xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision c0d3b831)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	unsigned int mask_base;
34 	unsigned int unmask_base;
35 
36 	void *status_reg_buf;
37 	unsigned int *main_status_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 	unsigned int **virt_buf;
45 	unsigned int **config_buf;
46 
47 	unsigned int irq_reg_stride;
48 
49 	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
50 				    unsigned int base, int index);
51 
52 	unsigned int clear_status:1;
53 };
54 
55 static inline const
56 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
57 				     int irq)
58 {
59 	return &data->chip->irqs[irq];
60 }
61 
62 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
63 {
64 	struct regmap *map = data->map;
65 
66 	/*
67 	 * While possible that a user-defined ->get_irq_reg() callback might
68 	 * be linear enough to support bulk reads, most of the time it won't.
69 	 * Therefore only allow them if the default callback is being used.
70 	 */
71 	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
72 	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
73 	       !map->use_single_read;
74 }
75 
76 static void regmap_irq_lock(struct irq_data *data)
77 {
78 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79 
80 	mutex_lock(&d->lock);
81 }
82 
83 static void regmap_irq_sync_unlock(struct irq_data *data)
84 {
85 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
86 	struct regmap *map = d->map;
87 	int i, j, ret;
88 	u32 reg;
89 	u32 val;
90 
91 	if (d->chip->runtime_pm) {
92 		ret = pm_runtime_get_sync(map->dev);
93 		if (ret < 0)
94 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
95 				ret);
96 	}
97 
98 	if (d->clear_status) {
99 		for (i = 0; i < d->chip->num_regs; i++) {
100 			reg = d->get_irq_reg(d, d->chip->status_base, i);
101 
102 			ret = regmap_read(map, reg, &val);
103 			if (ret)
104 				dev_err(d->map->dev,
105 					"Failed to clear the interrupt status bits\n");
106 		}
107 
108 		d->clear_status = false;
109 	}
110 
111 	/*
112 	 * If there's been a change in the mask write it back to the
113 	 * hardware.  We rely on the use of the regmap core cache to
114 	 * suppress pointless writes.
115 	 */
116 	for (i = 0; i < d->chip->num_regs; i++) {
117 		if (d->mask_base) {
118 			if (d->chip->handle_mask_sync)
119 				d->chip->handle_mask_sync(d->map, i,
120 							  d->mask_buf_def[i],
121 							  d->mask_buf[i],
122 							  d->chip->irq_drv_data);
123 			else {
124 				reg = d->get_irq_reg(d, d->mask_base, i);
125 				ret = regmap_update_bits(d->map, reg,
126 						d->mask_buf_def[i],
127 						d->mask_buf[i]);
128 				if (ret)
129 					dev_err(d->map->dev, "Failed to sync masks in %x\n",
130 						reg);
131 			}
132 		}
133 
134 		if (d->unmask_base) {
135 			reg = d->get_irq_reg(d, d->unmask_base, i);
136 			ret = regmap_update_bits(d->map, reg,
137 					d->mask_buf_def[i], ~d->mask_buf[i]);
138 			if (ret)
139 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
140 					reg);
141 		}
142 
143 		reg = d->get_irq_reg(d, d->chip->wake_base, i);
144 		if (d->wake_buf) {
145 			if (d->chip->wake_invert)
146 				ret = regmap_update_bits(d->map, reg,
147 							 d->mask_buf_def[i],
148 							 ~d->wake_buf[i]);
149 			else
150 				ret = regmap_update_bits(d->map, reg,
151 							 d->mask_buf_def[i],
152 							 d->wake_buf[i]);
153 			if (ret != 0)
154 				dev_err(d->map->dev,
155 					"Failed to sync wakes in %x: %d\n",
156 					reg, ret);
157 		}
158 
159 		if (!d->chip->init_ack_masked)
160 			continue;
161 		/*
162 		 * Ack all the masked interrupts unconditionally,
163 		 * OR if there is masked interrupt which hasn't been Acked,
164 		 * it'll be ignored in irq handler, then may introduce irq storm
165 		 */
166 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
167 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
168 
169 			/* some chips ack by write 0 */
170 			if (d->chip->ack_invert)
171 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
172 			else
173 				ret = regmap_write(map, reg, d->mask_buf[i]);
174 			if (d->chip->clear_ack) {
175 				if (d->chip->ack_invert && !ret)
176 					ret = regmap_write(map, reg, UINT_MAX);
177 				else if (!ret)
178 					ret = regmap_write(map, reg, 0);
179 			}
180 			if (ret != 0)
181 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
182 					reg, ret);
183 		}
184 	}
185 
186 	/* Don't update the type bits if we're using mask bits for irq type. */
187 	if (!d->chip->type_in_mask) {
188 		for (i = 0; i < d->chip->num_type_reg; i++) {
189 			if (!d->type_buf_def[i])
190 				continue;
191 			reg = d->get_irq_reg(d, d->chip->type_base, i);
192 			if (d->chip->type_invert)
193 				ret = regmap_update_bits(d->map, reg,
194 					d->type_buf_def[i], ~d->type_buf[i]);
195 			else
196 				ret = regmap_update_bits(d->map, reg,
197 					d->type_buf_def[i], d->type_buf[i]);
198 			if (ret != 0)
199 				dev_err(d->map->dev, "Failed to sync type in %x\n",
200 					reg);
201 		}
202 	}
203 
204 	if (d->chip->num_virt_regs) {
205 		for (i = 0; i < d->chip->num_virt_regs; i++) {
206 			for (j = 0; j < d->chip->num_regs; j++) {
207 				reg = d->get_irq_reg(d, d->chip->virt_reg_base[i],
208 						     j);
209 				ret = regmap_write(map, reg, d->virt_buf[i][j]);
210 				if (ret != 0)
211 					dev_err(d->map->dev,
212 						"Failed to write virt 0x%x: %d\n",
213 						reg, ret);
214 			}
215 		}
216 	}
217 
218 	for (i = 0; i < d->chip->num_config_bases; i++) {
219 		for (j = 0; j < d->chip->num_config_regs; j++) {
220 			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
221 			ret = regmap_write(map, reg, d->config_buf[i][j]);
222 			if (ret)
223 				dev_err(d->map->dev,
224 					"Failed to write config %x: %d\n",
225 					reg, ret);
226 		}
227 	}
228 
229 	if (d->chip->runtime_pm)
230 		pm_runtime_put(map->dev);
231 
232 	/* If we've changed our wakeup count propagate it to the parent */
233 	if (d->wake_count < 0)
234 		for (i = d->wake_count; i < 0; i++)
235 			irq_set_irq_wake(d->irq, 0);
236 	else if (d->wake_count > 0)
237 		for (i = 0; i < d->wake_count; i++)
238 			irq_set_irq_wake(d->irq, 1);
239 
240 	d->wake_count = 0;
241 
242 	mutex_unlock(&d->lock);
243 }
244 
245 static void regmap_irq_enable(struct irq_data *data)
246 {
247 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
248 	struct regmap *map = d->map;
249 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
250 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
251 	unsigned int mask;
252 
253 	/*
254 	 * The type_in_mask flag means that the underlying hardware uses
255 	 * separate mask bits for each interrupt trigger type, but we want
256 	 * to have a single logical interrupt with a configurable type.
257 	 *
258 	 * If the interrupt we're enabling defines any supported types
259 	 * then instead of using the regular mask bits for this interrupt,
260 	 * use the value previously written to the type buffer at the
261 	 * corresponding offset in regmap_irq_set_type().
262 	 */
263 	if (d->chip->type_in_mask && irq_data->type.types_supported)
264 		mask = d->type_buf[reg] & irq_data->mask;
265 	else
266 		mask = irq_data->mask;
267 
268 	if (d->chip->clear_on_unmask)
269 		d->clear_status = true;
270 
271 	d->mask_buf[reg] &= ~mask;
272 }
273 
274 static void regmap_irq_disable(struct irq_data *data)
275 {
276 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277 	struct regmap *map = d->map;
278 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279 
280 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
281 }
282 
283 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
284 {
285 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
286 	struct regmap *map = d->map;
287 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
288 	int reg, ret;
289 	const struct regmap_irq_type *t = &irq_data->type;
290 
291 	if ((t->types_supported & type) != type)
292 		return 0;
293 
294 	reg = t->type_reg_offset / map->reg_stride;
295 
296 	if (t->type_reg_mask)
297 		d->type_buf[reg] &= ~t->type_reg_mask;
298 	else
299 		d->type_buf[reg] &= ~(t->type_falling_val |
300 				      t->type_rising_val |
301 				      t->type_level_low_val |
302 				      t->type_level_high_val);
303 	switch (type) {
304 	case IRQ_TYPE_EDGE_FALLING:
305 		d->type_buf[reg] |= t->type_falling_val;
306 		break;
307 
308 	case IRQ_TYPE_EDGE_RISING:
309 		d->type_buf[reg] |= t->type_rising_val;
310 		break;
311 
312 	case IRQ_TYPE_EDGE_BOTH:
313 		d->type_buf[reg] |= (t->type_falling_val |
314 					t->type_rising_val);
315 		break;
316 
317 	case IRQ_TYPE_LEVEL_HIGH:
318 		d->type_buf[reg] |= t->type_level_high_val;
319 		break;
320 
321 	case IRQ_TYPE_LEVEL_LOW:
322 		d->type_buf[reg] |= t->type_level_low_val;
323 		break;
324 	default:
325 		return -EINVAL;
326 	}
327 
328 	if (d->chip->set_type_virt) {
329 		ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
330 					     reg);
331 		if (ret)
332 			return ret;
333 	}
334 
335 	if (d->chip->set_type_config) {
336 		ret = d->chip->set_type_config(d->config_buf, type,
337 					       irq_data, reg);
338 		if (ret)
339 			return ret;
340 	}
341 
342 	return 0;
343 }
344 
345 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
346 {
347 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
348 	struct regmap *map = d->map;
349 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
350 
351 	if (on) {
352 		if (d->wake_buf)
353 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
354 				&= ~irq_data->mask;
355 		d->wake_count++;
356 	} else {
357 		if (d->wake_buf)
358 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
359 				|= irq_data->mask;
360 		d->wake_count--;
361 	}
362 
363 	return 0;
364 }
365 
366 static const struct irq_chip regmap_irq_chip = {
367 	.irq_bus_lock		= regmap_irq_lock,
368 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
369 	.irq_disable		= regmap_irq_disable,
370 	.irq_enable		= regmap_irq_enable,
371 	.irq_set_type		= regmap_irq_set_type,
372 	.irq_set_wake		= regmap_irq_set_wake,
373 };
374 
375 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
376 					   unsigned int b)
377 {
378 	const struct regmap_irq_chip *chip = data->chip;
379 	struct regmap *map = data->map;
380 	struct regmap_irq_sub_irq_map *subreg;
381 	unsigned int reg;
382 	int i, ret = 0;
383 
384 	if (!chip->sub_reg_offsets) {
385 		reg = data->get_irq_reg(data, chip->status_base, b);
386 		ret = regmap_read(map, reg, &data->status_buf[b]);
387 	} else {
388 		/*
389 		 * Note we can't use ->get_irq_reg() here because the offsets
390 		 * in 'subreg' are *not* interchangeable with indices.
391 		 */
392 		subreg = &chip->sub_reg_offsets[b];
393 		for (i = 0; i < subreg->num_regs; i++) {
394 			unsigned int offset = subreg->offset[i];
395 			unsigned int index = offset / map->reg_stride;
396 
397 			if (chip->not_fixed_stride)
398 				ret = regmap_read(map,
399 						chip->status_base + offset,
400 						&data->status_buf[b]);
401 			else
402 				ret = regmap_read(map,
403 						chip->status_base + offset,
404 						&data->status_buf[index]);
405 
406 			if (ret)
407 				break;
408 		}
409 	}
410 	return ret;
411 }
412 
413 static irqreturn_t regmap_irq_thread(int irq, void *d)
414 {
415 	struct regmap_irq_chip_data *data = d;
416 	const struct regmap_irq_chip *chip = data->chip;
417 	struct regmap *map = data->map;
418 	int ret, i;
419 	bool handled = false;
420 	u32 reg;
421 
422 	if (chip->handle_pre_irq)
423 		chip->handle_pre_irq(chip->irq_drv_data);
424 
425 	if (chip->runtime_pm) {
426 		ret = pm_runtime_get_sync(map->dev);
427 		if (ret < 0) {
428 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
429 				ret);
430 			goto exit;
431 		}
432 	}
433 
434 	/*
435 	 * Read only registers with active IRQs if the chip has 'main status
436 	 * register'. Else read in the statuses, using a single bulk read if
437 	 * possible in order to reduce the I/O overheads.
438 	 */
439 
440 	if (chip->num_main_regs) {
441 		unsigned int max_main_bits;
442 		unsigned long size;
443 
444 		size = chip->num_regs * sizeof(unsigned int);
445 
446 		max_main_bits = (chip->num_main_status_bits) ?
447 				 chip->num_main_status_bits : chip->num_regs;
448 		/* Clear the status buf as we don't read all status regs */
449 		memset(data->status_buf, 0, size);
450 
451 		/* We could support bulk read for main status registers
452 		 * but I don't expect to see devices with really many main
453 		 * status registers so let's only support single reads for the
454 		 * sake of simplicity. and add bulk reads only if needed
455 		 */
456 		for (i = 0; i < chip->num_main_regs; i++) {
457 			/*
458 			 * For not_fixed_stride, don't use ->get_irq_reg().
459 			 * It would produce an incorrect result.
460 			 */
461 			if (data->chip->not_fixed_stride)
462 				reg = chip->main_status +
463 					i * map->reg_stride * data->irq_reg_stride;
464 			else
465 				reg = data->get_irq_reg(data,
466 							chip->main_status, i);
467 
468 			ret = regmap_read(map, reg, &data->main_status_buf[i]);
469 			if (ret) {
470 				dev_err(map->dev,
471 					"Failed to read IRQ status %d\n",
472 					ret);
473 				goto exit;
474 			}
475 		}
476 
477 		/* Read sub registers with active IRQs */
478 		for (i = 0; i < chip->num_main_regs; i++) {
479 			unsigned int b;
480 			const unsigned long mreg = data->main_status_buf[i];
481 
482 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
483 				if (i * map->format.val_bytes * 8 + b >
484 				    max_main_bits)
485 					break;
486 				ret = read_sub_irq_data(data, b);
487 
488 				if (ret != 0) {
489 					dev_err(map->dev,
490 						"Failed to read IRQ status %d\n",
491 						ret);
492 					goto exit;
493 				}
494 			}
495 
496 		}
497 	} else if (regmap_irq_can_bulk_read_status(data)) {
498 
499 		u8 *buf8 = data->status_reg_buf;
500 		u16 *buf16 = data->status_reg_buf;
501 		u32 *buf32 = data->status_reg_buf;
502 
503 		BUG_ON(!data->status_reg_buf);
504 
505 		ret = regmap_bulk_read(map, chip->status_base,
506 				       data->status_reg_buf,
507 				       chip->num_regs);
508 		if (ret != 0) {
509 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
510 				ret);
511 			goto exit;
512 		}
513 
514 		for (i = 0; i < data->chip->num_regs; i++) {
515 			switch (map->format.val_bytes) {
516 			case 1:
517 				data->status_buf[i] = buf8[i];
518 				break;
519 			case 2:
520 				data->status_buf[i] = buf16[i];
521 				break;
522 			case 4:
523 				data->status_buf[i] = buf32[i];
524 				break;
525 			default:
526 				BUG();
527 				goto exit;
528 			}
529 		}
530 
531 	} else {
532 		for (i = 0; i < data->chip->num_regs; i++) {
533 			unsigned int reg = data->get_irq_reg(data,
534 					data->chip->status_base, i);
535 			ret = regmap_read(map, reg, &data->status_buf[i]);
536 
537 			if (ret != 0) {
538 				dev_err(map->dev,
539 					"Failed to read IRQ status: %d\n",
540 					ret);
541 				goto exit;
542 			}
543 		}
544 	}
545 
546 	if (chip->status_invert)
547 		for (i = 0; i < data->chip->num_regs; i++)
548 			data->status_buf[i] = ~data->status_buf[i];
549 
550 	/*
551 	 * Ignore masked IRQs and ack if we need to; we ack early so
552 	 * there is no race between handling and acknowledging the
553 	 * interrupt.  We assume that typically few of the interrupts
554 	 * will fire simultaneously so don't worry about overhead from
555 	 * doing a write per register.
556 	 */
557 	for (i = 0; i < data->chip->num_regs; i++) {
558 		data->status_buf[i] &= ~data->mask_buf[i];
559 
560 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
561 			reg = data->get_irq_reg(data, data->chip->ack_base, i);
562 
563 			if (chip->ack_invert)
564 				ret = regmap_write(map, reg,
565 						~data->status_buf[i]);
566 			else
567 				ret = regmap_write(map, reg,
568 						data->status_buf[i]);
569 			if (chip->clear_ack) {
570 				if (chip->ack_invert && !ret)
571 					ret = regmap_write(map, reg, UINT_MAX);
572 				else if (!ret)
573 					ret = regmap_write(map, reg, 0);
574 			}
575 			if (ret != 0)
576 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
577 					reg, ret);
578 		}
579 	}
580 
581 	for (i = 0; i < chip->num_irqs; i++) {
582 		if (data->status_buf[chip->irqs[i].reg_offset /
583 				     map->reg_stride] & chip->irqs[i].mask) {
584 			handle_nested_irq(irq_find_mapping(data->domain, i));
585 			handled = true;
586 		}
587 	}
588 
589 exit:
590 	if (chip->runtime_pm)
591 		pm_runtime_put(map->dev);
592 
593 	if (chip->handle_post_irq)
594 		chip->handle_post_irq(chip->irq_drv_data);
595 
596 	if (handled)
597 		return IRQ_HANDLED;
598 	else
599 		return IRQ_NONE;
600 }
601 
602 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
603 			  irq_hw_number_t hw)
604 {
605 	struct regmap_irq_chip_data *data = h->host_data;
606 
607 	irq_set_chip_data(virq, data);
608 	irq_set_chip(virq, &data->irq_chip);
609 	irq_set_nested_thread(virq, 1);
610 	irq_set_parent(virq, data->irq);
611 	irq_set_noprobe(virq);
612 
613 	return 0;
614 }
615 
616 static const struct irq_domain_ops regmap_domain_ops = {
617 	.map	= regmap_irq_map,
618 	.xlate	= irq_domain_xlate_onetwocell,
619 };
620 
621 /**
622  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
623  * @data: Data for the &struct regmap_irq_chip
624  * @base: Base register
625  * @index: Register index
626  *
627  * Returns the register address corresponding to the given @base and @index
628  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
629  */
630 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
631 					   unsigned int base, int index)
632 {
633 	const struct regmap_irq_chip *chip = data->chip;
634 	struct regmap *map = data->map;
635 
636 	/*
637 	 * FIXME: This is for backward compatibility and should be removed
638 	 * when not_fixed_stride is dropped (it's only used by qcom-pm8008).
639 	 */
640 	if (chip->not_fixed_stride && chip->sub_reg_offsets) {
641 		struct regmap_irq_sub_irq_map *subreg;
642 
643 		subreg = &chip->sub_reg_offsets[0];
644 		return base + subreg->offset[0];
645 	}
646 
647 	return base + index * map->reg_stride * data->irq_reg_stride;
648 }
649 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
650 
651 /**
652  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
653  * @buf: Buffer containing configuration register values, this is a 2D array of
654  *       `num_config_bases` rows, each of `num_config_regs` elements.
655  * @type: The requested IRQ type.
656  * @irq_data: The IRQ being configured.
657  * @idx: Index of the irq's config registers within each array `buf[i]`
658  *
659  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
660  * chips with one config register. Register values are updated according to
661  * the &struct regmap_irq_type data associated with an IRQ.
662  */
663 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
664 				      const struct regmap_irq *irq_data, int idx)
665 {
666 	const struct regmap_irq_type *t = &irq_data->type;
667 
668 	if (t->type_reg_mask)
669 		buf[0][idx] &= ~t->type_reg_mask;
670 	else
671 		buf[0][idx] &= ~(t->type_falling_val |
672 				 t->type_rising_val |
673 				 t->type_level_low_val |
674 				 t->type_level_high_val);
675 
676 	switch (type) {
677 	case IRQ_TYPE_EDGE_FALLING:
678 		buf[0][idx] |= t->type_falling_val;
679 		break;
680 
681 	case IRQ_TYPE_EDGE_RISING:
682 		buf[0][idx] |= t->type_rising_val;
683 		break;
684 
685 	case IRQ_TYPE_EDGE_BOTH:
686 		buf[0][idx] |= (t->type_falling_val |
687 				t->type_rising_val);
688 		break;
689 
690 	case IRQ_TYPE_LEVEL_HIGH:
691 		buf[0][idx] |= t->type_level_high_val;
692 		break;
693 
694 	case IRQ_TYPE_LEVEL_LOW:
695 		buf[0][idx] |= t->type_level_low_val;
696 		break;
697 
698 	default:
699 		return -EINVAL;
700 	}
701 
702 	return 0;
703 }
704 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
705 
706 /**
707  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
708  *
709  * @fwnode: The firmware node where the IRQ domain should be added to.
710  * @map: The regmap for the device.
711  * @irq: The IRQ the device uses to signal interrupts.
712  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
713  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
714  * @chip: Configuration for the interrupt controller.
715  * @data: Runtime data structure for the controller, allocated on success.
716  *
717  * Returns 0 on success or an errno on failure.
718  *
719  * In order for this to be efficient the chip really should use a
720  * register cache.  The chip driver is responsible for restoring the
721  * register values used by the IRQ controller over suspend and resume.
722  */
723 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
724 			       struct regmap *map, int irq,
725 			       int irq_flags, int irq_base,
726 			       const struct regmap_irq_chip *chip,
727 			       struct regmap_irq_chip_data **data)
728 {
729 	struct regmap_irq_chip_data *d;
730 	int i;
731 	int ret = -ENOMEM;
732 	int num_type_reg;
733 	int num_regs;
734 	u32 reg;
735 
736 	if (chip->num_regs <= 0)
737 		return -EINVAL;
738 
739 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
740 		return -EINVAL;
741 
742 	for (i = 0; i < chip->num_irqs; i++) {
743 		if (chip->irqs[i].reg_offset % map->reg_stride)
744 			return -EINVAL;
745 		if (chip->irqs[i].reg_offset / map->reg_stride >=
746 		    chip->num_regs)
747 			return -EINVAL;
748 	}
749 
750 	if (chip->not_fixed_stride) {
751 		dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead");
752 
753 		for (i = 0; i < chip->num_regs; i++)
754 			if (chip->sub_reg_offsets[i].num_regs != 1)
755 				return -EINVAL;
756 	}
757 
758 	if (chip->num_type_reg)
759 		dev_warn(map->dev, "type registers are deprecated; use config registers instead");
760 
761 	if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt)
762 		dev_warn(map->dev, "virtual registers are deprecated; use config registers instead");
763 
764 	if (irq_base) {
765 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
766 		if (irq_base < 0) {
767 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
768 				 irq_base);
769 			return irq_base;
770 		}
771 	}
772 
773 	d = kzalloc(sizeof(*d), GFP_KERNEL);
774 	if (!d)
775 		return -ENOMEM;
776 
777 	if (chip->num_main_regs) {
778 		d->main_status_buf = kcalloc(chip->num_main_regs,
779 					     sizeof(*d->main_status_buf),
780 					     GFP_KERNEL);
781 
782 		if (!d->main_status_buf)
783 			goto err_alloc;
784 	}
785 
786 	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
787 				GFP_KERNEL);
788 	if (!d->status_buf)
789 		goto err_alloc;
790 
791 	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
792 			      GFP_KERNEL);
793 	if (!d->mask_buf)
794 		goto err_alloc;
795 
796 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
797 				  GFP_KERNEL);
798 	if (!d->mask_buf_def)
799 		goto err_alloc;
800 
801 	if (chip->wake_base) {
802 		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
803 				      GFP_KERNEL);
804 		if (!d->wake_buf)
805 			goto err_alloc;
806 	}
807 
808 	/*
809 	 * Use num_config_regs if defined, otherwise fall back to num_type_reg
810 	 * to maintain backward compatibility.
811 	 */
812 	num_type_reg = chip->num_config_regs ? chip->num_config_regs
813 			: chip->num_type_reg;
814 	num_regs = chip->type_in_mask ? chip->num_regs : num_type_reg;
815 	if (num_regs) {
816 		d->type_buf_def = kcalloc(num_regs,
817 					  sizeof(*d->type_buf_def), GFP_KERNEL);
818 		if (!d->type_buf_def)
819 			goto err_alloc;
820 
821 		d->type_buf = kcalloc(num_regs, sizeof(*d->type_buf),
822 				      GFP_KERNEL);
823 		if (!d->type_buf)
824 			goto err_alloc;
825 	}
826 
827 	if (chip->num_virt_regs) {
828 		/*
829 		 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
830 		 */
831 		d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
832 				      GFP_KERNEL);
833 		if (!d->virt_buf)
834 			goto err_alloc;
835 
836 		for (i = 0; i < chip->num_virt_regs; i++) {
837 			d->virt_buf[i] = kcalloc(chip->num_regs,
838 						 sizeof(**d->virt_buf),
839 						 GFP_KERNEL);
840 			if (!d->virt_buf[i])
841 				goto err_alloc;
842 		}
843 	}
844 
845 	if (chip->num_config_bases && chip->num_config_regs) {
846 		/*
847 		 * Create config_buf[num_config_bases][num_config_regs]
848 		 */
849 		d->config_buf = kcalloc(chip->num_config_bases,
850 					sizeof(*d->config_buf), GFP_KERNEL);
851 		if (!d->config_buf)
852 			goto err_alloc;
853 
854 		for (i = 0; i < chip->num_config_regs; i++) {
855 			d->config_buf[i] = kcalloc(chip->num_config_regs,
856 						   sizeof(**d->config_buf),
857 						   GFP_KERNEL);
858 			if (!d->config_buf[i])
859 				goto err_alloc;
860 		}
861 	}
862 
863 	d->irq_chip = regmap_irq_chip;
864 	d->irq_chip.name = chip->name;
865 	d->irq = irq;
866 	d->map = map;
867 	d->chip = chip;
868 	d->irq_base = irq_base;
869 
870 	if (chip->mask_base && chip->unmask_base &&
871 	    !chip->mask_unmask_non_inverted) {
872 		/*
873 		 * Chips that specify both mask_base and unmask_base used to
874 		 * get inverted mask behavior by default, with no way to ask
875 		 * for the normal, non-inverted behavior. This "inverted by
876 		 * default" behavior is deprecated, but we have to support it
877 		 * until existing drivers have been fixed.
878 		 *
879 		 * Existing drivers should be updated by swapping mask_base
880 		 * and unmask_base and setting mask_unmask_non_inverted=true.
881 		 * New drivers should always set the flag.
882 		 */
883 		dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
884 
885 		/* Might as well warn about mask_invert while we're at it... */
886 		if (chip->mask_invert)
887 			dev_warn(map->dev, "mask_invert=true ignored");
888 
889 		d->mask_base = chip->unmask_base;
890 		d->unmask_base = chip->mask_base;
891 	} else if (chip->mask_invert) {
892 		/*
893 		 * Swap the roles of mask_base and unmask_base if the bits are
894 		 * inverted. This is deprecated, drivers should use unmask_base
895 		 * directly.
896 		 */
897 		dev_warn(map->dev, "mask_invert=true is deprecated; please switch to unmask_base");
898 
899 		d->mask_base = chip->unmask_base;
900 		d->unmask_base = chip->mask_base;
901 	} else {
902 		d->mask_base = chip->mask_base;
903 		d->unmask_base = chip->unmask_base;
904 	}
905 
906 	if (chip->irq_reg_stride)
907 		d->irq_reg_stride = chip->irq_reg_stride;
908 	else
909 		d->irq_reg_stride = 1;
910 
911 	if (chip->get_irq_reg)
912 		d->get_irq_reg = chip->get_irq_reg;
913 	else
914 		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
915 
916 	if (regmap_irq_can_bulk_read_status(d)) {
917 		d->status_reg_buf = kmalloc_array(chip->num_regs,
918 						  map->format.val_bytes,
919 						  GFP_KERNEL);
920 		if (!d->status_reg_buf)
921 			goto err_alloc;
922 	}
923 
924 	mutex_init(&d->lock);
925 
926 	for (i = 0; i < chip->num_irqs; i++)
927 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
928 			|= chip->irqs[i].mask;
929 
930 	/* Mask all the interrupts by default */
931 	for (i = 0; i < chip->num_regs; i++) {
932 		d->mask_buf[i] = d->mask_buf_def[i];
933 
934 		if (d->mask_base) {
935 			if (chip->handle_mask_sync) {
936 				ret = chip->handle_mask_sync(d->map, i,
937 							     d->mask_buf_def[i],
938 							     d->mask_buf[i],
939 							     chip->irq_drv_data);
940 				if (ret)
941 					goto err_alloc;
942 			} else {
943 				reg = d->get_irq_reg(d, d->mask_base, i);
944 				ret = regmap_update_bits(d->map, reg,
945 						d->mask_buf_def[i],
946 						d->mask_buf[i]);
947 				if (ret) {
948 					dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
949 						reg, ret);
950 					goto err_alloc;
951 				}
952 			}
953 		}
954 
955 		if (d->unmask_base) {
956 			reg = d->get_irq_reg(d, d->unmask_base, i);
957 			ret = regmap_update_bits(d->map, reg,
958 					d->mask_buf_def[i], ~d->mask_buf[i]);
959 			if (ret) {
960 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
961 					reg, ret);
962 				goto err_alloc;
963 			}
964 		}
965 
966 		if (!chip->init_ack_masked)
967 			continue;
968 
969 		/* Ack masked but set interrupts */
970 		reg = d->get_irq_reg(d, d->chip->status_base, i);
971 		ret = regmap_read(map, reg, &d->status_buf[i]);
972 		if (ret != 0) {
973 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
974 				ret);
975 			goto err_alloc;
976 		}
977 
978 		if (chip->status_invert)
979 			d->status_buf[i] = ~d->status_buf[i];
980 
981 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
982 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
983 			if (chip->ack_invert)
984 				ret = regmap_write(map, reg,
985 					~(d->status_buf[i] & d->mask_buf[i]));
986 			else
987 				ret = regmap_write(map, reg,
988 					d->status_buf[i] & d->mask_buf[i]);
989 			if (chip->clear_ack) {
990 				if (chip->ack_invert && !ret)
991 					ret = regmap_write(map, reg, UINT_MAX);
992 				else if (!ret)
993 					ret = regmap_write(map, reg, 0);
994 			}
995 			if (ret != 0) {
996 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
997 					reg, ret);
998 				goto err_alloc;
999 			}
1000 		}
1001 	}
1002 
1003 	/* Wake is disabled by default */
1004 	if (d->wake_buf) {
1005 		for (i = 0; i < chip->num_regs; i++) {
1006 			d->wake_buf[i] = d->mask_buf_def[i];
1007 			reg = d->get_irq_reg(d, d->chip->wake_base, i);
1008 
1009 			if (chip->wake_invert)
1010 				ret = regmap_update_bits(d->map, reg,
1011 							 d->mask_buf_def[i],
1012 							 0);
1013 			else
1014 				ret = regmap_update_bits(d->map, reg,
1015 							 d->mask_buf_def[i],
1016 							 d->wake_buf[i]);
1017 			if (ret != 0) {
1018 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
1019 					reg, ret);
1020 				goto err_alloc;
1021 			}
1022 		}
1023 	}
1024 
1025 	if (chip->num_type_reg && !chip->type_in_mask) {
1026 		for (i = 0; i < chip->num_type_reg; ++i) {
1027 			reg = d->get_irq_reg(d, d->chip->type_base, i);
1028 
1029 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
1030 
1031 			if (d->chip->type_invert)
1032 				d->type_buf_def[i] = ~d->type_buf_def[i];
1033 
1034 			if (ret) {
1035 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
1036 					reg, ret);
1037 				goto err_alloc;
1038 			}
1039 		}
1040 	}
1041 
1042 	if (irq_base)
1043 		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
1044 						     irq_base, 0,
1045 						     &regmap_domain_ops, d);
1046 	else
1047 		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
1048 						     &regmap_domain_ops, d);
1049 	if (!d->domain) {
1050 		dev_err(map->dev, "Failed to create IRQ domain\n");
1051 		ret = -ENOMEM;
1052 		goto err_alloc;
1053 	}
1054 
1055 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
1056 				   irq_flags | IRQF_ONESHOT,
1057 				   chip->name, d);
1058 	if (ret != 0) {
1059 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
1060 			irq, chip->name, ret);
1061 		goto err_domain;
1062 	}
1063 
1064 	*data = d;
1065 
1066 	return 0;
1067 
1068 err_domain:
1069 	/* Should really dispose of the domain but... */
1070 err_alloc:
1071 	kfree(d->type_buf);
1072 	kfree(d->type_buf_def);
1073 	kfree(d->wake_buf);
1074 	kfree(d->mask_buf_def);
1075 	kfree(d->mask_buf);
1076 	kfree(d->status_buf);
1077 	kfree(d->status_reg_buf);
1078 	if (d->virt_buf) {
1079 		for (i = 0; i < chip->num_virt_regs; i++)
1080 			kfree(d->virt_buf[i]);
1081 		kfree(d->virt_buf);
1082 	}
1083 	if (d->config_buf) {
1084 		for (i = 0; i < chip->num_config_bases; i++)
1085 			kfree(d->config_buf[i]);
1086 		kfree(d->config_buf);
1087 	}
1088 	kfree(d);
1089 	return ret;
1090 }
1091 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
1092 
1093 /**
1094  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
1095  *
1096  * @map: The regmap for the device.
1097  * @irq: The IRQ the device uses to signal interrupts.
1098  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1099  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1100  * @chip: Configuration for the interrupt controller.
1101  * @data: Runtime data structure for the controller, allocated on success.
1102  *
1103  * Returns 0 on success or an errno on failure.
1104  *
1105  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
1106  * node of the regmap is used.
1107  */
1108 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
1109 			int irq_base, const struct regmap_irq_chip *chip,
1110 			struct regmap_irq_chip_data **data)
1111 {
1112 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
1113 					  irq_flags, irq_base, chip, data);
1114 }
1115 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
1116 
1117 /**
1118  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
1119  *
1120  * @irq: Primary IRQ for the device
1121  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
1122  *
1123  * This function also disposes of all mapped IRQs on the chip.
1124  */
1125 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1126 {
1127 	unsigned int virq;
1128 	int i, hwirq;
1129 
1130 	if (!d)
1131 		return;
1132 
1133 	free_irq(irq, d);
1134 
1135 	/* Dispose all virtual irq from irq domain before removing it */
1136 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1137 		/* Ignore hwirq if holes in the IRQ list */
1138 		if (!d->chip->irqs[hwirq].mask)
1139 			continue;
1140 
1141 		/*
1142 		 * Find the virtual irq of hwirq on chip and if it is
1143 		 * there then dispose it
1144 		 */
1145 		virq = irq_find_mapping(d->domain, hwirq);
1146 		if (virq)
1147 			irq_dispose_mapping(virq);
1148 	}
1149 
1150 	irq_domain_remove(d->domain);
1151 	kfree(d->type_buf);
1152 	kfree(d->type_buf_def);
1153 	kfree(d->wake_buf);
1154 	kfree(d->mask_buf_def);
1155 	kfree(d->mask_buf);
1156 	kfree(d->status_reg_buf);
1157 	kfree(d->status_buf);
1158 	if (d->config_buf) {
1159 		for (i = 0; i < d->chip->num_config_bases; i++)
1160 			kfree(d->config_buf[i]);
1161 		kfree(d->config_buf);
1162 	}
1163 	kfree(d);
1164 }
1165 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1166 
1167 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1168 {
1169 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1170 
1171 	regmap_del_irq_chip(d->irq, d);
1172 }
1173 
1174 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1175 
1176 {
1177 	struct regmap_irq_chip_data **r = res;
1178 
1179 	if (!r || !*r) {
1180 		WARN_ON(!r || !*r);
1181 		return 0;
1182 	}
1183 	return *r == data;
1184 }
1185 
1186 /**
1187  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1188  *
1189  * @dev: The device pointer on which irq_chip belongs to.
1190  * @fwnode: The firmware node where the IRQ domain should be added to.
1191  * @map: The regmap for the device.
1192  * @irq: The IRQ the device uses to signal interrupts
1193  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1194  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1195  * @chip: Configuration for the interrupt controller.
1196  * @data: Runtime data structure for the controller, allocated on success
1197  *
1198  * Returns 0 on success or an errno on failure.
1199  *
1200  * The &regmap_irq_chip_data will be automatically released when the device is
1201  * unbound.
1202  */
1203 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1204 				    struct fwnode_handle *fwnode,
1205 				    struct regmap *map, int irq,
1206 				    int irq_flags, int irq_base,
1207 				    const struct regmap_irq_chip *chip,
1208 				    struct regmap_irq_chip_data **data)
1209 {
1210 	struct regmap_irq_chip_data **ptr, *d;
1211 	int ret;
1212 
1213 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1214 			   GFP_KERNEL);
1215 	if (!ptr)
1216 		return -ENOMEM;
1217 
1218 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1219 					 chip, &d);
1220 	if (ret < 0) {
1221 		devres_free(ptr);
1222 		return ret;
1223 	}
1224 
1225 	*ptr = d;
1226 	devres_add(dev, ptr);
1227 	*data = d;
1228 	return 0;
1229 }
1230 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1231 
1232 /**
1233  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1234  *
1235  * @dev: The device pointer on which irq_chip belongs to.
1236  * @map: The regmap for the device.
1237  * @irq: The IRQ the device uses to signal interrupts
1238  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1239  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1240  * @chip: Configuration for the interrupt controller.
1241  * @data: Runtime data structure for the controller, allocated on success
1242  *
1243  * Returns 0 on success or an errno on failure.
1244  *
1245  * The &regmap_irq_chip_data will be automatically released when the device is
1246  * unbound.
1247  */
1248 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1249 			     int irq_flags, int irq_base,
1250 			     const struct regmap_irq_chip *chip,
1251 			     struct regmap_irq_chip_data **data)
1252 {
1253 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1254 					       irq, irq_flags, irq_base, chip,
1255 					       data);
1256 }
1257 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1258 
1259 /**
1260  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1261  *
1262  * @dev: Device for which the resource was allocated.
1263  * @irq: Primary IRQ for the device.
1264  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1265  *
1266  * A resource managed version of regmap_del_irq_chip().
1267  */
1268 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1269 			      struct regmap_irq_chip_data *data)
1270 {
1271 	int rc;
1272 
1273 	WARN_ON(irq != data->irq);
1274 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1275 			    devm_regmap_irq_chip_match, data);
1276 
1277 	if (rc != 0)
1278 		WARN_ON(rc);
1279 }
1280 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1281 
1282 /**
1283  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1284  *
1285  * @data: regmap irq controller to operate on.
1286  *
1287  * Useful for drivers to request their own IRQs.
1288  */
1289 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1290 {
1291 	WARN_ON(!data->irq_base);
1292 	return data->irq_base;
1293 }
1294 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1295 
1296 /**
1297  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1298  *
1299  * @data: regmap irq controller to operate on.
1300  * @irq: index of the interrupt requested in the chip IRQs.
1301  *
1302  * Useful for drivers to request their own IRQs.
1303  */
1304 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1305 {
1306 	/* Handle holes in the IRQ list */
1307 	if (!data->chip->irqs[irq].mask)
1308 		return -EINVAL;
1309 
1310 	return irq_create_mapping(data->domain, irq);
1311 }
1312 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1313 
1314 /**
1315  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1316  *
1317  * @data: regmap_irq controller to operate on.
1318  *
1319  * Useful for drivers to request their own IRQs and for integration
1320  * with subsystems.  For ease of integration NULL is accepted as a
1321  * domain, allowing devices to just call this even if no domain is
1322  * allocated.
1323  */
1324 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1325 {
1326 	if (data)
1327 		return data->domain;
1328 	else
1329 		return NULL;
1330 }
1331 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1332