xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision cee50c2a)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	void *status_reg_buf;
34 	unsigned int *main_status_buf;
35 	unsigned int *status_buf;
36 	unsigned int *mask_buf;
37 	unsigned int *mask_buf_def;
38 	unsigned int *wake_buf;
39 	unsigned int *type_buf;
40 	unsigned int *type_buf_def;
41 
42 	unsigned int irq_reg_stride;
43 	unsigned int type_reg_stride;
44 
45 	bool clear_status:1;
46 };
47 
48 static inline const
49 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
50 				     int irq)
51 {
52 	return &data->chip->irqs[irq];
53 }
54 
55 static void regmap_irq_lock(struct irq_data *data)
56 {
57 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
58 
59 	mutex_lock(&d->lock);
60 }
61 
62 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
63 				  unsigned int reg, unsigned int mask,
64 				  unsigned int val)
65 {
66 	if (d->chip->mask_writeonly)
67 		return regmap_write_bits(d->map, reg, mask, val);
68 	else
69 		return regmap_update_bits(d->map, reg, mask, val);
70 }
71 
72 static void regmap_irq_sync_unlock(struct irq_data *data)
73 {
74 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75 	struct regmap *map = d->map;
76 	int i, ret;
77 	u32 reg;
78 	u32 unmask_offset;
79 	u32 val;
80 
81 	if (d->chip->runtime_pm) {
82 		ret = pm_runtime_get_sync(map->dev);
83 		if (ret < 0)
84 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85 				ret);
86 	}
87 
88 	if (d->clear_status) {
89 		for (i = 0; i < d->chip->num_regs; i++) {
90 			reg = d->chip->status_base +
91 				(i * map->reg_stride * d->irq_reg_stride);
92 
93 			ret = regmap_read(map, reg, &val);
94 			if (ret)
95 				dev_err(d->map->dev,
96 					"Failed to clear the interrupt status bits\n");
97 		}
98 
99 		d->clear_status = false;
100 	}
101 
102 	/*
103 	 * If there's been a change in the mask write it back to the
104 	 * hardware.  We rely on the use of the regmap core cache to
105 	 * suppress pointless writes.
106 	 */
107 	for (i = 0; i < d->chip->num_regs; i++) {
108 		if (!d->chip->mask_base)
109 			continue;
110 
111 		reg = d->chip->mask_base +
112 			(i * map->reg_stride * d->irq_reg_stride);
113 		if (d->chip->mask_invert) {
114 			ret = regmap_irq_update_bits(d, reg,
115 					 d->mask_buf_def[i], ~d->mask_buf[i]);
116 		} else if (d->chip->unmask_base) {
117 			/* set mask with mask_base register */
118 			ret = regmap_irq_update_bits(d, reg,
119 					d->mask_buf_def[i], ~d->mask_buf[i]);
120 			if (ret < 0)
121 				dev_err(d->map->dev,
122 					"Failed to sync unmasks in %x\n",
123 					reg);
124 			unmask_offset = d->chip->unmask_base -
125 							d->chip->mask_base;
126 			/* clear mask with unmask_base register */
127 			ret = regmap_irq_update_bits(d,
128 					reg + unmask_offset,
129 					d->mask_buf_def[i],
130 					d->mask_buf[i]);
131 		} else {
132 			ret = regmap_irq_update_bits(d, reg,
133 					 d->mask_buf_def[i], d->mask_buf[i]);
134 		}
135 		if (ret != 0)
136 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
137 				reg);
138 
139 		reg = d->chip->wake_base +
140 			(i * map->reg_stride * d->irq_reg_stride);
141 		if (d->wake_buf) {
142 			if (d->chip->wake_invert)
143 				ret = regmap_irq_update_bits(d, reg,
144 							 d->mask_buf_def[i],
145 							 ~d->wake_buf[i]);
146 			else
147 				ret = regmap_irq_update_bits(d, reg,
148 							 d->mask_buf_def[i],
149 							 d->wake_buf[i]);
150 			if (ret != 0)
151 				dev_err(d->map->dev,
152 					"Failed to sync wakes in %x: %d\n",
153 					reg, ret);
154 		}
155 
156 		if (!d->chip->init_ack_masked)
157 			continue;
158 		/*
159 		 * Ack all the masked interrupts unconditionally,
160 		 * OR if there is masked interrupt which hasn't been Acked,
161 		 * it'll be ignored in irq handler, then may introduce irq storm
162 		 */
163 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 			reg = d->chip->ack_base +
165 				(i * map->reg_stride * d->irq_reg_stride);
166 			/* some chips ack by write 0 */
167 			if (d->chip->ack_invert)
168 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
169 			else
170 				ret = regmap_write(map, reg, d->mask_buf[i]);
171 			if (ret != 0)
172 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
173 					reg, ret);
174 		}
175 	}
176 
177 	/* Don't update the type bits if we're using mask bits for irq type. */
178 	if (!d->chip->type_in_mask) {
179 		for (i = 0; i < d->chip->num_type_reg; i++) {
180 			if (!d->type_buf_def[i])
181 				continue;
182 			reg = d->chip->type_base +
183 				(i * map->reg_stride * d->type_reg_stride);
184 			if (d->chip->type_invert)
185 				ret = regmap_irq_update_bits(d, reg,
186 					d->type_buf_def[i], ~d->type_buf[i]);
187 			else
188 				ret = regmap_irq_update_bits(d, reg,
189 					d->type_buf_def[i], d->type_buf[i]);
190 			if (ret != 0)
191 				dev_err(d->map->dev, "Failed to sync type in %x\n",
192 					reg);
193 		}
194 	}
195 
196 	if (d->chip->runtime_pm)
197 		pm_runtime_put(map->dev);
198 
199 	/* If we've changed our wakeup count propagate it to the parent */
200 	if (d->wake_count < 0)
201 		for (i = d->wake_count; i < 0; i++)
202 			irq_set_irq_wake(d->irq, 0);
203 	else if (d->wake_count > 0)
204 		for (i = 0; i < d->wake_count; i++)
205 			irq_set_irq_wake(d->irq, 1);
206 
207 	d->wake_count = 0;
208 
209 	mutex_unlock(&d->lock);
210 }
211 
212 static void regmap_irq_enable(struct irq_data *data)
213 {
214 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215 	struct regmap *map = d->map;
216 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217 	unsigned int mask, type;
218 
219 	type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
220 
221 	/*
222 	 * The type_in_mask flag means that the underlying hardware uses
223 	 * separate mask bits for rising and falling edge interrupts, but
224 	 * we want to make them into a single virtual interrupt with
225 	 * configurable edge.
226 	 *
227 	 * If the interrupt we're enabling defines the falling or rising
228 	 * masks then instead of using the regular mask bits for this
229 	 * interrupt, use the value previously written to the type buffer
230 	 * at the corresponding offset in regmap_irq_set_type().
231 	 */
232 	if (d->chip->type_in_mask && type)
233 		mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
234 	else
235 		mask = irq_data->mask;
236 
237 	if (d->chip->clear_on_unmask)
238 		d->clear_status = true;
239 
240 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
241 }
242 
243 static void regmap_irq_disable(struct irq_data *data)
244 {
245 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246 	struct regmap *map = d->map;
247 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
248 
249 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
250 }
251 
252 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
253 {
254 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255 	struct regmap *map = d->map;
256 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257 	int reg;
258 	const struct regmap_irq_type *t = &irq_data->type;
259 
260 	if ((t->types_supported & type) != type)
261 		return 0;
262 
263 	reg = t->type_reg_offset / map->reg_stride;
264 
265 	if (t->type_reg_mask)
266 		d->type_buf[reg] &= ~t->type_reg_mask;
267 	else
268 		d->type_buf[reg] &= ~(t->type_falling_val |
269 				      t->type_rising_val |
270 				      t->type_level_low_val |
271 				      t->type_level_high_val);
272 	switch (type) {
273 	case IRQ_TYPE_EDGE_FALLING:
274 		d->type_buf[reg] |= t->type_falling_val;
275 		break;
276 
277 	case IRQ_TYPE_EDGE_RISING:
278 		d->type_buf[reg] |= t->type_rising_val;
279 		break;
280 
281 	case IRQ_TYPE_EDGE_BOTH:
282 		d->type_buf[reg] |= (t->type_falling_val |
283 					t->type_rising_val);
284 		break;
285 
286 	case IRQ_TYPE_LEVEL_HIGH:
287 		d->type_buf[reg] |= t->type_level_high_val;
288 		break;
289 
290 	case IRQ_TYPE_LEVEL_LOW:
291 		d->type_buf[reg] |= t->type_level_low_val;
292 		break;
293 	default:
294 		return -EINVAL;
295 	}
296 	return 0;
297 }
298 
299 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
300 {
301 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
302 	struct regmap *map = d->map;
303 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
304 
305 	if (on) {
306 		if (d->wake_buf)
307 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
308 				&= ~irq_data->mask;
309 		d->wake_count++;
310 	} else {
311 		if (d->wake_buf)
312 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
313 				|= irq_data->mask;
314 		d->wake_count--;
315 	}
316 
317 	return 0;
318 }
319 
320 static const struct irq_chip regmap_irq_chip = {
321 	.irq_bus_lock		= regmap_irq_lock,
322 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
323 	.irq_disable		= regmap_irq_disable,
324 	.irq_enable		= regmap_irq_enable,
325 	.irq_set_type		= regmap_irq_set_type,
326 	.irq_set_wake		= regmap_irq_set_wake,
327 };
328 
329 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
330 					   unsigned int b)
331 {
332 	const struct regmap_irq_chip *chip = data->chip;
333 	struct regmap *map = data->map;
334 	struct regmap_irq_sub_irq_map *subreg;
335 	int i, ret = 0;
336 
337 	if (!chip->sub_reg_offsets) {
338 		/* Assume linear mapping */
339 		ret = regmap_read(map, chip->status_base +
340 				  (b * map->reg_stride * data->irq_reg_stride),
341 				   &data->status_buf[b]);
342 	} else {
343 		subreg = &chip->sub_reg_offsets[b];
344 		for (i = 0; i < subreg->num_regs; i++) {
345 			unsigned int offset = subreg->offset[i];
346 
347 			ret = regmap_read(map, chip->status_base + offset,
348 					  &data->status_buf[offset]);
349 			if (ret)
350 				break;
351 		}
352 	}
353 	return ret;
354 }
355 
356 static irqreturn_t regmap_irq_thread(int irq, void *d)
357 {
358 	struct regmap_irq_chip_data *data = d;
359 	const struct regmap_irq_chip *chip = data->chip;
360 	struct regmap *map = data->map;
361 	int ret, i;
362 	bool handled = false;
363 	u32 reg;
364 
365 	if (chip->handle_pre_irq)
366 		chip->handle_pre_irq(chip->irq_drv_data);
367 
368 	if (chip->runtime_pm) {
369 		ret = pm_runtime_get_sync(map->dev);
370 		if (ret < 0) {
371 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
372 				ret);
373 			goto exit;
374 		}
375 	}
376 
377 	/*
378 	 * Read only registers with active IRQs if the chip has 'main status
379 	 * register'. Else read in the statuses, using a single bulk read if
380 	 * possible in order to reduce the I/O overheads.
381 	 */
382 
383 	if (chip->num_main_regs) {
384 		unsigned int max_main_bits;
385 		unsigned long size;
386 
387 		size = chip->num_regs * sizeof(unsigned int);
388 
389 		max_main_bits = (chip->num_main_status_bits) ?
390 				 chip->num_main_status_bits : chip->num_regs;
391 		/* Clear the status buf as we don't read all status regs */
392 		memset(data->status_buf, 0, size);
393 
394 		/* We could support bulk read for main status registers
395 		 * but I don't expect to see devices with really many main
396 		 * status registers so let's only support single reads for the
397 		 * sake of simplicity. and add bulk reads only if needed
398 		 */
399 		for (i = 0; i < chip->num_main_regs; i++) {
400 			ret = regmap_read(map, chip->main_status +
401 				  (i * map->reg_stride
402 				   * data->irq_reg_stride),
403 				  &data->main_status_buf[i]);
404 			if (ret) {
405 				dev_err(map->dev,
406 					"Failed to read IRQ status %d\n",
407 					ret);
408 				goto exit;
409 			}
410 		}
411 
412 		/* Read sub registers with active IRQs */
413 		for (i = 0; i < chip->num_main_regs; i++) {
414 			unsigned int b;
415 			const unsigned long mreg = data->main_status_buf[i];
416 
417 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
418 				if (i * map->format.val_bytes * 8 + b >
419 				    max_main_bits)
420 					break;
421 				ret = read_sub_irq_data(data, b);
422 
423 				if (ret != 0) {
424 					dev_err(map->dev,
425 						"Failed to read IRQ status %d\n",
426 						ret);
427 					goto exit;
428 				}
429 			}
430 
431 		}
432 	} else if (!map->use_single_read && map->reg_stride == 1 &&
433 		   data->irq_reg_stride == 1) {
434 
435 		u8 *buf8 = data->status_reg_buf;
436 		u16 *buf16 = data->status_reg_buf;
437 		u32 *buf32 = data->status_reg_buf;
438 
439 		BUG_ON(!data->status_reg_buf);
440 
441 		ret = regmap_bulk_read(map, chip->status_base,
442 				       data->status_reg_buf,
443 				       chip->num_regs);
444 		if (ret != 0) {
445 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
446 				ret);
447 			goto exit;
448 		}
449 
450 		for (i = 0; i < data->chip->num_regs; i++) {
451 			switch (map->format.val_bytes) {
452 			case 1:
453 				data->status_buf[i] = buf8[i];
454 				break;
455 			case 2:
456 				data->status_buf[i] = buf16[i];
457 				break;
458 			case 4:
459 				data->status_buf[i] = buf32[i];
460 				break;
461 			default:
462 				BUG();
463 				goto exit;
464 			}
465 		}
466 
467 	} else {
468 		for (i = 0; i < data->chip->num_regs; i++) {
469 			ret = regmap_read(map, chip->status_base +
470 					  (i * map->reg_stride
471 					   * data->irq_reg_stride),
472 					  &data->status_buf[i]);
473 
474 			if (ret != 0) {
475 				dev_err(map->dev,
476 					"Failed to read IRQ status: %d\n",
477 					ret);
478 				goto exit;
479 			}
480 		}
481 	}
482 
483 	/*
484 	 * Ignore masked IRQs and ack if we need to; we ack early so
485 	 * there is no race between handling and acknowleding the
486 	 * interrupt.  We assume that typically few of the interrupts
487 	 * will fire simultaneously so don't worry about overhead from
488 	 * doing a write per register.
489 	 */
490 	for (i = 0; i < data->chip->num_regs; i++) {
491 		data->status_buf[i] &= ~data->mask_buf[i];
492 
493 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
494 			reg = chip->ack_base +
495 				(i * map->reg_stride * data->irq_reg_stride);
496 			ret = regmap_write(map, reg, data->status_buf[i]);
497 			if (ret != 0)
498 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
499 					reg, ret);
500 		}
501 	}
502 
503 	for (i = 0; i < chip->num_irqs; i++) {
504 		if (data->status_buf[chip->irqs[i].reg_offset /
505 				     map->reg_stride] & chip->irqs[i].mask) {
506 			handle_nested_irq(irq_find_mapping(data->domain, i));
507 			handled = true;
508 		}
509 	}
510 
511 exit:
512 	if (chip->runtime_pm)
513 		pm_runtime_put(map->dev);
514 
515 	if (chip->handle_post_irq)
516 		chip->handle_post_irq(chip->irq_drv_data);
517 
518 	if (handled)
519 		return IRQ_HANDLED;
520 	else
521 		return IRQ_NONE;
522 }
523 
524 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
525 			  irq_hw_number_t hw)
526 {
527 	struct regmap_irq_chip_data *data = h->host_data;
528 
529 	irq_set_chip_data(virq, data);
530 	irq_set_chip(virq, &data->irq_chip);
531 	irq_set_nested_thread(virq, 1);
532 	irq_set_parent(virq, data->irq);
533 	irq_set_noprobe(virq);
534 
535 	return 0;
536 }
537 
538 static const struct irq_domain_ops regmap_domain_ops = {
539 	.map	= regmap_irq_map,
540 	.xlate	= irq_domain_xlate_onetwocell,
541 };
542 
543 /**
544  * regmap_add_irq_chip_np() - Use standard regmap IRQ controller handling
545  *
546  * @np: The device_node where the IRQ domain should be added to.
547  * @map: The regmap for the device.
548  * @irq: The IRQ the device uses to signal interrupts.
549  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
550  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
551  * @chip: Configuration for the interrupt controller.
552  * @data: Runtime data structure for the controller, allocated on success.
553  *
554  * Returns 0 on success or an errno on failure.
555  *
556  * In order for this to be efficient the chip really should use a
557  * register cache.  The chip driver is responsible for restoring the
558  * register values used by the IRQ controller over suspend and resume.
559  */
560 int regmap_add_irq_chip_np(struct device_node *np, struct regmap *map, int irq,
561 			   int irq_flags, int irq_base,
562 			   const struct regmap_irq_chip *chip,
563 			   struct regmap_irq_chip_data **data)
564 {
565 	struct regmap_irq_chip_data *d;
566 	int i;
567 	int ret = -ENOMEM;
568 	int num_type_reg;
569 	u32 reg;
570 	u32 unmask_offset;
571 
572 	if (chip->num_regs <= 0)
573 		return -EINVAL;
574 
575 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
576 		return -EINVAL;
577 
578 	for (i = 0; i < chip->num_irqs; i++) {
579 		if (chip->irqs[i].reg_offset % map->reg_stride)
580 			return -EINVAL;
581 		if (chip->irqs[i].reg_offset / map->reg_stride >=
582 		    chip->num_regs)
583 			return -EINVAL;
584 	}
585 
586 	if (irq_base) {
587 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
588 		if (irq_base < 0) {
589 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
590 				 irq_base);
591 			return irq_base;
592 		}
593 	}
594 
595 	d = kzalloc(sizeof(*d), GFP_KERNEL);
596 	if (!d)
597 		return -ENOMEM;
598 
599 	if (chip->num_main_regs) {
600 		d->main_status_buf = kcalloc(chip->num_main_regs,
601 					     sizeof(unsigned int),
602 					     GFP_KERNEL);
603 
604 		if (!d->main_status_buf)
605 			goto err_alloc;
606 	}
607 
608 	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
609 				GFP_KERNEL);
610 	if (!d->status_buf)
611 		goto err_alloc;
612 
613 	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
614 			      GFP_KERNEL);
615 	if (!d->mask_buf)
616 		goto err_alloc;
617 
618 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
619 				  GFP_KERNEL);
620 	if (!d->mask_buf_def)
621 		goto err_alloc;
622 
623 	if (chip->wake_base) {
624 		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
625 				      GFP_KERNEL);
626 		if (!d->wake_buf)
627 			goto err_alloc;
628 	}
629 
630 	num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
631 	if (num_type_reg) {
632 		d->type_buf_def = kcalloc(num_type_reg,
633 					  sizeof(unsigned int), GFP_KERNEL);
634 		if (!d->type_buf_def)
635 			goto err_alloc;
636 
637 		d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
638 				      GFP_KERNEL);
639 		if (!d->type_buf)
640 			goto err_alloc;
641 	}
642 
643 	d->irq_chip = regmap_irq_chip;
644 	d->irq_chip.name = chip->name;
645 	d->irq = irq;
646 	d->map = map;
647 	d->chip = chip;
648 	d->irq_base = irq_base;
649 
650 	if (chip->irq_reg_stride)
651 		d->irq_reg_stride = chip->irq_reg_stride;
652 	else
653 		d->irq_reg_stride = 1;
654 
655 	if (chip->type_reg_stride)
656 		d->type_reg_stride = chip->type_reg_stride;
657 	else
658 		d->type_reg_stride = 1;
659 
660 	if (!map->use_single_read && map->reg_stride == 1 &&
661 	    d->irq_reg_stride == 1) {
662 		d->status_reg_buf = kmalloc_array(chip->num_regs,
663 						  map->format.val_bytes,
664 						  GFP_KERNEL);
665 		if (!d->status_reg_buf)
666 			goto err_alloc;
667 	}
668 
669 	mutex_init(&d->lock);
670 
671 	for (i = 0; i < chip->num_irqs; i++)
672 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
673 			|= chip->irqs[i].mask;
674 
675 	/* Mask all the interrupts by default */
676 	for (i = 0; i < chip->num_regs; i++) {
677 		d->mask_buf[i] = d->mask_buf_def[i];
678 		if (!chip->mask_base)
679 			continue;
680 
681 		reg = chip->mask_base +
682 			(i * map->reg_stride * d->irq_reg_stride);
683 		if (chip->mask_invert)
684 			ret = regmap_irq_update_bits(d, reg,
685 					 d->mask_buf[i], ~d->mask_buf[i]);
686 		else if (d->chip->unmask_base) {
687 			unmask_offset = d->chip->unmask_base -
688 					d->chip->mask_base;
689 			ret = regmap_irq_update_bits(d,
690 					reg + unmask_offset,
691 					d->mask_buf[i],
692 					d->mask_buf[i]);
693 		} else
694 			ret = regmap_irq_update_bits(d, reg,
695 					 d->mask_buf[i], d->mask_buf[i]);
696 		if (ret != 0) {
697 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
698 				reg, ret);
699 			goto err_alloc;
700 		}
701 
702 		if (!chip->init_ack_masked)
703 			continue;
704 
705 		/* Ack masked but set interrupts */
706 		reg = chip->status_base +
707 			(i * map->reg_stride * d->irq_reg_stride);
708 		ret = regmap_read(map, reg, &d->status_buf[i]);
709 		if (ret != 0) {
710 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
711 				ret);
712 			goto err_alloc;
713 		}
714 
715 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
716 			reg = chip->ack_base +
717 				(i * map->reg_stride * d->irq_reg_stride);
718 			if (chip->ack_invert)
719 				ret = regmap_write(map, reg,
720 					~(d->status_buf[i] & d->mask_buf[i]));
721 			else
722 				ret = regmap_write(map, reg,
723 					d->status_buf[i] & d->mask_buf[i]);
724 			if (ret != 0) {
725 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
726 					reg, ret);
727 				goto err_alloc;
728 			}
729 		}
730 	}
731 
732 	/* Wake is disabled by default */
733 	if (d->wake_buf) {
734 		for (i = 0; i < chip->num_regs; i++) {
735 			d->wake_buf[i] = d->mask_buf_def[i];
736 			reg = chip->wake_base +
737 				(i * map->reg_stride * d->irq_reg_stride);
738 
739 			if (chip->wake_invert)
740 				ret = regmap_irq_update_bits(d, reg,
741 							 d->mask_buf_def[i],
742 							 0);
743 			else
744 				ret = regmap_irq_update_bits(d, reg,
745 							 d->mask_buf_def[i],
746 							 d->wake_buf[i]);
747 			if (ret != 0) {
748 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
749 					reg, ret);
750 				goto err_alloc;
751 			}
752 		}
753 	}
754 
755 	if (chip->num_type_reg && !chip->type_in_mask) {
756 		for (i = 0; i < chip->num_type_reg; ++i) {
757 			reg = chip->type_base +
758 				(i * map->reg_stride * d->type_reg_stride);
759 
760 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
761 
762 			if (d->chip->type_invert)
763 				d->type_buf_def[i] = ~d->type_buf_def[i];
764 
765 			if (ret) {
766 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
767 					reg, ret);
768 				goto err_alloc;
769 			}
770 		}
771 	}
772 
773 	if (irq_base)
774 		d->domain = irq_domain_add_legacy(np, chip->num_irqs, irq_base,
775 						  0, &regmap_domain_ops, d);
776 	else
777 		d->domain = irq_domain_add_linear(np, chip->num_irqs,
778 						  &regmap_domain_ops, d);
779 	if (!d->domain) {
780 		dev_err(map->dev, "Failed to create IRQ domain\n");
781 		ret = -ENOMEM;
782 		goto err_alloc;
783 	}
784 
785 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
786 				   irq_flags | IRQF_ONESHOT,
787 				   chip->name, d);
788 	if (ret != 0) {
789 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
790 			irq, chip->name, ret);
791 		goto err_domain;
792 	}
793 
794 	*data = d;
795 
796 	return 0;
797 
798 err_domain:
799 	/* Should really dispose of the domain but... */
800 err_alloc:
801 	kfree(d->type_buf);
802 	kfree(d->type_buf_def);
803 	kfree(d->wake_buf);
804 	kfree(d->mask_buf_def);
805 	kfree(d->mask_buf);
806 	kfree(d->status_buf);
807 	kfree(d->status_reg_buf);
808 	kfree(d);
809 	return ret;
810 }
811 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_np);
812 
813 /**
814  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
815  *
816  * @map: The regmap for the device.
817  * @irq: The IRQ the device uses to signal interrupts.
818  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
819  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
820  * @chip: Configuration for the interrupt controller.
821  * @data: Runtime data structure for the controller, allocated on success.
822  *
823  * Returns 0 on success or an errno on failure.
824  *
825  * This is the same as regmap_add_irq_chip_np, except that the device
826  * node of the regmap is used.
827  */
828 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
829 			int irq_base, const struct regmap_irq_chip *chip,
830 			struct regmap_irq_chip_data **data)
831 {
832 	return regmap_add_irq_chip_np(map->dev->of_node, map, irq, irq_flags,
833 				      irq_base, chip, data);
834 }
835 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
836 
837 /**
838  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
839  *
840  * @irq: Primary IRQ for the device
841  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
842  *
843  * This function also disposes of all mapped IRQs on the chip.
844  */
845 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
846 {
847 	unsigned int virq;
848 	int hwirq;
849 
850 	if (!d)
851 		return;
852 
853 	free_irq(irq, d);
854 
855 	/* Dispose all virtual irq from irq domain before removing it */
856 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
857 		/* Ignore hwirq if holes in the IRQ list */
858 		if (!d->chip->irqs[hwirq].mask)
859 			continue;
860 
861 		/*
862 		 * Find the virtual irq of hwirq on chip and if it is
863 		 * there then dispose it
864 		 */
865 		virq = irq_find_mapping(d->domain, hwirq);
866 		if (virq)
867 			irq_dispose_mapping(virq);
868 	}
869 
870 	irq_domain_remove(d->domain);
871 	kfree(d->type_buf);
872 	kfree(d->type_buf_def);
873 	kfree(d->wake_buf);
874 	kfree(d->mask_buf_def);
875 	kfree(d->mask_buf);
876 	kfree(d->status_reg_buf);
877 	kfree(d->status_buf);
878 	kfree(d);
879 }
880 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
881 
882 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
883 {
884 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
885 
886 	regmap_del_irq_chip(d->irq, d);
887 }
888 
889 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
890 
891 {
892 	struct regmap_irq_chip_data **r = res;
893 
894 	if (!r || !*r) {
895 		WARN_ON(!r || !*r);
896 		return 0;
897 	}
898 	return *r == data;
899 }
900 
901 /**
902  * devm_regmap_add_irq_chip_np() - Resource manager regmap_add_irq_chip_np()
903  *
904  * @dev: The device pointer on which irq_chip belongs to.
905  * @np: The device_node where the IRQ domain should be added to.
906  * @map: The regmap for the device.
907  * @irq: The IRQ the device uses to signal interrupts
908  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
909  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
910  * @chip: Configuration for the interrupt controller.
911  * @data: Runtime data structure for the controller, allocated on success
912  *
913  * Returns 0 on success or an errno on failure.
914  *
915  * The &regmap_irq_chip_data will be automatically released when the device is
916  * unbound.
917  */
918 int devm_regmap_add_irq_chip_np(struct device *dev, struct device_node *np,
919 				struct regmap *map, int irq, int irq_flags,
920 				int irq_base,
921 				const struct regmap_irq_chip *chip,
922 				struct regmap_irq_chip_data **data)
923 {
924 	struct regmap_irq_chip_data **ptr, *d;
925 	int ret;
926 
927 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
928 			   GFP_KERNEL);
929 	if (!ptr)
930 		return -ENOMEM;
931 
932 	ret = regmap_add_irq_chip_np(np, map, irq, irq_flags, irq_base,
933 				     chip, &d);
934 	if (ret < 0) {
935 		devres_free(ptr);
936 		return ret;
937 	}
938 
939 	*ptr = d;
940 	devres_add(dev, ptr);
941 	*data = d;
942 	return 0;
943 }
944 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_np);
945 
946 /**
947  * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
948  *
949  * @dev: The device pointer on which irq_chip belongs to.
950  * @map: The regmap for the device.
951  * @irq: The IRQ the device uses to signal interrupts
952  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
953  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
954  * @chip: Configuration for the interrupt controller.
955  * @data: Runtime data structure for the controller, allocated on success
956  *
957  * Returns 0 on success or an errno on failure.
958  *
959  * The &regmap_irq_chip_data will be automatically released when the device is
960  * unbound.
961  */
962 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
963 			     int irq_flags, int irq_base,
964 			     const struct regmap_irq_chip *chip,
965 			     struct regmap_irq_chip_data **data)
966 {
967 	return devm_regmap_add_irq_chip_np(dev, map->dev->of_node, map, irq,
968 					   irq_flags, irq_base, chip, data);
969 }
970 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
971 
972 /**
973  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
974  *
975  * @dev: Device for which which resource was allocated.
976  * @irq: Primary IRQ for the device.
977  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
978  *
979  * A resource managed version of regmap_del_irq_chip().
980  */
981 void devm_regmap_del_irq_chip(struct device *dev, int irq,
982 			      struct regmap_irq_chip_data *data)
983 {
984 	int rc;
985 
986 	WARN_ON(irq != data->irq);
987 	rc = devres_release(dev, devm_regmap_irq_chip_release,
988 			    devm_regmap_irq_chip_match, data);
989 
990 	if (rc != 0)
991 		WARN_ON(rc);
992 }
993 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
994 
995 /**
996  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
997  *
998  * @data: regmap irq controller to operate on.
999  *
1000  * Useful for drivers to request their own IRQs.
1001  */
1002 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1003 {
1004 	WARN_ON(!data->irq_base);
1005 	return data->irq_base;
1006 }
1007 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1008 
1009 /**
1010  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1011  *
1012  * @data: regmap irq controller to operate on.
1013  * @irq: index of the interrupt requested in the chip IRQs.
1014  *
1015  * Useful for drivers to request their own IRQs.
1016  */
1017 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1018 {
1019 	/* Handle holes in the IRQ list */
1020 	if (!data->chip->irqs[irq].mask)
1021 		return -EINVAL;
1022 
1023 	return irq_create_mapping(data->domain, irq);
1024 }
1025 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1026 
1027 /**
1028  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1029  *
1030  * @data: regmap_irq controller to operate on.
1031  *
1032  * Useful for drivers to request their own IRQs and for integration
1033  * with subsystems.  For ease of integration NULL is accepted as a
1034  * domain, allowing devices to just call this even if no domain is
1035  * allocated.
1036  */
1037 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1038 {
1039 	if (data)
1040 		return data->domain;
1041 	else
1042 		return NULL;
1043 }
1044 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1045