[i].num_regs != 1)
654 				return -EINVAL;
655 	}
656 
657 	if (irq_base) {
658 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
659 		if (irq_base < 0) {
660 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
661 				 irq_base);
662 			return irq_base;
663 		}
664 	}
665 
666 	d = kzalloc(sizeof(*d), GFP_KERNEL);
667 	if (!d)
668 		return -ENOMEM;
669 
670 	if (chip->num_main_regs) {
671 		d->main_status_buf = kcalloc(chip->num_main_regs,
672 					     sizeof(unsigned int),
673 					     GFP_KERNEL);
674 
675 		if (!d->main_status_buf)
676 			goto err_alloc;
677 	}
678 
679 	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
680 				GFP_KERNEL);
681 	if (!d->status_buf)
682 		goto err_alloc;
683 
684 	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
685 			      GFP_KERNEL);
686 	if (!d->mask_buf)
687 		goto err_alloc;
688 
689 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
690 				  GFP_KERNEL);
691 	if (!d->mask_buf_def)
692 		goto err_alloc;
693 
694 	if (chip->wake_base) {
695 		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
696 				      GFP_KERNEL);
697 		if (!d->wake_buf)
698 			goto err_alloc;
699 	}
700 
701 	num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
702 	if (num_type_reg) {
703 		d->type_buf_def = kcalloc(num_type_reg,
704 					  sizeof(unsigned int), GFP_KERNEL);
705 		if (!d->type_buf_def)
706 			goto err_alloc;
707 
708 		d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
709 				      GFP_KERNEL);
710 		if (!d->type_buf)
711 			goto err_alloc;
712 	}
713 
714 	if (chip->num_virt_regs) {
715 		/*
716 		 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
717 		 */
718 		d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
719 				      GFP_KERNEL);
720 		if (!d->virt_buf)
721 			goto err_alloc;
722 
723 		for (i = 0; i < chip->num_virt_regs; i++) {
724 			d->virt_buf[i] = kcalloc(chip->num_regs,
725 						 sizeof(unsigned int),
726 						 GFP_KERNEL);
727 			if (!d->virt_buf[i])
728 				goto err_alloc;
729 		}
730 	}
731 
732 	d->irq_chip = regmap_irq_chip;
733 	d->irq_chip.name = chip->name;
734 	d->irq = irq;
735 	d->map = map;
736 	d->chip = chip;
737 	d->irq_base = irq_base;
738 
739 	if (chip->irq_reg_stride)
740 		d->irq_reg_stride = chip->irq_reg_stride;
741 	else
742 		d->irq_reg_stride = 1;
743 
744 	if (chip->type_reg_stride)
745 		d->type_reg_stride = chip->type_reg_stride;
746 	else
747 		d->type_reg_stride = 1;
748 
749 	if (!map->use_single_read && map->reg_stride == 1 &&
750 	    d->irq_reg_stride == 1) {
751 		d->status_reg_buf = kmalloc_array(chip->num_regs,
752 						  map->format.val_bytes,
753 						  GFP_KERNEL);
754 		if (!d->status_reg_buf)
755 			goto err_alloc;
756 	}
757 
758 	mutex_init(&d->lock);
759 
760 	for (i = 0; i < chip->num_irqs; i++)
761 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
762 			|= chip->irqs[i].mask;
763 
764 	/* Mask all the interrupts by default */
765 	for (i = 0; i < chip->num_regs; i++) {
766 		d->mask_buf[i] = d->mask_buf_def[i];
767 		if (!chip->mask_base)
768 			continue;
769 
770 		reg = sub_irq_reg(d, d->chip->mask_base, i);
771 
772 		if (chip->mask_invert)
773 			ret = regmap_irq_update_bits(d, reg,
774 					 d->mask_buf[i], ~d->mask_buf[i]);
775 		else if (d->chip->unmask_base) {
776 			unmask_offset = d->chip->unmask_base -
777 					d->chip->mask_base;
778 			ret = regmap_irq_update_bits(d,
779 					reg + unmask_offset,
780 					d->mask_buf[i],
781 					d->mask_buf[i]);
782 		} else
783 			ret = regmap_irq_update_bits(d, reg,
784 					 d->mask_buf[i], d->mask_buf[i]);
785 		if (ret != 0) {
786 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
787 				reg, ret);
788 			goto err_alloc;
789 		}
790 
791 		if (!chip->init_ack_masked)
792 			continue;
793 
794 		/* Ack masked but set interrupts */
795 		reg = sub_irq_reg(d, d->chip->status_base, i);
796 		ret = regmap_read(map, reg, &d->status_buf[i]);
797 		if (ret != 0) {
798 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
799 				ret);
800 			goto err_alloc;
801 		}
802 
803 		if (chip->status_invert)
804 			d->status_buf[i] = ~d->status_buf[i];
805 
806 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
807 			reg = sub_irq_reg(d, d->chip->ack_base, i);
808 			if (chip->ack_invert)
809 				ret = regmap_write(map, reg,
810 					~(d->status_buf[i] & d->mask_buf[i]));
811 			else
812 				ret = regmap_write(map, reg,
813 					d->status_buf[i] & d->mask_buf[i]);
814 			if (chip->clear_ack) {
815 				if (chip->ack_invert && !ret)
816 					ret = regmap_write(map, reg, UINT_MAX);
817 				else if (!ret)
818 					ret = regmap_write(map, reg, 0);
819 			}
820 			if (ret != 0) {
821 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
822 					reg, ret);
823 				goto err_alloc;
824 			}
825 		}
826 	}
827 
828 	/* Wake is disabled by default */
829 	if (d->wake_buf) {
830 		for (i = 0; i < chip->num_regs; i++) {
831 			d->wake_buf[i] = d->mask_buf_def[i];
832 			reg = sub_irq_reg(d, d->chip->wake_base, i);
833 
834 			if (chip->wake_invert)
835 				ret = regmap_irq_update_bits(d, reg,
836 							 d->mask_buf_def[i],
837 							 0);
838 			else
839 				ret = regmap_irq_update_bits(d, reg,
840 							 d->mask_buf_def[i],
841 							 d->wake_buf[i]);
842 			if (ret != 0) {
843 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
844 					reg, ret);
845 				goto err_alloc;
846 			}
847 		}
848 	}
849 
850 	if (chip->num_type_reg && !chip->type_in_mask) {
851 		for (i = 0; i < chip->num_type_reg; ++i) {
852 			reg = sub_irq_reg(d, d->chip->type_base, i);
853 
854 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
855 
856 			if (d->chip->type_invert)
857 				d->type_buf_def[i] = ~d->type_buf_def[i];
858 
859 			if (ret) {
860 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
861 					reg, ret);
862 				goto err_alloc;
863 			}
864 		}
865 	}
866 
867 	if (irq_base)
868 		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
869 						     irq_base, 0,
870 						     &regmap_domain_ops, d);
871 	else
872 		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
873 						     &regmap_domain_ops, d);
874 	if (!d->domain) {
875 		dev_err(map->dev, "Failed to create IRQ domain\n");
876 		ret = -ENOMEM;
877 		goto err_alloc;
878 	}
879 
880 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
881 				   irq_flags | IRQF_ONESHOT,
882 				   chip->name, d);
883 	if (ret != 0) {
884 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
885 			irq, chip->name, ret);
886 		goto err_domain;
887 	}
888 
889 	*data = d;
890 
891 	return 0;
892 
893 err_domain:
894 	/* Should really dispose of the domain but... */
895 err_alloc:
896 	kfree(d->type_buf);
897 	kfree(d->type_buf_def);
898 	kfree(d->wake_buf);
899 	kfree(d->mask_buf_def);
900 	kfree(d->mask_buf);
901 	kfree(d->status_buf);
902 	kfree(d->status_reg_buf);
903 	if (d->virt_buf) {
904 		for (i = 0; i < chip->num_virt_regs; i++)
905 			kfree(d->virt_buf[i]);
906 		kfree(d->virt_buf);
907 	}
908 	kfree(d);
909 	return ret;
910 }
911 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
912 
913 /**
914  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
915  *
916  * @map: The regmap for the device.
917  * @irq: The IRQ the device uses to signal interrupts.
918  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
919  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
920  * @chip: Configuration for the interrupt controller.
921  * @data: Runtime data structure for the controller, allocated on success.
922  *
923  * Returns 0 on success or an errno on failure.
924  *
925  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
926  * node of the regmap is used.
927  */
928 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
929 			int irq_base, const struct regmap_irq_chip *chip,
930 			struct regmap_irq_chip_data **data)
931 {
932 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
933 					  irq_flags, irq_base, chip, data);
934 }
935 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
936 
937 /**
938  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
939  *
940  * @irq: Primary IRQ for the device
941  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
942  *
943  * This function also disposes of all mapped IRQs on the chip.
944  */
945 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
946 {
947 	unsigned int virq;
948 	int hwirq;
949 
950 	if (!d)
951 		return;
952 
953 	free_irq(irq, d);
954 
955 	/* Dispose all virtual irq from irq domain before removing it */
956 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
957 		/* Ignore hwirq if holes in the IRQ list */
958 		if (!d->chip->irqs[hwirq].mask)
959 			continue;
960 
961 		/*
962 		 * Find the virtual irq of hwirq on chip and if it is
963 		 * there then dispose it
964 		 */
965 		virq = irq_find_mapping(d->domain, hwirq);
966 		if (virq)
967 			irq_dispose_mapping(virq);
968 	}
969 
970 	irq_domain_remove(d->domain);
971 	kfree(d->type_buf);
972 	kfree(d->type_buf_def);
973 	kfree(d->wake_buf);
974 	kfree(d->mask_buf_def);
975 	kfree(d->mask_buf);
976 	kfree(d->status_reg_buf);
977 	kfree(d->status_buf);
978 	kfree(d);
979 }
980 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
981 
982 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
983 {
984 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
985 
986 	regmap_del_irq_chip(d->irq, d);
987 }
988 
989 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
990 
991 {
992 	struct regmap_irq_chip_data **r = res;
993 
994 	if (!r || !*r) {
995 		WARN_ON(!r || !*r);
996 		return 0;
997 	}
998 	return *r == data;
999 }
1000 
1001 /**
1002  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1003  *
1004  * @dev: The device pointer on which irq_chip belongs to.
1005  * @fwnode: The firmware node where the IRQ domain should be added to.
1006  * @map: The regmap for the device.
1007  * @irq: The IRQ the device uses to signal interrupts
1008  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1009  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1010  * @chip: Configuration for the interrupt controller.
1011  * @data: Runtime data structure for the controller, allocated on success
1012  *
1013  * Returns 0 on success or an errno on failure.
1014  *
1015  * The &regmap_irq_chip_data will be automatically released when the device is
1016  * unbound.
1017  */
1018 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1019 				    struct fwnode_handle *fwnode,
1020 				    struct regmap *map, int irq,
1021 				    int irq_flags, int irq_base,
1022 				    const struct regmap_irq_chip *chip,
1023 				    struct regmap_irq_chip_data **data)
1024 {
1025 	struct regmap_irq_chip_data **ptr, *d;
1026 	int ret;
1027 
1028 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1029 			   GFP_KERNEL);
1030 	if (!ptr)
1031 		return -ENOMEM;
1032 
1033 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1034 					 chip, &d);
1035 	if (ret < 0) {
1036 		devres_free(ptr);
1037 		return ret;
1038 	}
1039 
1040 	*ptr = d;
1041 	devres_add(dev, ptr);
1042 	*data = d;
1043 	return 0;
1044 }
1045 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1046 
1047 /**
1048  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1049  *
1050  * @dev: The device pointer on which irq_chip belongs to.
1051  * @map: The regmap for the device.
1052  * @irq: The IRQ the device uses to signal interrupts
1053  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1054  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1055  * @chip: Configuration for the interrupt controller.
1056  * @data: Runtime data structure for the controller, allocated on success
1057  *
1058  * Returns 0 on success or an errno on failure.
1059  *
1060  * The &regmap_irq_chip_data will be automatically released when the device is
1061  * unbound.
1062  */
1063 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1064 			     int irq_flags, int irq_base,
1065 			     const struct regmap_irq_chip *chip,
1066 			     struct regmap_irq_chip_data **data)
1067 {
1068 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1069 					       irq, irq_flags, irq_base, chip,
1070 					       data);
1071 }
1072 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1073 
1074 /**
1075  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1076  *
1077  * @dev: Device for which the resource was allocated.
1078  * @irq: Primary IRQ for the device.
1079  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1080  *
1081  * A resource managed version of regmap_del_irq_chip().
1082  */
1083 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1084 			      struct regmap_irq_chip_data *data)
1085 {
1086 	int rc;
1087 
1088 	WARN_ON(irq != data->irq);
1089 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1090 			    devm_regmap_irq_chip_match, data);
1091 
1092 	if (rc != 0)
1093 		WARN_ON(rc);
1094 }
1095 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1096 
1097 /**
1098  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1099  *
1100  * @data: regmap irq controller to operate on.
1101  *
1102  * Useful for drivers to request their own IRQs.
1103  */
1104 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1105 {
1106 	WARN_ON(!data->irq_base);
1107 	return data->irq_base;
1108 }
1109 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1110 
1111 /**
1112  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1113  *
1114  * @data: regmap irq controller to operate on.
1115  * @irq: index of the interrupt requested in the chip IRQs.
1116  *
1117  * Useful for drivers to request their own IRQs.
1118  */
1119 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1120 {
1121 	/* Handle holes in the IRQ list */
1122 	if (!data->chip->irqs[irq].mask)
1123 		return -EINVAL;
1124 
1125 	return irq_create_mapping(data->domain, irq);
1126 }
1127 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1128 
1129 /**
1130  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1131  *
1132  * @data: regmap_irq controller to operate on.
1133  *
1134  * Useful for drivers to request their own IRQs and for integration
1135  * with subsystems.  For ease of integration NULL is accepted as a
1136  * domain, allowing devices to just call this even if no domain is
1137  * allocated.
1138  */
1139 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1140 {
1141 	if (data)
1142 		return data->domain;
1143 	else
1144 		return NULL;
1145 }
1146 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1147